WorldWideScience

Sample records for based heusler alloys

  1. The surface spin polarization of Co-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Roman; Wuestenberg, Jan-Peter; Neuschwander, Sabine; Aeschlimann, Martin; Cinchetti, Mirko [University of Kaiserslautern (Germany). Department of Physics and Research Center OPTIMAS; Jourdan, Martin; Herbort, Christian; Vilanova Vidal, Enrique; Jakob, Gerhard [University of Mainz (Germany). Institute of Physics

    2010-07-01

    Co-based Heusler alloys belong mainly to the family of half-metallic ferromagnets (HMFs). The predicted full spin polarization at the Fermi level due to the minority spin band gap makes this class of materials highly interesting for application in the field of spintronics. Thus, the characterization of the surface of Co-based Heusler compounds is extremely relevant for understanding and improving the performance of Heusler-based spintronics devices, like tunnel-magnetoresistance (TMR) junctions. Using Auger electron spectroscopy (AES) and low energy spin polarized electron photoemission, we systematically studied the correlation between chemical composition and spin polarisation of the surface. For various Co-based Heusler alloys, e.g. Co{sub 2}CrAl, Co{sub 2}MnAl and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, we found different degrees of spin-polarization at the very surface region. Reasons for the distinct deviation from the predicted 100% spin polarization and the dependence on the specific surface preparation procedure are discussed.

  2. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  3. Exploring Half Metals in Li-based Half Heusler Alloys

    Science.gov (United States)

    Busemeyer, B.; Shaughnessy, M.; Fong, C. Y.

    2011-11-01

    We examine the electronic and magnetic properties of three Li-related half Heusler alloys, namely LiMnN, LiMnP, and LiMnSi in a structure close to the well-known zinc-blende structure in the attempt to search for new half metallic materials. If they do demonstrate half metallic properties, this will open new grounds for finding half metallic spintronic materials. Our results will furnish guidelines for future exploration of alkali-related half metals. Using the primitive cell LiMnSi is a half metal, while the pnictides are not. However when the conventional cell is used, we find that Li3Mn4P4 and Li3Mn4N4 are half metals. The physical reason for these two pnictides to be half metallic and for their magnetic moment per unit cell will be presented.

  4. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    Science.gov (United States)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  5. Tetragonal Heusler-Like Mn-Ga Alloys Based Perpendicular Magnetic Tunnel Junctions

    Science.gov (United States)

    Ma, Qinli; Sugihara, Atsushi; Suzuki, Kazuya; Zhang, Xianmin; Miyazaki, Terunobu; Mizukami, Shigemi

    2014-10-01

    Films of the Mn-based tetragonal Heusler-like alloys, such as Mn-Ga, exhibit a large perpendicular magnetic anisotropy (PMA), small damping constant, small saturation magnetization and large spin polarizations. These properties are attractive for the application to the next generation high density spin-transfer-torque (STT) magnetic random access memory (STT-MRAM). We reviewed the structure, magnetic properties and Gilbert damping of the alloy films with large PMA, and the current status of research on tunnel magnetoresistance (TMR) in perpendicular magnetic tunnel junctions (p-MTJs) based on Mn-based tetragonal Heusler-like alloy electrode, and also discuss the issues for the application of those to STT-MRAM.

  6. Bias dependence of spin transfer torque in Co2MnSi Heusler alloy based magnetic tunnel junctions

    Science.gov (United States)

    Zhang, Jie; Phung, Timothy; Pushp, Aakash; Ferrante, Yari; Jeong, Jaewoo; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Jiang, Yong; Parkin, Stuart S. P.

    2017-04-01

    Heusler compounds are of interest as electrode materials for use in magnetic tunnel junctions (MTJs) due to their half metallic character, which leads to 100% spin polarization and high tunneling magnetoresistance. Most work to date has focused on the improvements to tunneling magnetoresistance that can stem from the use of Heusler electrodes, while there is much less work investigating the influence of Heusler electrodes on the spin transfer torque properties of MTJs. Here, we investigate the bias dependence of the anti-damping like and field-like spin transfer torque components in both symmetric (Co2MnSi/MgO/Co2MnSi) and asymmetric (Co2MnSi/MgO/CoFe) structure Heusler based MTJs using spin transfer torque ferromagnetic resonance. We find that while the damping like torque is linear with respect to bias for both MTJ structures, the asymmetric MTJ structure has an additional linear component to the ordinarily quadratic field like torque bias dependence and that these results can be accounted for by a free electron tunneling model. Furthermore, our results suggest that the low damping and low saturation magnetization properties of Heusler alloys are more likely to lead significant improvements to spin torque switching efficiency rather than their half metallic character.

  7. Effects of Annealing on the Martensitic Transformation of Ni-Based Ferromagnetic Shape Memory Heusler Alloys and Nanoparticles

    OpenAIRE

    Tina Fichtner; Changhai Wang; Aleksandr A. Levin; Guido Kreiner; Catalina Salazar Mejia; Simone Fabbrici; Franca Albertini; Claudia Felser

    2015-01-01

    We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the an...

  8. On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloys

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Van Nong, Ngo; Le, Thanh Hung

    2016-01-01

    A method using fast hot pressing to join half-Heusler (HH) thermoelectric materials directly to an electrical current collector (Ag electrode) without using a third filler material is introduced. The compositions of the HH alloys used are Hf0.5Zr0.5CoSn0.2Sb0.8 and Ti0.6Hf0.4NiSn for p- and n...... and better performance compared with the method of using active brazing filler alloy....

  9. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: tufanroyburdwan@gmail.com [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Chakrabarti, Aparna [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2017-04-25

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping. - Highlights: • We discuss the effects of Co doping on magnetic properties of Ni/Pt based Heusler alloys. • Indirect RKKY interaction is maximum for shape memory alloy like systems. • We predict Pt{sub 2}MnSn as a probable ferromagnetic shape memory alloy.

  10. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  11. Angular Dependence of Spin Transfer Switching in Spin Valve Nanopillar Based Heusler Alloy

    Directory of Open Access Journals (Sweden)

    Pirat Khunkitti

    2016-01-01

    Full Text Available The spin transfer induced magnetization switching in current perpendicular-to-the-plane spin valve nanopillar based Co2FeAl0.5Si0.5 Heusler alloy with varying the initial angles of the magnetization of sensing layer, θ0, was investigated via macrospin simulations. The effects of an in-plane magnetic field, Hi, on the switching behavior were also evaluated. The magnetization switching was excited by spin polarized switching current, Is. The time varying magnetization was computed by the Landau-Lifshitz-Gilbert-Slonczewski equation, while the spin transfer induced noise was examined by using the power spectral density analysis. It was found that θ0 should be narrowly initialized since this configuration produces the small noise during the switching. Also, the negative Is produced more uniform switching than the positive Is due to existence of ferromagnetic exchange coupling. When Hi was presented, the noise generated at low frequencies could be suppressed, and then the switching behavior became more uniform. In addition, the results indicated that the noise configuration could be explained by the physical dynamic of magnetization behavior. Hence, the spin transfer induced noise needs to be minimized in order to improve the performance of spin transfer torque random access memory for high density recording.

  12. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Science.gov (United States)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  13. Competing structural ordering tendencies in new high-TC ferromagnetic Fe-Co-based Heusler alloys from ab initio investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje; Gruner, Markus; Entel, Peter [Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany); Wuttig, Manfred [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2011-07-01

    Fe-Co-based Heuslers are candidates for new ferromagnetic shape memory alloys (FSMA) as they promise higher operation temperatures compared with prototype Ni2MnGa. Of interest are also the corresponding binary systems FeZn and Fe3Ga which show a huge magnetostriction. We present results of ab initio and Monte Carlo calculations regarding structural, magnetic, and electronic properties of Fe2CoGa1-xZnx alloys in conventional X2YZ and inverse (XY)XZ Heusler structures. All systems exhibit high Curie temperatures TC. The preference of the cubic inverse structures is believed to originate from the bcc-like environment of two inequivalent Fe atoms and their strong hybridization with the Co- states. Weakening the Co-Fe hybridization by substitution of Ga by Zn reduces this preference and leads to higher TC but simultaneously reduces the miscibility. Despite the strong spin-dependent Fe-Co hybridization we find a localized character of the spin moments. Extraordinary Z-elements like Cu, Ag, and Au or further enhancement of the Zn content induces a martensitic instability also in the inverse structures. Thus, we conclude that it is possible to find new FSMA with rather high Curie temperatures.

  14. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Pu, E-mail: Vicky-sg1015@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Lim, Sze-Ter; Han, Gu-Chang, E-mail: HAN-Guchang@dsi.a-star.edu.sg [Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Teo, Kie-Leong, E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore (Singapore)

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  15. Fermi surface studies of Co-based Heusler alloys: Ab-initio study

    Science.gov (United States)

    Ram, Swetarekha; Kanchana, V.

    2013-02-01

    The electronic, Fermi surface (FS) and magnetic properties of ferromagnetic Heusler alloys Co2XY (X = Cr, Mn, Fe; Y=Al, Ga) have been investigated by means of first principles calculation. Out of these compounds, Co2CrAl is found to be perfectly half-metallic (HM) at ambient. Under pressure HM to nearly HM (NHM) transition is observed around 75 GPa for Co2CrAl and NHM to HM transition is observed around 40 GPa and 18 GPa for Co2CrGa and Co2MnAl, respectively, while no transition is observed for other compounds under study and is also analyzed from the FS studies. The states at the Fermi level in the majority spin are strongly hybridized Co-d and X-d like states. The majority band FS topology change is observed under pressure for the compounds where we observe a transition, while the minority band FS remain unaltered under pressure for all compounds except in Co2FeGa, where we observed an electron sheet at X point instead of hole pocket at Γ point.

  16. Effects of Annealing on the Martensitic Transformation of Ni-Based Ferromagnetic Shape Memory Heusler Alloys and Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tina Fichtner

    2015-03-01

    Full Text Available We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the annealing process. However, in the case of Co50Ni21Ga32 nanoparticles, a reverse phenomenon is observed. X-ray diffraction analysis results reveal that the as-prepared Co50Ni21Ga32 nanoparticles do not show a martensitic phase at room temperature. Post-annealing followed by ice quenching, however, is found to trigger the formation of the martensitic phase. The presence of the martensitic transition is attributed to annealing-induced particle growth and the stress introduced during quenching.

  17. Over 50% reduction in the formation energy of Co-based Heusler alloy films by two-dimensional crystallisation

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, James; Fleet, Luke R.; Walsh, Michael; Whear, Oliver; Huminiuc, Teodor [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Lari, Leonardo [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); York JEOL Nanocentre, University of York, Heslington, York YO10 5BR (United Kingdom); Boyes, Edward D. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); York JEOL Nanocentre, University of York, Heslington, York YO10 5BR (United Kingdom); Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Vick, Andrew [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Hirohata, Atsufumi, E-mail: atsufumi.hirohata@york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2014-07-21

    Crystalline formation of high magnetic-moment thin films through low-temperature annealing processes compatible with current semiconductor technologies is crucial for the development of next generation devices, which can utilise the spin degree of freedom. Utilising in-situ aberration corrected electron microscopy, we report a 235 °C crystallisation process for a Co-based ternary Heusler-alloy film whose initial nucleation is initiated by as few as 27 unit cells. The crystallisation occurs preferentially in the 〈111〉 crystalline directions via a two-dimensional (2D) layer-by-layer growth mode; resulting in grains with [110] surface normal and [111] plane facets. This growth process was found to reduce the crystallisation energy by more than 50% when compared to bulk samples whilst still leading to the growth of highly ordered grains expected to give a high degree of spin-polarisation. Our findings suggest that the 2D layer-by-layer growth minimises the crystallisation energy allowing for the possible implementation of highly spin-polarised alloy films into current chip and memory technologies.

  18. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    Science.gov (United States)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  19. Local moments and electronic correlations in Fe-based Heusler alloys: Kα x-ray emission spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Svyazhin, Artem, E-mail: svyazhin@imp.uran.ru [M.N. Mikheev Institute of Metal Physics, Russian Academy of Sciences – Ural Division, 620990 Yekaterinburg (Russian Federation); Kurmaev, Ernst; Shreder, Elena; Shamin, Sergey [M.N. Mikheev Institute of Metal Physics, Russian Academy of Sciences – Ural Division, 620990 Yekaterinburg (Russian Federation); Sahle, Christoph J. [ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex 9 (France)

    2016-09-15

    Heusler alloys are a property-rich class of materials, intensively investigated today from both theoretical and real-world application points of view. In this paper, we attempt to shed light on the role of electronic correlations in the Fe{sub 2}MeAl group (where Me represents all 3d elements from Ti to Ni) of Heusler alloys. For this purpose, we have investigated the local moments of iron by means of the x-ray emission spectroscopy technique. To obtain numerical values of local moments, the Kα-FWHM method has been employed for the first time. In every compound of the group, the presence of a local moment on the Fe atom was detected. As has been revealed, the values of these moments are temperature-independent, pointing to an insufficiency of a pure itinerant approach to magnetism in these alloys. We also comprehensively compare the usage of Kβ main lines and Kα spectra as tools for the probing of local moments and point out the significant advantages of the latter. - Highlights: • Local spin moments of iron in Fe{sub 2}MeAl (Me = Ti … Ni) Heusler alloys were investigated by means of x-ray emission spectroscopy. • Independence of the local moments from temperature confirms their localized nature. • A local moment value of iron in Fe{sub 2}MeAl raises with the atomic number of element Me. • The applicability of the Kα x-ray emission line for extracting local moment values of 3d elements was established.

  20. Half-metallic Co-based quaternary Heusler alloys for spintronics: Defect- and pressure-induced transitions and properties

    Science.gov (United States)

    Enamullah, Johnson, D. D.; Suresh, K. G.; Alam, Aftab

    2016-11-01

    Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L 21 ) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range. Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. This information should help in controlling these potential spintronic materials.

  1. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  2. Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles

    Science.gov (United States)

    Qawasmeh, Yasmeen; Hamad, Bothina

    2012-02-01

    Density functional theory (DFT) calculations are performed to investigate the structural, electronic, magnetic, and elastic properties of Ni2MnZ (Z = B, Al, Ga, In) and Ni2FeZ (Z = Al, Ga) full Heusler alloys. The alloys are found to be metallic ferromagnets with total magnetic moments of about 4μB/f.u. and 3μB/f.u for Ni2MnZ and Ni2FeZ alloys, respectively. The Ni2MnAl and Ni2MnIn alloys are found to be stable at L21 phase, while the other alloys are more stable in the tetragonal phase with c/a ratios of 1.38 and 1.27 for Ni2MnB and Ni2MnGa, respectively and 1.35 for both Ni2FeAl and Ni2FeGa. The Ni2MnB alloy exhibits the highest electron spin polarization in its tetragonal phase, which is about 88% greater than that of L21 structure. However, the Ni2MnGa, Ni2FeAl, and Ni2FeGa alloys exhibit lower spin polarizations in their tetragonal phase than those at the L21. The most contribution of the total magnetic moments comes from Mn or Fe atoms, whereas Ni atoms exhibit much smaller magnetic moments. However, Z atoms have small induced magnetic moments, which are coupled antiferromagnetically with Ni, Mn and Fe.

  3. Chromium and iron contained half-Heusler MnNiGe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, M. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Valkov, V.I.; Golovchan, A.V.; Kamenev, V.I. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Mitsiuk, V.I., E-mail: vmitsiuk@gmail.com [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus); Sivachenko, A.P. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Surowiec, Z. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Tkachenka, T.M. [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus)

    2015-12-15

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn{sub 0.89}Cr{sub 0.11}NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn{sub 0.89}Cr{sub 0.11}NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn{sub 0.89}Cr{sub 0.11}NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use.

  4. Probing the possibility of coexistence of martensite transition and half-metallicity in Ni and Co-based full-Heusler alloys: An ab initio calculation

    Science.gov (United States)

    Roy, Tufan; Pandey, Dhanshree; Chakrabarti, Aparna

    2016-05-01

    Using first-principles calculations based on density functional theory, we have studied the mechanical, electronic, and magnetic properties of Heusler alloys, namely, Ni2B C and Co2B C (B = Sc, Ti, V, Cr, and Mn as well as Y, Zr, Nb, Mo, and Tc; C = Ga and Sn). On the basis of electronic structure (density of states) and mechanical properties (tetragonal shear constant), as well as magnetic interactions (Heisenberg exchange coupling parameters), we probe the properties of these materials in detail. We calculate the formation energy of these alloys in the (face-centered) cubic austenite structure to probe the stability of all these materials. From the energetic point of view, we have studied the possibility of the electronically stable alloys having a tetragonal phase lower in energy compared to the respective cubic phase. A large number of the magnetic alloys is found to have the cubic phase as their ground state. On the other hand, for another class of alloys, the tetragonal phase has been found to have lower energy compared to the cubic phase. Further, we find that the values of tetragonal shear constant show a consistent trend: a high positive value for materials not prone to tetragonal transition and low or negative for others. In the literature, materials which have been seen to undergo the martensite transition are found to be metallic in nature. We probe here if there is any Heusler alloy which has a tendency to undergo a tetragonal transition and at the same time possesses a high spin polarization at the Fermi level. From our study, it is found that out of the four materials which exhibit a martensite phase as their ground state, three of these, namely, Ni2MnGa , Ni2MoGa , and Co2NbSn have a metallic nature; on the contrary, Co2MoGa exhibits a high spin polarization.

  5. Anisotropy in layered half-metallic Heusler alloy superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Romero, Jonathon [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Ma, Jianhua; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  6. Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: A first principle study

    Science.gov (United States)

    Dahmane, F.; Mogulkoc, Y.; Doumi, B.; Tadjer, A.; Khenata, R.; Bin Omran, S.; Rai, D. P.; Murtaza, G.; Varshney, Dinesh

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe2XAl (X=Cr, Mn, Ni) compounds in both the Hg2CuTi and Cu2MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu2MnAl-type structure is energetically more stable than the Hg2CuTi-type structure for the Fe2CrAl and Fe2MnAl compounds at the equilibrium volume. The full Heusler compounds Fe2XAl (X=Cr, Mn) are half-metallic in the Cu2MnAl-type structure. Fe2NiAl has a metallic character in both CuHg2Ti and AlCu2Mn-type structures. The total magnetic moments of the Fe2CrAl and Fe2MnAl compounds are 1.0 and 2.0 μB, respectively, which are in agreement with the Slater-Pauling rule Mtot=Ztot- 24.

  7. Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys

    Science.gov (United States)

    Hayashi, K.; Eguchi, M.; Miyazaki, Y.

    2016-09-01

    The thermoelectric properties of ternary full-Heusler alloys, Co2 YZ, which are in a ferromagnetic state up to high temperature above 300 K, were measured and are discussed in terms of the crystal structure and electronic states. Among the full-Heusler alloys studied, the Co2MnSi sample exhibited the highest absolute value of Seebeck coefficient and also the highest electrical conductivity in the temperature range from 300 K to 1023 K. The highest power factor of 2.9 × 10-3 W/m-K2 was obtained for the Co2MnSi sample at 550 K, demonstrating the potential of half-metallic full-Heusler alloys as thermoelectric materials.

  8. Self-similar field dependent curves for a Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ovichi, Maryam, E-mail: movichi@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States); ElBidweihy, Hatem; Ghahremani, Mohammadreza; Della Torre, Edward; Bennett, Lawrence H. [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States); Johnson, Francis; Zou, Min [GE Global Research, Niskayuna, NY 12309 (United States)

    2014-02-15

    Heusler alloys feature both regular and inverse magnetocaloric effects (MCE) near room temperature as they undergo two different transitions. A temperature scaling methodology to obtain self-similar field dependent curves for materials exhibiting one first-order transition has been previously presented. In this paper, this methodology is modified and extended to obtain self-similar curves for a Ni{sub 51}Mn{sub 32.8}In{sub 16.8} Heusler alloy undergoing two transitions near room temperature. Using this method, the collapsed curve reflects the cluster compositions in the mixed-state regions. The results of characterizing the dual transitions of Heusler alloys and establishing a new model will allow the data to be better analyzed and thus more easily predicted.

  9. A less expensive NiMnGa based Heusler alloy for magnetic refrigeration

    OpenAIRE

    Mejia, CS; Gomes, AM; de Oliveira, LAS

    2012-01-01

    We present a study of the substitution of Mn by Cu on the compound Ni2Mn1-xCuxGa0.9Al0.1, showing that the substitution of a small amount of Al on the Ga site does not affect the magnetic and magnetocaloric potential compared to Ni-2(Mn,Cu)Ga alloy. The samples were prepared with 10% substitution of Al and with Cu concentrations of x = 0.0, 0.2, and 0.3. Magnetization measurements as a function of temperature performed from 10 to 400 K, with an applied field of 0.02 T showed a ferromagnetic s...

  10. First-principles study of the Hf-based Heusler alloys: Hf2CoGa and Hf2CoIn

    Science.gov (United States)

    Hu, Yan; Zhang, Jian-Min

    2017-01-01

    The electronic structures and magnetic properties of the new Heusler alloys Hf2CoGa and Hf2CoIn have been studied by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). Both Hf2CoGa and Hf2CoIn Heusler alloys have the half-metallic character and completely (100%) spin polarization at the Fermi level (EF) and the indirect band gaps of 0.733 eV and 0.654 eV, respectively, in the minority spin channel. The total magnetic moments μt are all 2μB per formula unit, linearly scaled with the total number of valence electrons (Zt) by μt=Zt-18 and the atomic magnetic moments have localized character due to less affected by deformations. The origin of the indirect band gaps for these two new Heusler alloys is well understood. These two new Heusler alloys are the ideal candidates for spintronic devices.

  11. Chemical disorder determines the deviation of the Slater-Pauling rule for Fe2MnSi-based Heusler alloys: evidences from neutron diffraction and density functional theory

    Science.gov (United States)

    Tedesco, J. C. G.; Pedro, S. S.; Caraballo Vivas, R. J.; Cruz, C.; Andrade, V. M.; dos Santos, A. M.; Carvalho, A. M. G.; Costa, M.; Venezuela, P.; Rocco, D. L.; Reis, M. S.

    2016-11-01

    Fe2MnSi fails to follow the Slater-Pauling rule. This phenomenon is thought to originate from either: (i) an antiferromagnetic arrangement of Mn ions at low temperature and/or (ii) chemical disorder. An important insight on this issue could be achieved by considering Fe2MnSi1-x Ga x compounds, thoroughly studied here by means of magnetization, neutron diffraction and density functional calculations (DFT). Our results indicate that chemical disorder (and not the antiferromagnetic arrangement) is responsible for the deviation of the Slater-Pauling rule on Fe2MnSi-based Heusler alloys. Furthermore, evidences suggest that Ga substitution into Si site favors the Fe/Mn disorder, further enhancing the observed deviation.

  12. Chemical disorder determines the deviation of the Slater-Pauling rule for Fe2MnSi-based Heusler alloys: evidences from neutron diffraction and density functional theory.

    Science.gov (United States)

    Tedesco, J C G; Pedro, S S; Caraballo Vivas, R J; Cruz, C; Andrade, V M; Dos Santos, A M; Carvalho, A M G; Costa, M; Venezuela, P; Rocco, D L; Reis, M S

    2016-11-30

    Fe2MnSi fails to follow the Slater-Pauling rule. This phenomenon is thought to originate from either: (i) an antiferromagnetic arrangement of Mn ions at low temperature and/or (ii) chemical disorder. An important insight on this issue could be achieved by considering Fe2MnSi1-x Ga x compounds, thoroughly studied here by means of magnetization, neutron diffraction and density functional calculations (DFT). Our results indicate that chemical disorder (and not the antiferromagnetic arrangement) is responsible for the deviation of the Slater-Pauling rule on Fe2MnSi-based Heusler alloys. Furthermore, evidences suggest that Ga substitution into Si site favors the Fe/Mn disorder, further enhancing the observed deviation.

  13. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.;

    2008-01-01

    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on GaAs...

  14. Controlling the martensitic transformation temperature at constant valence electron concentration in Heusler based Ni-Mn-In alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda; Acet, Mehmet; Krenke, Thorsten; Wassermann, Eberhard [Experimentalphysik (AG- Farle), Universitaet Duisburg-Essen, 47048 Duisburg (Germany); Moya, Xavier; Manosa, Lluis; Planes, Antoni [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona (Spain)

    2007-07-01

    Although the martensitic transformation temperature M{sub s} increases linearly with increasing valence electron concentration e/a in Ni-Mn-X Heusler alloys (X: group III or IV element), the slope varies depending on the X-species, i.e., M{sub s} vs. e/a is not universal. This aspect can be favorably exploited to control Ms by holding e/a constant and replacing X{sup *} by an isoelectronic X{sup *}, where X and X{sup *}, are elements within the same group. Using this property we have substituted In in Ni{sub 50}Mn{sub 34}In{sub 16} (M{sub s}{proportional_to}200 K) with Ga to bring M{sub s} close to room temperature. Here, we show how magnetic field induced phase transition properties and associated magnetocaloric effects in Ni{sub 50}Mn{sub 34}In{sub 16} are modified in Ni{sub 50}Mn{sub 34}(In,Ga){sub 16}.

  15. Enhancement of current-perpendicular-to-plane giant magnetoresistance by insertion of amorphous ferromagnetic underlayer in Heusler alloy-based spin-valve structures

    Science.gov (United States)

    Choi, Young-suk; Nakatani, Tomoya; Read, John C.; Carey, Matthew J.; Stewart, Derek A.; Childress, Jeffrey R.

    2017-01-01

    We report an improved method for depositing Heusler alloy thin films, which reduces the B2-ordering temperature, and demonstrate its effect on improving spin-polarization and ΔR/R in CPP-GMR sensors. The insertion of a CoFeBTa or CoBTi amorphous ferromagnetic underlayer induced the formation of an amorphous Co2(Mn,Fe)Ge Heusler alloy film, reducing the B2-ordering temperature to ∼220 °C, which is significantly lower than the value of 500 °C for an epitaxial system and 400 °C for a polycrystalline system. This novel approach allows the fabrication of spin-valve sensor structures with ΔR/R of 18% after post-deposition annealing at temperatures less than 300 °C and is thus compatible with standard recording read-head sensor production.

  16. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    Directory of Open Access Journals (Sweden)

    R. L. Zhang

    2016-11-01

    Full Text Available For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  17. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    Science.gov (United States)

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; Yang, L. H.; Peng, R. W.; Felser, C.

    2016-11-01

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magnetic moment of 5μB. The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.

  18. Theoretical prediction of half metallic ferromagnetic full-Heusler alloys Cs2CrGe

    Science.gov (United States)

    Cherid, S.; Benstaali, W.; Abbad, A.; Bentata, S.; Lantri, T.; Abbar, B.

    2017-07-01

    The structural, electronic and elastic properties of full-Heusler alloys Cs2CrGe are examined in this study using FP-LAPW method based on density functional theory. Results of our calculations predict that the Hg2CuTi-type structure is more stable than the Cu2MnAl-type structure and that the ground state of this alloy is ferromagnetic. The band structure of Cs2CrGe shows half metallic behavior for the two approaches GGA and mBJ-GGA with an indirect band gap. The total magnetic moment calculated is in good agreement with the Slater-Pauling rule for full-Heusler alloys with an important magnetic moment equal to 4 μB. Elastic properties indicate that our compound is ductile, anisotropic and not too rigid.

  19. Current induced magnetization reversal in spin valves with Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aoshima, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)]. E-mail: aoshima.k-ia@nhk.or.jp; Funabashi, N. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Machida, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Miyamoto, Y. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Kuga, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Kawamura, N. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

    2007-03-15

    Current induced magnetization reversal using current-perpendicular-to-plane (CPP) spin valves devises with Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} alloys were investigated. Film stacks of Si/SiO{sub 2}/Cu/IrMn/Heusler-pinned-layer/Cu/Heusler-free-layer were deposited by DC magnetron sputtering followed by post-annealing. Saturation magnetization (B {sub s}) of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} are 12.7, 14.0, and 25 kg, respectively and magnetoresistance (MR) ratios of spin valves with the Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} are 3.6%, 3.5%, and 2.2%, respectively. The B {sub s} values and MR ratios obtained for Co{sub 2}MnGe and Co{sub 2}FeSi spin valves were smaller and larger, respectively, than those obtained for Co{sub 75}Fe{sub 25}. We speculated that the large MR ratios could be attributed to larger spin polarization of Heusler alloys. J {sub c0} of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} spin valves were 1.6x10{sup 7}, 2.7x10{sup 7}, and 5.1x10{sup 7} A/cm{sup 2}, respectively. The thermal factors of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} were 65, 48, and 55, respectively. Using the Heusler alloys, we successfully reduced the intrinsic critical current without degrading the thermal factor.

  20. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    Science.gov (United States)

    Bainsla, Lakhan; Suresh, K. G.

    2016-09-01

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (TC) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X2YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L21 structure with four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX'YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are found to be in

  1. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

    Science.gov (United States)

    Wang, Zhijun; Vergniory, M. G.; Kushwaha, S.; Hirschberger, Max; Chulkov, E. V.; Ernst, A.; Ong, N. P.; Cava, Robert J.; Bernevig, B. Andrei

    2016-12-01

    Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials X Co2Z (X =IVB or VB; Z =IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1 , guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level—the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2 π ) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments.

  2. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Science.gov (United States)

    Roy, Tufan; Chakrabarti, Aparna

    2017-04-01

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping.

  3. Structural, electronic and magnetic properties of Fe{sub 2}-based full Heusler alloys: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dahmane, F., E-mail: fethallah05@gmail.com [Département de SM, Institue des sciences et des technologies, Centre universitaire de Tissemsilt, 38000, Tissemsilt (Algeria); Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Mogulkoc, Y. [Department of Engineering Physics, Ankara University, Ankara (Turkey); Doumi, B.; Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 Mascara (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl-796001 (India); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Varshney, Dinesh [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe{sub 2}XAl (X=Cr, Mn, Ni) compounds in both the Hg{sub 2}CuTi and Cu{sub 2}MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu{sub 2}MnAl-type structure is energetically more stable than the Hg{sub 2}CuTi-type structure for the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds at the equilibrium volume. The full Heusler compounds Fe{sub 2}XAl (X=Cr, Mn) are half-metallic in the Cu{sub 2}MnAl-type structure. Fe{sub 2}NiAl has a metallic character in both CuHg{sub 2}Ti and AlCu{sub 2}Mn-type structures. The total magnetic moments of the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds are 1.0 and 2.0 μ{sub B}, respectively, which are in agreement with the Slater–Pauling rule M{sub tot}=Z{sub tot}− 24.

  4. Density functional study of the half-metallic ferromagnetism in Co-based Heusler alloys Co{sub 2}MSn (M = Ti, Zr, Hf) using LSDA and GGA

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Aaron, E-mail: aguayo@uady.mx [Facultad de Matematicas, Universidad Autonoma de Yucatan, Apartado Postal 172, Cordemex, 97110 Merida, Yucatan (Mexico); Murrieta, Gabriel, E-mail: murrieta@uady.mx [Facultad de Matematicas, Universidad Autonoma de Yucatan, Apartado Postal 172, Cordemex, 97110 Merida, Yucatan (Mexico)

    2011-12-15

    The half-metallic state in the Heusler alloys Co{sub 2}MSn (M = Ti, Zr, Hf) was studied by means of first principles calculation, using both, the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA) to the exchange-correlation energy. While the GGA calculation shows that the three alloys are half-metallic ferromagnets, the LSDA results show that they are ferromagnetic but not half-metallic systems. The difference between the exchange-correlation functionals is analyzed through the electronic structure of the alloys. The origin of the gap in the minority spin channel for GGA calculations is discussed. - Highlights: > In Co{sub 2}MSn (M = Ti, Zr, and Hf) LSDA and GGA act differently on the orbitals. > LSDA and GGA results about their half-metallic estate differ. GGA are half-metallic. > LSDA miscalculated the occupied and unoccupied Co d orbitals. > The calculated magnetic moment also shows differences between the two functionals. > The Co-Co hybridization is central to explain the half-metallic state in these alloys.

  5. Effect of an interface Mg insertion layer on the reliability of a magnetic tunnel junction based on a Co{sub 2}FeAl full-Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungmin; Kil, Gyuhyun; Lee, Gaehun; Choi, Chulmin; Song, Yunheub [Hanyang University, Seoul (Korea, Republic of); Sukegawa, Hiroaki; Mitani, Seiji [National Institute for Materials Science, Ibaraki (Japan)

    2014-04-15

    The reliability of a magnetic tunnel junction (MTJ) based on a Co{sub 2}FeAl (CFA) full-Heusler alloy with a MgO tunnel barrier was evaluated. In particular, the effect of a Mg insertion layer under the MgO was investigated in view of resistance drift by using various voltage stress tests. We compared the resistance change during constant voltage stress (CVS) and confirmed a trap/detrap phenomenon during the interval stress test for samples with and without a Mg insertion layer. The MTJ with a Mg insertion layer showed a relatively small resistance change for the CVS test and a reduced trap/detrap phenomenon for the interval stress test compared to the sample without a Mg insertion layer. This is understood to be caused by the improved crystallinity at the bottom of the CFA/MgO interface due to the Mg insertion layer, which provides a smaller number of trap site during the stress test. As a result, the interface condition of the MgO layer is very important for the reliability of a MTJ using a full-Heusler alloy, and the the insert of a Mg layer at the MgO interface is expected to be an effective method for enhancing the reliability of a MTJ.

  6. Enhancement of current-perpendicular-to-plane giant magnetoresistance in Heusler-alloy based pseudo spin valves by using a CuZn spacer layer

    Energy Technology Data Exchange (ETDEWEB)

    Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.; Hono, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-10-28

    Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hard disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.

  7. Progress Report 2011: Understanding compound phase transitions in Heusler alloy giant magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Shane

    2011-12-13

    Our goal is to gain insight into the fundamental physics that is responsible for magnetocaloric effects (MCE) and related properties at the atomic level. We are currently conducting a systematic study on the effects of atomic substitutions in Ni2MnGa-based alloys, and also exploring related full- and half-Heusler alloys, for example Ni-Mn-X (X=In, Sn, Sb), that exhibit a wide variety of interesting and potentially useful physical phenomena. It is already known that the magnetocaloric effect in the Heusler alloys is fundamentally connected to other interesting phenomena such as shape-memory properties. And the large magnetic entropy change in Ni2Mn0.75Cu0.25Ga has been attributed to the coupling of the first-order, martensitic transition with the second-order ferromagnetic paramagnetic (FM-PM) transition. Our research to this point has focused on understanding the fundamental physics at the origin of these complex, compound phase transitions, and the novel properties that emerge. We synthesize the materials using a variety of techniques, and explore their material properties through structural, magnetic, transport, and thermo-magnetic measurements.

  8. Magnetic and anomalous electronic transport properties of the quaternary Heusler alloys Co2Ti1-xFexGe

    Science.gov (United States)

    Venkateswarlu, B.; Midhunlal, P. V.; Babu, P. D.; Kumar, N. Harish

    2016-06-01

    The half-metallic Heusler alloy Co2TiGe has a ferromagnetic ground state with a low magnetic moment (2 μB). It is free of atomic antisite disorder but has low Curie temperature (~390 K). In contrast the other cobalt based Heusler alloy Co2FeGe has high Curie temperature (~980 K) and high magnetic moment (5.6 μB) while exhibiting antisite disorder and lack of half-metallicity. Hence it is of interest to investigate the magnetic and transport properties of solid solutions of these two materials with contrasting characteristics. We report the structural, magnetic and electronic transport properties of quaternary Co2Ti1-x FexGe (x=0.2, 0.4, 0.6, 0.8) Heusler alloys. The alloys crystallize in L21 structure but with antisite disorder. The magnetization measurements revealed that the alloys were of soft ferromagnetic type with high Curie temperatures. Deviation from Slater-Pauling behavior and drastic change in electronic transport properties with some anomalous features were observed.The complex electronic transport properties have been explained using different scattering mechanisms.

  9. Structure of rapidly quenched Ga-free Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sunol, J.J.; Escoda, L. [Department of Physics, University of Girona (P II, EPS) (Spain); Hernando, B.; Rosa, W.O.; Sanchez, T.; Santos, J.D.; Prida, V.M. [Department of Physics, University of Oviedo (Spain); Shavrov, V.G. [Institute of Radioengineering and Electronic of RAS, Moscow (Russian Federation)

    2011-10-15

    The development of magnetic shape memory alloys in ribbon form is a new field with interesting thermo-elastic and thermo-magnetic properties. In this work, two Ga-free Heusler alloys were obtained. It is found that is possible to obtain these materials with an austenite structure or with a martensite structure at room temperature. The lattice parameters are a = 0.5985(4) nm for the cubic L2{sub 1} austenite and a = 1.2604(5) nm, b = 0.4925(2) nm and c = 0.4775(9) nm for the orthorhombic martensite. Furthermore, the microstructure followed by scanning electron microscopy confirms the coexistence of equiaxial and columnar grains with an inhomogeneous distribution. The composition of each alloy is homogeneous. The control of different parameters, as the composition and the processing conditions can be a good option in order to obtain a material with the crystalline structure and the microstructure desired at room or near room temperature. This fact, can favours the applicability of this materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Disorder dependent half-metallicity in Mn{sub 2}CoSi inverse Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Saini, Hardev S. [Department of Physics, M.M. University, Mullana, Ambala, 133207 Haryana (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Reshak, Ali H. [Institute of Complex systems, FFPW, CENAKVA, University of South Bohemia in CB, 37333 Nove Hrady (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, 01007 Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India)

    2013-12-15

    Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disorders in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.

  11. Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Quetz, Abdiel; Pandey, Sudip; Aryal, Anil; Eubank, Michael [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Rodionov, Igor; Prudnikov, Valerii; Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Lahderanta, Erkki [Lappeenranta University of Technology, 53851 (Finland); Samanta, Tapas; Saleheen, Ahmad; Stadler, Shane [Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2015-06-01

    In this report, the results of a study on the effects of compositional variations induced by the small changes in concentrations of the parent components and/or by the substitution of Ni, Mn, or In by an extra element Z, on the phase transitions, and phenomena related to the magnetostructural transitions in off-stoichiometric Ni–Mn–In based Heusler alloys are summarized. The crystal structures, phase transitions temperatures, and magnetic and magnetocaloric properties were analyzed for representative samples of the following systems (all near 15 at% indium concentration): Ni–Mn–In, Ni–Mn–In–Si, Ni–Mn–In–B, Ni–Mn–In–Cu, Ni–Mn–In–Cu–B, Ni–Mn–In–Fe, Ni–Mn–In–Ag, and Ni–Mn–In–Al. - Highlights: • The experimental results on phase transitions temperatures, adiabatic temperature changes, magnetoresistance and heat flow for the ternary and quaternary Heusler alloys based on Ni{sub 50}Mn{sub 35}In{sub 15} demonstrate high sensitivity of magnetic properties to the small changes in concentrations of the parent components and/or by the substitution of Ni, Mn, or In by an additional element Z. • The phenomena related to the magnetostructural transitions strongly depend on the weighted average radius of constituent ions.

  12. Co2MnSi Heusler alloy as an enhancing layer of perpendicular magnetic anisotropy for MgO-based magnetic tunnel junctions with L10 ordered FePd

    Science.gov (United States)

    Bae, Taejin; Ko, Jungho; Lee, Sangho; Cha, Jongin; Hong, Jongill

    2016-01-01

    Ultra-thin Co2MnSi Heusler alloy improves perpendicular magnetic anisotropy of FePd in an MgO-based magnetic tunnel junction after annealing it just once at a temperature of as low as 400 °C. Co2MnSi as thin as 1.0 nm inserted between MgO and FePd facilitated phase-transformation of 3-nm-thick FePd to ordered L10 and led a change in magnetic anisotropy to perpendicular-to-the-plane. To make it even better, FePd also helped the phase-transformation of Co2MnSi to ordered B2 known to have high spin polarization, which makes the L10 FePd/B2 Co2MnSi bilayer promising for perpendicular-magnetic tunnel junction and improving both thermal stability and tunnel magnetoresistance.

  13. Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds

    Science.gov (United States)

    Yang, Jihui

    2002-03-01

    An increasing awareness of energy efficiency and environmental concerns has rekindled prospects for automotive and other applications of thermoelectric materials. For instance, getting “free” electric power from waste heat or obtaining cooling power from a solid-state device is very appealing for the automotive industry. ZrNiSn-based half-Heusler compounds show promising transport properties that make these materials of interest for thermoelectric power generation. The talk will focus on the effect on transport properties of alloying and doping on the various sublattices. New high temperature data will be presented that indicate that appropriately modified half-Heusler compounds possess very high power factor and relatively low thermal conductivity, leading to a dimensionless thermoelectric figure of merit ZT of 0.7 at 800 K. This is the highest ZT value for any half-Heusler compound reported so far.

  14. Theoretical investigation of the electronic structures and magnetic properties of the bulk and surface (001) of the quaternary Heusler alloy NiCoMnGa

    Energy Technology Data Exchange (ETDEWEB)

    Al-zyadi, Jabbar M. Khalaf, E-mail: Jabbar_alzyadi@yahoo.com [Department of Physics, College of Education, University of Basrah, Basrah 6100 (Iraq); Gao, G.Y. [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Kai-Lun [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of sciences, Shenyang 110015 (China)

    2015-03-15

    In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange–correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μ{sub B} per formula unit. The calculated total atomic magnetic moment follows the Slater–Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases. - Highlights: • The bulk NiCoMnGa quaternary-Heusler alloy is found to be a half-metallic ferromagnet. • Surface studies show that the half-metallicity of bulk NiCoMnGa is destroyed. • The magnetic moments are increased (decreased) at the (001) surface. • The quaternary-Heusler alloy follows a Slater–Pauling behavior.

  15. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  16. Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy

    Science.gov (United States)

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Nigam, A. K.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Alam, Aftab; Suresh, K. G.; Hono, K.

    2015-03-01

    In this paper, we report the signature of spin gapless semiconductor (SGS) in CoFeMnSi that belongs to the Heusler family. SGS is a new class of magnetic semiconductors which have a band gap for one spin subband and zero band gap for the other, and thus are useful for tunable spin transport based applications. We show various experimental evidences for SGS behavior in CoFeMnSi by carefully carrying out the transport and spin-polarization measurements. SGS behavior is also confirmed by first-principles band-structure calculations. The most stable configuration obtained by the theoretical calculation is verified by experiment. The alloy is found to crystallize in the cubic Heusler structure (LiMgPdSn type) with some amount of disorder and has a saturation magnetization of 3.7 μB/f .u . and Curie temperature of ˜620 K. The saturation magnetization is found to follow the Slater-Pauling behavior, one of the prerequisites for SGS. Nearly-temperature-independent carrier concentration and electrical conductivity are observed from 5 to 300 K. An anomalous Hall coefficient of 162 S/cm is obtained at 5 K. Point contact Andreev reflection data have yielded the current spin-polarization value of 0.64, which is found to be robust against the structural disorder. All these properties strongly suggest SGS nature of the alloy, which is quite promising for the spintronic applications such as spin injection as it can bridge the gap between the contrasting behaviors of half-metallic ferromagnets and semiconductors.

  17. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bainsla, Lakhan [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Suresh, K. G., E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Nigam, A. K. [Department of Condensed Matter and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India); Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Hono, K. [Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for the half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.

  18. Premartensite transition in Ni{sub 2}FeGa Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Hrusikesh, E-mail: hrushikesh.nath@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Technology of Metals and Aviation Materials Science, Samara State Aerospace University, Samara 443086 (Russian Federation); Phanikumar, G., E-mail: gphani@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-04-15

    Martensitic phase transformation of Ni{sub 2}FeGa Heusler alloy was studied by differential scanning calorimetry. Atomic ordering induced in the austenite structure by quenching from high temperature plays a significant role on martensitic phase transformation. Higher magnetization and larger magneto-crystalline anisotropy of martensite phase than that of austenite phase are noticed. Tweed contrast regions observed in the transmission electron microscopy were correlated to premartensite phenomena. A shift in premartensitic transition temperature prior to martensitic transformation as measured by differential scanning calorimetry is being reported for the first time in this system. - Highlights: • Atomic ordering influences martensitic transformation in Ni{sub 2}FeGa Heusler alloy. • Observation of tweed contrast in TEM was correlated to premartensite phenomena. • For the first time the shift in premartensite peak was observed in DSC.

  19. Performance analysis of STT-RAM with cross shaped free layer using Heusler alloys

    Science.gov (United States)

    Bharat Kumary, Tangudu; Ghosh, Bahniman; Awadhiya, Bhaskar; Verma, Ankit Kumar

    2016-01-01

    We have investigated the performance of a spin transfer torque random access memory (STT-RAM) cell with a cross shaped Heusler compound based free layer using micromagnetic simulations. We have designed a free layer using a Cobalt based Heusler compound. Simulation results clearly show that the switching time from one state to the other state has been reduced, also it has been found that the critical switching current density (to switch the magnetization of the free layer of the STT RAM cell) is reduced.

  20. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z. Y.; Liu, E. K., E-mail: ekliu@iphy.ac.cn; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Y. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Han, X. L.; Du, Z. W. [National Center of Analysis and Testing for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, H. Z.; Liu, G. D. [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    The all-d-metal Mn{sub 2}-based Heusler ferromagnetic shape memory alloys Mn{sub 50}Ni{sub 40−x}Co{sub x}Ti{sub 10} (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, −2) stacking of [00 10] of martensite are determined by X-ray diffraction and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of −2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.

  1. Structural transformation studies on the rare earth containing Heusler alloys Pd 2RESn

    Science.gov (United States)

    Umarji, A. M.; Malik, S. K.; Shenoy, G. K.

    1985-03-01

    The Heusler alloys Pd 2RESn form for rare-earths (RE) from Tb to Lu and for Sc and Y. Of these, the alloys containing Yb, Tm, Lu, Sc and Y are superconducting. We have carried out structural studies on all these alloys by studying the temperature dependence of the X-ray patterns in the temperature range 5 to 300 K. Some nonstoichiometric compositions were also investigated. Structural transformation is observed only in Tb and Dy containing alloys while none of the superconducting alloys show a transformation. The transformation temperature is lowered by about 50 K in going from stoichiometric Pd 2TbSn to nonstoichiometric Pd 2Tb 0.95Sn while it is completely suppressed in Pd 2Dy 0.95Sn. Magnetic and Mössbauer studies on Dy compound are also reported.

  2. Atomic site occupation determined by magnetism in the Heusler alloy Mn{sub 2}CoGa doped with Cr

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Li, G.J.; Liu, E.K.; Chen, J.L.; Wang, W.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, F.B. [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Wu, G.H., E-mail: ghwu@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-01

    The atomic configuration and magnetic properties of Mn{sub 2}CoM{sub x}Ga{sub 1−x} (M=Cr and Ni) Heusler alloys have been investigated by experiments and calculations. Doping with Ni leads to a magnetic moment change of 5.92 μ{sub B}/atom, giving rise to a local FM structure in the ferrimagnetic matrix. On the other hand, a moment change of 3.61 μ{sub B}/atom is experimentally observed in Cr-doped alloys, which is very large compared with the atomic moment of about 2 μ{sub B}/Cr atom in other Heusler alloys. Electronic-structure calculations are presented which indicate that, in contrast with Ni-doped alloys, the magnetism favors the doped Cr atoms to occupy unusual atomic sites. This is opposite to the effect of the covalent bonding in Ni-doped alloys and disobeys the empirical site-occupation rule for Heusler alloys. Due to the difference in electronegativity of the dopants, the covalent bonding in Mn{sub 2}CoGa doped with Ti, V and Cr is weaker than in alloys doped with Fe, Co and Ni. Because Cr has a higher magnetic moment than Ti and V, the magnetism determines, in this weak-covalent environment, an atomic site occupation by Cr which does not obey the empirical rule. This provides clear evidence for the impact of magnetism on the crystalline structure of Heusler alloys.

  3. Half-metallicity in a new Heusler alloy Ti{sub 2}FeSn: a density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadian, F. [Islamic Azad University, Shahreza (Iran, Islamic Republic of)

    2014-01-15

    First-principles calculations based on density functional theory for a new Heusler compound Ti{sub 2}FeSn have been performed using the self-consistent full-potential linearized augmented plane wave method. The results showed that the Ti{sub 2}FeSn Heusler alloy was a half-metallic ferrimagnet. The obtained total magnetic moment of Ti{sub 2}FeSn was 2 μ{sub B} per formula unit for the equilibrium lattice parameter, which is in agreement with the Slater-Pauling rule (M{sub tot} = Z{sub tot} - 18). The calculated minority spin and spin-flip gaps were 0.79 eV and 0.38 eV, respectively. In addition, the band structure and the density of states were studied, and the reason for the appearance of a minority band gap is discussed. The Ti{sub 2}FeSn alloy kept a 100% spin polarization at the Fermi level and had a half-metallic characteristic for lattice constants from 5.5 to 6.7 A showing that it is an interesting material in the field of spintronics.

  4. Quadratic MOKE on Co-based Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Georg; Leven, Britta; Hillebrands, Burkard [FB Physik, Landesforschungszentrum OPTIMAS, TU Kaiserslautern, 67663 Kaiserslautern (Germany); Hamrle, Jaroslav [Institute of Physics, VSB, Technical University, Ostrava (Czech Republic); Ebke, Daniel; Thomas, Andy; Reiss, Guenter [Thin Films and Physics of Nanostructures, Physics Department, Bielefeld University (Germany)

    2011-07-01

    The intensive research on Co-based Heusler compounds revealed that some of these materials show a large quadratic magneto-optical Kerr effect (QMOKE). The presence of QMOKE strongly depends on the electronic band structure. In the case of Heusler compounds the electronic bands can be modified by changing the composition or improving the crystalline structure. This work presents a systematic study on several Heusler compounds (Co{sub 2}FeSi, Co{sub 2}Fe{sub 0.5}Mn{sub 0.5}Si, Co{sub 2}MnSi and Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}). The amplitude of the QMOKE is investigated as a function of the post deposition annealing temperature, which is known to improve the crystal ordering. We find that the QMOKE is increasing with the annealing temperature. From this we conclude that there is a strong correlation between the presence of QMOKE and the high crystalline ordering in Heusler compounds.

  5. Martensitic transformation in Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd and Pt): Theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongzhi, E-mail: luo_hongzhi@163.com [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Enke; Wang, Wenhong; Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-01

    The martensitic transformation and electronic structure of Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn{sub 2}YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn{sub 2}PtIn. A single Heusler phase can be obtained in both Mn{sub 2}PtIn and Mn{sub 2}PdIn. A martensitic transformation temperature of 615 K has been identified in Mn{sub 2}PtIn. And in Mn{sub 2}PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn{sub 2}YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn{sub 2}PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations.

  6. A Comparison of Surface Segregation for two semi-Heusler alloys: TiCoSb and NiMnSb

    Science.gov (United States)

    Caruso, A. N.; Borca, C. N.; Dowben, P. A.; Ristoiu, D.; Nozieres, J. P.

    2002-03-01

    Very different types of surface segregation are found for very similar Heusler alloy materials. We observed significant manganese and antimony segregation to the surfaces of the semi-Heusler alloys NiMnSb and TiCoSb respectively. The Mn and Sb surface enrichment was characterized by angle-resolved core level photoemission. Indications of surface disorder from low energy electron diffraction provide complimentary evidence of segregation. It has been established [1,2] that segregation will significantly affect polarization so surface/interface segregation of the types observed for the half Heusler alloys will have substantial implications for spin-electronic devices made from these nominally high polarization materials. [1] D. Ristoiu, et al., Europhysics Letters 49 (2000) 624-630 [2] C. N. Borca, et al., Europhysics Letters 56 (2001) 722-728

  7. Influence of the transition width on the magnetocaloric effect across the magnetostructural transition of Heusler alloys.

    Science.gov (United States)

    Cugini, F; Porcari, G; Fabbrici, S; Albertini, F; Solzi, M

    2016-08-13

    We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  8. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  9. Full-Heusler Co2FeSi alloy thin films with perpendicular magnetic anisotropy inducedby MgO-interfaces

    OpenAIRE

    高村, 陽太; Takamura, Yota; 鈴木, 隆寛; Suzuki, Takahiro; 藤野, 頼信; Fujino, Yorinobu; 中川, 茂樹; Nakagawa, Shigeki

    2014-01-01

    A 100-nm-thick L21-ordered full-Heusler Co2FeSi (CFS) alloy film was fabricated using the facing targets sputtering (FTS) method at a substrate temperature TS of 300 ºC. The degrees of L21- and B2-order for the film were 37% and 96%, respectively. In addition, full-Heusler CFS alloy thin films with perpendicular magnetic anisotropy (PMA) induced by the magnetic anisotropy of MgO-interfaces were also successfully fabricated using the FTS method. The CFS/MgO stacked layers exhibited PMA when th...

  10. Study of structural, electronic and magnetic properties of CoFeIn and Co{sub 2}FeIn Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    El Amine Monir, M. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Abu-Jafar, M.S., E-mail: mabujafar@najah.edu [Dipartimento di Fisica Universita di Roma ' La Sapienza' , Roma (Italy); Department of Physics, An-Najah N. University, Nablus, Palestine (Country Unknown); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); and others

    2015-11-15

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co{sub 2}FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co{sub 2}FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co{sub 2}FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co{sub 2}FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  11. Electronic specific heat coefficient and magnetic properties of L2{sub 1} phase in Co{sub 2}YGa (Y = Cr, Mn and Fe) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Umetsu, R Y; Endo, N; Kainuma, R; Fukamichi, K [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Fujita, A; Ishida, K [Department of Materials Science, Graduate School of Engineering, Tohoku University, 02 Aoba-yama, Sendai 980-8579 (Japan); Sakuma, A, E-mail: rie@tagen.tohoku.ac.j [Department of Applied Physics, Graduate School of Engineering, Tohoku University, 08 Aoba-yama, Sendai 980-8579 (Japan)

    2010-01-01

    The electronic specific heat coefficient {gamma}, and the high field susceptibility {chi}{sub hf} of the L2{sub 1} phase in Co-based Heusler alloys were investigated in order to relate these properties to the spin polarization P. The {gamma}-values of Co{sub 2}CrGa, Co{sub 2}MnGa and Co{sub 2}FeGa alloys are comparable to the theoretical values of the total density of states at the Fermi energy. The value of {chi}{sub hf} for Co{sub 2}CrGa alloy having a high spin polarization of about 95% is significantly low on the order of 10{sup -4} {mu}{sub B}/f.u.-T. In contrast, {chi}{sub hf} for Co{sub 2}FeGa alloy having a theoretical P value of 37% is one order larger than that for Co{sub 2}CrGa alloy. These results imply that there is a relation between {chi}{sub hf} and P of the present Co-based Heusler alloys.

  12. Magnetic properties and phase stability of Co{sub 2}Cr(Ga,Si) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Umetsu, R.Y., E-mail: rieume@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology (JST-PREST), Saitama 332-0012 (Japan); Okubo, A.; Xu, X.; Kainuma, R. [Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-03-05

    Highlights: • Phase diagram was first established in Co{sub 2}Cr(Ga{sub 1−x}Si{sub x}) Heusler alloys. • Existence region of the single phase in the L2{sub 1}-type was confirmed in x ⩽ 0.5. • Magnetic measurements predict Co{sub 2}Cr(Ga,Si) are half-metallic ferromagnets if the order degree is completely controlled. -- Abstract: The phase diagram, magnetic properties and the region over which the Heusler alloys Co{sub 2}Cr(Ga{sub 1−x}Si{sub x}) occur as a single phase have been established. A single phase was obtained in the composition range of x ⩽ 0.5, in which the order–disorder phase transition temperature from the L2{sub 1} to the B2 phase, T{sub t}{sup L21/B2}, increased almost linearly with increasing x. The value of T{sub t}{sup L21/B2} for the L2{sub 1}-type Co{sub 2}CrSi Heusler alloy, estimated by linear extrapolation from its concentration dependence, was about 1450 K, and therefore higher than that of Co{sub 2}CrAl and Co{sub 2}CrGa. The Curie temperature, T{sub C}, also increased with increasing x becoming 600 K at x = 0.5, thus reflecting an increase in the magnetic moment caused by the change in the number of the valence electrons. The concentration dependence of the spontaneous magnetic moment, M{sub s}, measured at 5 K increased with increasing x, almost following the generalized Slater–Pauling (S.P.) rule predicted by Galanakis et al.

  13. The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe

    Science.gov (United States)

    Seema, K.

    2016-05-01

    We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μB which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.

  14. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala

    2016-05-09

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  15. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys

    Science.gov (United States)

    Salazar Mejía, C.; Küchler, R.; Nayak, A. K.; Felser, C.; Nicklas, M.

    2017-02-01

    Combined strain and magnetization measurements on the Heusler shape-memory alloys Ni45Co5Mn38Sb12 and Ni44Co6Mn38Sb12 give evidence for strong magneto-structural coupling. The sample length changes up to 1% at the martensitic transformation, between a ferromagnetic, austenitic phase at high temperatures and a weakly magnetic, low-symmetry martensitic phase at lower temperatures. Under moderate uniaxial stress, the change in the sample length increases to and saturates at about 3%, pointing to stabilization of a single martensitic variant. A reverse martensitic transformation can also be induced by applying magnetic field: we find that within the temperature range of thermal hysteresis of the martensitic transformation, applying a field can induce a metastable expansion of the sample, while at slightly lower temperatures, the field response is reversible. These findings provide key information for future use of Ni(Co)-Mn-Sb-based Heusler compounds in, e.g., actuators and mechanical switches.

  16. Thermoelectric properties of ultra-low thermal conductivity half-Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Md. Mofasser; Vitta, Satish, E-mail: satish.vitta@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-23

    The half-Heusler alloy HfNiGe has been synthesized by arc melting from high purity elements followed by annealing at 1000 K for 6 days to homogenize completely. The X-ray diffraction pattern indicates the presence of mainly an orthorhombic phase with small amount of other binary phases. The electrical resistivity is found to be low and increases slightly with temperature from 14 µΩ-m to 24 µΩ-m, indicating a semi metallic behavior. As a result the Seebeck coefficient is found to be low and also increases with temperature from −11 µV K{sup −1} to −19.5 µV K{sup −1}. The thermal conductivity has been determined using a combination of heat capacity and thermal diffusivity. It decreases from ~ 1.9 Wm{sup −1}K{sup −1} at room temperature to ~ 0.007 Wm{sup −1}K{sup −1} at 843 K, an extremely low value for a half-Heusler alloy. The thermal conductivity reduction is found to be mainly due to a sharp decrease in heat capacity for T> 650 K. This leads to a divergence of figure of merit at high temperatures, >800 K, from ~0.05 to 2 at 843 K.

  17. Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Alexandre Deltell

    2015-04-01

    Full Text Available Thermal and structural austenite to martensite reversible transition was studied in melt spun ribbons of Ni50Mn40Sn5Co5, Ni50Mn37.5Sn7.5Co5 and Ni50Mn35Sn10Co5 (at. % alloys. Analysis of X-ray diffraction patterns confirms that all alloys have martensitic structure at room temperature: four layered orthorhombic 4O for Ni50Mn40Sn5Co5, four layered orthorhombic 4O and seven-layered monoclinic 14M for Ni50Mn37.5Sn7.5Co5 and seven-layered monoclinic 14M for Ni50Mn35Sn5Co5. Analysis of differential scanning calorimetry scans shows that higher enthalpy and entropy changes are obtained for alloy Ni50Mn37.5Sn7.5Co5, whereas transition temperatures increases as increasing valence electron density.

  18. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala

    2017-09-18

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address the effects of doping. While many half-Heuser alloys show excellent thermoelectric performance, the materials under study are special by supporting both n- and p-doping. We identify the reasons for this balanced thermoelectric transport and explain why experimentally p-doping is superior to n-doping. We also determine the spectrum of phonon mean free paths to guide grain refinement methods to enhance the thermoelectric figure of merit.

  19. Magnetic, phase transformation and magnetocaloric studies in ferromagnetic Ni55Mn20Ga25 Heusler alloy

    Science.gov (United States)

    Babita, I.; Gopalan, R.; Ram, S.

    2009-01-01

    The phase transformation and magnetic entropy change (ΔSM) in the Ni55Mn20Ga25 Heusler alloy has been studied. The temperature dependence of magnetization study shows the direct transition from ferromagnetic martensitic phase to paramagnetic austenitic phase occurred at 353 K. By compositional tuning the first order martensitic transformation (TM ~200 K for parent compound Ni2MnGa) and second order magnetic phase transition temperatures (TC ~375 K for parent compound Ni2MnGa) can be merged. This occurs for Ni55Mn20Ga25 alloy at 353 K. The magnetic entropy change, ΔSM-value of -7.0 Jkg-1K-1 has been obtained in a field change of 1.2 T. The origin of enhancement in ΔSM -value is attributed to the essential coincidence of TM and TC.

  20. A Mössbauer effect study of the Fe2+ x Mn1- x Al Heusler alloys

    Science.gov (United States)

    Paduani, C.; Samudio Pérez, C. A.; Schaf, J.; Ardisson, J. D.; Takeuchi, A. Y.; Yoshida, M. I.

    2010-01-01

    In this work the Mössbauer spectroscopy has been used to study the magnetic properties of Fe2 + x Mn1 - x Al alloys with small deviations of composition from the stoichiometric 2:1:1. The Mössbauer parameters obtained for the L21 phase indicate H hf fields of about 25 T and 30 T at 80 K for Fe atoms at X sites in the ordered X2YZ structure of the L21 full Heusler alloys.

  1. Micromagnetic study of high-power spin–torque oscillator with perpendicular magnetization in half-metallic Heusler alloy spin valve nanopillar under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.B., E-mail: houbinghuang@gmail.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ma, X.Q.; Zhao, C.P.; Liu, Z.H. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Chen, L.Q. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-01

    We investigated the high-power spin–torque oscillator in a half-metallic Heusler alloy Co{sub 2}MnSi spin-valve nanopillars with perpendicular magnetization under external magnetic field using micromagnetic simulations. Our simulations show that the narrow optimum current of magnetization precession in the Heusler-based spin valve is broadened by introducing the surface anisotropy. The linear decrease of frequency with the out-of-plane magnetic field is obtained in our simulation. Additionally, the in-plane magnetic field dependence of frequency shows a parabolic curve which is explained by the magnetization trajectory tilting. Furthermore, we also discussed the decrease of output power using the excitation of non-uniform magnetization precession in the in-plane magnetic fields. - Highlights: • We investigated spin–torque oscillator in Co{sub 2}MnSi spin-valve under magnetic fields. • The narrow optimum current is broadened by introducing the surface anisotropy. • The frequency dependences of out-of-plane and in-plane magnetic fields show linear and parabola. • The results may give the guidance for designing Heusler-based spin–torque oscillator.

  2. Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation

    Directory of Open Access Journals (Sweden)

    R. Niemann

    2016-06-01

    Full Text Available Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.

  3. Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation

    Science.gov (United States)

    Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M. F.-X.; Fähler, S.

    2016-06-01

    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.

  4. The structural and magnetic properties of Fe2-xNiGa1+x Heusler alloys

    Science.gov (United States)

    Zhang (张玉洁), Y. J.; Xi (郗学奎), X. K.; Meng (孟凡斌), F. B.; Wang (王文洪), W. H.; Liu (刘恩克), E. K.; Chen (陈京兰), J. L.; Wu (吴光恒), G. H.

    2015-04-01

    The structural and magnetic properties of Fe2-xNiGa1+x (x=0~1) Heusler alloys have been investigated by experimental observation and calculation. In this system, a structural transition is found as a function of composition. A higher Ga content leads to an atomic-order transformation from Hg2CuTi to B2. The magnetization decreases due to the dilution effect and the competition between the magnetic interactions and enhanced covalent bonding. The calculation of electronic structure indicates that adding Ga enhances the p-d orbital hybridization between the transition-metal and main-group-element atoms at nearest-neighbor distance. A magnetic and a structural phase diagram have been obtained in which the composition dependences of the lattice constant, the ordering temperature and the Curie temperature show cusps at a critical composition of x=0.32.

  5. On the rich magnetic phase diagram of (Ni, Co)-Mn-Sn Heusler alloys

    Science.gov (United States)

    Grünebohm, A.; Herper, H. C.; Entel, P.

    2016-10-01

    We put a spotlight on the exceptional magnetic properties of the metamagnetic Heusler alloy (Ni, Co)-Mn-Sn by means of first principles simulations. In the energy landscape we find a multitude of local minima, which belong to different ferrimagnetic states and are close in total magnetization and energy. All these magnetic states correspond to the local high spin state of the Mn atoms with different spin alignments and are related to the magnetic properties of Mn. Compared to pure Mn, the magneto-volume coupling is reduced by Ni, Co and Sn atoms in the lattice and no local low-spin Mn states appear. For the cubic phase we find a ferromagnetic ground state whereas the global energy minimum is a tetragonal state with a complicated spin structure and vanishing magnetization which so far has been overlooked in simulations.

  6. The magnetic and transport properties of the Co{sub 2}FeGa Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 67, 1018XE Amsterdam (Netherlands); Brueck, Ekkes [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 67, 1018XE Amsterdam (Netherlands); Boer, Frank R de [Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 67, 1018XE Amsterdam (Netherlands); Li Zhuangzhi [State Key Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu Guangheng [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2004-08-07

    The magnetic and transport properties of the Co{sub 2}FeGa Heusler alloy have been investigated. The results show that the temperature dependence of the magnetization follows the spin-wave behaviour at low temperature. The electrical resistivity behaves according to a {approx}T{sup 2} power law, which may be mainly attributed to electron-electron scattering, and the contribution of electron-phonon scattering to the resistivity seems to be small. We have not observed remarkable magnetoresistance in our measurements. Point contact Andreev reflection measurements of the spin-polarization yield a polarization of 59%, which is consistent with the theoretical prediction by a first-principles calculation.

  7. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    Science.gov (United States)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  8. First-principles studies of the Gilbert damping and exchange interactions for half-metallic Heuslers alloys

    Science.gov (United States)

    Chico, Jonathan; Keshavarz, Samara; Kvashnin, Yaroslav; Pereiro, Manuel; Di Marco, Igor; Etz, Corina; Eriksson, Olle; Bergman, Anders; Bergqvist, Lars

    2016-06-01

    Heusler alloys have been intensively studied due to the wide variety of properties that they exhibit. One of these properties is of particular interest for technological applications, i.e., the fact that some Heusler alloys are half-metallic. In the following, a systematic study of the magnetic properties of three different Heusler families Co2Mn Z ,Co2FeZ , and Mn2V Z with Z=(Al,Si,Ga,Ge) is performed. A key aspect is the determination of the Gilbert damping from first-principles calculations, with special focus on the role played by different approximations, the effect that substitutional disorder and temperature effects. Heisenberg exchange interactions and critical temperature for the alloys are also calculated as well as magnon dispersion relations for representative systems, the ferromagnetic Co2Fe Si and the ferrimagnetic Mn2V Al . Correlation effects beyond standard density-functional theory are treated using both the local spin density approximation including the Hubbard U and the local spin density approximation plus dynamical mean field theory approximation, which allows one to determine if dynamical self-energy corrections can remedy some of the inconsistencies which were previously reported for these alloys.

  9. Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy.

    Science.gov (United States)

    Li, Zhe; Xu, Kun; Zhang, Yuanlei; Tao, Chang; Zheng, Dong; Jing, Chao

    2015-10-09

    In the present work, two successive magneto-structural transformations (MSTs) consisting of martensitic and intermartensitic transitions have been observed in polycrystalline Ni55.8Mn18.1Ga26.1 Heusler alloy. Benefiting from the additional latent heat contributed from intermediate phase, this alloy exhibits a large transition entropy change ΔStr with the value of ~27 J/kg K. Moreover, the magnetocaloric effect (MCE) has been also evaluated in terms of Maxwell relation. For a magnetic field change of 30 kOe, it was found that the calculated value of refrigeration capacity in Ni55.8Mn18.1Ga26.1 attains to ~72 J/kg around room temperature, which significantly surpasses those obtained for many Ni-Mn based Heusler alloys in the same condition. Such an enhanced MCE can be ascribed to the fact that the isothermal entropy change ΔST is spread over a relatively wide temperature interval owing to existence of two successive MSTs for studied sample.

  10. Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy

    Science.gov (United States)

    Li, Zhe; Xu, Kun; Zhang, Yuanlei; Tao, Chang; Zheng, Dong; Jing, Chao

    2015-10-01

    In the present work, two successive magneto-structural transformations (MSTs) consisting of martensitic and intermartensitic transitions have been observed in polycrystalline Ni55.8Mn18.1Ga26.1 Heusler alloy. Benefiting from the additional latent heat contributed from intermediate phase, this alloy exhibits a large transition entropy change ΔStr with the value of ~27 J/kg K. Moreover, the magnetocaloric effect (MCE) has been also evaluated in terms of Maxwell relation. For a magnetic field change of 30 kOe, it was found that the calculated value of refrigeration capacity in Ni55.8Mn18.1Ga26.1 attains to ~72 J/kg around room temperature, which significantly surpasses those obtained for many Ni-Mn based Heusler alloys in the same condition. Such an enhanced MCE can be ascribed to the fact that the isothermal entropy change ΔST is spread over a relatively wide temperature interval owing to existence of two successive MSTs for studied sample.

  11. A first principle study of phase stability, electronic structure and magnetic properties for Co{sub 2−x}Cr{sub x}MnAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Abidri, B.; Rabah, M.; Benkhettou, N. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-04-01

    The structural stabilities, electronic and magnetic properties of Co{sub 2−x}Cr{sub x}MnAl alloys with (x=0,1 and 2) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange correlation functional. The ground state properties including lattice parameter, bulk modulus for the two considered crystal structures Hg{sub 2}CuTi-Type (X-Type) and Cu{sub 2}MnAl-Type (L2{sub 1}-Type) are calculated. The half-metallicity within ferromagnetic ground state starts to appear in CoCrMnAl and Cr2MnAl. In the objective for the proposition of the new HM-FM in the Full-Heusler alloys, our results classified CoCrMnAl as new HM-FM material with high spin polarization. - Highlights: • Based on DFT calculations, Co2-xCrxMnAl Heusler alloys have been investigated. • The magnetic phase stability was determined from the total energy calculations. • The LMTO calculations have classified CoCrMnAl as new HM-FM material with high spin polarization.

  12. Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy

    Science.gov (United States)

    Li, Zhe; Xu, Kun; Zhang, Yuanlei; Tao, Chang; Zheng, Dong; Jing, Chao

    2015-01-01

    In the present work, two successive magneto-structural transformations (MSTs) consisting of martensitic and intermartensitic transitions have been observed in polycrystalline Ni55.8Mn18.1Ga26.1 Heusler alloy. Benefiting from the additional latent heat contributed from intermediate phase, this alloy exhibits a large transition entropy change ΔStr with the value of ~27 J/kg K. Moreover, the magnetocaloric effect (MCE) has been also evaluated in terms of Maxwell relation. For a magnetic field change of 30 kOe, it was found that the calculated value of refrigeration capacity in Ni55.8Mn18.1Ga26.1 attains to ~72 J/kg around room temperature, which significantly surpasses those obtained for many Ni-Mn based Heusler alloys in the same condition. Such an enhanced MCE can be ascribed to the fact that the isothermal entropy change ΔST is spread over a relatively wide temperature interval owing to existence of two successive MSTs for studied sample. PMID:26450663

  13. Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn)

    Science.gov (United States)

    Esteki, S.; Ahmadian, F.

    2017-09-01

    First-principles calculations based on density functional theory (DFT) using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method were applied to study the electronic structures and magnetic properties of new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). The calculated formation energies of these compounds were negative, therefore, they can be synthesized experimentally. All compounds were stable in ferromagnetic AlCu2Mn-type structure. In AlCu2Mn-type structure, CoScO2, CoFeO2, and CoNiO2 compounds were HM ferromagnets, CoCuO2 was a nearly half-metal, CoZnO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. In CuHg2Ti-type structure, CoTiO2 compound had a nearly HM characteristic, CoVO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. The origin of the half-metallic band gap for CoScO2 alloy Heusler alloy was well understood. The total magnetic moments of the three HM compounds obeyed Slater-Pauling rules (Mtot = 22-Ztot and Mtot = 32-Ztot). CoScO2 had the widest region of half-metallicity between the three half-metals indicating its high robustness of half-metallicity with respect to the variation of lattice constants.

  14. Nature of electron correlation and hybridization in NixCu1−xMnSb Heusler alloys

    Directory of Open Access Journals (Sweden)

    I. Sarkar

    2016-08-01

    Full Text Available The electronic structure of Heusler alloys having mixed magnetic phases, comprising of vicinal anti-ferromagnetic and ferromagnetic orders, is of great significance. We present the results of an electronic structure study on NixCu1−xMnSb Heusler alloys, using Mn-2p core-level photoemission spectroscopy. Room temperature data in the paramagnetic phase reveal a non-monotonic variation of both electron correlation strength and conduction-band hybridization such that the former enhances while the latter weakens for compositions showing a mixed phase relative to compositions at the phase boundaries to the ordered phases. The results suggest a possible electronic driving force for settling mixed-magnetic phases.

  15. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys

    Science.gov (United States)

    Gao, G. Y.; Yao, Kai-Lun

    2013-12-01

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D03-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V3Si and V3Ge, half-metallic antiferromagnets of Mn3Al and Mn3Ga, half-metallic ferrimagnets of Mn3Si and Mn3Ge, and a spin gapless semiconductor of Cr3Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  16. Half-metallic properties of the new Ti2YPb(Y = Co, Fe) Heusler alloys

    Science.gov (United States)

    Hussain, Moaid K.; Gao, G. Y.; Yao, Kai-Lun

    2015-09-01

    The half-metallic properties of Ti2YPb(Y = Co, Fe) Heusler alloys with a CuHg2Ti-type structure were examined within the frame of the density functional theory and the Perdew-Burke-Ernzerh of generalized gradient approximation (GGA). Analysis of the electronic band structures and density of states for Ti2YPb(Y = Co, Fe) revealed that the spin-up bands are metallic, whereas the spin-down bands exhibit gaps of 0.73 and 0.70 eV, respectively. The magnetic moments calculated for the Ti2YPb(Y = Co, Fe) alloys were found to be equal to 3 μB/f.u. and 2 μB/f.u., values which both follows the Slater-Pauling rule of Mt = Zt - 18. The compounds’ negative enthalpy values should encourage their experimental realization in the future. The bandgap was elucidated to be mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(1)-Ti(2) coupling and the Y = Co, Fe atom. The half-metallic properties of the Ti2YPb(Y = Co, Fe) compounds were found to be insensitive to lattice distortion, with full spin polarization achievable within a large range of lattice parameter values, making the alloys suitable for use in practical applications.

  17. The structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn

    Science.gov (United States)

    Yan, Peng-Li; Zhang, Jian-Min; Xu, Ke-Wei

    2016-04-01

    Employing the first-principles calculations, we have investigated the structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn. The TiZrCoIn alloy with type (I) configuration is predicted to be half-metallic ferromagnet at its equilibrium lattice constant 6.525 Å with an indirect band gap of 0.930 eV in minority spin channel. The total magnetic moment is 2 μB/f.u., following the Slater-Pauling rule μt=Zt-18. Moreover, the negative formation energy indicates the thermodynamical stability of this alloy. The band gap of minority spin channel is determined by the bonding (t2g) and antibonding (t1u) states created from the hybridizations of the d states of transition metal atoms Ti, Zr and Co. In addition, the HM, character is kept as hydrostatic strain ranged from -10% to 7.6% and tetragonal strain ranged from -19% to 27%.

  18. Optimizing Magnetocaloric Properties of Heusler-Type Magnetic Shape Memory Alloys by Tuning Magnetostructural Transformation Parameters

    Science.gov (United States)

    Huang, Lian; Qu, Yuhai; Cong, Daoyong; Sun, Xiaoming; Wang, Yandong

    2017-08-01

    Heusler-type magnetic shape memory alloys show a magnetostructural transformation from the low-magnetization phase to the high-magnetization phase upon the application of external magnetic fields. As a result, these alloys exhibit fascinating multifunctional properties, such as magnetic shape memory effect, magnetocaloric effect, magnetoresistance, and magnetic superelasticity. All these functional properties are intimately related to the coupling of the structural and magnetic transitions. Therefore, deliberate tuning of the magnetostructural transformation parameters is essential for obtaining optimal multifunctional properties. Here, we show that by tuning the magnetostructural transformation parameters, we are able to achieve a variety of novel magnetocaloric properties with different application potentials: (1) large magnetic entropy change of 31.9 J kg-1 K-1 under a magnetic field of 5 T; (2) giant effective magnetic refrigeration capacity (251 J kg-1) with a broad operating temperature window (33 K) under a magnetic field of 5 T; (3) large reversible field-induced entropy change (about 15 J kg-1 K-1) and large reversible effective magnetic refrigeration capacity (77 J kg-1) under a magnetic field of 5 T. The balanced tuning of magnetostructural transformation parameters of magnetic shape memory alloys may provide an instructive reference to the shape memory and magnetic refrigeration communities.

  19. Magnetic states stabilization in Ni51Mn33.4In15.6 Heusler alloy

    Directory of Open Access Journals (Sweden)

    Mohammadreza Ghahremani

    2015-12-01

    Full Text Available The rate-independent stabilization of magnetic states with iterations in a Heusler alloy has been studied. The direct measurement of the adiabatic temperature change, ΔTad, of a Ni51Mn33.4In15.6 alloy near the magnetostructural phase transition is presented. The adiabatic temperature change at a given temperature within the temperature range of the magnetostructural transition is history dependent and varies considerably with the iteration count of the field cycle. The data show the transition from the low magnetization state to the high magnetization state during low to high (L–H temperature change direction and from high magnetization to low magnetization state during high to low (H–L temperature change direction require several field cycles to stabilize the ΔTad measurement, similar to the accommodation phenomenon in hysteretic materials. In the mixed magnetic state inside the first-order transition, both low and high magnetization portions of the alloy exist and it varies considerably with the induced fields. This original observation emphasizes that it is incorrect to assess the performance of a magnetic refrigeration system through a single measurement, and that achieving a stable, utilizable, adiabatic temperature change requires several field-induced transitions.

  20. Neutron diffraction study of Heusler type alloy Mnsub(0. 47)Vsub(0. 28)Alsub(0. 25)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroshi; Nakamichi, Takuro; Yamaguchi, Yasuo; Kazama, Noriaki

    1983-05-01

    Crystal and magnetic structures of an annealed Mn-V-Al ternary alloy were investigated by powder neutron diffraction. Neutron diffraction measurements confirmed clearly that the Mn-V-Al alloy specimen with approximate composition Mn/sub 2/ VAl annealed at 1023 K for 48 h has the Heusler (L2/sub 1/)-type structure. Our studies on the annealed alloy specimen, Mnsub(1.88) Vsub(1.12) Alsub(1.00), showed that Mn atom occupies preferentially the simple cubic Mn sublattice ..cap alpha..(A + C), while V and Al atoms occupy the B and D sublattices, respectively, in the bcc structure composed of four equivalent fcc sublattices A, B, C and D. It was suggested strongly that Mn atom has the magnetic moment (1.5 +- 0.3)..mu.. sub(B) in the sublattice ..cap alpha.. and couples antiferromagnetically with V atom which has the magnetic moment 0.9..mu.. sub(B) in the B sublattice.

  1. Electronic structure, magnetism and robust half-metallicity of new quaternary Heusler alloy FeCrMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Saini, Hardev S. [Department of Physics, National Institute of Technology, Kurukshetra 136 119, Haryana (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Reshak, Ali H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)

    2013-12-15

    Highlights: •A new quaternary Heusler alloy FeCrMnSb is identified with robust half metallicity. •The stability of FeCrMnSb has been examined using elastic constants. •Effect of uniform and tetragonal strains on half metallicity has been studied. -- Abstract: A new quaternary Heusler alloy FeCrMnSb is identified by employing ab initio electronic structure calculations. It is stable in Y-structure which is also verified by various conditions governed by elastic constants c{sub ij}. It is a true half-metallic (HM) ferromagnet with integer magnetic moment of 2.00 μ{sub B} per formula unit. The values of minority band gap and HM gap are found to be 0.65 eV and 0.1 eV, respectively. The HM character of FeCrMnSb sustains for −6% to 9% of uniform strain and −9% to 12% of tetragonal strain. This new quaternary Heusler alloy can be proved as an ideal candidate for spin valves and magnetic tunnel junction applications (MTJs)

  2. High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bainsla, Lakhan; Mallick, A.I. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Coelho, A.A. [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas-UNICAMP, SP 6165, Campinas 13 083-859, Sao Paulo (Brazil); Nigam, A.K. [DCMPMS, Tata Institute of Fundamental Research, Mumbai 4000052 (India); Varaprasad, B.S.D.Ch.S.; Takahashi, Y.K. [Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Alam, Aftab [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Suresh, K.G., E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Hono, K. [Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-11-15

    In this paper, we investigate CoFeCrAl alloy by means of ab-initio electronic structure calculations and various experimental techniques. The alloy is found to exist in the B2-type cubic Heusler structure, which is very similar to Y-type (or LiMgPdSn prototype) structure with space group F-43m (#216). Saturation magnetization (M{sub S}) of about 2 µ{sub B}/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater–Pauling rule. M{sub S} values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallicity for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67±0.02, as deduced from the point contact Andreev reflection measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices. - Highlights: • The ab-initio calculations predict half-metallic nature for the alloy. • Saturation magnetization (M{sub S}) gives characteristics of half-metallic nature. • Current spin polarization (P) value of 0.67±0.02 is deduced from PCAR measurements. • Deduced P is higher than those obtained for many ternary and/or quaternary alloys. • Resistivity behavior gives signature of high P at elevated temperatures.

  3. Stability analysis of the martensitic phase transformation in Co2NiGa Heusler alloy

    Science.gov (United States)

    Talapatra, Anjana; Arróyave, Raymundo; Entel, Peter; Valencia-Jaime, I.; Romero, Aldo H.

    2015-08-01

    Phase competition and the subsequent phase selection are important characteristics of alloy systems exhibiting numerous states of distinct symmetry but comparable energy. The stoichiometric Co2NiGa Heusler alloy exhibits a martensitic transformation with concomitant reduction in symmetry from an austenitic L 21 phase (cubic) to a martensitic L 10 phase (tetragonal). A structural search was carried out for this alloy and it showed the existence of a number of structures with monoclinic and orthorhombic symmetry with ground state energies comparable to and even less than that of the L 10 structure, usually reported as the ground state at low temperatures. We describe these structures and focus in particular on the structural transition path from the L 21 to tetragonal and orthorhombic structures for this material. Calculations were carried out to study the Bain (L 21-L 10 ) and Burgers (L 21-hcp ) transformations. The barrierless Burgers path yielded a stable martensitic phase with orthorhombic symmetry (O ) with energy much lower—beyond the expected uncertainty of the calculation methods—than the known tetragonal L 10 martensitic structure. This low-energy structure (O ) has yet to be observed experimentally and it is thus of scientific interest to discern the cause for the apparent discrepancy between experiments and calculations. It is postulated that the Co2NiGa Heusler system exhibits a classic case of the phase selection problem: although the unexpected O phase may be relatively more stable than the L 10 phase, the energy barrier for the (L 21-O ) transformation may be much higher than the barrier to the (L 21-L 10 ) transformation. To validate this hypothesis, the stability of this structure was investigated by considering the contributions of elastic and vibrational effects, configurational disorder, magnetic disorder, and atomic disorder. The calculations simulating the effect of magnetic disorder/high temperature as well as the atomic disorder

  4. A Moessbauer effect study of the Fe{sub 2+x}Mn{sub 1-x}Al Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C., E-mail: paduani@fisica.ufsc.br [DF-UFSC (Brazil); Samudio Perez, C. A. [ICE-UPF (Brazil); Schaf, J. [IF-UFRGS (Brazil); Ardisson, J. D. [CDTN (Brazil); Takeuchi, A. Y. [CBPF (Brazil); Yoshida, M. I. [DQ-ICEX-UFMG (Brazil)

    2010-01-15

    In this work the Moessbauer spectroscopy has been used to study the magnetic properties of Fe{sub 2+x}Mn{sub 1-x}Al alloys with small deviations of composition from the stoichiometric 2:1:1. The Moessbauer parameters obtained for the L2{sub 1} phase indicate H{sub hf} fields of about 25 T and 30 T at 80 K for Fe atoms at X sites in the ordered X{sub 2}YZ structure of the L2{sub 1} full Heusler alloys.

  5. Giant tunnel magnetoresistance at room temperature using Co{sub 2}Fe(SiAl) full Heusler alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Koichiro [National Institute for Materials Science, Tsukuba (Japan); Tohoku University, Sendai (Japan); CREST-JST, Saitama (Japan); Ikeda, Naomichi [Tohoku University, Sendai (Japan); CREST-JST, Saitama (Japan); Tezuka, Nobuki [Tohoku University, Sendai (Japan)

    2007-07-01

    Half-metallic ferromagnets (HMFs) are a key material for spintronics, which have a band gap at the Fermi level (EF) for one spin direction and thus exhibit 100% spin polarization at the EF. Full Heusler alloys, in particular, are promising as a half metal, because a number of which have been predicted to be HMFs and have a high Curie temperature. Here we report the giant TMR observation at room temperature (RT) for the MTJ using Co{sub 2}Fe(Si,Al) (CFSA) electrodes. We first investigate the structure of the sputtered CFSA films on a Cr-buffered MgO(001) substrate in an ultrahigh vacuum by post annealing at various temperatures. Next we fabricate the epitaxially grown spin-valve type MTJs on a Cr-buffered MgO(001) substrate with Co{sub 2}FeSi{sub 0.5}Al{sub 0.5} full-Heusler alloys for top and bottom electrodes and an MgO barrier with different thicknesses. The bottom CFAS film is post-annealed at 673 K after the deposition at RT, followed by the deposition of the other films at RT. The junctions are the annealed at various temperatures, and then microfabricated into 100 mm{sup 2} using the electron beam lithography and Ar ion milling. We have successfully grown the highly ordered CFSA full-Heusler films for top and bottom electrodes. As a result we have attained the giant TMR over 200% at RT.

  6. Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benkabou, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Département de Physique, Faculté des Sciences, Université Hassiba Benbouali, Chlef 02000 (Algeria); Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); and others

    2015-10-25

    First-principle calculations are performed to predict the electronic structure and elastic and magnetic properties of CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys. The calculations employ the full-potential linearized augmented plane wave. The exchange-correlations are treated within the generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE). The electronic structure calculations show that these compounds exhibit a gap in the minority states band and are clearly half-metallic ferromagnets, with the exception of the CoRhMnAl and CoRhMnGa, which are simple ferromagnets that are nearly half metallic in nature. The CoRhMnGe and CoRhMnSi compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, which indicates the half metallicity and high spin polarization for these compounds. At the pressure transitions, these compounds undergo a structural phase transition from the Y-type I → Y-type II phase. We have determined the elastic constants C{sub 11}, C{sub 12} and C{sub 44} and their pressure dependence, which have not previously been established experimentally or theoretically. - Highlights: • Based on DFT calculations, CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • The mechanical properties were investigated.

  7. Theoretical investigation of the electronic structures and magnetic properties of the bulk and surface (001) of the quaternary Heusler alloy NiCoMnGa

    Science.gov (United States)

    Al-zyadi, Jabbar M. Khalaf; Gao, G. Y.; Yao, Kai-Lun

    2015-03-01

    In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange-correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μB per formula unit. The calculated total atomic magnetic moment follows the Slater-Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases.

  8. First-principles study on magnetism and half-metallicity in bulk and various (001) surfaces of Heusler alloy Zr2VSn with Hg2CuTi-type structure

    Science.gov (United States)

    Deng, Zun-Yi; Zhang, Jian-Min

    2016-07-01

    Structural, electronic and magnetic properties in the bulk and five different (001) surfaces (ZrV-, ZrSn-, VV-, ZrZr- and SnSn-terminations) of Zr2 VSn Heusler alloy with Hg2 CuTi -type structure are studied by using first-principles calculations based on density-functional theory. The bulk Zr2 VSn Heusler alloy is ferrimagnetic half-metallicity with equilibrium lattice constant 6.815 Å and total magnetic moment -1.000 μB / f.u . , following the Slater-Pauling rule μt =Zt - 18 . The atoms on different surface layers exhibit different displacements, electronic and magnetic properties. All five (001) surfaces lose the half-metallicity and are not usable in spintronics devices.

  9. Vortex spin-torque oscillator using Co2FexMn1 -xSi Heusler alloys

    Science.gov (United States)

    Yamamoto, Tatsuya; Seki, Takeshi; Takanashi, Koki

    2016-09-01

    We show spin-transfer-torque-driven vortex oscillations in current-perpendicular-to-plane giant magnetoresistance junctions using epitaxially grown Co2FexMn1 -xSi (CFMS) Heusler alloy thin films. The soft magnetic property and high spin polarization of CFMS enable us to realize vortex oscillation emitting large microwave power with a low threshold current. The output power is maximized for a certain Fe-Mn composition ratio associated with a reduction of the threshold current for the oscillation, which is in agreement with a general model for spin-torque oscillation. Through comparison with an analytical theory that describes the translational motion of a vortex core, we show that the vortex core motion excited in the present device is inhomogeneous along the thickness direction. In spite of the inhomogeneity, the gyration radius at the CFMS/spacer interface region was estimated to be ˜75 % of the actual ferromagnetic layer radius, which indicates that the CFMS-based all-metallic junction is useful for achieving large-amplitude vortex core motion. This comprehensive investigation would also be useful for designing high-performance all-metallic nano-oscillators based on magnetic vortex dynamics.

  10. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys

    Indian Academy of Sciences (India)

    N Lakshmi; Anil Pandey; K Venugopalan

    2002-08-01

    Heusler alloys, Mn2CoSn and Mn2NiSn, were prepared and characterized by X-ray studies. Mössbauer studies using Sn-119 were carried out to investigate the hyperfine fields present at the Sn site in these alloys. The hyperfine field distribution in these alloys as well as X-ray studies point to the chemical disorder present in both alloys. Co-existence of a paramagnetic portion along with the magnetic hyperfine part was observed in Mn2CoSn even at low temperatures, while this was not found in Mn2NiSn spectra. Hyperfine fields at Sn site were calculated using Blandin and Campbell model and compared with the experimental results.

  11. Structural and electronic properties of half-Heusler alloy PdMnBi calculated from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenchao, E-mail: wc_huang@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Wang, Xiaofang, E-mail: wxiaof66@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang, E-mail: xschen@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Damewood, L.; Fong, C.Y. [Department of Physics, University of California, Davis, CA 95616-8677 (United States)

    2014-11-14

    The dependence of the electronic and magnetic properties on the atomic arrangements of three different phases (i.e. α, β, and γ phases), of the half-Heusler alloy PdMnBi, is investigated based on spin-polarized density functional theory. For each phase, the optimized lattice constant is determined and the possibility of finding a half-metal is explored. Throughout this study, the bonding features of each phase are not supported by the large electronegativity of Pd given in the public domain. Both α and β phases PdMnBi show half-metallic (HM) properties for a range of lattice constants, and their magnetic moments are consistent with the values given by the modified Slater-Pauling rule. Additionally, the effects of the spin–orbit (S-O) interaction are examined by comparing the relative shifts of the valence bands and the indirect semiconducting gap, with respect to the spin-polarized results. - Highlights: • We studied all different atomic arrangement (α, β, and γ phases) of PdMnBi. • Detailed explanation of electronic properties for three phases has been given. • We did observed half-metallic properties in alpha and beta phase. • The spin-orbital effect is considered and we made a comparison with NiMnSb.

  12. Theoretical investigation of new Heusler alloys Ru{sub 2}VGa{sub 1−x}Al{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Abbassa, Hamza [Département de Physique, Université de Abdelhamid Ibn Badis de Mostaganem, Mostaganem (Algeria); Laboratoire de Physique des Couches Minces et Matériaux pour l’Electronique (LPC2ME), Université d’Oran, Es-Senia, Oran (Algeria); Hadjri-Mebarki, Soria [Laboratoire de Physique des Couches Minces et Matériaux pour l’Electronique (LPC2ME), Université d’Oran, Es-Senia, Oran (Algeria); Amrani, Bouhalouane, E-mail: amrani.bouhalouane@univ-oran.dz [Laboratoire de Physique des Couches Minces et Matériaux pour l’Electronique (LPC2ME), Université d’Oran, Es-Senia, Oran (Algeria); Belaroussi, Tayeb [Département de Physique, Université de Abdelhamid Ibn Badis de Mostaganem, Mostaganem (Algeria); Laboratoire de Physique de Plasmas des Matériaux Conducteur et leur Applications (LPPMCA), Université d’USTOMB, Oran (Algeria); Driss Khodja, Kouider [Laboratoire de Physique des Couches Minces et Matériaux pour l’Electronique (LPC2ME), Université d’Oran, Es-Senia, Oran (Algeria); Aubert, Pascal [Institut d’Electronique Fondamentale, Université Paris-Sud – CNRS, Orsay 91405 (France)

    2015-07-15

    Highlights: • Electronic and thermodynamic properties of new Heusler alloys Ru{sub 2}VGa{sub 1−x}Al{sub x} (x = 0, 0.25, 0.50, 0.75, and 1.00) are studied. • Elastic parameters and stability of Ru{sub 2}VGa{sub 1−x}Al{sub x} alloys. • A linear behavior of the lattice parameter, bulk modulus, elastic constants and Debye temperature on x has been observed. - Abstract: Results of first-principles full-potential linearized augmented plane wave calculations of elastic and related electronic and thermodynamic properties of the quaternary Heusler alloys Ru{sub 2}VAl{sub x}Ga{sub 1−x} (x = 0, 0.25, 0.5, 0.75, 1) are presented. These materials were found to have the L2{sub 1} structure for all concentrations. The agreement between the theoretical and experimental lattice parameters for both Ru{sub 2}VAl and Ru{sub 2}VGa at various temperatures was found to be satisfactory. Our results provide predictions for the remaining mixed more» Heusler alloys Ru{sub 2}VAl{sub x}Ga{sub 1−x} (0 < x < 1) for which no direct experimental or theoretical data are presently available. In their equilibrium L2{sub 1} structure, all concentrations are non-magnetic metals. A linear variation of the lattice parameter, bulk modulus, elastic constants and Debye temperature has been observed with x.

  13. Full-Heusler Co2FeSi alloy thin films with perpendicular magnetic anisotropy induced by MgO-interface

    OpenAIRE

    Takamura, Yota; Suzuki, Takahiro; Fujino, Yorinobu; Nakagawa, Shigeki

    2013-01-01

    The authors demonstrated that L21-ordered full-Heusler Co2FeSi (CFS) alloy film with thickness of 100 nm were formed by facing targets sputtering (FTS) method at a substrate temperature TS = 300 deg C. Degrees of L21- and B2- order for the film were 0.37, and 0.96, respectively. Furthermore, full-Heusler CFS alloy thin films with perpendicular magnetic anisotropy (PMA) induced by MgO-interface magnetic anisotropy were successfully formed by the FTS method. The CFS/MgO stacking layers showed P...

  14. Consecutive magnetic and magnetocaloric transitions in herringbone nanostructured Heusler Mn50Ni41Sn9 alloy.

    Science.gov (United States)

    Prasanna, A A; Ram, S; Fecht, H J

    2013-08-01

    A herringbone nanostructured Mn-rich Heusler Mn50Ni50-Sndelta (8 - 9) alloy exhibits tailored magnetocaloric properties in the martensite and ferro paramagnetic transitions concur in a narrow temperature window. In a Sn --> Ni substitution 8 - 9, the martensite (M) A approximately equal to 282 mJ/g (deltaC(P)(M A) approximately equal to 0.025 mJ/g-K in the heat capacity), i.e., the M A transition process lacks a complete reversibility. Warming a zero-field cooled sample retains lower magnetization (sigma) at low fields B, e.g., by 58% over the field cooled value at 5 mT, wherein merely low field magnetic susceptibility imparts the magnetization process. A reversible thermal hysteresis thus the transition traces in cooling and heating. The field diminishes difference in two sigma-values progressively, e.g., only - 12% lasts at 5 T. The two curves bifurcate below 160 K (B-5 mT) and the gap grows exponentially over lower temperatures before sigma(M or = 250 K) before a ferromagnetic A-state lines-up the successive transitions. Temperature and frequency dependence ac and dc susceptibilities describe the surface spins dynamics.

  15. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J. [School of Science, Hubei University of Automotive Technology, Shiyan 442002 (China); Yao, K. L. [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, The Chinese Academy of Science, Shenyang 110015 (China)

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range of c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.

  16. Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Madhusmita, E-mail: madhusmita@rrcat.gov.in; Banik, Soma, E-mail: madhusmita@rrcat.gov.in; Ganguli, Tapas, E-mail: madhusmita@rrcat.gov.in; Chakrabarti, Aparna, E-mail: madhusmita@rrcat.gov.in; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Thamizhavel, A. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Wadikar, Avinash; Phase, D. M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452017 (India)

    2014-04-24

    The electronic structures of Co{sub 2.01}Ni{sub 1.05}Ga{sub 0.94} and Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78} Heusler alloys have been investigated by resonant photoemission spectroscopy across the 3p-3d transition of Co and Ni. For the Ni excess composition Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78}, the valence band peak shows a shift of 0.25 eV as compared to the near stoichiometric composition Co{sub 2.01}N1{sub 1.05}Ga{sub 0.94}. Also an enhancement is observed in the Ni related satellite features in the valence band for the Ni excess composition. Due to hybridization of Co and Ni 3d states in these systems, the Co and Ni 3p-3d resonance energies are found to be higher as compared to Co and Ni metals. Theoretical first principle calculation is performed to understand the features in the valence band and the shape of the resonance profile.

  17. Perpendicular magnetic anisotropy in Fe2Cr1 - xCoxSi Heusler alloy

    Science.gov (United States)

    Wang, Yu-Pu; Qiu, Jin-Jun; Lu, Hui; Ji, Rong; Han, Gu-Chang; Teo, Kie-Leong

    2014-12-01

    Perpendicular magnetic anisotropy (PMA) was achieved in annealed Fe2Cr1 - xCoxSi (FCCS) Heusler alloys with different Co compositions x. The Co composition is varied to tune the Fermi level in order to achieve both higher spin polarization and better thermal stability. The PMA is thermally stable up to 400 oC for FCCS with x = 0, 0.3, 0.5 and 350 oC for FCCS with x = 0.7, 0.9, 1. The thickness of FCCS films with PMA ranges from 0.6 to 1.2 nm. The annealing temperature and FCCS thickness are found to greatly affect the PMA. The magnetic anisotropy energy density KU is 2.8  ×  106 erg cm-3 for 0.8 nm Fe2CrSi, and decreases as the Co composition x increases, suggesting that the PMA induced at the FCCS/MgO interface is dominated by the contribution of Fe atoms. There is a trade-off between high spin polarization and strong PMA by adjusting the Co composition.

  18. Determination of the magnetocaloric effect associated with martensitic transition in Ni46Cu4Mn38Sn12 and Ni5oCoMn34In15 Heusler alloys

    Institute of Scientific and Technical Information of China (English)

    Li Zhe; Jing Chao; Zhang Hao-Lei; Cao Shi-Xun; Zhang Jin-Cang

    2011-01-01

    This paper presents a study of the inverse magnetocaloric effect (MCE)corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn3sSn12 and Ni50CoMn34In,5 Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.

  19. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  20. Growth and transport properties of thin Co-based Heusler films; Wachstum und Transporteigenschaften duenner Co-basierter Heusler-Filme

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Horst

    2010-07-01

    During this work, thin films of Co-based Heusler compounds were deposited under optimized conditions, and their structural, magnetic, and transport properties were investigated. The growth of the thin film samples was accomplished by two different methods. At first Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and Co{sub 2}FeSi were deposited by sputter deposition from stoichiometric targets. This is considered the standard technique for the preparation of thin Heusler films. Also for the compounds investigated here it resulted in samples with a high degree of L2{sub 1} ordering. An excess of Fe atoms on Si sites was discovered by a detailed X-ray analysis in conjunction with NMR spectroscopy. The choice of different substrates allowed the adjustment of the growth direction. On the other hand, bulk magnetometry revealed that these sputter deposited films exhibit only a reduced magnetic moment, which is an indication of a reduced spin asymmetry at the Fermi level. One source of this problem seems to be a high residual gas pressure, which leads to an increased sample contamination. To improve this situation, a pulsed laser deposition system was constructed and put into operation. The resulting film growth under ultra-high vacuum conditions led to a further improvement of the short-range crystallographic ordering and a clear enhancement of the magnetic properties. The additional use of a metallic buffer layer resulted in samples with a smooth surface. This opens the door for a number of further analytical experiments, such as tunneling spectroscopy or Brillouin light scattering. After this successful demonstration of this growth technique, an additional method for the flexible variation of the film stoichiometry was implemented. In this work, this method was successfully applied in the deposition of Co{sub 2}Mn{sub 1-x}Fe{sub x}Si films. All samples in this series show a high degree of atomic ordering. Their magnetization values are compatible with the Slater-Pauling rule for

  1. Effect of Spark Plasma Sintering on the Structure and Properties of Ti1−xZrxNiSn Half-Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Ruth A. Downie

    2014-10-01

    Full Text Available XNiSn (X = Ti, Zr and Hf half-Heusler alloys have promising thermoelectric properties and are attracting enormous interest for use in waste heat recovery. In particular, multiphase behaviour has been linked to reduced lattice thermal conductivities, which enables improved energy conversion efficiencies. This manuscript describes the impact of spark plasma sintering (SPS on the phase distributions and thermoelectric properties of Ti0.5Zr0.5NiSn based half-Heuslers. Rietveld analysis reveals small changes in composition, while measurement of the Seebeck coefficient and electrical resistivities reveals that all SPS treated samples are electron doped compared to the as-prepared samples. The lattice thermal conductivities fall between 4 W·m−1·K−1 at 350 K and 3 W·m−1·K−1 at 740 K. A maximum ZT = 0.7 at 740 K is observed in a sample with nominal Ti0.5Zr0.5NiSn composition.

  2. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  3. Optimization of exchange bias in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler alloy layers

    Energy Technology Data Exchange (ETDEWEB)

    Hirohata, Atsufumi, E-mail: ah566@ohm.york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Izumida, Keisuke; Ishizawa, Satoshi; Nakayama, Tadachika [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Sagar, James [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-05-07

    We have fabricated and investigated IrMn{sub 3}/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} stacks to meet the criteria for future spintronic device applications which requires low-temperature crystallisation (<250 °C) and a large exchange bias H{sub ex} (>500 Oe). Such a system would form the pinned layer in spin-valve or tunnel junction applications. We have demonstrated that annealing at 300 °C which can achieve crystalline ordering in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} layer giving ∼80% of the predicted saturation magnetisation. We have also induced an exchange bias of ∼240 Oe at the interface. These values are close to the above criteria and confirm the potential of using antiferromagnet/Heusler-alloy stacks in current Si-based processes.

  4. The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2016-05-01

    Full Text Available The effect of substituting Ag for In on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15−xAgx (x = 0.1, 0.2, 0.5, and 1 Heusler alloys was studied. The magnitude of the magnetization change at the martensitic transition temperature (TM decreased with increasing Ag concentration. Smaller magnetic entropy changes (ΔSM were observed for the alloys with larger Ag concentrations and the martensitic transition shifted to higher temperature. A shift of TM by about 25 K to higher temperature was observed for an applied hydrostatic pressure of P = 6.6 kbar with respect to ambient pressure. A large drop in resistivity was observed for large Ag concentration. The magnetoresistance was dramatically suppressed due to an increase in the disorder of the system with increasing Ag concentration. Possible mechanisms responsible for the observed behavior are discussed.

  5. Exploring the pathways for enhancing the hard magnetic properties of binary Al-55at.%Mn Heusler alloy through mechanical alloying

    Science.gov (United States)

    Palanisamy, Dhanalakshmi; Madras, Giridhar; Chattopadhyay, Kamanio

    2017-10-01

    This work reports enhancing the hard magnetic properties of a binary ferromagnetic Heusler alloy based on Mn-Al system through mechanical milling. We report the processing induced evolution of magnetic properties for two sets of alloys, both having the same stoichiometric composition of Al-55at.%Mn with one of them containing high temperature ε phase while the other consisting of only metastable ferromagnetic τ phase. No effect of milling on the magnetic properties of ε phase could be detected due to its nonmagnetic nature. However, subsequent annealing at 350 °C for 30 min after milling results in structural change and exhibits magnetic response. The phase transitions were found to depend on prior milling history. The highest saturation magnetization and coercivity were obtained for 4 h milled sample that is annealed at 350 °C for 30 min with values of 23 emu/g and 5.2 KOe, respectively. In the case of samples with initial microstructure consisting of grains of only metastable τ phase, no decomposition could be observed when milled for a period up to 9 h. Additionally, it was observed that after 3 h of milling, the saturation magnetization value reduces to 24 emu/g and coercivity increases to 5.2 KOe from an initial values of 116 emu/g and 0.98KOe respectively. Further milling causes a decrease in both the values. Annealing of the 3 h milled powder at 350 °C for 30 min, resulted in a slight decrease in coercivity (Hc = 4.9 KOe) while a significant increase in saturation magnetization (34 emu/g) value could be observed. Experimental results suggest that magnetization reversal is domain nucleation controlled and that the nonmagnetic phases (β + γ2) present can act as the pinning sites.

  6. Half-metallicity and magnetism of Ti2Ni1-x CoxAl1-y Siy inverse Heusler alloys

    Science.gov (United States)

    Zhou, Ting; Feng, Yu; Chen, Xiaorui; Yuan, Hongkuan; Chen, Hong

    2017-02-01

    Half-metallicity and magnetism of Ti2Ni1-x CoxAl1-y Siy, which are obtained by Co/Si substitutions for Ni/Al of inverse Heusler alloy Ti2NiAl, are investigated by first-principle calculations based on density functional theory (DFT). The optimized lattice constants of the doped systems all conform to the Vegard law as the increase of the impurity concentration, and the magnetic moments obey the Slater-Pauling rule when the half-metallicity is retained. The defect formation energies of the codoped systems are lower than those of the monodoped systems due to the charge compensation effects, thus the Co+Si codoping is more favorable in energy than the Co/Si monodoping. Furthermore, for the Co and Si monodoped systems, the Co monodoping retains the minority-spin bandgap unchanged although the Fermi level moves towards high energy region, and the Si monodoping leads to the minority-spin bandgap narrowing and even the loss of half-metallicity at the high concentration, while for the Co+Si codoped systems, the majority of the codoped compounds obviously show more stable half-metallicity and the minority-spin gap get widened. In particular, the minority-spin band gap of the codoped compounds Ti2Ni0.5Co0.5Al0.5Si0.5 , Ti2Ni0.25Co0.75Al0.5Si0.5 , and Ti2NiCo Al0.25Si0.75 are widened distinctly and their Fermi level are adjusted to the middle of the minority-spin gap, indicating that they possess robust half-metallicity and thus they are promising candidates for spintronics applications.

  7. Magnetostructural phase transition in off-stoichiometric Ni–Mn–In Heusler alloy ribbons with low In content

    Energy Technology Data Exchange (ETDEWEB)

    González-Legarreta, L. [Dept. de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); González-Alonso, D. [Facultat de Física, Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Diag. 647, E-08028 Barcelona (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); Caballero-Flores, R. [Dept. de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Suñol, J.J. [Universidad de Girona, Montilivi edifici PII, Lluís Santaló s/n. 17003 Girona (Spain); González, J. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Hernando, B. [Dept. de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2015-06-01

    We report features of microstructure, martensitic transformation, magnetic properties and magnetocaloric effect in three off-stoichiometric Ni{sub 45}Mn{sub 44}In{sub 11}, Ni{sub 47}Mn{sub 41}In{sub 12}and Ni{sub 48}Mn{sub 39}In{sub 13} (nominal-compositions) alloys ribbons. They were selected in the 7.8alloys near room-temperature. Although the real composition is shifted from nominal one in each sample, its influence on all here studied properties at the temperature range of 50–400 K is analyzed. Especially, the role played by Ni content in the decrease of magnetization observed in two alloys with respect to the third one with the lowest e/a. Ni content effect on the antiferromagnetic interaction present in the martensitic phase of the alloys ribbons is also evidenced. - Highlights: • Three off-stoiquiometric Ni–Mn–In Heusler alloys ribbons with low In content were prepared by melt spinning. • A drastic decrease in magnetization for the two alloys with e/a=7.9 and 8.0 in comparison with the alloy showing e/a=7.8 with less Ni content. • High spin freezing temperature around 300 K for the two alloys with e/a=7.9 and 8.0. • Exchange bias field at 5 K about 1.3 kOe and 1.8 kOe for alloys with a high at% of Ni, but 0.012 kOe for the ribbon with less Ni content. • Magnetocaloric effect enhanced for the alloy with less Ni content.

  8. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy

    Science.gov (United States)

    Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin

    2017-04-01

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.

  9. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    Science.gov (United States)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  10. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kourov, N. I., E-mail: kourov@imp.uran.ru; Marchenkov, V. V.; Belozerova, K. A. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Weber, H. W. [Atominstitut, Vienna University of Technology (Austria)

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  11. Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z=Al, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Madhumita, E-mail: mhalder@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Mukadam, M.D. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Suresh, K.G., E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-03-01

    The electronic, magnetic, and structural properties of the Heusler alloys NiCoMnZ (Z=Al, Ge, and Sn) have been investigated both theoretically and experimentally. NiCoMnGe and NiCoMnSn have ordered cubic Heusler structure (with a possible disorder between Ni and Co), while NiCoMnAl has a B2 type disordered Heusler structure with random occupancy between Mn and Al atom at their crystallographic sites. Electronic structure calculation shows that NiCoMnGe and NiCoMnSn are normal ferromagnets, whereas NiCoMnAl is nearly half metallic (∼100% spin polarization) in nature with its magnetic moment close to an integer value following the Slater–Pauling rule. Ab-initio calculations show ∼56% and ∼60% spin polarization for NiCoMnGe and NiCoMnSn, respectively. Magnetization measurements show all the three compounds have a high Curie temperature (>583 K). - Highlights: • Electronic, magnetic, and structural properties of Heusler alloys NiCoMnZ (Z=Al, Ge, and Sn) have been investigated. • NiCoMnGe and NiCoMnSn are normal ferromagnets, while NiCoMnAl is nearly half metallic. • All the three compounds have a high Curie temperature. • NiCoMnGe and NiCoMnSn have ordered cubic structure; while NiCoMnAl has a B2 type disordered structure.

  12. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Science.gov (United States)

    Salazar Mejía, C.; Ghorbani Zavareh, M.; Nayak, A. K.; Skourski, Y.; Wosnitza, J.; Felser, C.; Nicklas, M.

    2015-05-01

    The present pulsed high-magnetic-field study on Ni50Mn35In15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  13. Magnetic and Magnetocaloric Properties in Non-Stoichiometric Gallium Deficient Ni2MnGa1-x Heusler Alloys

    Science.gov (United States)

    Madden, Alexander; Corrigan, Mollie; Barton, Linda

    Magnetic data show that off-stoichiometric gallium deficient Heusler alloys of the form Ni2MnGa1-x have structural martensite transition temperatures that increase strongly with x, while their ferromagnetic Curie temperatures remain nearly unchanged. The martensite transition approaches room temperature for x = 0 . 13 . Samples were prepared by rf induction heating. The influence of quenching and post annealing on magnetic properties, as well as structural grain sizes and magnetic domain structure, were investigated. Since the first order structural phase transition can be adjusted to any convenient temperature, these materials offer intriguing possibilities as magnetic refrigerants. Magnetocaloric properties were investigated by direct measurement of ΔT with the application of field ΔH .

  14. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Nayak, A. K.; Felser, C.; Nicklas, M. [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Ghorbani Zavareh, M.; Wosnitza, J. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Institut für Festkörperphysik, TU Dresden, 01062 Dresden (Germany); Skourski, Y. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  15. Large Magnetization and Reversible Magnetocaloric Effect at the Second-Order Magnetic Transition in Heusler Materials.

    Science.gov (United States)

    Singh, Sanjay; Caron, Luana; D'Souza, Sunil Wilfred; Fichtner, Tina; Porcari, Giacomo; Fabbrici, Simone; Shekhar, Chandra; Chadov, Stanislav; Solzi, Massimo; Felser, Claudia

    2016-05-01

    In contrast to rare-earth-based materials, cheaper and more environmentally friendly candidates for cooling applications are found within the family of Ni-Mn Heusler alloys. Initial interest in these materials is focused on the first-order magnetostructural transitions. However, large hysteresis makes a magnetocaloric cycle irreversible. Alternatively, here it is shown how the Heusler family can be used to optimize reversible second-order magnetic phase transitions for magnetocaloric applications.

  16. Analysis of the Magnetocaloric Effect in Heusler Alloys: Study of Ni50CoMn36Sn13 by Calorimetric Techniques

    Directory of Open Access Journals (Sweden)

    Elias Palacios

    2015-03-01

    Full Text Available Direct determinations of the isothermal entropy increment, \\(-\\Delta S_T\\, in the Heusler alloy Ni\\(_{50}\\CoMn\\(_{36}\\Sn\\(_{13}\\ on demagnetization gave positive values, corresponding to a normal magnetocaloric effect. These values contradict the results derived from heat-capacity measurements and also previous results obtained from magnetization measurements, which indicated an inverse magnetocaloric effect, but showing different values depending on the technique employed. The puzzle is solved, and the apparent incompatibilities are quantitatively explained considering the hysteresis, the width of the martensitic transition and the detailed protocol followed to obtain each datum. The results show that these factors should be analyzed in detail when dealing with Heusler alloys.

  17. Influence of intermetallic Fe and Co on crystal structure disorder and magnetic property of Ni50Mn32Al18 Heusler alloy

    Science.gov (United States)

    Notonegoro, H. A.; Kurniawan, B.; Setiawan, J.; Nanto, D.; Manaf, A.

    2016-11-01

    This works reports a study on structure and magnetic properties influenced by both Fe and Co on Ni50Mn32Al18 Heusler alloy as a candidate of magnetocaloric effect (MCE) materials. The Ni-Fe-Mn-Co-Al sample was prepared by arc melting furnace (AMF) in high purity argon atmosphere. X-ray diffraction investigation and magnetic hysteresis were conducted to characterize the synthesized sample. X-ray diffraction using Cu-Kα pattern shows that both Fe and Co introduce a tungsten type disorder of Ni50Mn32Al18 Heusler alloy which partially replace the site position of Ni and Mn respectively. However, in this tungsten type disorder, it is difficult to distinguish the exact position of each constituent atom. Therefore, we believe it may allow any exchange interaction of each electron possessed the atom. Interestingly, it produced a significant increase in the value of the hysteresis magnetic saturation.

  18. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  19. Full-Heusler Co2FeSi alloy thin films with perpendicular magnetic anisotropy induced by MgO-interfaces

    Science.gov (United States)

    Takamura, Yota; Suzuki, Takahiro; Fujino, Yorinobu; Nakagawa, Shigeki

    2014-05-01

    A 100-nm-thick L21-ordered full-Heusler Co2FeSi (CFS) alloy film was fabricated using the facing targets sputtering (FTS) method at a substrate temperature TS of 300 °C. The degrees of L21- and B2-order for the film were 37% and 96%, respectively. In addition, full-Heusler CFS alloy thin films with perpendicular magnetic anisotropy (PMA) induced by the magnetic anisotropy of MgO-interfaces were also successfully fabricated using the FTS method. The CFS/MgO stacked layers exhibited PMA when the CFS layer had a thickness of 0.6 nm ≤ dCFS ≤ 1.0 nm. The PMA in these structures resulted from the CFS/MgO interfacial perpendicular magnetic anisotropy.

  20. Anomalous transport properties of N i2M n1 -xC rxGa Heusler alloys at the martensite-austenite phase transition

    Science.gov (United States)

    Khan, Mahmud; Brock, Jeffrey; Sugerman, Ian

    2016-02-01

    The martensite-austenite phase transition in a series of N i2M n1 -xC rxGa Heusler alloys has been investigated by x-ray diffraction, dc magnetization, and electrical resistivity measurements. With increasing Cr concentration, the martensitic phase transformation shifts to higher temperature while the ferromagnetic transition shifts to lower temperature. For x 0.5 , the transition occurs in a paramagnetic state. The Cr doping results in a reconstruction of the electronic structure, particularly, near the Fermi level, which is indicated in the resistivity data where a systematic jumplike anomaly is observed in the vicinity of the martensite-austenite phase transformation. With increasing Cr concentration, the magnitude of the jump in resistivity changes dramatically from less than 1 % to nearly 18 % The results are discussed considering the fundamental interactions in Heusler alloys.

  1. Effect of structural disorder on the ground state properties of Co2CrAl Heusler alloy

    Science.gov (United States)

    Zagrebin, Mikhail A.; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Pavlukhina, Oksana O.

    2017-08-01

    In order to discuss the difference between the available theoretical and experimental values of the total magnetic moment of Co2CrAl Heusler alloy, in this paper we studied the effects of a structural disorder on the magnetic and electronic ground state properties of the alloy studied by means of ab initio and Monte Carlo methods. On the one hand, it is shown that a calculated magnetic ground state of the austenite L21 structure is ferromagnetic, and the alloy demonstrates half-metallic behavior. However, the equilibrium lattice parameter and magnetic moment calculated for ferrimagnetic state (where the Cr atoms are ordered antiferromagnetically) are in better agreement with the available experimental data than the ferromagnetic one. On the other hand, an account of a structural disorder results in a decrease in the magnetic moment to a value close to the experimental. However, systems with a structural disorder are energetically unfavorable in comparison with the ordered L21 structure at zero temperature. Using the calculated exchange coupling parameters in the Heisenberg Hamiltonian, the temperature dependences of magnetization, specific heat, magnetic part of internal energy as well as Helmholtz energy are simulated in the framework of Monte Carlo technique for both ordered and disordered cases. Eventually, it is shown that the disordered structure with smaller magnetization is more stable at higher temperatures. This indicates that the experimental compound might be disordered.

  2. Magnetocaloric effect in “reduced” dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds: Magnetocaloric effect in “reduced” dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Khovaylo, Vladimir V. [National University of Science and Technology MISiS, Moscow 119049 Russia; ITMO University, St. Petersburg 197101 Russia; Rodionova, Valeria V. [National University of Science and Technology MISiS, Moscow 119049 Russia; Innovation Park and Institute of Physics & Technology, Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russia; Shevyrtalov, Sergey N. [Innovation Park and Institute of Physics & Technology, Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russia; Novosad, Val [Materials Science Division, Argonne National Laboratory, Argonne IL 60439 USA

    2014-08-19

    Room temperature magnetic refrigeration is an energy saving and environmentally-friendly technology which has developed rapidly from a basic idea to prototype devices. The performance of magnetic refrigerators crucially depends on the magnetocaloric properties and the geometry of the employed refrigerants. Here we review the magnetocaloric properties of Heusler alloys and related compounds with a high surface to volume ratio such as films, ribbons and microwires, and compare them with their bulk counterparts.

  3. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  4. The effect of Pd on martensitic transformation and magnetic properties for Ni50Mn38−xPdxSn12Heusler alloys

    Directory of Open Access Journals (Sweden)

    C. Jing

    2016-05-01

    Full Text Available In the past decade, Mn rich Ni-Mn based alloys have attained considerable attention due to their abundant physics and potential application as multifunctional materials. In this paper, polycrystalline Ni50Mn38−xPdxSn12 (x = 0, 2, 4, 6 Heusler alloys have been prepared, and the martensitic phase transformation (MPT together with the shape memory effect and the magnetocaloric effect has been investigated. The experimental result indicates that the MPT evidently shifts to a lower temperature with increase of Pd substitution for Mn atoms, which can be attributed to the weakness of the hybridization between the Ni atom and excess Mn on the Sn site rather than the electron concentration. The physics properties study focused on the sample of Ni50Mn34Pd4Sn12 shows a good two-way shape memory behavior, and the maximum value of strain Δ L/L reaches about 0.13% during the MPT. The small of both entropy change Δ ST and magnetostrain can be ascribed to the inconspicuous influence of magnetic field induced MPT.

  5. Tuning Fermi level of Cr{sub 2}CoZ (Z=Al and Si) inverse Heusler alloys via Fe-doping for maximum spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2014-12-15

    We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.

  6. First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

    Science.gov (United States)

    Bentouaf, Ali; Hassan, Fouad H.; Reshak, Ali H.; Aïssa, Brahim

    2017-01-01

    We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew-Burke-Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.

  7. First-principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys

    Science.gov (United States)

    Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.

    2016-10-01

    The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.

  8. Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni{sub 52}Mn{sub 34}Sn{sub 14} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, D., E-mail: deba.phy@gmail.com [S.N. Bose National Center for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, West Bengal (India); Kandi Raj College, Kandi 742137, West Bengal (India); Ghosh, A.; Mandal, K. [S.N. Bose National Center for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, West Bengal (India)

    2014-06-01

    Nickel rich Ni{sub 52}Mn{sub 34}Sn{sub 14} Heusler alloy was prepared by arc melting and subsequent homogenization by annealing. Existence of first order magneto-structural transition (FOMST) was confirmed by various measurements. In comparison to conventional Ni{sub 50−x}Mn{sub 36+x}Sn{sub 14} alloys, a larger magnetic entropy change (∆S{sub M}≈8 J/kg K using Maxwell's thermodynamic equation and ∆S{sub M}≈18 J/kg K using Clasius–Clapeyron equation) and large negative magnetoresistance (MR≈−30%) were observed in the vicinity of martensitic transition temperature due to a change of 3 T and 8 T magnetic fields respectively. Effect of excess Ni content was discussed by considering other nearer compositions as reported by other researchers. Irreversibility in FOMST due to kinetic arrest was also studied from MR vs magnetic fields curves taken at a single temperature in two different initial phases. The exchange bias behavior in this alloy was studied by various magnetic measurements. - Highlights: • Large magnetocaloric effect was observed in Ni-rich Ni{sub 52}Mn{sub 34}Sn{sub 14} Heusler alloy. • A large negative magnetoresistance was observed near the structural transition. • We investigated the exchange bias behavior in this alloy. • The resistivity shows irreversibility due to field cycling.

  9. The influence of chemical disorder enhancement on the martensitic transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy

    Energy Technology Data Exchange (ETDEWEB)

    Passamani, E.C., E-mail: edson@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Nascimento, V.P.; Larica, C.; Takeuchi, A.Y. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Alves, A.L.; Proveti, J.R. [Departamento de Ciencias Matematicas e Naturais, Universidade Federal do Espirito Santo, 29932-540, Sao Mateus, ES (Brazil); Pereira, M.C. [Instituto de Ciencia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39803-371 Teofilo Otoni, Minas Gerais (Brazil); Fabris, J.D. [Departamento de Quimica, UFVJM, 39100-000 Diamantina, Minas Gerais (Brazil)

    2011-07-28

    Highlights: > Chemical disorder affects martensitic transformation in Ni-Mn-Sn Heusler alloys. > Martensitic transition temperature depends on the L21-ferromagnetic fraction. > Grain boundaries induce drastic reduction of magnetization in milled Heusler alloys. > Magnetic properties of the milled Ni50Mn36Sn14 alloy get better after annealing. - Abstract: The effect of chemical disorder over the martensitic phase transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy was systematically investigated by performing X-ray diffractometry (DRX), DC magnetization and {sup 57}Fe-doping and {sup 119}Sn-Moessbauer spectroscopy measurements. DRX patterns are characteristics of a L2{sub 1}-type chemically disordered structure, where the presence of this disorder was first evaluated by analyzing the relative intensity of the (1 1 1) DRX reflection, which varies in the case of Fe-doped and practically disappears for the milled samples. In consequence, the magnetic properties of Fe-doped well-milled samples related to the martensitic phase transformation change substantially. 300 K {sup 57}Fe-Moessbauer spectroscopy data suggest that the changes in the magnetic properties related to the martensitic transformation are intrinsically correlated to the ferromagnetic and paramagnetic fractions, which are respectively associated with Fe atoms replacing Mn- and Sn-sites. In the case of milled samples, the drastic reduction of alloy magnetization was explained by the increase of the number of Mn atoms in the shell regions, which have a reduced magnetic moment comparatively to those in the grain cores. The magnetization change and the temperature transition in the martensitic transformation are governed by the grain core. The initial magnetic properties and martensitic transformation can be recovered by a subsequent annealing on the milled sample.

  10. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenchao [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Wang, Xiaofang, E-mail: wxiaof66@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang, E-mail: xschen@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Damewood, L.; Fong, C.Y. [Department of Physics, University of California, Davis, CA 95616-8677 (United States)

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from −3.0% to −11.2% with magnetic moment consistent with the values given by the modified Slater–Pauling rule. Additionally, we examined the effects of the spin–orbit (S–O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  11. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    Science.gov (United States)

    Huang, Wenchao; Wang, Xiaofang; Chen, Xiaoshuang; Lu, Wei; Damewood, L.; Fong, C. Y.

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from -3.0% to -11.2% with magnetic moment consistent with the values given by the modified Slater-Pauling rule. Additionally, we examined the effects of the spin-orbit (S-O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  12. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Directory of Open Access Journals (Sweden)

    Wuwei Feng

    2015-11-01

    Full Text Available We have re-investigated growth and magnetic properties of Cr2CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr2CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr2CoGa Heusler phase, rather than Co2CrGa phase, constitutes the majority of the sample grown on GaAs(001 at 450 oC. The measured small spin moment of Cr2CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr2CoGa and the existence of the disorders and phase separation.

  13. Electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) Heusler alloys: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Guezlane, M. [Department of Physics, Faculty of Science, University of Batna, 05000 Batna (Algeria); Baaziz, H., E-mail: baaziz_hakim@yahoo.fr [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); El Haj Hassan, F., E-mail: hassan.f@ul.edu.lb [Université Libanaise, Faculté des Sciences (I), Laboratoire de Physique et d’Electronique (LPE), Elhadath, Beirut (Lebanon); Charifi, Z. [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Djaballah, Y. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)

    2016-09-15

    Density functional theory (DFT) based on the full-potential linearized augmented plane wave (FP-LAPW) method is used to investigate the structural, electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) full Heusler alloys, with L2{sub 1} structure. The structural properties and spin magnetic moments are investigated by the generalized gradient approximations (GGA) minimizing the total energy. For band structure calculations, GGA, the Engel–Vosko generalized gradient approximation (EVGGA) and modified Becke–Johnson (mBJ) schemes are used. Results of density of states (DOS) and band structures show that these alloys are half-metallic ferromagnets (HMFS). A regular-solution model has been used to investigate the thermodynamic stability of the compounds Co{sub 2}Cr{sub x}Fe{sub 1−x}X that indicates a phase miscibility gap. The thermal effects using the quasi-harmonic Debye model are investigated within the lattice vibrations. The temperature and pressure effects on the heat capacities, Debye temperatures and entropy are determined from the non-equilibrium Gibbs functions. - Highlights: • We present electronic, magnetic and thermal properties of Co{sub 2}Cr{sub x}Fe{sub 1−x}X (X=Al, Si) Heusler alloys. • The calculated phase diagram indicates a significant phase miscibility gap. • The computed band structures of ternary compounds using GGA, EVGGA and mBJ schemes indicate an indirect band gap (Γ-X) for the ternary compounds Co{sub 2}FeAl, Co{sub 2}CrAl, Co{sub 2}FeSi and Co{sub 2}CrSi while both alloys have a direct band gap. • The quasi-harmonic Debye model is successfully applied to determine the thermal properties.

  14. The metamagnetic behavior and giant inverse magnetocaloric effect in Ni–Co–Mn–(Ga, In, Sn) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Entel, Peter [Faculty of Physics and CENIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Sokolovskiy, Vladimir V. [Condensed Matter Physics Department, Chelyabinsk State University, 454001 Chelyabinsk (Russian Federation); Buchelnikov, Vasiliy D., E-mail: buche@csu.ru [Condensed Matter Physics Department, Chelyabinsk State University, 454001 Chelyabinsk (Russian Federation); Ogura, Masako [Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Gruner, Markus E.; Grünebohm, Anna; Comtesse, Denis [Faculty of Physics and CENIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Akai, Hisazumi [The Institute for Solid State Physics, Center of Computational Materials Science, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan)

    2015-07-01

    The magnetic and magnetocaloric properties of Ni–Co–Mn–(Ga, In, Sn) Heusler intermetallics are discussed on the basis of ab initio and Monte Carlo calculations. The main emphasis is on the different reference spin states and magnetic exchange coupling constants of high-temperature austenite and low-temperature martensite which are very important for the calculation of magnetocaloric effect. The origin of metamagnetic behavior is considered in the framework of orbital resolved magnetic exchange parameters of austenite and martensite. The decomposition of exchange constants on orbital contributions has shown that a strong ferromagnetic interaction of magnetic moments in austenite is caused by the more itinerant d-electrons with t{sub 2g} states while a strong antiferromagnetic interaction in martensite is associated with the more localized e{sub g} states. In addition, the appearance of a paramagnetic gap between magnetically weak martensite and ferromagnetically ordered austenite can be realized because of strong competition of magnetic exchange interactions. As a result, large magnetization drop and giant inverse magnetocaloric effect can be achieved across the magnetostructural phase transition. - Highlights: • The magnetic and magnetocaloric properties of Ni–Co–Mn–(Ga, In, Sn) alloys are discussed. • The metamagnetic behavior results in a jump of magnetization. • The reason of metamagnetism is the antiferromagnetic interaction between Mn atoms. • The size of magnetocaloric effect is determined by the magnetic exchange parameters.

  15. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Snyder, Gerald Jeffrey;

    2015-01-01

    In this study, a segmented p-type leg of doped misfit-layered cobaltite Ca2.8Lu0.15Ag0.05Co4O9+δ and half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 alloy was fabricated and characterized. The thermoelectric properties of single components, segmented leg, and the electrical contact resistance...... of the joint part were measured as a function of temperature. The output power generation characteristics of segmented legs were characterized in air under various temperature gradients, DT, with the hot side temperature up to 1153 K. At ΔT ≈756 K, the maximum conversion efficiency reached a value of ∼5......%, which is about 65% of that expected from the materials without parasitic losses. The long-term stability investigation for two weeks at the hot and cold side temperatures of 1153/397 K shows that the segmented leg has good durability as a result of stable and low electrical resistance contacts. 2015...

  16. Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni-Mn-In-Z Heusler alloys.

    Science.gov (United States)

    Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian

    2012-09-01

    The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.

  17. Magnetic properties and atomic ordering of BCC Heusler alloy Fe{sub 2}MnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi, E-mail: luo_hongzhi@163.com; Meng, Fanbin; Liu, Heyan

    2016-05-15

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe{sub 2}MnGa have been investigated experimentally and theoretically. BCC Fe{sub 2}MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μ{sub B} at 5 K) much larger than the theoretical value (2.04 μ{sub B}) has been reported. First-principles calculations indicate that the difference is related to the Fe–Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L2{sub 1} type Fe{sub 2}MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe–Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μ{sub B}, close to the experimental value.

  18. Pd基Heusler合金Pd2CrGa和Pd2FeGa的第一性原理研究%First-principles study on Pd-based Heusler alloy Pd2CrGa and Pd2FeGa

    Institute of Scientific and Technical Information of China (English)

    刘国平; 米传同; 钱帅; 余新泉; 赵昆; 于金

    2014-01-01

    运用基因遗传算法的晶格结构预测技术预测Pd基Heusler合金Pd 2 MnSn、Pd 2 CrGa和Pd 2 FeGa的结构;采用基于密度泛函理论(DFT)的投影缀加波(PAW)方法研究Pd 2 CrGa和Pd 2 FeGa的四方变形、磁性、态密度、弹性常数和声子谱线,最后通过Helmholtz自由能的计算预测了Pd 2 CrGa和Pd 2 FeGa的相变温度。结构预测显示:极限条件0 K时,Pd2MnSn以L21立方结构稳定存在,而Pd2CrGa和Pd2FeGa均以四方结构稳定存在。四方变形中,Pd2CrGa、Pd 2 FeGa在c/a<1.0和c/a>1.0处均有一个能量的局域最小值,分别对应一个稳定的结构。Pd 2 CrGa、Pd 2 FeGa在两种状态下均表现为铁磁性,Cr原子和Fe原子是总磁矩的主要贡献者。弹性常数计算结果显示:Pd 2 CrGa和Pd 2 FeGa仅在四方结构时才满足稳定性判据。c/a≈1.24处的四方结构Pd2CrGa转变为立方结构的相变温度在350 K左右, c/a≈1.30处的四方结构Pd2FeGa转变为立方结构的相变温度在130 K左右。%Based on genetic algorithm, the structures of Pd-based Heusler alloy Pd2MnSn, Pd2CrGa and Pd2FeGa were forecasted. The tetragonal distortion, magnetic, DOS elastic constants and phonon dispersion spectra of Pd2CrGa and Pd2FeGa were calculated by first-principles calculation based on DFT with projector augmented wave pseudopotential (PAW). At last, based on the result of Helmholtz free-energy, the phase transition temperatures of Pd2CrGa and Pd2FeGa were predicted. The crystal structure prediction shows that Pd2MnSn is L21 cubic structure, but Pd2CrGa and Pd2FeGa are tetragonal structures at 0 K. The tetragonal distortion analysis show that there are local minimums total energy atc/a1.0, which correspond to stable martensitic phases. Pd2MGa (M=Cr,Fe) are ferromagnetic in these two postures, and M (M=Cr,Fe) is the main magnetic contribution to its alloys, respectively. The elastic constants of Pd2CrGa, Pd2FeGa show that, cubic structure doesn

  19. Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z=Al, Ge, and Sn)

    Science.gov (United States)

    Halder, Madhumita; Mukadam, M. D.; Suresh, K. G.; Yusuf, S. M.

    2015-03-01

    The electronic, magnetic, and structural properties of the Heusler alloys NiCoMnZ (Z=Al, Ge, and Sn) have been investigated both theoretically and experimentally. NiCoMnGe and NiCoMnSn have ordered cubic Heusler structure (with a possible disorder between Ni and Co), while NiCoMnAl has a B2 type disordered Heusler structure with random occupancy between Mn and Al atom at their crystallographic sites. Electronic structure calculation shows that NiCoMnGe and NiCoMnSn are normal ferromagnets, whereas NiCoMnAl is nearly half metallic (~100% spin polarization) in nature with its magnetic moment close to an integer value following the Slater-Pauling rule. Ab-initio calculations show ~56% and ~60% spin polarization for NiCoMnGe and NiCoMnSn, respectively. Magnetization measurements show all the three compounds have a high Curie temperature (>583 K).

  20. First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb)

    Science.gov (United States)

    Bouabça, A.; Rozale, H.; Amar, A.; Wang, X. T.; Sayade, A.; Chahed, A.

    2016-12-01

    The structural, electronic, magnetic, and thermal properties of new quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA) and GGA plus modified Becke and Johnson as the exchange correlation. The results showed that all Heusler compounds were stable in Type (I) structure. The CsSrCZ (Z=Si, Ge, Sn) compounds had a nearly HM characteristic, and CsSrCZ (Z=P, As, Sb) compounds were true half-metallic (HM) ferromagnets. The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. The half-metallicity is preserved up to a lattice contraction of 3.45%, 1.69%, 1.69%, 7.16%, 7.16%, and 11.2% for all six quaternary Heusler compounds. We also investigated the thermal effects using the quasi-harmonic Debye model.

  1. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.; O' Connell, A. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kharel, P., E-mail: parashu.kharel@sdstate.edu [Department of Physics, South Dakota State University, Brookings, South Dakota 57007 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Lukashev, P., E-mail: pavel.lukashev@uni.edu; Staten, B.; Tutic, I. [Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614 (United States); Valloppilly, S. [Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Herran, J. [Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, Iowa 50614 (United States); Mitrakumar, M.; Bhusal, B.; Huh, Y. [Department of Physics, South Dakota State University, Brookings, South Dakota 57007 (United States); Yang, K. [Department of Physics, South Dakota State University, Brookings, South Dakota 57007 (United States); College of Mechanical and Electrical Engineering, Hohai University, Changzhou (China); Skomski, R.; Sellmyer, D. J. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-08-07

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L2{sub 1} structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (T{sub C}) significantly above room temperature. The measured T{sub C} for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μ{sub B}/f.u. and 2.78 μ{sub B}/f.u., respectively, which are close to the theoretically predicted value of 3 μ{sub B}/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  2. The antiphase boundary in half-metallic Heusler alloy Co2Fe(Al,Si): atomic structure, spin polarization reversal, and domain wall effects

    Science.gov (United States)

    Nedelkoski, Zlatko; Sanchez, Ana M.; Ghasemi, Arsham; Hamaya, Kohei; Evans, Richard F. L.; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-11-01

    Atomic resolution scanning transmission electron microscopy reveals the presence of an antiphase boundary in the half-metallic Co2Fe(Al,Si) full Heusler alloy. By employing the density functional theory calculations, we show that this defect leads to reversal of the sign of the spin-polarization in the vicinity of the defect. In addition, we show that this defect reduces the strength of the exchange interactions, without changing the ferromagnetic ordering across the boundary. Atomistic spin calculations predict that this effect reduces the width of the magnetic domain wall compared to that in the bulk.

  3. Field-induced-moment nuclear coupling for {sup 59}Co in a Heusler alloy Co{sub 2}TiGa

    Energy Technology Data Exchange (ETDEWEB)

    Furutani, Y; Nishihara, H [Faculty of Science and Technology, Ryukoku University, Otsu 520-2194 (Japan); Kanomata, T [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Kobayashi, K; Ishida, K [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kainuma, R [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Koyama, K; Watanabe, K [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Goto, T, E-mail: nishihara@rins.ryukoku.ac.j [Faculty of Science and Technology, Sophia University, Tokyo 102-8554 (Japan)

    2009-03-01

    The positive hyperfine field at Co nucleus in a Heusler alloy Co{sub 2}TiGa is discussed to be not dominated by the orbital hyperfine field from a quite different point of view from former studies. Field-induced-moment nuclear coupling for {sup 59}Co via spin-orbit interaction on Co atom in Co{sub 2}TiGa is discussed to be small from the observed high-field shift of the NMR of {sup 59}Co in the ferromagnetic state of only +0.83 % in contrast to the case of CoCl{sub 2}.2H{sub 2}O with +29%.

  4. Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa

    DEFF Research Database (Denmark)

    Kanchana, V.; Vaitheeswaran, G.; Ma, Yanming;

    2009-01-01

    The structural and elastic properties as well as phonon-dispersion relations of the Heusler-type alloys Fe2VAl and Fe2VGa are computed using density functional and density-functional perturbation theory within the generalized-gradient approximation. The calculated equilibrium lattice constants...... agree well with the experimental values. The elastic constants of Fe2VAl and Fe2VGa are predicted. From the elastic constants the shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperatures are obtained. By analyzing the ratio between the bulk and shear moduli, we conclude...

  5. Quantification of site disorder and its role on spin polarization in the nearly half-metallic Heusler alloy NiFeMnSn

    Science.gov (United States)

    Mukadam, M. D.; Roy, Syamashree; Meena, S. S.; Bhatt, Pramod; Yusuf, S. M.

    2016-12-01

    The electronic structure and magnetism of the quaternary Heusler alloy NiFeMnSn are studied using the full-potential linearized augmented plane-wave (FPLAPW) method. The calculation for the perfectly LiMgPdSn-type ordered crystal structure (type I) of NiFeMnSn shows a high spin polarization (˜76 %) with a ferromagnetic ground state. The total spin magnetic moment is in good agreement with the Slater-Pauling rule. The structural investigations using neutron diffraction at 500 K, and Mössbauer spectroscopy at 300 K on the NiFeMnSn alloy, prepared using an arc melting, show the presence of atomic site disorder. The electronic structure calculation for the disordered structure shows that the site disorder destroys the nearly half-metallic nature of this alloy. The magnetization measurements indicate that the Curie temperature is well above room temperature (˜405 K) as desired for the spintronics application.

  6. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Jie; Tang Xin-Feng; Zhang Qing-Jie

    2007-01-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  7. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhao, Chenglong [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Van Quang, Nguyen; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Dung, Dang Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi (Viet Nam)

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  8. The Thermal Transformation Arrest Phenomenon in NiCoMnAl Heusler Alloys

    OpenAIRE

    Rie Y. Umetsu; Takeshi Kanomata; Kengo Oka; Takumi Kihara; Wataru Ito; Masashi Tokunaga; Xiao Xu; Ryosuke Kainuma

    2013-01-01

    In this report, we present findings of systematic research on NiCoMnAl alloys, with the purpose of acquiring a higher thermal transformation arrest temperature (TA). By systematic research, TA in the NiCoMnAl alloy systems was raised up to 190 K, compared to the highest TA of 130 K in NiCoMnIn. For a selected alloy of Ni40Co10Mn33Al17, magnetization measurements were performed under a pulsed high magnetic field, and the critical magnetic field-temperature phase diagram was determined. The mag...

  9. Magnetism, band gap and stability of half-metallic property for the quaternary Heusler alloys CoFeTiZ (Z = Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.J. [Department of Physics, University of Science and Technology Beijing, 100083 Beijing (China); Liu, Z.H., E-mail: zhliu@ustb.edu.cn [Department of Physics, University of Science and Technology Beijing, 100083 Beijing (China); Li, G.T.; Ma, X.Q. [Department of Physics, University of Science and Technology Beijing, 100083 Beijing (China); Liu, G.D. [School of Material Science and Engineering, Hebei University of Technology, 300130 Tianjin (China)

    2014-12-15

    Highlights: • CoFeTiZ (Z = Si, Ge) have been predicted to be ferrimagnetism half-metallic alloys. • Effect of the sp element on the band gap and the half-metallicity have been analyzed. • The half-metallicity of these alloys shows good stability. - Abstract: The electronic structures and magnetic properties of quaternary Heusler alloys CoFeTiZ (Z = Si, Ge, Sn) have been studied using first-principles calculations. It has been found that CoFeTiSi and CoFeTiGe are half-metallic ferrimagnets, while CoFeTiSn is a quasi half-metallic ferrimagnet. The total moment in unit cell for CoFeTiZ (Z = Si, Ge, Sn) alloys follows the Slater–Pauling behavior with the total number of valence electrons minus 24. The origin of the magnetism, band gap, and the effect of atom Z on the band gap and the half-metallicity of the alloys have been discussed in detail. The half-metallic property for CoFeTiSi and CoFeTiGe can be retained when their lattice constants are changed in a large range. CoFeTiSn alloy can transform from a quasi half-metallic to a half-metallic alloy by employing a proper compression stress.

  10. Optimization of the thermoelectric properties of FeNbSb-based half-Heusler materials

    Science.gov (United States)

    Li, Wenfeng; Yang, Gui; Zhang, Jianwei

    2016-05-01

    FeNbSb-based half-Heusler compounds have recently been reported as promising materials for good high-temperature thermoelectric materials with a ZT  >  1. Their electronic structure and thermoelectric properties are investigated based on a first-principles simulation and the semi-classical Boltzmann transport theory. The band structures show not only light and heavy bands but also high band degeneracy near the valence band maximum, which is beneficial for thermoelectric performance. The calculated Seebeck coefficients of p-type FeNbSb at high carrier concentrations exhibit the expected high values, which is consistent with experimental data. The evolution of the electrical conductivity and power factor with carrier concentration at different temperatures is investigated. Our results show that the thermoelectric performance of p-type FeNbSb can be improved by appropriate substitution; for example, by doping Hf on the Nb site, the maximum ZT of the p-type FeNb1-x Hf x Sb can reach ~1.5 at 1200 K. This study can provide some theoretical guidance for experimental research to improve the thermoelectric performance of FeNbSb-based half-Heusler compounds.

  11. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    Science.gov (United States)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  12. First-principal study of full Heusler alloys Co2VZ (Z = As, In)

    Science.gov (United States)

    Gupta, Dinesh C.; Ghosh, Sukriti

    2017-08-01

    We have used full-potential linearized augmented plane wave method in the stable Fm-3m phase to investigate the structural, elastic, magnetic and electronic properties of Co2VZ (Z = As, In). The optimized equilibrium lattice parameter in stable phase is 5.80 Å for Co2VAs and 6.01 Å for Co2VIn. Ferromagnetic behavior of both the alloys is explained by the spin resolved density of states. The exchange splitting due to Co and V atoms are responsible for the ferromagnetic behaviour. No energy gap is found in spin up state while an energy gap can be seen in spin down state, hence, showing half-metallic nature. Elastic stability is discussed through elastic constants. Thermodynamic properties of the alloys have been obtained by using the quasi-harmonic approximations. Boltzmann theory is employed to investigate the electronic transport properties of these alloys.

  13. The Thermal Transformation Arrest Phenomenon in NiCoMnAl Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Rie Y. Umetsu

    2013-08-01

    Full Text Available In this report, we present findings of systematic research on NiCoMnAl alloys, with the purpose of acquiring a higher thermal transformation arrest temperature (TA. By systematic research, TA in the NiCoMnAl alloy systems was raised up to 190 K, compared to the highest TA of 130 K in NiCoMnIn. For a selected alloy of Ni40Co10Mn33Al17, magnetization measurements were performed under a pulsed high magnetic field, and the critical magnetic field-temperature phase diagram was determined. The magnetic phase diagram for Ni50-xCoxMn50-yAly was also established. Moreover, from the discussion that the formerly called “kinetic arrest phenomenon” has both thermodynamic and kinetic factors, we suggest a terminology change to the “thermal transformation arrest phenomenon”.

  14. Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr{sub 2}GdSi{sub 1−x}Ge{sub x}: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Asfour, I. [Laboratoire des matériaux magnétiques, Département de physique, Faculté des Sciences, Université Djillali LIABES, Sidi-Bel-Abbès 22000 (Algeria); Rached, H., E-mail: habib_rached@yahoo.fr [Laboratoire des matériaux magnétiques, Département de physique, Faculté des Sciences, Université Djillali LIABES, Sidi-Bel-Abbès 22000 (Algeria); Département de physique, Faculté des Sciences, Université Hassiba BenBouali Chlef, Chlef 02000 (Algeria); Benalia, S.; Rached, D. [Laboratoire des matériaux magnétiques, Département de physique, Faculté des Sciences, Université Djillali LIABES, Sidi-Bel-Abbès 22000 (Algeria)

    2016-08-15

    We have studied the structural, electronic, elastic, magnetic, thermal and thermodynamic properties of the quaternary Heusler alloys Cr{sub 2}GdSi{sub 1−x}Ge{sub x} (x = 0, 0.25, 0.5, 0.75, 1) with the linearized augmented plane wave method based on density functional theory and implemented in WIEN2K code. For exchange correlation potential, we have used the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE 96) parameterization. Our results provide a theoretical study for the mixed Heusler Cr{sub 2}GdSi{sub 1−x}Ge{sub x} (0 < x < 1) in which no experimental or theoretical data are currently available. In their equilibrium L2{sub 1} structure, all concentrations are magnetic and metallic. However, there is linear variation of the lattice parameter. The bulk modulus, the elastic constants and the Debye temperature was studied with variation of composition x of Ge. A regular solution model is used to investigate the thermodynamic stability, which are essentially shows a miscibility gap phase by calculating the critical temperatures for our alloys. In addition, the quasi-harmonic Debye model is applied to determine the thermal properties. - Highlights: • Based on DFT, GGA calculations, Cr{sub 2}GdSi{sub 1−x}Ge{sub x} compound have been investigated. • Single and polycrystalline elastic parameters are predicted. • The electronic and magnetic structure reveals the HMF character of these compounds. • The thermodynamic and thermal properties are predicted.

  15. First-Principles Study on the Half-Metallicity of Half-Heusler Alloys: XYZ (X=Mn, Ni; Y=Cr, Mn; Z=As, Sb)

    Institute of Scientific and Technical Information of China (English)

    LI Guan-Nan; JIN Ying-Jiu

    2009-01-01

    The electronic structures, magnetism, and half-metallicity of half-Heusler alloys XYZ (X=Mn, Ni; Y=Cr, Mn;Z=As, Sb) are investigated by means of the full-potential linearized augmented plane wave method within the generalized gradient approximation.We consider three types of atomic ordering (i.e.,α,β, and γ phases for all of the alloys) and find that the a phase is energetically the most stable.From the calculated density of states and the total magnetic moments, we find that NiMnZ (Z=As, Sb) and NiCrAs are half-metallic ferromagnets, MnCrAs is a half-metallic antiferromagnet, and NiCrSb (MnCrSb) is almost a half-metallic ferromagnet (antiferromagnet).

  16. Soft x-ray magnetic circular dichroism of L2{sub 1}-type Co{sub 2}FeGa Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Umetsu, R Y; Kainuma, R; Fukamichi, K [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Nakamura, T [JASRI/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Kobayashi, K; Ishida, K [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Sendai 980-8579 (Japan); Sakuma, A, E-mail: rie@tagen.tohoku.ac.j [Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-08 Aoba, Sendai 980-8579 (Japan)

    2010-03-17

    Spin and orbital magnetic moments of the L2{sub 1}-type Co{sub 2}FeGa Heusler alloy have been investigated using x-ray magnetic circular dichroism spectra in the soft x-ray region. From the spectra of the L{sub 2,3}-edge of Co and Fe, the ratios of the orbital magnetic moment to the spin magnetic moment M{sub orb}/M{sub spin} are estimated to be 0.06 for Co and 0.02 for Fe, in agreement with the available theoretical values. The orbital magnetic moments of these two elements are small in line with theoretical results, reflecting the high symmetry of the L2{sub 1}-type crystal structure. Furthermore, it has been confirmed that the magnetic moment of Ga is induced in the present alloy.

  17. Effect of the Heusler phase formation on the magnetic behavior of the Cu–10 wt.%Mn alloy with Al and Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, T.M., E-mail: thaisa.mary@gmail.com [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra – UNIFESP, 09972-270 Diadema, SP (Brazil); Magnani, M. [Instituto de Química – UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The presence of the Cu{sub 2}MnAl phase was observed in annealed alloys. • Al and Ag additions shift the equilibrium concentration to higher Al values. • There is a correlation between the Ag-rich phase and the Cu{sub 2}MnAl phase. - Abstract: In this work, the formation of the Cu{sub 2}AlMn Heusler phase and its influence on the magnetic behavior of the Cu–Mn–Al–Ag alloys in the range of 8–10 wt.% of aluminum and 2–4 wt.% of silver were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and saturation magnetization measurements at 4 K. The results showed that there is a correlation between the presence of the Ag-rich phase and the formation of the Cu{sub 2}MnAl phase.

  18. Study of the structural, electronic and magnetic properties of ScFeCrT (T=Si, Ge) Heusler alloys by first principles approach

    Science.gov (United States)

    Rasool, Muhammad Nasir; Hussain, Altaf; Javed, Athar; Khan, Muhammad Azhar

    2017-03-01

    Spin polarized structural, electronic, magnetic and bonding properties of ScFeCrT (T=Si, Ge) Heusler alloys are studied by employing density functional theory. The total energy calculation (for a static lattice) shows that both alloys are structurally stable in ferromagnetic phase with compressibility CScFeCrSi>CScFeCrGe. The electronic and band structure analysis show that the ScFeCrT alloys exhibit half-metallic ferromagnetic (HMF) behaviour for spin ↑ channel while semiconducting behaviour in spin ↓ channel. Both alloys exhibit total magnetic moment, MTotal=3.0 μB/cell obeying the Slater Pauling rule, MSPR=(Nv -18)μB. For ScFeCrSi and ScFeCrGe alloys, the charge density and interatomic bonding character show highly covalent and polar covalent character, respectively. For both alloys, 100% spin polarization (for spin ↑ state) is expected which is an indication of their suitability for applications in spintronic devices.

  19. Pressure- and Temperature-Dependent Study of Heusler Alloys Cu2MGa (M = Cr and V)

    Science.gov (United States)

    Gupta, Dinesh C.; Ghosh, Sukriti

    2017-04-01

    Full-potential computation of the electronic, magnetic, elastic and thermodynamic properties of Cu2MGa (M = Cr and V) alloys has been performed in the most stable Fm-3 m phase. The equilibrium lattice parameter is 5.9660 Å for Cu2CrGa and 5.9629 Å for Cu2VGa in the stable state. The application of mBJ potential has also found no energy gap in these alloys in either of the spin channels, hence they are metallic. The total and partial density of states, second-order elastic constants and their combinations are computed to show the electronic, magnetic, stability and brittle or ductile nature of these alloys, which are reported for the first time. Cauchy's pressure and Pugh's index predict Cu2CrGa to be brittle and Cu2VGa to be ductile. Both the materials are stiff enough to break. We have found that both the compounds are anisotropic, ferromagnetic and metallic in nature. We have used quasi-harmonic approximations to study the pressure and temperature variation of the thermodynamic properties of these alloys.

  20. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: zhliu@aphy.iphy.ac.cn; Liu, H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, X.X. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, M. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Dai, X.F. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Hu, H.N. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen, J.L. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu, G.H. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: userm201@aphy.iphy.ac.cn

    2004-08-23

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni{sub 50+x}Fe{sub 25-x}Ga{sub 25} (x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L21->B2 transition occurs in the samples treated at 873 K, while the {gamma} phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni{sub 2}FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni{sub 2}FeGa on the saturation magnetization and exchange interaction are also discussed.

  1. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering.

    Science.gov (United States)

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-06-30

    The influence of growth temperature Ts (300-773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K.

  2. Magnetocaloric effect in Ni-Fe-Ga Heusler alloys with Co and Al substitutions

    Directory of Open Access Journals (Sweden)

    Tolea F.

    2015-01-01

    Full Text Available The functionality of the ferromagnetic shape memory alloys is related to the martensitic and magnetic order-disorder transformations, both of which may be tailored by doping with other elements or by suitable thermal treatments, so that alloys with concomitant (or sequential but close structural and magnetic phase transitions may be obtained. Concerning the magnetocaloric applications, it is assumed that the thin melt-spun ribbons assure a more efficient heat transfer. In the present work we investigate the influence of Co and Al substitutions on magnetocaloric effect characteristics of NiFeGa in bulk and also in ribbons prepared by melt spinning method and subjected to different thermal treatments. X-ray diffraction, differential scanning calorimetry, magnetocaloric and magnetoresistive characterizations have been performed. The results highlight the differences between the bulk and the ribbons (both as prepared and annealed and the role of substitutions.

  3. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys

    Science.gov (United States)

    Joshi, Giri; Poudel, Bed

    2016-12-01

    We report an efficient thermoelectric device with power density of 8.9 W/cm2 and efficiency of 8.9% at 678°C temperature difference using hot-pressed titanium metal contact layers on nanostructured half-Heusler materials. The high power density and efficiency are due to the efficient nanostructured materials and very low contact resistance of 1 μΩ cm2 between the titanium layer and half-Heusler material. Moreover, the bonding strength between the titanium and half-Heusler is more than 50 MPa, significantly higher compared with conventional contact metallization methods. The low contact resistance and high bonding strength are due to thin-layer diffusion of titanium (600°C). The low contact resistance and high bonding strength result in a stable and efficient power generation device with great potential for use in recovery of waste heat, e.g., in automotive and industrial applications.

  4. First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Bouabça, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Rozale, H., E-mail: hrozale@yahoo.fr [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Amar, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Wang, X.T. [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400044 (China); Sayade, A. [UCCS, CNRS-UMR 8181, Université d’Artois, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); Chahed, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria)

    2016-12-01

    The structural, electronic, magnetic, and thermal properties of new quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA) and GGA plus modified Becke and Johnson as the exchange correlation. The results showed that all Heusler compounds were stable in Type (I) structure. The CsSrCZ (Z=Si, Ge, Sn) compounds had a nearly HM characteristic, and CsSrCZ (Z=P, As, Sb) compounds were true half-metallic (HM) ferromagnets. The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. The half-metallicity is preserved up to a lattice contraction of 3.45%, 1.69%, 1.69%, 7.16%, 7.16%, and 11.2% for all six quaternary Heusler compounds. We also investigated the thermal effects using the quasi-harmonic Debye model. - Highlights: • Electronic, magnetic, and thermodynamic properties of CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) are investigated. • Until now, there have been no reports theoretical and experimental studies on d{sup 0} half-metals with quaternary structures. • The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. • The half-metallicity is preserved up to a lattice contraction.

  5. Phase stability, band gap, and electronic and magnetic properties of quaternary heusler alloys FeMnScZ (Z = Al, Ga, In)

    Science.gov (United States)

    Gao, Y. C.; Zhang, Y.; Wang, X. T.

    2015-03-01

    By using the first-principles calculations, we have systematically investigated the phase stability, band gap, and electronic structures and magnetic properties of quaternary Heusler alloys FeMnScZ (Z = Al, Ga, In). We found that FeMnScZ (Z = Al, Ga, In) alloys are half-metallic ferrimagnets at their equilibrium lattice constants and retain a high spin polarization over a quite wide range of lattice distortions. The half-metallic band gap in the FeMnScZ (Z = Al, Ga, In) alloys arises from t 1u- t 2g splitting but not e u- t 1u splitting. The total magnetic moments are 3 µB per unit cell for FeMnScZ (Z = Al, Ga, In) alloys, following the Slater-Pauling rule with the total number of valence electrons minus 18 rather than 24. Moreover, all of these alloys have a negative formation energy, which implies that they can be synthesized experimentally.

  6. Magnetic properties of Ni{sub 40+x}Mn{sub 39−x}Sn{sub 21} (x = 0, 2, 4, 6 and 8 at.%) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lázpita, P., E-mail: patricia.lazpita@ehu.es [BCMaterials and UPV/EHU, Bilbao (Spain); Barandiarán, J.M. [BCMaterials and UPV/EHU, Bilbao (Spain); Chernenko, V.A. [BCMaterials and UPV/EHU, Bilbao (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain); Valle García, B. [UPV/EHU, EUITI Bilbao, Dpto. Ing. Minera, Metalurgia y Ciencia de los Materiales, Bilbao (Spain); Díaz Tajada, E. [UPV/EHU, ETS Náutica y Máquinas Navales, Dpto. Ing. Minera, Metalurgia y Ciencia de los Materiales, Portugalete (Spain); Lograsso, T. [Division of Materials Science and Engineering, Ames Laboratory, Ames, IA (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA (United States); Schlagel, D.L. [Division of Materials Science and Engineering, Ames Laboratory, Ames, IA (United States)

    2014-05-01

    Highlights: • Curie temperature versus e/a dependence shows broad maximum in NiMnSn alloys. • Magnetic moment versus e/a < 7.75 dependence was determined. • The localized magnetic moment model is compatible with the magnetic moment evolution. • The values of the magnetic moments indicate an almost full atomic order. - Abstract: The low electron concentration region (e/a < 7.75) of the magnetic phase diagram of the off-stoichiometric Ni–Mn–Sn Heusler alloys was investigated in detail by DSC and magnetization measurements of the Ni{sub 40+x}Mn{sub 39−x}Sn{sub 21}(x = 0, 2, 4, 6 and 8 at.%) alloys. The alloys show a stable austenitic phase without any martensitic transformation down to 5 K even after heat treatment. The Curie temperature exhibits a broad maximum over a large composition range. The evolution of the magnetic moment with the electron concentration fits the data of previous studies and confirms the peak-like dependence in the extended range of e/a values predicted by ab initio calculations. The explored part of the moment versus e/a curve can be explained in terms of a localized magnetic moment model and full atomic order in the alloys.

  7. The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys: a quasi-hormonic Debye model and first principles study

    Science.gov (United States)

    Li, Jia; Zhang, Zhidong; Sun, Yubao; Zhang, Jian; Zhou, Guoxiang; Luo, Hongzhi; Liu, Guodong

    2013-01-01

    The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys are investigated using the quasi-hormonic Debye model and the first principles calculation based on the density-functional-theory. The calculated results of the temperature dependent bulk modulus, coefficient of thermal expansion and the P-V relation for Ni2MnX (X=Ge, Sn, Sb) indicate that the bonding strength becomes stronger along the sequence of Ni2MnSb→Ni2MnSn→Ni2MnGe. The slower change trend of temperature dependent heat capacity of Ni2MnGe than that of Ni2MnSn and Ni2MnSb stems from the larger contribution of electronic heat capacity and smaller contribution of lattice heat capacity compared to the other two alloys. The ferromagnetic coupling order between the Ni and Mn is confirmed by our first principles calculations. The total moments in one primitive cell for the three alloys are all about 4.0 μB which are mainly carried by Mn atom with about 3.5 μB as can be seen from the magnetization density distribution.

  8. The thermodynamic, electronic and magnetic properties of Ni{sub 2}MnX (X=Ge, Sn, Sb) Heusler alloys: a quasi-hormonic Debye model and first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li Jia, E-mail: jiali@hebut.edu.cn [School of Science, Hebei University of Technology, Tianjin 300130 (China); Zhang Zhidong; Sun Yubao; Zhang Jian; Zhou Guoxiang [School of Science, Hebei University of Technology, Tianjin 300130 (China); Luo Hongzhi; Liu Guodong [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2013-01-15

    The thermodynamic, electronic and magnetic properties of Ni{sub 2}MnX (X=Ge, Sn, Sb) Heusler alloys are investigated using the quasi-hormonic Debye model and the first principles calculation based on the density-functional-theory. The calculated results of the temperature dependent bulk modulus, coefficient of thermal expansion and the P-V relation for Ni{sub 2}MnX (X=Ge, Sn, Sb) indicate that the bonding strength becomes stronger along the sequence of Ni{sub 2}MnSb{yields}Ni{sub 2}MnSn{yields}Ni{sub 2}MnGe. The slower change trend of temperature dependent heat capacity of Ni{sub 2}MnGe than that of Ni{sub 2}MnSn and Ni{sub 2}MnSb stems from the larger contribution of electronic heat capacity and smaller contribution of lattice heat capacity compared to the other two alloys. The ferromagnetic coupling order between the Ni and Mn is confirmed by our first principles calculations. The total moments in one primitive cell for the three alloys are all about 4.0 {mu}{sub B} which are mainly carried by Mn atom with about 3.5 {mu}{sub B} as can be seen from the magnetization density distribution.

  9. The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In): A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. C., E-mail: gaoyc1963@126.com [Department of Physics, college of science, North China University of Science And Technology (former Hebei United University), Tangshan, 063009 (China); Gao, X. [Department of Mechanical and Electrical Engineering, Hebei University of Science and Technology, Tangshan Branch, TangShan, 063000 (China)

    2015-05-15

    Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t{sub 1u}-t{sub 2g} splitting instead of the e{sub u}-t{sub 1u} splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.

  10. The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In: A first-principle study

    Directory of Open Access Journals (Sweden)

    Y. C. Gao

    2015-05-01

    Full Text Available Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In alloys originates from the t1u-t2g splitting instead of the eu-t1u splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In alloys following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.

  11. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.

    Science.gov (United States)

    Bhardwaj, A; Chauhan, N S; Sancheti, Bhagyashree; Pandey, G N; Senguttuvan, T D; Misra, D K

    2015-11-28

    All scale hierarchical architecturing, matrix/inclusion band alignment and intra-matrix electronic structure engineering, the so called panoscopic approach for thermoelectric materials has been demonstrated to be an effective paradigm for optimizing high ZT. To achieve such hierarchically organized microstructures, composition engineering has been considered to be an efficient strategy. In this work, such a panoscopic concept has been extended to demonstrate for the first time in the case of half-Heusler based thermoelectric materials via a composition engineering route. A series of new off-stoichiometric n-type Zr0.7Hf0.3Ni1+xSn (0 ≤x≤ 0.10) HH compositions have been modified to derive HH(1 -x)/full-Heusler (FH)(x) composite with an all scale hierarchically modified microstructure with FH inclusions within the matrix to study the temperature dependent thermoelectric properties. The structural analysis employing XRD, FE-SEM and HR-TEM of these materials reveal a composite of HH and FH, with hierarchically organized microstructures. In such a submicron/nano-composite, the electronic properties are observed to be well optimized yielding a large power factor; α(2)σ (∼30.7 × 10(-4) W m(-1) K(-2) for Zr0.7Hf0.3Ni1.03Sn) and reduced thermal conductivity (∼2.4 W m(-1) K(-1) for Zr0.7Hf0.3Ni1.03Sn) yielding a high ZT∼ 0.96 at 773 K for composition Zr0.7Hf0.3Ni1.03Sn which is ∼250% larger than the normal HH Zr0.7Hf0.3NiSn (ZT∼ 0.27 at 773 K). The enhancement in ZT of these composites has been discussed in terms of primary electron filtering, electron injection and several phonon scattering mechanisms such as alloy scattering, point defect scattering, and grain boundary scattering. The Bergman and Fel model is used to calculate effective thermoelectric parameters of these composites for comparing the experimental results.

  12. Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe

    Science.gov (United States)

    Kamantsev, Alexander P.; Koledov, Victor V.; Mashirov, Alexey V.; Dilmieva, Elvina T.; Shavrov, Vladimir G.; Cwik, Jacek; Los, Anton S.; Nizhankovskii, Victor I.; Rogacki, Krzysztof; Tereshina, Irina S.; Koshkid'ko, Yuriy S.; Lyange, Maria V.; Khovaylo, Vladimir V.; Ari-Gur, Pnina

    2015-04-01

    Measurements of the adiabatic temperature change (ΔT) and the specific heat transfer (ΔQ) of Ni2.18Mn0.82Ga Heusler alloy were taken in order to quantify the direct giant magnetocaloric effect of the alloy when it is in the vicinity of magneto-structural phase transition (PT) from paramagnetic austenite to ferromagnetic martensite, and their results are presented. A new vacuum calorimeter was used to simultaneously measure ΔT and ΔQ of magnetocaloric materials with a Bitter coil magnet in fields of up to H = 140 kOe. Other thermomagnetic properties of this alloy were investigated using standard differential scanning calorimetry and PPMS equipment. The maximal values of magnetocaloric effect in H = 140 kOe were found to be ΔT = 8.4 K at initial temperature 340 K and ΔQ = 4900 J/kg at 343 K. Using this direct method, we show that the alloy indeed demonstrates the largest value of ΔQ as compared with previously published results for direct measurements of magnetocaloric materials, even though at 140 kOe the magnetic field-induced magnetostructural PT is still not complete.

  13. Synthesize and microstructure characterization of Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elwindari, Nastiti; Manaf, Azwar, E-mail: azwar@ui.ac.id [Physics Department, Faculty of Science, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-06-17

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics of material by x-ray diffraction revealed that the alloy has a L{sub 21}-type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.

  14. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  15. Possible martensitic transformation and ferrimagnetic properties in Heusler alloy Mn{sub 2}NiSn

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni, E-mail: duanyingni@163.com [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Fan, Xiao-Xi; Kutluk, Abdugheni [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Du, Xiu-Juan [School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi (China); Zhang, Zheng-Wei [Chemistry and Chemical Engineering Laboratory, The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Song, Yu-Ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2015-07-15

    The electronic structure and magnetic properties of Hg{sub 2}CuTi-type Mn{sub 2}NiSn have been studied by performing the first-principle calculations. It is found that the phase transformation from the cubic to the tetragonal structure reduces the total energy, indicating that the martensitic phase is more stable and the phase transition from austenite to martensite may happen at low temperature for Hg{sub 2}CuTi-type Mn{sub 2}NiSn. Concerning the magnetism of Hg{sub 2}CuTi-type Mn{sub 2}NiSn, both austenitic and martensitic phases are suggested to be ferrimagnets. Furthermore, martensitic transformation decreases the magnetic moment per formula unit compared with austenitic phase. The results are helpful to accelerate the use of Mn{sub 2}NiSn alloys in the series for magnetic shape memory applications. - Highlights: • It is found that the phase transition from austenite to martensite may happen at low temperature for Mn{sub 2}NiSn with the Hg{sub 2}CuTi-type structure. • Both austenitic and martensitic Mn{sub 2}NiSn are ferrimagnets. • Martensitic transformation decreases the magnetization.

  16. Magnetic and magnetocaloric properties of martensitic Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chernenko, Volodymyr A., E-mail: vladimir_chernenko@ehu.es [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Ikerbasque, Basque Foundation for Science, Bilbao 48011 (Spain); Barandiaran, Jose M. [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Rodriguez Fernandez, Jesus; Rojas, Daniel P. [CITIMAC, Fac. Ciencias, Univ. Cantabria, Santander 39005 (Spain); Gutierrez, Jon; Lazpita, Patricia [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Orue, Inaki [SGiker, Vicerrectorado de Inv. UPV/EHU, Sarriena s/n, Leioa 48940 (Spain)

    2012-10-15

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to {Theta}{sub D}=310{+-}2 K and {gamma}= 16.6{+-}0.3 mJ/K{sup 2}mol, respectively, do not depend on the magnetic field.

  17. Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys

    Science.gov (United States)

    Tian, Fanghua; Cao, Kaiyan; Zhang, Yin; Zeng, Yuyang; Zhang, Rui; Chang, Tieyan; Zhou, Chao; Xu, Minwei; Song, Xiaoping; Yang, Sen

    2016-08-01

    A spontaneous exchange bias (SEB) discovered by Wang et al. [Phys. Rev. Lett. 106 (2011) 077203.] after zero-field cooling (ZFC) has attracted recent attention due to its interesting physics. In this letter, we report a giant SEB tuned by Sb-doping in Ni50Mn38Ga12-xSbx Heusler alloys. Such an SEB was switched on below the blocking temperature of approximately 50 K. The maximum exchange bias HE can arrive at 2930 Oe in a Ni50Mn38Ga10Sb2 sample after ZFC to 2 K. Further studies showed that this SEB was attributable to interaction of superspin glass (SSG) and antiferromagnetic matix, which was triggered by the crossover of SSG from canonical spin glass to a cluster spin glass. Our results not only explain the underlying physics of SEB, but also provide a way to tune and control the SEB performance.

  18. Structural stability, electronic structure and magnetic properties of the new hypothetical half-metallic ferromagnetic full-Heusler alloy CoNiMnSi

    Directory of Open Access Journals (Sweden)

    Elahmar M.H.

    2016-03-01

    Full Text Available We investigated the structural stability as well as the mechanical, electronic and magnetic properties of the Full-Heusler alloy CoNiMnSi using the full-potential linearized augmented plane wave (FP-LAPW method. Two generalized gradient approximations (GGA and GGA + U were used to treat the exchange-correlation energy functional. The ground state properties of CoNiMnSi including the lattice parameter and bulk modulus were calculated. The elastic constants (Cij and their related elastic moduli as well as the thermodynamic properties for CoNiMnSi have been calculated for the first time. The existence of half-metallic ferromagnetism (HM-FM in this material is apparent from its band structure. Our results classify CoNiMnSi as a new HM-FM material with high spin polarization suitable for spintronic applications.

  19. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Schwarz, U.; Felser, C.; Nicklas, M., E-mail: nicklas@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Hanfland, M. [ESRF, BP220, 38043 Grenoble (France); Nayak, A. K. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  20. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films

    Science.gov (United States)

    Tao, X. D.; Wang, H. L.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Zhang, W.; Oepen, H. P.; Zhao, J. H.; Ding, H. F.

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis.

  1. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    Science.gov (United States)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  2. High-pressure and high-temperature physical properties of half-metallic full-Heusler alloy Mn2RuSi by first-principles and quasi-harmonic Debye model

    Science.gov (United States)

    Song, Ting; Ma, Qin; Sun, Xiao-Wei; Liu, Zi-Jiang; Wei, Xiao-Ping; Tian, Jun-Hong

    2017-02-01

    First-principles calculations based on density functional theory and quasi-harmonic Debye model are used to investigate the high-pressure and high-temperature physical properties, including the lattice constant, magnetic moment, density of states, pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter for the new Mn-based full-Heusler alloy Mn2RuSi in CuHg2Ti-type structure. The optimized equilibrium lattice constant is consistent with experimental and other theoretical results. The calculated total spin magnetic moment remains an integral value of 2.0 μB in the lattice constant range of 5.454-5.758 Å, and then decreases very slowly with the decrease of lattice constant to 5.333 Å. By the spin resolved density of states calculations, we have shown that Mn2RuSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The effects of temperature and pressure on bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter are opposite, which are consistent with a compression rate of volume. Furthermore, the results show that the effect of temperature is larger than pressure for heat capacity and the effect of high temperature and pressure on thermal expansion coefficient is small. All the properties of Mn2RuSi alloy are summarized in the pressure range of 0-100 GPa and the temperature up to 1200 K.

  3. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  4. Basics and prospective of magnetic Heusler compounds

    Directory of Open Access Journals (Sweden)

    Claudia Felser

    2015-04-01

    Full Text Available Heusler compounds are a remarkable class of materials with more than 1000 members and a wide range of extraordinary multi-functionalities including halfmetallic high-temperature ferri- and ferromagnets, multi-ferroics, shape memory alloys, and tunable topological insulators with a high potential for spintronics, energy technologies, and magneto-caloric applications. The tunability of this class of materials is exceptional and nearly every functionality can be designed. Co2-Heusler compounds show high spin polarization in tunnel junction devices and spin-resolved photoemission. Manganese-rich Heusler compounds attract much interest in the context of spin transfer torque, spin Hall effect, and rare earth free hard magnets. Most Mn2-Heusler compounds crystallize in the inverse structure and are characterized by antiparallel coupling of magnetic moments on Mn atoms; the ferrimagnetic order and the lack of inversion symmetry lead to the emergence of new properties that are absent in ferromagnetic centrosymmetric Heusler structures, such as non-collinear magnetism, topological Hall effect, and skyrmions. Tetragonal Heusler compounds with large magneto crystalline anisotropy can be easily designed by positioning the Fermi energy at the van Hove singularity in one of the spin channels. Here, we give a comprehensive overview and a prospective on the magnetic properties of Heusler materials.

  5. Volume dependence of magnetic properties in Co2Cr1-xYx Ga (Y=Ti-Ni) Heusler alloys: A first-principles study

    Science.gov (United States)

    Gonçalves, J. N.; Fortunato, N. M.; Amaral, J. S.; Amaral, V. S.

    2017-04-01

    The magnetic properties tuning and volume dependence in the series of quaternary full Heusler alloys with formula Co2Cr1-xYx Ga (Y=Ti, V, Mn, Fe, Co, Ni) were studied with a detailed first-principles exploration. We employ the density functional KKR method with the coherent potential approximation, estimating effective Heisenberg exchange constants via the magnetic force theorem together with mean-field Curie temperature (TC) and magnetic moment for compositions in the whole concentration range. The volumetric dependency of these magnetic properties is studied, particularly the pressure derivatives of TC at equilibrium. Our ternary alloy calculations show good agreement with local-density and generalized gradient approximations in the literature. The quaternary alloys show a wide range of tunable magnetic properties, where magnetic moments range from 0.8 to 4.9 μB, TC from 130 K to 1250 K, and dTC / dV values range from -7 to + 6.3 KÅ-3 .

  6. Study of electronic structure and magnetic properties of epitaxial Co{sub 2}FeAl Heusler Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Soni, S. [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Dalela, S., E-mail: sdphysics@rediffmail.com [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Sharma, S.S. [Department of Physics, Govt. Women Engineering College, Ajmer (India); Liu, E.K.; Wang, W.H.; Wu, G.H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kumar, M. [Department of Physics, Malviya National Institute of Technology, Jaipur-302017 (India); Garg, K.B. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-07-25

    This work reports the magnetic and electronic characterization of plane magnetized buried Heusler Co{sub 2}FeAl nano thin films of different thickness by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. . The spectra on both Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence, corresponding to a ferromagnetically-aligned moments on Fe and Co atoms conditioning the peculiar characteristics of the Co{sub 2}FeAl Heusler compound (a half-metallic ferromagnet). The detailed knowledge of the related magnetic and electronic properties of these samples over a wide range of thickness of films are indispensable for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications. - Highlights: • Electronic structure and Magnetic Properties of Epitaxial Co{sub 2}FeAl Heusler Films. • X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). • Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence. • Calculated Orbital, Spin and total magnetic moments of Fe and Co for 30 nm Co{sub 2}FeAl thin film. • The total magnetic moment of Fe at L{sub 2,3} edges increases with the thickness of the Co2FeAl films.

  7. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  8. Study of energy bands and magnetic properties of Co2CrSi Heusler alloy

    Indian Academy of Sciences (India)

    Dibya Prakash Rai; Sandeep; M P Ghimire; R K Thapa

    2011-10-01

    The electronic and magnetic properties of Co2CrSi is calculated by using full-potential linearized augmented plane wave (FP–LAPW) method based on density functional theory (DFT). Density of states (DOS), magnetic moment and band structures of the system are presented. For the exchange and correlation energy, local spin density approximation (LSDA+U) with the inclusion of Hubbard potential U is used. Our calculation shows indirect bandgap of 0.91 eV in the minority channel of DOS. This is supported by band structures and hence favoured the half metallic ferromagnetic (HMF) nature of the system. The effective magnetic moment of 4.006 B also supported our conclusion with a near integral value. The DOS of Co and Cr were found to hybridize and was also responsible for the ferromagnetic nature of the system.

  9. Special Heusler compounds for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balke, B.

    2007-07-01

    This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si with the Fe concentration ranging from x=0 to 1 are reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co{sub 2}Mn{sub 1-x}Fe{sub x}Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co{sub 2}FeAl{sub 1-x}Si{sub x} with varying Si concentration are reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x=0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors is reported. It is shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers

  10. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    Science.gov (United States)

    Patel, Sahil Jaykumar

    states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.

  11. Effect of partial substitution of silicon by other sp-valent elements on structure, magnetic properties and electrical resistivity of Co{sub 2}FeSi Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, K., E-mail: kuchanasrinivas@gmail.com [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Alliance College of Engineering and Design, Alliance University, Bangalore 562 106 (India); Manivel Raja, M.; Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)

    2015-01-15

    Highlights: • Effect of sp valent element substitution for Si in Co{sub 2}FeSi Heusler alloy was investigated. • All alloys except Co{sub 2}FeSi{sub 0.5}Sn{sub 0.5} show single phase L2{sub 1} structure with small B2 disorder. • Atomic radius of substitutional element does not have a systematic influence on properties. • Co{sub 2}FeSi{sub 0.5}Ge{sub 0.5} and Co{sub 2}FeSi{sub 0.5}Ga{sub 0.5} are the best choices for half metallic ferromagnets. - Abstract: The effect of partial substitution (50%) of Si by other sp-valent elements such as Al, Ga, Ge, In and Sn on structure, magnetic properties and electrical resistivity of full Heusler type Co{sub 2}FeSi alloys was investigated. The results revealed that these alloys (except Sn substituted alloy) consist of mostly L2{sub 1} ordered phase along with some B2 type disordered phase. The highest L2{sub 1} ordering was seen in Co{sub 2}FeSi{sub 0.5}Ge{sub 0.5} alloy. The magnetization studies showed all alloys obey the Slater–Pauling rule at 4 K except for Sn substituted alloy. However, at room temperature, only Ga, Ge and Al substituted alloys followed the Slater–Pauling rule. Electrical transport studies revealed the presence of half-metallic behavior at low temperatures in all alloys. However, half-metallicity was preserved to some extent at room temperature only in Ga and Ge substituted Co{sub 2}FeSi alloys.

  12. First-principles and Monte Carlo studies of the Ni2(Mn,Cr)Ga Heusler alloys electronic and magnetic properties

    Science.gov (United States)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Smolyakova, E. E.; Buchelnikov, V. D.

    2017-02-01

    Structural, magnetic and electronic properties of a series of Ni2Mn1-x Cr x Ga Heusler alloys have been studied by means of ab initio calculations and Monte Carlo simulations. The optimized lattice parameters of all investigated compositions are close to 5.81 Å and weakly depend on Cr excess. The martensitic transformation in Ni-Mn-Cr-Ga alloys occurs in all compositional range. Tetragonal distortions weakly depend on Cr concentration. Besides, an increase in energy difference between austenite and martensite with increasing Cr content was observed. For electronic and magnetic properties, it was observed that Ni2Mn1-x Cr x Ga demonstrate the metallic behavior. Using the SPR-KKR calculations of magnetic exchange constants, we have shown that the largest contribution to the total exchange energy is associated between nearest neighbor Ni-Mn pair. These inter-sublattice interactions in austenitic phase are higher then intra-sublattice interactions (Ni-Ni and Mn(Cr)-Mn(Cr)). Estimated Curie temperatures for Ni2Mn1-x Cr x Ga are found to decrease with increasing Cr content. All obtained results are in good agreement with experimental data.

  13. Large spontaneous exchange bias and giant magnetoresistance in Ni50Mn37-xFexIn13(x=2-4) Heusler alloys

    Science.gov (United States)

    Jing, Chao; Liu, Yang; Zheng, Dong; Wang, Xiaolong; Sun, Junkun; Zhang, Yuanlei; Liu, Changqin; Deng, Dongmei; Feng, Zhenjie; Xu, Kun; Li, Zhe

    2016-09-01

    In the present work, we have obtained a large zero-field cooled exchange-bias (spontaneous exchange bias, SEB) in Ni50Mn35Fe2In13 Heusler alloy. The experimental results indicate that the sample with x=2 exhibits super-spin glass (SSG), super-paramagnetic (SPM), super-ferromagnetic (SFM) and antiferromagnetic (AFM) behaviors in the martensite state at low temperature. Contributing to the complex magnetic interactions, a large SEB effect with the value of 1567 Oe was obtained at 5 K. At the same time, a non-monotonic behavior of spontaneous exchange bias field (spontaneous HEB) was observed with the variation of temperature, which is resulted from the competition between the volume fraction of SFM clusters and the exchange coupling of the SFM-AFM interface. In addition, during martensitic transformation (MT), extraordinary electrical transport properties of Ni50Mn37-xFexIn13 (x=2-4) alloys have been observed under various external magnetic field. The maximal value of the giant magnetoresistance (GMR) reaches about 57% at 135 K under the external magnetic field change of 50 kOe. The effect of field induced reverse martensitic transformation (FIRMT) on the GMR has been also discussed.

  14. First-principles study on the magnetic and half-metallic properties in bulk and (001) surface of Ti{sub 2}CoSn Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Peng-Li [College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi (China); Zhang, Jian-Min, E-mail: jmzhang@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, Shaanxi (China); Xu, Ke-Wei [College of Physics and Mechanical and Electronic Engineering, Xian University of Arts and Science, Xian 710065, Shaanxi (China)

    2016-06-30

    For the bulk and (001) surface of Ti{sub 2}CoSn Heusler alloy, the electronic and magnetic properties in bulk and the surface effect on the structural, electronic and magnetic properties of the alloy for different terminations of (001) surface have been studied by using first-principles calculations. The spin-gapless semiconductor (SGS) ferromagnetism with the magnetic moment of 3.00 μ{sub B}/f.u. is confirmed in the bulk Ti{sub 2}CoSn alloy with Hg{sub 2}CuTi-type structure. For two ideal terminations (TiCo, TiSn) and three modified terminations (CoCo*, TiTi*, SnSn*), the density of states (DOS) indicates that all terminations destroy the SGS character. Furthermore, we find that the atomic magnetic moments (AMM) decrease for the most atoms on the outmost three layers due to structural relaxation of these atoms inward. Both the DOS and AMM of the central layer L{sub 9} are similar to the corresponding bulk characters because surface effects fade out at the position of the inner layer, 12 Å below the surface. - Highlights: • Bulk Ti{sub 2}CoSn is spin-gapless semiconductor (SGS) ferromagnetism with 3 μB/f.u. moment. • All terminations of the (001) surface of the Ti{sub 2}CoSn alloy lose the SGS character. • Atomic magnetic moments at the (001) surface are greatly different from the bulk values.

  15. Analysis of L2{sub 1}-ordering and study of properties on Co-based Heusler thin film samples

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova Vidal, Enrique; Jakob, Gerhard [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Graf, Tanja; Felser, Claudia [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany)

    2010-07-01

    Heusler alloys have been intensively investigated because they are promising materials for use in spin-dependent devices. Their half-metallic properties are strongly related with the presence of L2{sub 1}, B2 and fully disordered A2 structure. However, a rigorous method to study the proportions of these different ordering states is still missing. Sputtered thin epitaxial Co{sub 2}FeSi{sub 0.6}Al{sub 0.4}, Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} and Co{sub 2}MnAl films have been prepared. These films were grown on MgO(100) with and without MgO buffer layer under UHV conditions and at different substrates temperatures. The deposition procedure is discussed, and the degree of L2{sub 1} order as well as transport and magnetic properties are analyzed.

  16. Solving the problem of structure determination in 3d transition metal based Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Balke, Benjamin; Fecher, Gerhard H.; Blum, Christian; Basit, Lubna; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany)

    2008-07-01

    This work reports on the structural investigation of Fe-containing, Co{sub 2}-based Heusler compounds (Co{sub 2}FeZ with Z=Al, Si, Ga, Ge) using anomalous X-ray diffraction (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). Using XRD, it was shown that Co{sub 2}FeAl crystallizes in the B2 structure whereas Co{sub 2}FeSi crystallizes in the L2{sub 1} structure. For compounds containing Ga or Ge, the XRD technique with regular laboratory sources for excitation can not be used easily to distinguish the two structures. For this reason, EXAFS was used to elucidate the structure of these two compounds. The absorption experiments close to the K-edges of Co, Fe, Ga, and Ge indicated that both compounds crystallize in the L2{sub 1} structure. Exciting the XRD at the K-edges of Co and Fe leads to anomalous X-ray scattering. The dependence of the scattering parameters on the energy close to the absorption edges was used to identify the L2{sub 1} structure of the Ga and Ge containing compounds unambiguously. The applicability of the techniques on nano-scaled materials is demonstrated for the example of Co{sub 2}FeGa nano-particles with sizes of below 25 nm.

  17. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy%哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究

    Institute of Scientific and Technical Information of China (English)

    张浩雷; 李哲; 乔燕飞; 曹世勋; 张金仓; 敬超

    2009-01-01

    通过结构和磁性测量,研究了四元哈斯勒合金Ni_(50-x)Co_xMn_(38)Sn_(12)(x=1,2,4,6,8)的晶体结构和相变特征.结果表明,Co原子的掺杂不但没有影响三元哈斯勒合金Ni-Mn-Sn的原有结构,而且还增强了样品在奥氏体相的铁磁交换作用.此外,通过Maxwell方程计算了其中三种成分样品(x=2,4,6)的磁熵变△S_M,在磁场改变50 kOe情况下,获得了Ni_(46)Co_2Mn_(38)Sn_(12)样品在320 K附近约37.09 J/kg K的磁熵变.%The crystal structure and phase transition in Ni_(50-x) Co_x Mn_(38)Sn_(12) (x =1, 2, 4, 6, 8) Heusle alloys were investigated by means of structure analysis and magnetism measurements. The results show that the doping of the Co atom affects neither the original structure of Ni-Mn-Sn Heusler alloys, nor the ferromagnetic interaction strengthens in the austenitic state. Furthermore, based on Maxwell equation, the magnetic entropy change (△S_M) of three samples (x = 2, 4, 6) has been calculated. A large magnetic entropy change of 37.09 J/kg K at about 320 K for a magnetic field change of 50 kOe is obtained in Ni_(48)Co_2Mn_(38)Sn_(12) alloy.

  18. Half-metallicity in the inverse Heusler Ti2RuSn alloy: A first-principles prediction

    Science.gov (United States)

    Taşkın, Ferhat; Atiş, Murat; Canko, Osman; Kervan, Selçuk; Kervan, Nazmiye

    2017-03-01

    The electronic and magnetic properties of the Ti2RuSn Heusler compound are investigated by means of ab initio calculations with the full-potential linearized augmented plane wave (FLAPW) method. The generalized gradient approximation (GGA) method is used for the calculations. The CuHg2Ti-type structure is energetically more stable than the AlCu2Mn-type structure. The inverse-Heusler Ti2RuSn represents half-metallic behavior. The total spin moment of the compound is 2 μB which coincides with the Slater-Pauling rule of Mt =Zt - 18 with the equilibrium lattice constant a0 = 6.44 Å and the strained lattice constants as well. The majority bands have metallic properties, but the minority bands have semiconductor properties with a gap of 0.35 eV, and the spin-flip gap is 0.23 eV. Moreover, the sensitivity of half-metallicity is investigated under two types of structural distortion, namely uniform strain and tetragonal distortion.

  19. Effects of disorder in the Heusler alloy Co{sub 2}MnSi and properties of the Co{sub 2}MnSi(100)/MgO interface; Effekte von Unordnung in der Heusler-Legierung Co{sub 2}MnSi und Eigenschaften der Co{sub 2}MnSi (100)/MgO-Grenzflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Huelsen, Bjoern

    2009-02-13

    This work focuses on the Heusler alloy Co{sub 2}MnSi, a ferromagnetic half-metal. The experimental verification of the theoretically predicted band gap in the minority spin channel is still lacking. Previous studies have shown that structural disorder has a crucial impact on the electronic properties of half-metals. Defect-induced states may appear at the Fermi energy in the spin-down-band and decrease the spin polarization. Furthermore, heterostructures may show interface states reducing (dramatically) the spin polarization of tunneling or injection currents. Both aspects are investigated with calculations in the framework of density functional theory. The first part of this work adresses the influence of atomic defects on the electronic and magnetic properties of Co{sub 2}MnSi. Investigations of antisites, antistructure pairs and vacancies show that especially Co atoms at Mn or Si sites and Mn atoms at Co sites lead to dramatic deviations from the properties of the ideal compound. Co based defect states are a serious threat for the half-metallicity. Based on these results in the second part Co{sub 2-x}Mn{sub 1+x}Si (-1alloy where only the Co-Mn interactions are taken into account. Two separate cluster expansions (one for the formation energy ECE and one for the total spin moment MCE) that are parametrized with ab initio data are established. With the ECE several new ground states are predicted, with one of them (Co{sub 2}Mn{sub 4}Si{sub 2}) also having a band gap. The well-known Slater-Pauling rule for stochiometric Heusler alloys can be expanded to non-stochiometric Mn-rich compositions. With this new Slater-Pauling rule and the MCE a large region of potentially half-metallic Mn-rich compositions is identified. Monte Carlo simulations show that Co{sub 2}MnSi with ideal or slightly deviating ({+-}2%) stochiometry is nearly perfectly ordered. The Mn-rich structures are not thermally stable but decompose into Co{sub 2}MnSi and

  20. Martensitic transformation in Ni-rich Ni{sub 55}Mn{sub 25}In{sub 20} Heusler alloy: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.Y., E-mail: syyu@sdu.edu.cn; Hu, S.J.; Kang, S.S.; Gu, A.J.

    2015-06-05

    Highlights: • Ni{sub 55}Mn{sub 25}In{sub 20} ribbons with ordered L2{sub 1} structure were prepared. • A martensitic transformation has been observed in Ni{sub 55}Mn{sub 25}In{sub 20}. • A large MR up to 17% is observed. • The cubic structure becomes unstable by partial substitution of In with Ni. • The driving force of the martensitic transformation is discussed. - Abstract: A martensitic transformation has been observed in Ni-rich Ni{sub 55}Mn{sub 25}In{sub 20} Heusler alloy and been theoretically investigated by first-principles calculations. The samples are prepared by the melt-spun method and the ribbons show an ordered L2{sub 1} structure at room temperature. Magnetization and electrical resistance measurements show that a martensitic transformation occurs at about 156 K, with both phases exhibiting ferromagnetic ordering. A negative magnetoresistance of 17% is observed at a magnetic field of 50 kOe due to the magnetic field induced reverse martensitic transformation. Electronic structure calculations indicate that the 3d states of Ni occupied in In site strongly hybridize with the Ni: 3d states. Such hybridization plays an important role in driving the martensitic transformation.

  1. Revealing the nature of magnetic phases in the semi-Heusler alloy Cu{sub 0.85}Ni{sub 0.15}MnSb

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Madhumita, E-mail: mhalder@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Suresh, K.G., E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Mukadam, M.D. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Yusuf, S.M., E-mail: smyusuf@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-01-15

    We report the magnetic, magnetocaloric, and magnetotransport properties of the semi-Heusler alloy Cu{sub 0.85}Ni{sub 0.15}MnSb, which exhibits coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) phases. A broad magnetic phase transition is evident from the temperature variations of magnetization, heat capacity, and isothermal magnetic entropy change. This is due to the presence of both AFM and FM phases at low temperatures. The variation of electrical resistivity with temperature shows three distinct regions of magnetic phases. The magnetoresistance (MR) results also show the presence of AFM and FM phases at temperatures below 45 K, and a FM phase at temperature above 45 K. Though there is no signature of a spin-glass state at low temperatures, various results point towards the presence of short-range magnetic correlations at low temperatures. - Highlights: • Magnetic, magnetocaloric, and magnetotransport properties of Cu{sub 0.85}Ni{sub 0.15}MnSb have been investigated. • Coexistence of antiferromagnetic and ferromagnetic phases at low temperature. • Resistivity and magnetoresistance with temperature shows three distinct regions of magnetic phases. • Presence of short-range magnetic correlations at low temperatures.

  2. Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOe

    Directory of Open Access Journals (Sweden)

    Kamantsev Alexander

    2014-07-01

    Full Text Available High cooling power of magnetocaloric refrigeration can be achieved only at large amounts of heat, which can be transferred in one cycle from cold end hot end at quasi-isothermal conditions. The simple and robust experimental method of direct measuring of the transferred heat of materials with magnetocaloric effect (MCE in thermal contact with massive copper block with definite heat capacity in quasi-isothermal regime was proposed. The vacuum calorimeter for the specific transferred heat ΔQ and adiabatic temperature change ΔT measurements of MCE materials in the fields of Bitter coil magnet up to H = 140 kOe was designed and tested on samples of Ni43Mn37.9In12.1Co7 Heusler alloy with inverse MCE in the vicinity of meta-magnetostructural phase transition (PT. It was found, that the magnetic field H = 80 kOe produces complete PT from martensite to austenite with ΔQ = - 1600 J/kg at initial temperature 273 K.

  3. Predicting Pathways for Synthesis of Ferromagnetic τ Phase in Binary Heusler Alloy Al-55 pct Mn Through Understanding of the Kinetics of ɛ-τ Transformation

    Science.gov (United States)

    Palanisamy, Dhanalakshmi; Singh, Shailesh; Srivastava, Chandan; Madras, Giridhar; Chattopadhyay, Kamanio

    2016-09-01

    This paper outlines the detailed procedure for the synthesis of pure ferromagnetic τ phase in binary Heusler Al-55 pct Mn alloy in bulk form through casting route without any addition of stabilizers. To obtain the processing domain for the formation of the τ phase from high-temperature ɛ phase, isothermal transformation experiments were carried out. The structure and microstructure were characterized by X-ray diffraction and electron microscopy studies. The τ phase start times were obtained through magnetic measurements. In order to tune the casting conditions for the formation of this phase, thermal modeling was carried out to predict the heat extraction rates for copper molds of different diameters (2 to 12 mm) containing hot solids during casting process. This enabled us to estimate the diameter of the mold to be used for obtaining τ phase directly during casting. It was concluded through experimental verification that 10-mm-diameter casting in copper mold is suitable to obtain complete τ phase. A saturation magnetization of 116 emu/g at 10 K was measured for such samples. The Curie point for the τ phase was found to be 668 K (395 °C). Additionally, the cast rod exhibits a compressive strength of 1170 MPa which is higher than those of both ferrites and AlNiCo magnets.

  4. First Principles and Monte Carlo Calculations of Structural and Magnetic Properties of FexNi2-xMn1+yAl1-y Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Zagrebin Mikhail

    2015-01-01

    Full Text Available The composition dependences of crystal lattice parameters, bulk moduli, magnetic moments, magnetic exchange parameters, and Curie temperatures in FexNi2-xMn1+yAl1-y (0.2 ≤ x ≤ 1.8; 0.0 ≤ y ≤ 0.6 Heusler alloys are investigated with the help of first principles and Monte Carlo calculations. It is shown that equilibrium lattice parameters and MnY-MnZ magnetic exchange interactions increase with increasing Fe content (x. A crossover from ferromagnetic to antiferromagnetic interaction between nearest neighbors MnY and MnZ atoms was observed in compositions with x ≥ 1.4 and 0.2 ≤ y ≤ 0.6. Such magnetic competitive behavior points to a complex magnetic structure in FexNi2-xMn1+yAl1-y. Calculated values of lattice parameters, magnetic moments, and Curie temperatures are in a good agreement with other theoretical results and available experimental data.

  5. Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys

    Science.gov (United States)

    Bhat, Idris Hamid; Yousuf, Saleem; Mohiuddin Bhat, Tahir; Gupta, Dinesh C.

    2015-12-01

    The electronic and magnetic properties of Mn2CuSi and Mn2ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75 Å for Mn2CuSi and 5.80 Å for Mn2ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0 μB for Mn2CuSi and 2.0 μB for Mn2ZnSi per unit cell, predict that the materials follow MT=ZT - 28 Slater-Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend.

  6. Ab Initio and Monte Carlo Approaches For the Magnetocaloric Effect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Vladimir Sokolovskiy

    2014-09-01

    Full Text Available The complex magnetic and structural properties of Co-doped Ni-Mn-Ga Heusler alloys have been investigated by using a combination of first-principles calculations and classical Monte Carlo simulations. We have restricted the investigations to systems with 0, 5 and 9 at% Co. Ab initio calculations show the presence of the ferrimagnetic order of austenite and martensite depending on the composition, where the excess Mn atoms on Ga sites show reversed spin configurations. Stable ferrimagnetic martensite is found for systems with 0 (5 at% Co and a c=a ratio of 1.31 (1.28, respectively, leading to a strong competition of ferro- and antiferro-magnetic exchange interactions between nearest neighbor Mn atoms. The Monte Carlo simulations with ab initio exchange coupling constants as input parameters allow one to discuss the behavior at finite temperatures and to determine magnetic transition temperatures. The Curie temperature of austenite is found to increase with Co, while the Curie temperature of martensite decreases with increasing Co content. This behavior can be attributed to the stronger Co-Mn, Mn-Mn and Mn-Ni exchange coupling constants in austenite compared to the corresponding ones in martensite. The crossover from a direct to inverse magnetocaloric effect in Ni-Mn-Ga due to the substitution of Ni by Co leads to the appearance of a “paramagnetic gap” in the martensitic phase. Doping with In increases the magnetic jump at the martensitic transition temperature. The simulated magnetic and magnetocaloric properties of Co- and In-doped Ni-Mn-Ga alloys are in good qualitative agreement with the available experimental data.

  7. Electronic and magnetic properties of the Co2-based Heusler compounds under pressure: first-principles and Monte Carlo studies

    Science.gov (United States)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.

    2016-09-01

    Structural, magnetic and electronic properties of stoichiometric Co2 YZ Heusler alloys (Y  =  Cr, Fe, Mn and Z  =  Al, Si, Ge) have been studied by means of ab initio calculations and Monte Carlo simulations. The investigations were performed in dependence on different levels of approximations in DFT (FP and ASA modes, as well as GGA and GGA  +  U schemes) and external pressure. It is shown that in the case of the GGA scheme the half-metallic behavior is clearly observed for compounds containing Cr and Mn transition metals, while Co2FeZ alloys demonstrate the pseudo half-metallic behavior. It is demonstrated that an applied pressure and an account of Coulomb repulsion (U) lead to the stabilization of the half-metallic nature for Co2 YZ alloys. The strongest ferromagnetic inter-sublattice (Co-Y) interactions together with intra-sublattice (Co-Co and Y-Y) interactions explain the high values of the Curie temperature obtained by Monte Carlo simulations using the Heisenberg model. It is observed that a decrease in valence electrons of Y atoms (i.e. Fe substitution by Mn and Cr) leads to the weakening of the exchange interactions and to the reduction of the Curie temperature. Besides, in the case of the FP mode Curie temperatures were found in a good agreement with available experimental and theoretical data, where the latter were obtained by applying the empirical relation between the Curie temperature and the total magnetic moment.

  8. The Effect of a Multiphase Microstructure on the Inverse Magnetocaloric Effect in Ni–Mn–Cr–Sn Metamagnetic Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Paweł Czaja

    2017-07-01

    Full Text Available Two Ni–Mn–Sn alloys substituted with 0.5 and 1 at.% Cr have been studied. The first alloy shows an average composition of Ni49.6Mn37.3Cr0.7Sn12.4 (e/a = 8.107, whereas the second has a multiphase microstructure with the matrix phase of an average Ni52.4Mn32.7Cr1Sn14 composition (e/a = 8.146. Both alloys undergo a reversible martensitic phase transformation. The Ni49.6Mn37.3Cr0.7Sn12.4 alloy transforms to the martensite phase at 239 K and, under the magnetic field change of μ0·ΔH = 1.5 T, gives the magnetic entropy change equal to 7.6 J/kg·K. This amounts to a refrigerant capacity in the order of 48.6 J/kg, reducible by 29.8% due to hysteresis loss. On the other hand, the alloy with a multiphase microstructure undergoes the martensitic phase transformation at 223 K with the magnetic entropy change of 1.7 J/kg·K (1 T. Although the latter spreads over a broader temperature window in the multiphase alloy, it gives much smaller refrigerant capacity of 16.2 J/kg when compared to Ni49.6Mn37.3Cr0.7Sn12.4. The average hysteresis loss for a field change of 1.5 T in the multiphase alloy is 2.7 J/kg, reducing the effective refrigerant capacity by 16.7%. These results illustrate that the key to gaining a large effective refrigerant capacity is the synergy between the magnitude of the magnetic entropy change and its broad temperature dependence.

  9. First-principles study of the structural and magnetic properties of the Ni{sub 45}Co{sub 5}Mn{sub 39}Sn{sub 11} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Buchelnikov, V.D., E-mail: buche@csu.ru [Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); Sokolovskiy, V.V. [Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); National University of Science and Technology ' MIS& S' , Moscow 119049 (Russian Federation); Zagrebin, M.A. [Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); National Research South Ural State University, Chelyabinsk 454080 (Russian Federation); Klyuchnikova, M.A. [Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); Entel, P. [University of Duisburg-Essen, Duisburg D-47048 (Germany)

    2015-06-01

    The structural and magnetic properties of Co-doped Ni–Mn–Sn Heusler alloy are investigated in the framework of density functional theory and Monte Carlo method. The first principles calculations of the equilibrium properties (crystalline structure and magnetic ordering) indicate that the ferromagnetic state is favorable in the austenite structure, whereas the ferrimagnetic order is stable in the martensite structure. The strong competition of ferro- and antiferromagnetic exchange interactions is arising from the austenite–martensite crossover. The temperature dependences of total magnetization and isothermal entropy and adiabatic temperature changes (magnetocaloric effect) are calculated by means of proposed Hamiltonian model with the ab initio magnetic exchange couplings and magnetostructural interrelation. The calculated properties are in good agreement with experimental ones. - Highlights: • Structural and magnetic properties of Ni{sub 45}Co{sub 5}Mn{sub 39}Sn{sub 11} Heusler alloy have been investigated. • Austenite structure is ordered ferromagnetically. • Martensite structure with tetragonal distortion c/a of 1.26 has ferrimagnetic order. • The strong competition of ferro- and antiferromagnetic exchange has been observed. • Proposed model Hamiltonian allows to describe observed magnetic properties.

  10. Annealing effect on the crystal structure and exchange bias in Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    González-Legarreta, L. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); García, J. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Ipatov, M.; Nazmunnahar, M. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Escoda, L.; Suñol, J.J. [Department of Physics, Campus Montilivi s/n, University of Girona, 17071 Girona (Spain); Prida, V.M. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); González, J. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Leoni, M. [Department of Material Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, I-38123 Trento (Italy); Hernando, B., E-mail: grande@uniovi.es [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2014-01-05

    Highlights: • Preparation of Ni–Mn–In Heusler alloys by melt spinning technique in ribbon shape. • Short annealing effects on the crystal structure, microstructure and magnetic properties. • Influence of annealing on the martensitic transformation. • Enhancement of the exchange bias effect. -- Abstract: A Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy has been prepared by arc melting and produced in a ribbon shape by rapid solidification using melt spinning technique. Structural properties have been investigated, at different temperatures, by using X-ray diffraction. Austenite is the stable phase at room temperature with a L2{sub 1} cubic crystal structure. Exchange bias effect was observed after field cooling by means of hysteresis loop measurements. At 5 K, hysteresis loop shifts along the axis of the applied magnetic field and that shift magnitude decreases significantly with increasing temperature. A piece of ribbon was annealed at 973 K during 10 min in order to investigate the influence of annealing on crystal structure and magnetic properties. After annealing, a martensitic phase with a monoclinic 10M structure at room temperature is observed. The onset of the martensitic phase transformation shifts to 365 K, temperatures associated with both martensitic and reverse transitions do not change noticeably under an applied magnetic field up to 30 kOe, and a drastic decrease on magnetization is observed in comparison with the as-quenched ribbon meanwhile the exchange bias effect is enhanced.

  11. Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} Heusler alloys at the martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Granovskii, A. B., E-mail: granov@magn.ru; Prudnikov, V. N.; Kazakov, A. P. [Moscow State University (Russian Federation); Zhukov, A. P. [Ikerbasque, Basque Foundaiton for Science (Spain); Dubenko, I. S. [Southern Illinois University, Department of Physics (United States)

    2012-11-15

    The magnetization, the electrical resistivity, the magnetoresistance, and the Hall resistivity of Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} (x = 1.0, 3.0, 4.0) Heusler alloys are studied at T = 80-320 K. The martensitic transformation in these alloys occurs at T = 220-280 K from the high-temperature ferromagnetic austenite phase into the low-temperature martensite phase having a substantially lower magnetization. A method is proposed to determine the normal and anomalous Hall effect coefficients in the presence of magnetoresistance and a possible magnetization dependence of these coefficients. The resistivity of the alloys increases jumpwise during the martensitic transformation, reaches 150-200 {mu}{Omega} cm, and is almost temperature-independent. The normal Hall effect coefficient is negative, is higher than that of nickel by an order of magnitude at T = 80 K, decreases monotonically with increasing temperature, approaches zero in austenite, and does not undergo sharp changes in the vicinity of the martensitic transformation. At x = 3, a normal Hall effect nonlinear in magnetization is detected in the immediate vicinity of the martensitic transformation. The temperature dependences of the anomalous Hall effect coefficient in both martensite and austenite and, especially, in the vicinity of the martensitic transformation cannot be described in terms of the skew scattering, the side jump, and the Karplus-Lutinger mechanisms from the anomalous Hall effect theory. The possible causes of this behavior of the magnetotransport properties in Heusler alloys are discussed.

  12. Electronic structure and half-metallicity of the heusler alloy Co{sub 2}ZrGe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Songtao; Liu, Yang; Ren, Zhi; Zhang, Xiaohong [North China Electric Power University, Baoding (China); Liu, Guodong [Hebei University of Technology, Tianjin (China)

    2014-10-15

    The site preference, the electronic structure and the magnetic properties of Co{sub 2}ZrGe have been studied by using first-principles calculations, and the stabilities of the Cu{sub 2}MnAl-type and the Hg{sub 2}CuTi-type structures have been tested in this respect. The Cu{sub 2}MnAltype structure is more favorable than the Hg{sub 2}CuTitype structure for the Co{sub 2}ZrGe compound, and the equilibrium lattice parameter of the Cu{sub 2}MnAl type Co{sub 2}ZrGe alloy is 6.06 A. The Co{sub 2}ZrGe alloy is found to have an energy gap in the minority spin direction at the Fermi level (E{sub F} ) and the majority spin band shows strongly metallic characteristic. As a result, the Co{sub 2}ZrGe alloy is predicted to be a half-metal with 100% spin polarization of the conduction electrons at the E{sub F}. The calculated total magnetic moment is 2.00 μ{sub B} per unit cell, which is in line with the Slater-Pauling curve of M{sub t} = Z{sub t} - 24. The Co atom-projected spin moment is 1.02μ{sub B}, which mainly determines the total moment. Simultaneously, the Zr and the Ge atom moments are - 0.08μ{sub B} and 0.04μ{sub B}, respectively. The Co{sub 2}ZrGe alloy may be a promising material for application in future spintronics devices.

  13. Theoretical investigations of half-metallic ferromagnetism in new Half-Heusler YCrSb and YMnSb alloys using first-principle calculations

    Science.gov (United States)

    Atif Sattar, M.; Rashid, Muhammad; Hashmi, M. Raza; Ahmad, S. A.; Imran, Muhammad; Hussain, Fayyaz

    2016-10-01

    Structural, electronic, and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs C1b-type structure are investigated by employing first-principal calculations based on density functional theory. Through the calculated total energies of three possible atomic placements, we find the most stable structures regarding YCrSb and YMnSb materials, where Y, Cr(Mn), and Sb atoms occupy the (0.5, 0.5, 0.5), (0.25, 0.25, 0.25), and (0, 0, 0) positions, respectively. Furthermore, structural properties are explored for the non-magnetic and ferromagnetic and anti-ferromagnetic states and it is found that both materials prefer ferromagnetic states. The electronic band structure shows that YCrSb has a direct band gap of 0.78 eV while YMnSb has an indirect band gap of 0.40 eV in the majority spin channel. Our findings show that YCrSb and YMnSb materials exhibit half-metallic characteristics at their optimized lattice constants of 6.67 Å and 6.56 Å, respectively. The half-metallicities associated with YCrSb and YMnSb are found to be robust under large in-plane strains which make them potential contenders for spintronic applications.

  14. Half-metallic properties of the Co 2Ti 1- xFe xGa Heusler alloys and Co 2Ti 0.5Fe 0.5Ga (0 0 1) surface

    Science.gov (United States)

    Ahmadian, F.; Boochani, A.

    2011-07-01

    Electronic and magnetic properties of the bulk Co 2Ti 1- xFe xGa Heusler alloys and Co 2Ti 0.5Fe 0.5Ga (0 0 1) surfaces are studied within the framework of density functional theory using the augmented plane wave plus local orbital (APW+lo) approach. It will be shown that all alloys have the spin polarization of the ideal 100% value except the Co 2FeGa alloy with spin polarization about 98%. Co 2Ti 0.5Fe 0.5Ga is an example that is stable against the effects destroying the half-metallicity due to the position of the Fermi energy ( EF) in the middle of the minority band gap. The phase diagram obtained by ab-initio atomistic thermodynamics shows that in the higher limit of μGa three surfaces of FeGa, TiGa and TiFeGa are accessible in the Co 2Ti 0.5Fe 0.5Ga alloy but on decreasing μGa, the accessible region gradually moves towards FeGa termination. It is discussed that, at the ideal surfaces, half-metallicity of the alloy is lost, although the TiGa surface keeps high spin polarization (about 95%).

  15. Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities

    Science.gov (United States)

    Bartholomé, Kilian; Balke, Benjamin; Zuckermann, Daniel; Köhne, Martin; Müller, Michael; Tarantik, Karina; König, Jan

    2014-06-01

    Half-Heusler (HH) compounds are some of the most promising candidates among the medium-temperature thermoelectric materials being investigated for automotive and industrial waste heat recovery applications. For n- as well as p-type material, peak ZT values larger than one have been published recently, and first modules have been built. The next step to facilitate the industrialization of thermoelectric module production is upscaling of material synthesis. In this paper, the latest results of the thermoelectric properties of HH compounds produced in kg batches are presented and compared with values published in the literature. The performance of modules built from these materials is analyzed with respect to power output and long-term stability of the material and electrical contacts.

  16. Coupled magnetostructural transition in Ni-Mn-V-Ga Heusler alloys and its effect on the magnetocaloric and transport properties

    Science.gov (United States)

    Devarajan, U.; Kannan, M.; Thiyagarajan, R.; Manivel Raja, M.; Rama Rao, N. V.; Singh, Sanjay; Venkateshwarlu, D.; Ganesan, V.; Ohashi, M.; Arumugam, S.

    2016-02-01

    In the present work, the magnetocaloric and transport properties of Ni2.2Mn0.72-x V x Ga1.08 (x  =  0.0, 0.04, 0.08, 0.12) magnetic shape memory alloys are investigated. The alloys show a coupled magnetostructural transition from paramagnetic austenite to ferromagnetic martensite in a composition range of 0  ⩽  x  ⩽  0.08. For higher V substitution (x  =  0.12), the martensite transition is lower than the conventional ferromagnetic transition. Large magnetic entropy change values of about 12.4, 16.2 and 19 J kg-1 K-1 and corresponding refrigeration capacities of 60.6, 82.5, and 103 J kg-1 were observed for x  =  0, 0.04 and 0.08 alloys, respectively. The above two parameters linearly increase with increasing magnetic field. The indirect adiabatic temperature change calculated from the heat capacity measurement is found to be at its maximum for x  =  0.12 at H  =  8 T. The magnetoresistance is observed to increase from 0% (x  =  0.12) to 28% (x  =  0) at the maximum field of 8 T. The Sommerfeld coefficients are almost the same for the parent and a V-doped sample, which reveals a low free electron density, and the Debye coefficients decrease with an increase in V doping, confirming the phenomenon of electron-phonon scattering. The critical exponents at second order magnetic transition for x  = 0.12 are calculated as β  =  0.482, γ  =  1.056, δ  =  3.021, which agrees closely with mean field theory.

  17. Microstructure and low-temperature phase transition in Ni{sub 2}FeGa Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Libao [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China) and Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China) and Harbin Institute of Technology at Weihai, Weihai 264209 (China)]. E-mail: lbliu@blem.ac.cn; Fu Shiyou [Harbin Institute of Technology at Weihai, Weihai 264209 (China); Liu Zhuhong [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu Guangheng [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Sun Xiudong [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li Jianqi [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2006-11-30

    The microstructure features and structural phase transition in the Ni{sub 2}FeGa alloy has been systematically investigated by means of transmission electron microscopy (TEM). A number of ordered states have been observed at room temperature; certain short-range orders are found to be in metastable states which are temperature sensitive and become invisible when annealed. In situ cooling TEM observations revealed evident structural changes along with the martensitic transition with T {sub c}{approx}145 K. Low-temperature microstructure domains, superstructures and variations of monoclinic distortion have been analyzed in detail.

  18. Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Tai, N.T.; Huy, N.T.;

    2011-01-01

    We report on the structural, magnetic and magnetocaloric properties of the Ni50Mn38Sb12Bx alloys in term of boron addition with x=1, 3 and 5. We have found that both the paramagnetic–ferromagnetic austenitic transition (TC) and the ferromagnetic–antiferromagnetic martensitic transition (TM......) are sensitively influenced by the boron addition: TC tends to increase, while TM decreases with increasing boron concentration. Temperature dependent X-ray diffraction in the range of 200–500K clearly shows an evolution of the structural transformation from orthorhombic to cubic structure phase transition...... on heating for the x=1 and 3 samples. Strikingly, the addition of boron atoms into the lattice favours the ferromagnetic ordering relatively to the antiferromagnetic arrangement below TM. This consequently affects on the magneto-structural transition as well as on the size of magnetocaloric effect....

  19. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  20. The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study

    Science.gov (United States)

    Yan, Peng-Li; Zhang, Jian-Min; Zhou, Bo; Xu, Ke-Wei

    2016-06-01

    The structural, electronic, magnetic and mechanical properties of the quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn) have been investigated firstly by using the first-principles calculations. The preferred configurations of the ZrTiCrZ alloys are all Y-type (I). At their equilibrium lattice constants, the ZrTiCrZ alloys are half-metallic (HM) ferrimagnets for Z  =  Al, Ga and In, while spin-gapless semiconductor (SGS) antiferromagnets (AFM) for Z  =  Si, Ge and Sn. The total magnetic moments {μt} of the ZrTiCrZ alloys are  -1 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Al, Ga and In, while 0 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Si, Ge and Sn, both linearly scaled with the total number of valence electrons {{Z}\\text{t}} by Slater-Pauling rule {μ\\text{t}}={{Z}\\text{t}}-18 . The elastic constants {{C}11} , {{C}12} and {{C}44} of the single crystal and the related elastic moduli G , B , E , \\upsilon and A of the polycrystalline aggregates are also calculated and used to study the mechanical stability of these alloys. Although the Curie temperatures {{T}\\text{C}} of the ZrTiCrZ alloys are overestimated by using the mean field approximation (MFA), they can be better estimated by including the exchange interactions. Finally, the HM stabilities as well as the total and atomic magnetic moments of the ZrTiCrZ alloys (Z  =  Al, Ga, In) under either hydrostatic strain or tetragonal strain are also discussed.

  1. EDITORIAL: Cluster issue on Heusler compounds and devices Cluster issue on Heusler compounds and devices

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2009-04-01

    of the spin-Hall effect, spin-torque investigations and CPP GMR (current perpendicular plane giant magnetoresistance). Schneider et al have studied the Hall effect of laser ablated Co2(MnFe)Si thin films. Recently Inomata's group has reported on a high CPP GMR effect based on CFSA [19]. In this issue a theoretical study by Dai et al reports on the interfaces between CCFA and very thin chromium layers. Here the interface stays half-metallic which is a promising result regarding the realization of potential GMR devices. For spin-torque applications special requirements concerning the materials are necessary. Low damping constants, low magnetic moments and a perpendicular anisotropy are favourable properties. Ferrimagnetic Heusler compounds are candidates for low magnetic moments despite a high spin polarization and a high Curie temperature [20, 21]. Mn3Ga shows additionally a tetragonal distortion, which is favourable for perpendicular anisotropy [21]. The stability of Heusler compounds versus structural distortion is a well known phenomenon in shape memory alloys [22]. We hope this cluster of papers will inspire many researchers in the field of spintronics and motivate some of them to use these advanced materials for new devices. References [1] Heusler F 1903 Verh. Dtsch. Phys. Ges. 12 219 [2] de Groot R A, Müller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 [3] Kübler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745 [4] Block T, Felser C and Jakob G 2003 J. Solid State Chem. 176 646 [5] Galanakis I, Mavropoulos Ph and Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765 [6] Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507 [7] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C and Lin H J 2006 Appl. Phys. Lett. 86 032503 [8] Kämmerer S, Thomas A, Hütten A and Reiss G 2004 Appl. Phys. Lett. 85 79 [9] Yamato M, Marukame T, Ishikawa T, Matsuda K, Uemura T and Arita M 2006 J. Phys. D: Appl. Phys. 39 824 [10

  2. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases

    OpenAIRE

    Wei, Z. Y.; Liu, E. K.; Chen, J H; Li, Y; Liu, G. D.; Luo, H. Z.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.

    2015-01-01

    Heusler ferromagnetic shape-memory alloys (FSMAs) normally consist of transition-group d-metals and main-group p-elements. Here, we report the realization of FSMAs in Heusler phases that completely consist of d metals. By introducing the d-metal Ti into NiMn alloys, cubic B2-type Heusler phase is obtained and the martensitic transformation temperature is decreased efficiently. Strong ferromagnetism is established by further doping Co atoms into the B2-type antiferromagnetic Ni-Mn-Ti austenite...

  3. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Lun [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Laboratory of Optical Information Technology and School of Science, Wuhan Institute of Technology, Wuhan 430073 (China); Yi, Lin [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Gao, G.Y., E-mail: guoying_gao@mail.hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-01

    We investigate the electronic structure and magnetic properties of the twelve quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb) by using the first-principles calculations. It is shown that only CoFeTiSi, CoFeTiAs and CoFeVSb are half-metallic ferromagnets with considerable half-metallic gaps of 0.31, 0.18 and 0.17 eV, respectively. CoFeTiAl and CoFeTiGa are conventional semiconductors, and other alloys exhibit nearly half-metallicity or their half-metallic gaps are almost zero eV. We also find that the half-metallicities of CoFeTiSi, CoFeTiAs and CoFeVSb can be preserved under appropriate uniform and in-plane strains. The considerable half-metallic gaps and the robust half-metallicities under uniform and in-plane strains make CoFeTiSi, CoFeTiAs and CoFeVSb promising candidates for spintronic applications. - Highlights: • CoFeTiSi, CoFeTiAs and CoFeVSb have considerable half-metallic gaps. • Total magnetic moments obey the Slater–Pauling behavior of quaternary Heusler half-metals. • CoFeTiSi, CoFeTiAs and CoFeVSb retain half-metallicity under uniform and in-plane strains.

  4. Critical behavior and magnetocaloric effect in Co{sub 50−x}Ni{sub x}Cr{sub 25}Al{sub 25} (x = 0 and 5) full Heusler alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Panda, J.; Saha, S.N.; Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in

    2015-09-25

    Highlights: • The Curie temperature of alloy series of Co{sub 50−x}Ni{sub x}Cr{sub 25}Al{sub 25} decreases with increasing x. • The critical exponents behavior and scaling relation of the alloy series have been investigated. • Using M–H data, employing Modified Arrott plot and Kouvel–Fisher plot exponents are estimated. • The estimated critical exponent values match very well with the mean field theory. • Under a magnetic field maximum up to 5 T, normal magnetocaloric effect has been observed. - Abstract: This work reports the investigation of critical behavior of Co{sub 50−x}Ni{sub x}Cr{sub 25}Al{sub 25} (x = 0 and 5) and magneto caloric effect (MCE) of bulk Co{sub 2}CrAl full Heusler alloy system. The alloy series of Co{sub 50−x}Ni{sub x}Cr{sub 25}Al{sub 25} (x = 0, 1, 2, 3, 4 and 5) have been prepared using arc melting technique. The magnetic properties of all the samples have been studied in the temperature range of 5–300 K. The value of Curie temperature (T{sub C}) is found to decrease with increasing doping concentration of the Ni (substitution of Ni at Co site). The critical exponents behavior and scaling relation have been investigated using magnetic isotherms in Co{sub 50−x}Ni{sub x}Cr{sub 25}Al{sub 25} (x = 0 and 5) alloys. The critical exponents are estimated by various techniques such as, Modified Arrott plot, Kouvel–Fisher plot and critical isotherm technique. The value of critical exponents vicinity to the second order magnetic phase transition of Co{sub 50}Cr{sub 25}Al{sub 25} were found to be β = 0.488 (7), γ = 1.144 (16) and δ = 3.336 (5) with T{sub C} = 328.64 (5) K whereas for Co{sub 50}Ni{sub 5}Cr{sub 25}Al{sub 25} the values are β = 0.522 (13), γ = 1.014 (6) and δ = 3.043 (7) with T{sub C} = 285.71 (11). The critical exponent values for both the samples are almost similar to the value as predicted by mean field theory. This has been best explained by long range mean field like ferromagnetic interaction in the

  5. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all investigated Co2Fe1 - xMnxSi compounds. Other Co2 Heusler compounds are also possible candidates for magneto-electronic devices. Miura et al [21] have found that the disorder between Co and Y atoms correlates with the total valence electron charges around Y atom and have predicted that Ti-based compounds are better than Cr-, Mn- and Fe-based compounds in preventing the atomic disorder between Co and Y atoms. Kandpal et al have therefore investigated the electronic structure and disordering effects in Co2TiSn using local probes, 119Sn Mössbauer spectroscopy and 59Co nuclear magnetic resonance spectroscopy. They found that the sample possesses up to 10% of antisite (Co/Ti) disordering, a disorder that does not destroy the half-metallic character of this material. We hope that this Cluster of papers will help to stimulate and push forward the research of materials with high spin polarization. References [1] Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T and Kubota H 2006 Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions Appl. Phys. Lett. 88 192508 [2] S Wurmehl, Fecher G H, Kandpal H C, Ksenofontov V, Felser C, and Lin H-J 2006 Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment Appl. Phys. Lett. 88 032503 [3] Tezuka N, Ikeda N, Sugimoto S and Inomata K 2006 175% TMR at room temperature and high thermal stability using Co2FeAl0.5Si0.5 full-Heusler alloy electrodes Appl. Phys. Lett. 89 252508 [4] Block T, Felser C, Jakob G, Ensling J, Mühling B, Gütlich P, Cava R J 2003 Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al J. Solid State Chem. 176 646 [5] Marukame T, Ishikawa T, Matsuda K I, Uemura T and Yamamoto M 2006 High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co2Cr0.6Fe0.4Al

  6. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com; Venugopalan, K., E-mail: vivek.jain129@gmail.com [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  7. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  8. Ab-initio investigation of electronic properties and magnetism of half-Heusler alloys XCrAl (X=Fe, Co, Ni) and NiCrZ (Z=Al, Ga, In)

    Energy Technology Data Exchange (ETDEWEB)

    Luo Hongzhi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: luohz@aphy.iphy.ac.cn; Zhu Zhiyong; Liu Guodong; Xu Shifeng; Wu Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Heyan; Qu Jingping; Li Yangxian [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2008-01-01

    The electronic structures and magnetism of the half-Heusler alloys XCrAl (X=Fe, Co, Ni) and NiCrZ (Z=Al, Ga, In) have been investigated to search for new candidate half-metallic materials. Here, we predict that NiCrAl, and NiCrGa and NiCrIn are possible half-metals with an energy gap in the minority spin and a completely spin polarization at the Fermi level. The energy gap can be attributed to the covalent hybridization between the d states of the Ni and Cr atoms, which leads to the formation of bonding and antibonding peaks with a gap in between them. Their total magnetic moments are 1{mu}{sub B} per unit cell; agree with the Slater-Pauling rule. The partial moment of Cr is largest in NiCrZ alloys and moments of Ni and Al are in antiferromagnetic alignment with Cr. Meanwhile, it is also found that FeCrAl is a normal ferromagnetic metal with a magnetic moment of 0.25{mu}{sub B} per unit cell and CoCrAl is a semi-metal and non-magnetic.

  9. FCC Fe2NiSi prepared by mechanical alloying and stabilization effect of L21B disorder on BCC Heusler structure

    Science.gov (United States)

    Luo, Hongzhi; Xin, Yuepeng; Ma, Yuexing; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng

    2016-12-01

    Fe2NiSi FCC phase has been prepared by ball-milling successfully, which is different from the BCC Heusler phase prepared by arc-melting in previous literatures. The FCC Fe2NiSi is a ferromagnet with a lattice constant of 3.58 Å. The phase stability of the FCC and BCC Fe2NiSi has been compared by first-principles calculations. It has been found that the FCC structure has a lower total energy compared with the highly-ordered Heusler structures XA and L21, that is the reason why the FCC phase can be prepared by ball-milling. However, the Fe (A)-Ni (C) disorder in the BCC XA structure can lower its total energy further and make it smaller than the FCC phase. So the most stable structure in Fe2NiSi is L21B, as has been observed in the arc-melting sample. This can be explained from their DOS structures. The calculated total moments for the FCC and BCC phases agree with their Ms at 5 K quite well.

  10. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    Science.gov (United States)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  11. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  12. Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Elahmar, M.H.; Rached, H.; Rached, D. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de SidiBel-Abbès, SidiBel-Abbès 22000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College Peshawar, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ahmed, W.K. [ERU, College of Engineering, United Arab Emirates University, Al Ain, Abu Dhabi (United Arab Emirates)

    2015-11-01

    The structural, mechanical, electronic and magnetic properties of the series of Heusler alloys CoFeMnZ (Z=Si, As, and Sb) have been investigated theoretically. The objective is to seek for stable half-metallic ferromagnets materials with Curie temperatures higher than room temperature. The series of CoFeMnZ (Z=Si, As and Sb) is found to exhibit half-metallic ferromagnetism with high magnetic moment and the localized moment in these magnetic compounds resides at the Mn atom. It has been observed that all our compounds have high Curie temperatures with high spin polarizations. - Highlights: • Density functional calculations for CoFeMnZ (Z=Si, As, Sb) compounds are performed. • Half-metallic ferromagnetism in CoFeMnZ (Z=Si, As, Sb) compounds is established. • The magnetic and mechanical properties for CoFeMnZ (Z=As, Sb) are studied for the first time. • The studied compounds possess high Curie temperatures with high spin polarizations.

  13. Pulsed laser deposition of thin films of various full Heusler alloys Co{sub 2}MnX (X = Si, Ga, Ge, Sn, SbSn) at moderate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, E. [Universite de la Mediterranee (Aix-Marseille II), IMFT/IM2/UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot Curie, 13453 Marseille Cedex 13 (France)]. E-mail: valerio@unimeca.univ-mrs.fr; Grigorescu, C. [National Institute of R and D Optoelectronics-INOE 2000, P.O. Box MG5, Atomistilor 1, Comuna Magurele, Judet Ilfov, 77125 (Romania); Manea, S.A. [National Institute R and D Materials Physics, P.O. Box MG7, Atomistilor 105bis, Comuna Magurele, Judet Ilfov, 77125 (Romania); Guinneton, F. [MADIREL, Centre de St-Jerome, Avenue Escadrille-Normandie-Niemen, 13397 Marseille Cedex 20 (France); Branford, W.R. [Blackett Laboratory, Imperial College, Prince Consort Rd., London, SW7 2BZ (United Kingdom); Autric, M. [Universite de la Mediterranee (Aix-Marseille II), IMFT/IM2/UNIMECA, Technopole de Chateau-Gombert, 60 rue Joliot Curie, 13453 Marseille Cedex 13 (France)

    2005-07-15

    This work presents pulsed laser deposition of cobalt-based Heusler thin films Co{sub 2}MnX (X = Si, Ga, Ge, Sn, SbSn) on different substrates (Si, GaAs, InAs). The deposition processes developed in vacuum (about 10{sup -5} Pa) to avoid oxidation of the films and targets. The temperature of the substrates during the depositions was kept below 500 K to minimise interface interdiffusion. From X-ray diffraction, we found that the films are crystalline and slightly oriented. The stoichiometric composition of the films was further checked by EDS, while the size and density of droplets were determined by SEM. The magnetic properties of the films are consistent with those of the bulk material used as target.

  14. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  15. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb%第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性∗

    Institute of Scientific and Technical Information of China (English)

    姚仲瑜; 孙丽; 潘孟美; 孙书娟

    2016-01-01

    Half-metallic ferromagnet, in which the electrons with one spin band are metallic and the electrons with another spin band are semiconducting, is believed to be the most promising spin-injector material for spintronic devices, such as spin valves, spin filters, spin diodes, and magnetic tunnel junctions. The main advantages of half-metallic Heusler alloy over other half-metallic systems are their relatively high Curie temperatures and structural similarity to important binary semiconductors that are widely utilized in the industry. Thus far, half-metallicity has been predicted theoretically or confirmed experimentally in a limited number of Heusler alloys. Exploring new half-metallic Heusler alloys is necessary. In this study, the full-potential linearized augmented plane wave (FP_LAPW) method under density functional theory is utilized to investigate the electronic structures and magnetisms of semi-Heusler alloys CoCrTe and CoCrSb. In the calculations, the generalized gradient approximation (GGA) in the scheme of Perdew-Bueke-Ernzerhof is adopted to treat the exchange-correlation potential. The cutoff parameter is set to be Rmt × Kmax=9, where Rmt is the smallest atomic sphere radius and Kmax is the maximum value of the reciprocal lattice vector. Meshes (13 × 13 × 13 k-points) are used in the first Brillouin zone integration. Self-consistent calculations are considered to be convergent only when the integrated charge difference between the last two iterations is less than 1 × 10−4 e/cell. Spin-polarized calculations of the electronic structure for the semi-Heusler alloys CoCrTe and CoCrSb are performed. The calculations reveal that CoCrTe and CoCrSb at their equilibrium lattice constants are half-metallic ferromagnets with half-metallic gaps of 0.28 and 0.22 eV and total magnetic moments of 3.00 and 2.00 µB per formula unit, respectively. The calculated integer total magnetic moments (in µB) are consistent with the Slater-Pauling rule, Mt=Zt−18, where Zt

  16. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    Science.gov (United States)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  17. Structure and properties of quarternary and tetragonal Heusler compounds for spintronics and spin transver torque applications

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Vajiheh Alijani

    2012-03-07

    This work is divided into two parts: part 1 is focused on the prediction of half-metallicity in quaternary Heusler compounds and their potential for spintronic applications and part 2 on the structural properties of Mn{sub 2}-based Heusler alloys and tuning the magnetism of them from soft to hard-magnetic for spin-transfer torque applications. In part 1, three different series of quaternary Heusler compounds are investigated, XX'MnGa (X=Cu, Ni and X'=Fe,Co), CoFeMnZ (Z=Al,Ga,Si,Ge), and Co{sub 2-x}Rh{sub x}MnZ (Z=Ga,Sn,Sb). All of these quaternary compounds except CuCoMnGa are predicted to be half-metallic ferromagnets by ab-initio electronic structure calculations. In the XX'MnGa class of compounds, NiFeMnGa has a low Curie temperature for technological applications but NiCoMnGa with a high spin polarization, magnetic moment, and Curie temperature is an interesting new material for spintronics applications. All CoFeMnZ compounds exhibit a cubic Heusler structur and their magnetic moments are in fair agreement with the Slater-Pauling rule indicating the halfmetallicity and high spin polarization required for spintronics applications. Their high Curie temperatures make them suitable for utilization at room temperature and above. The structural investigation revealed that the crystal structure of all Co{sub 2-x}Rh{sub x}MnZ compounds aside from CoRhMnSn exhibit different types of anti-site disorder. The magnetic moments of the disordered compounds deviate from the Slater-Pauling rule indicating that 100% spin polarization are not realized in CoRhMnGa, CoRhMnSb, and Co{sub 0.5}Rh{sub 1.5}MnSb. Exchange of one Co in Co{sub 2}MnSn by Rh results in the stable, well-ordered compound CoRhMnSn. This exchange of one of the magnetic Co atoms by a non-magnetic Rh atom keeps the magnetic properties and half-metallicity intact. In part 2, two series of Mn{sub 2}-based Heusler alloys are investigated, Mn{sub 3-x}Co{sub x}Ga and Mn{sub 2-x}Rh{sub 1+x}Sn. It has been

  18. The first ternary intermetallic Heusler nanoparticles: Co{sub 2}FeGa

    Energy Technology Data Exchange (ETDEWEB)

    Basit, Lubna; Yella, Aswani; Ksenofontov, Vadim; Fecher, Gerhard H.; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes-Gutenberg-University, Mainz (Germany); Nepijko, Sergej A. [Institute of Physics, Johannes-Gutenberg-University, Mainz (Germany)

    2008-07-01

    Synthesis of materials with controlled particle size on the nanometer scale is an active area in the field of materials research. With the control over particle size, the electronic and magnetic properties of materials can be easily tuned. To study the effect of nanometer dimensions on the properties of Heusler alloys, a first example of Heusler nanoparticles is presented. Co{sub 2}FeGa Heusler nanoparticles were produced by reducing a methanol impregnated mixture of CoCl{sub 2}.6H{sub 2}O, Fe(NO{sub 3}){sub 3}.9H{sub 2}O, and Ga(NO{sub 3}){sub 3}.xH{sub 2}O after loading on fumed silica. The dried samples were heated under pure H{sub 2} gas at 900 C. The synthesized Co{sub 2}FeGa Heusler nanoparticles were characterized by HRTEM, XRD and Moessbauer spectroscopy. All peaks of the XRD pattern can be attributed to a L2{sub 1} Heusler structure with a lattice constant of a=4.37 A. The size of the particles, as determined by transmission electron microscopy, is between 16 nm and 20 nm. The ferromagnetic behaviour of the particles as determined by the SQUID measurements is presented and compared with the bulk Co{sub 2}FeGa Heusler alloy.

  19. Ab-initio study of structural, elastic, thermal, electronic and magnetic properties of quaternary Heusler alloys CoMnCrZ (Z = Al, As, Si, Ge)

    Science.gov (United States)

    Mohamedi, Mohamed Walid; Chahed, Abbes; Amar, Amina; Rozale, Habib; Lakdja, Abdelaziz; Benhelal, Omar; Sayede, Adlane

    2016-12-01

    First-principles approach is used to study the structural, electronic and magnetic properties of CoMnCrZ (Z = Al, Si, Ge and As) quaternary Heusler compounds, using full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation (GGA). The computed equilibrium lattice parameters agree well with the available theoretical data. The obtained negative formation energy shows that CoMnCrZ (Z = Al, Si, Ge, As) compounds have strong structural stability. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, sound velocities, Debye temperature and melting temperature were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij. Our calculations with the GGA approximation predict that CoMnCrGe, CoMnCrAl, CoMnCrSi and CoMnCrAs are half-metallic ferrimagnets (HMFs) with a half-metallic gap EHM of 0.03 eV, 0.19 eV, 0.34 eV and 0.50 eV for, respectively. We also find that the half-metallicity is maintained on a wide range of lattice constants.

  20. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  1. Synthesis and Sintering of ZrNiSn-based Half-Heusler Compounds

    Institute of Scientific and Technical Information of China (English)

    Qiang SHEN; Lianmeng ZHANG; Lidong CHEN; Takashi GOTO; Toshio HIRAI

    2003-01-01

    In contrary to the commonly used arc melting method, samples in the present paper were prepared by the solid statereaction from elemental powders at 1173 K under a flowing Ar atmosphere for 96~168 h. The constituent phases andthe elemental compositions were determined and shown that the samples were of single phase and stoichiometry. Thenthe spark plasma sintering technique was used to consolidate them. It is found that, dense ZrNiSn-based compoundswith fine grain size and homogeneous microstructure were achieved under the condition of 1123 K/40 MPa/25 min.

  2. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.

    Science.gov (United States)

    Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii

    2017-03-01

    In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response.

  3. The Effect of Cobalt-Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Philip J. Hasnip

    2014-02-01

    Full Text Available In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1−xSi (CFMS alloys. The electronic calculations are based on density functional theory with a Hubbard U term. Chemical disorders studied consist of swapping Co with Fe/Mn and Co with Si; in all cases we found these are detrimental for spin polarisation, i.e., the spin polarisation not only decreases in magnitude, but also can change sign depending on the particular disorder. Formation energy calculation shows that Co–Si disorder has higher energies of formation in CFMS compared to Co2MnSi and Co2FeSi, with maximum values occurring for x in the range 0.5–0.75. Cross-sectional structural studies of reference Co2MnSi, Co2Fe0.5Mn0.5Si, and Co2FeSi by Z-contrast scanning transmission electron microscopy are in qualitative agreement with total energy calculations of the disordered structures.

  4. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  5. Investigation of electronic structure, magnetic and transport properties of half-metallic Mn{sub 2}CuSi and Mn{sub 2}ZnSi Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Idris Hamid, E-mail: idu.idris@gmail.com; Yousuf, Saleem; Mohiuddin Bhat, Tahir; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2015-12-01

    The electronic and magnetic properties of Mn{sub 2}CuSi and Mn{sub 2}ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75 Å for Mn{sub 2}CuSi and 5.80 Å for Mn{sub 2}ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0 µ{sub B} for Mn{sub 2}CuSi and 2.0 µ{sub B} for Mn{sub 2}ZnSi per unit cell, predict that the materials follow M{sub T}=Z{sub T} – 28 Slater–Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend. - Highlights: • Half-metallic materials. • Highly spin-polarized. • Possess large conductivity in spin-up and large resistivity in spin-down channels. • Large Seebeck coefficient makes them suitable thermoelectric materials.

  6. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  7. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48-xCuxNi42Sn10 Heusler alloys

    Science.gov (United States)

    Liu, Changqin; Li, Zhe; Zhang, Yuanlei; Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan; Xu, Kun; Deng, Dongmei; Jing, Chao

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn48-xCuxNi42Sn10 alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (TcM) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (TcA) is almost unchanged. It was found that the structures undergo L21 and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn48Ni42Sn10 was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn48Ni42Sn10 alloys.

  8. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  9. Electronic Structural, Magnetic Properties and Half-metallicity of Heusler alloy Co2MnAl1-xGex%Heusler合金Co2MnAl1-xGex的电子结构、磁性和半金属性

    Institute of Scientific and Technical Information of China (English)

    高钦翔; 吴波; 杨秀德; 张颂

    2012-01-01

    基于密度泛函理论(DFT),使用广义梯度近似(GGA)和局域密度近似(LDA)研究了Heusler合金Co2 MnAl1-xGex(x=0、0.25、0.5、0.75、1)的磁性和电子结构.随着掺杂浓度x的增加,合金的晶格常数和磁矩都线性增加,分别很好地满足Vegard和SP规律.对于整个合金系列,随x的增加,自旋向下带带隙宽度略有减少,费米面向高能移动.由于Co2 MnAl0.5Ge0.5合金的费米面恰好居于其自旋向下带带隙中部,此时合金具有最好的半金属稳定性,预期在磁隧道结器件中能实现高的自旋极化率.%Based on the density functional theory (DFT), the generalized gradient approximation method (GGA) and the local density approximation method (LDA) were applied to calculate the magnetism, electronic structures and half-metallicity of Heusler alloys Co2MnAl1-xGex(x=0,0. 25,0. 5,0. 75,1). The lattice parameters and the magnetic moment of the alloys increased linearly with increase of Ge content, meeting the vegard law and the S-P behavior well, respectively. Furthermore, the width of the spin-down gap slightly decreased and the fermi level moved up to higher energy level with increase of x. Since the fermi level locates in the middle of the spin-down gap, the Co2MnAl0. 5Ge0. 5 alloy presents a perfect half-metallic stability, and is expected to have a high spin polarization with the potential of magnetic tunnel junction application.

  10. First principles study of a new half-metallic ferrimagnets Mn{sub 2}-based full Heusler compounds: Mn{sub 2}ZrSi and Mn{sub 2}ZrGe

    Energy Technology Data Exchange (ETDEWEB)

    Abada, A. [Laboratoire d’études physico-chimiques, Université Dr Moulay Tahar, Saida 20000 (Algeria); Amara, K., E-mail: kamaraphy@gmail.com [Laboratoire d’études physico-chimiques, Université Dr Moulay Tahar, Saida 20000 (Algeria); Hiadsi, S. [Département de Génie Physique, Université d’Oran des sciences et de la technologie Mohamed Boudiaf (Algeria); Amrani, B. [Département de Physique, Université d’Oran Es-Senia, Oran 31000 (Algeria)

    2015-08-15

    Half-metallic properties of new predicted Mn{sub 2}-based full Heusler alloys Mn{sub 2}ZrSi and Mn{sub 2}ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu{sub 2}Mn-type structure is found to be energetically more favorable than the CuHg{sub 2}Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000µ{sub B} per formula unit, well consistent with Slater–Pauling rule (M{sub tot}=(24–Z{sub tot})µ{sub B}). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn{sub 2}ZrSi and Mn{sub 2}ZrGe, respectively. It was found that Mn{sub 2}ZrSi and Mn{sub 2}ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications. - Highlights: • For Mn{sub 2}ZrZ (Z=Si, Ge) the AlCu{sub 2}Mn-type structure is more favorable than the CuHg{sub 2}Ti-type. • The calculated elastic constants confirm their mechanical stability. • Their negative estimated formation energies means they can be synthesized. • Their lattice constants match well with those of many semiconductor substrates. • They are predicted to be true half-metallic ferrimagnets. • The band gaps of Mn{sub 2}ZrSi~0.51 eV and Mn{sub 2}ZrGe~0.28 eV are indirect along, the Γ–X.

  11. First-principles study on the ferrimagnetic half-metallic Mn2FeAs alloy

    Science.gov (United States)

    Qi, Santao; Zhang, Chuan-Hui; Chen, Bao; Shen, Jiang; Chen, Nanxian

    2015-05-01

    Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn2FeAs full-Heusler alloy have been investigated in detail. The Hg2CuTi-type Mn2FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational lattice constants. We expect that our calculated results may trigger Mn2FeAs applying in the future spintronics field.

  12. Electronic structures and magnetism in the Li{sub 2}AgSb-type Heusler alloys, Zr{sub 2}CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, Sb): A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.T.; Cui, Y.T. [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400044 (China); Liu, X.F. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Liu, G.D., E-mail: gdliu1978@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400044 (China)

    2015-11-15

    The electronic and magnetic properties of Zr{sub 2}CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, and Sb) alloys with a Li{sub 2}AgSb-type structure were investigated systematically using the first-principle calculations. Zr{sub 2}CoZ (Z=Al, Ga, In, Si, Ge, Sn, and Pb) alloys are predicted to be half-metallic ferromagnets at their equilibrium lattice constants. The Zr{sub 2}Co-based alloys have M{sub t} (the total magnetic moment per unit cell) and Z{sub t} (the valence concentration) values following Slater–Pauling rule of M{sub t}=Z{sub t}−18. The effects of lattice constants on the electronic and the magnetic properties are discussed in detail. Moreover, all the alloys investigated in this paper have a negative formation energy, which implies that they are thermodynamically stable. - Highlights: • We studied the electronic and magnetic properties of Zr{sub 2}CoZ alloys. • Zr{sub 2}CoZ alloys are HM ferromagnets in Li{sub 2}AgSb-type structure. • Zr{sub 2}CoZ alloys retain a high spin polarization in a wide range of lattice distortions. • Zr{sub 2}CoZ alloys follow the Slater–Pauling rule M{sub t}=Z{sub t}−18.

  13. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  14. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  15. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    Science.gov (United States)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  16. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy.

    Science.gov (United States)

    Ma, Q L; Zhang, X M; Miyazaki, T; Mizukami, S

    2015-01-19

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (K(u)(eff)) over 6 Merg/cm(3) is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and K(u)(eff) of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  17. Large adiabatic temperature change in magnetoelastic transition in Ni50Mn35Cr2Sn13 Heusler alloy of granular nanostructure

    Science.gov (United States)

    Prakash, H. R.; Sharma, S. K.; Ram, S.; Chatterjee, S.

    2016-05-01

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔSM←A = 4.428 J/kg-K (ΔSM→A = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1Oe coercivity.

  18. Tunable ferromagnetic and antiferromagnetic interfacial exchange coupling in perpendicularly magnetized L1{sub 0}-MnGa/Co{sub 2}FeAl Heusler bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q. L., E-mail: qinli-ma@wpi-aimr.tohoku.ac.jp; Mizukami, S.; Zhang, X. M.; Miyazaki, T. [WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, 980-8577 Sendai (Japan)

    2014-12-21

    In this work, we report a tailorable exchange coupling (J{sub ex}) at the Mn{sub 62}Ga{sub 38}/Co{sub 2}FeAl interface, where Mn{sub 62}Ga{sub 38} and Co{sub 2}FeAl alloys are tetragonal Heusler alloy with high perpendicular magnetic anisotropy and typical cubic Heusler alloy with soft magnetism, respectively. As the post annealing temperature (T{sub a}) is lower than 375 °C, the J{sub ex} is ferromagnetic with strength controllable from 7.5 to 0.5 erg/cm{sup 2}. Interestingly, as T{sub a} increases higher than 400 °C, an antiferromagnetic J{sub ex} of −5.5 erg/cm{sup 2} is observed. The ferromagnetic/antiferromagnetic transition is further evidenced by the spin dependent transport property of the magnetic tunnel junctions with Mn{sub 62}Ga{sub 38}/Co{sub 2}FeAl as electrode. Based on structure characterization, the variation of J{sub ex} during annealing is discussed.

  19. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys

    Science.gov (United States)

    Jiang, Jian-Jun; Gasik, Michael

    The electrochemical properties of amorphous MgNi-based hydrogen storage alloys synthesized by mechanical alloying (MA) were evaluated. The results show that these amorphous Mg 50Ni 50 alloys exhibit a higher discharge capacity and relatively good rate capacity at a suitable grinding time while their cycle life is very poor. In order to improve the cycle life, the surface of the amorphous Mg 50Ni 50 alloy was coated with Ti, Al and Zr in Spex 8000 mill/mixer and the coating effects were further investigated. Based on experimental results, two kinds of MgNi-based amorphous alloys are designed by substituting part of Mg in MgNi-based alloys by suitable elements. These alloys are then composed of four components. Thus, the cycle life of electrodes consisting of these quaternary amorphous alloys is greatly improved.

  20. Measurement protocol dependent magnetocaloric properties in a Si-doped Mn-rich Mn-Ni-Sn-Si off-stoichiometric Heusler alloy

    Science.gov (United States)

    Ghosh, Arup; Sen, Pintu; Mandal, Kalyan

    2016-05-01

    This work reports the magnetocaloric properties in a Si-doped, Mn-rich Mn46Ni39.5Sn10Si4.5 alloy in the aspects of different measurement protocols across its martensitic and reverse transition. A good agreeable value of the magnetic entropy changes (ΔSM ˜ 20 J/kg K due to a ΔH = 50 kOe) along with large refrigerant capacity (RC ˜ 110 J/kg) has been obtained from the high field M-T measurements, which can be a very handy tool for magnetocaloric study. We have analyzed the field dependent magnetization data during heating and cooling near the structural transition for different field changes and fitted them universally using a Lorentz function. The isothermal measurement by ramping the temperature discontinuously during cooling is found to be one of the most convenient and energy efficient ways to minimize the field induced losses, which helps to achieve a very high RC in similar materials exhibiting first order phase transition. A significant amount of zero field cooled exchange bias field (˜720 Oe at 5 K) and magnetoresistance (˜-25% due to a ΔH = 80 kOe) has also been achieved from this sample.

  1. Magnetic and structural characterizations of Heusler Ni2FeGa nanoparticles

    Science.gov (United States)

    Xu, Yunli; Liu, Min; Huang, Xiufeng; Dai, Zhiwen; Qiu, Hongmei; Yu, Guanghua; Pan, Liqing

    2016-11-01

    This work describes the chemical preparation, structural characterization and magnetic properties of Heusler Ni2FeGa nanoparticles. The nanoparticles were synthesized by reducing a methanol solution mixture of NiCl2 · 6H2O, Fe(NO3)3 · 9H2O and Ga(NO3) · xH2O, and using SBA-15 as template. The obtained nanoparticles were investigated by means of x-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The structure of the prepared nanoparticles is Heusler L21 phase with a second γ phase, and the ratio of the two components could be adjusted by the concentration of SBA in the precursor solution. The prepared nanoscale Ni2FeGa heusler alloys with a tensile strain of 0.56% present ferromagnetism at room-temperature and its Curie temperature exceeds 340 K.

  2. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047 (Japan); Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047 (Japan)

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  3. Thermodynamic properties and phase equilibria of selected Heusler compounds

    Science.gov (United States)

    Yin, Ming

    Heusler compounds are ternary intermetallics with many promising properties such as spin polarization and magnetic shape memory effect. A better understanding of their thermodynamic properties facilitates future design and development. Therefore, standard enthalpies of formation and heat capacities from room temperature to 1500 K of selected Heusler compounds X2YZ (X = Co, Fe, Ni, Pd, Rh, Ru; Y = Co, Cu, Fe, Hf, Mn, Ni, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) and half-Heusler compounds XYSn (X = Au, Co, Fe, Ir, Ni, Pd, Pt, Rh; Y = Hf, Mn, Ti, Zr) were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation were compared with those predicted from ab initio calculations and the extended semi-empirical Miedema's model. Trends in standard enthalpy of formation with respect to the periodic classification of elements were discussed. The effect of a fourth element (Co, Cu, Fe, Pd; Ti, V; Al, Ga, In, Si, Ge) on the standard enthalpy of formation of Ni2MnSn was also investigated. Lattice parameters of the compounds with an L21 structure were determined using X-ray powder diffraction analysis. Differential scanning calorimetry was used to determine melting points and phase transformation temperatures. Phase relationships were investigated using scanning electron microscopy with an energy dispersive spectrometer. The isothermal section of the Fe-Sn-Ti ternary system at 873 K was established using equilibrated alloys. Three ternary compounds including the Heusler compound Fe2SnTi were observed. A new ternary compound Fe5Sn9Ti 6 was reported and the crystal structure of FeSnTi2 was determined for the first time.

  4. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  5. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  6. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  7. Effect of Ni and Sn doping on the half-metallicity of full Heusler Ti{sub 2}CoIn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Ping, E-mail: weixp2008@gmail.com [The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Chu, Yan-Dong [The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Deng, Jian-Bo [Department of Physics, LanZhou University, Lanzhou 730000 (China)

    2014-03-15

    We investigate the effect of doping and disorder of Ti{sub 2}Co{sub 1−x}Ni{sub x}In{sub 1−y}Sn{sub y} (x, y=0.0, 0.25, 0.50, 0.75, 1.00) employing the virtual crystal approximation. The results show that all alloys under study are half-metals, and their total spin moments follow the so-called Slater–Pauling behavior of the ideal half-metallic systems. Especially, we concentrate on the properties related to the spin-flip gap and the density of states at the Fermi level, and present the possibility to engineer the properties by changing the relative concentrations of the transition metal and sp atoms in a way of dope or disorder. In realistic applications, the spin-flip gap and the density of states at the Fermi level are needed for large values of the perfectly spin-polarized current in spintronic devices such as spin valves or magnetic tunnel junctions. In the manuscript, the properties with respect to the different transition metal and sp atoms concentrations are provided, which offers a choice to obtain ideal half-metallicity in spintronics device applications. - Highlights: • Both of Ti{sub 2}CoIn and Ti{sub 2}NiIn are half-metallic ferromagnets with a total spin magnetic moment of 2.00 and 3.00 μB. • Ti{sub 2}Co{sub 0.75}Ni{sub 0.25}In{sub 0.25}Sn{sub 0.75} system has the largest spin-flip gap which is up to 0.32 eV. • The spin magnetic moments of doped systems obey the Slater–Pauling rule. • There is the largest density of states to 7.30 states/eV for Ti{sub 2}Co{sub 0.75}Ni{sub 0.25}In at the Fermi level.

  8. Frist-principles study of magnetic shape memory effect of new Heusler alloy RuMn2Sn%新型Heusler合金RuMn2Sn的磁性形状记忆的第一性原理研究

    Institute of Scientific and Technical Information of China (English)

    杨丽娟; 张加宏; 顾芳; 刘清倦; 张兆慧; 崔磊

    2013-01-01

    The crystal structure, electronic structure, magnetism and tetragonal distortions of new Heu-sler alloy RuMn2 Sn are calculated by the first-principles method based on the density functional theory. The calculated results show that: 1) in austenite, Mn atoms are the main contribuors to the magnetism in RuMn2Sn, and RuMn2 Sn alloys show ferrimagnetism due to antiparallel but unbalanced magnetic moments of Mn(A) atom and Mn(B) atom; 2) in the process of transforrm from XA-type cubic to a tetrgo-nal, RuMn2 Sn alloys exhibit a stable martensitic phase at c/a≈1. 23 and show the anti-ferromagnetic properties; 3)in austenite and martensite, the weak direct d-d exchange interaction between Mn(A) atom and Mn(B) atom is the main reason to maintain ferrimagnetic and antiferromagnetic coupling effect between Mn(A) atom and Mn(B) atom. Based on the results of calculation above, we can predict the well magnetic shape memory effect in RuMn2Sn.%采用基于密度泛函理论的第一性原理方法,对新型Heusler合金RuMn2Sn的晶体结构、电子结构、磁性、四方变形等性质进行了系统的研究.研究结果表明:1)在奥氏体态下,磁性原子Mn对体系总磁矩的贡献最大,其中Mn(A)和Mn(B)原子磁矩的值不等并且呈反平行耦合,导致RuMn2Sn具有稳定的亚铁磁基态,该结果与实验一致;2)由XA型立方结构至四方结构的四方变形中,发现c/a约为1.23处存在一个能量更低的稳定的马氏体相,其呈现反铁磁的特性;3)在奥氏体态和马氏体态下,Mn(A)和Mn(B)原子之间弱的d-d直接交换作用是维持它们之间亚铁磁和反铁磁耦合的主要原因.根据上述计算结果,预测RuMn2Sn具有良好的磁性形状记忆效应.

  9. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  10. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    scale is similar to that which has already been proposed for cobalt . The oxide ions would react with the Al203 to form aluminate ions in the Na2S04...resistance of cobalt -base and nickel-base alloys. The contract was accomplished under the technical direction of Dr. H. C. Graham of the Aerospace Research...Oxidized Specimens RESULTS AND DISCUSSION 1. INTRODUCfiON 2. SODIUM SULFATE INDUCED HOT CORROSION OF COBALT a. Introduction b. Experimental c

  11. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  12. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [Univ. of Virginia, Charlottesville, VA (United States); Deevi, S.C. [Philip Morris U.S.A., Richmond, VA (United States); Shih, H.R. [Jackson State Univ., MS (United States)

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  13. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  14. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置*%Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn∗

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      合成了一系列Ni50−xCoxMn39Sn11(8 x 10)样品,并对它们的结构和磁性进行了研究.发现随Co含量的增加,样品的饱和磁化强度逐渐增强,并在Ni42Co8Mn39Sn11中实现了磁场诱发马氏体相变.另外,在Co大于8.0的成分中探测到了超自旋玻璃,并且观察到交换偏置现象.证实了超自旋玻璃的马氏体相和铁磁奥氏体母相共存,这也是产生交换偏置的原因.我们猜测超自旋玻璃的形成可能是来源于Mn-Mn团簇的存在,这和之前报道的Mn2Ni1.6Sn0.4的结果相一致[1].%The crystal structures and magnetic properties of Ni50−xCoxMn39Sn11 (8 x 10) Heusler alloys are investigated. As a result, we achieve the magnetic field induced martensitic transformation in Ni42Co8Mn39Sn11. It is found that the saturation magnetic moments of alloys increase with Co content increasing. Moreover, a superspin glass behavior and a large exchange bias effect are also found in samples with Co content being higher than 8. We confirm the coexistence of superspin glass of the martensite and ferromagnetic parent phase, which is the physical origin of the exchange bias effect. On the other hand, we propose that the origin of superspin glass in our NiMnCoSn system is due to the occurence of Mn-Mn cluster as reported by Ma et al. in Heusler Mn2Ni1.6Sn0.4 alloys [Ma L, Wang W H, Liu J B, Li J Q, Zhen M, Hou D L and Wu G H 2011 Appl. Phys. Lett. 99 182507].

  15. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co2MnSi Heusler: A comparative study

    Science.gov (United States)

    Lantri, T.; Bentata, S.; Bouadjemi, B.; Benstaali, W.; Bouhafs, B.; Abbad, A.; Zitouni, A.

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co2MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co2MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 μB which is in good agreement with the Slater-Pauling rule.

  16. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  17. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  18. Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem; Gupta, Dinesh C.

    2016-05-01

    The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µB/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.

  19. The responses of density of states and magnetism to pressure and tetragonal distortion in the new Heusler alloy RuMn2 Sn%新型Heusler合金RuMn2Sn的态密度、磁性对压力、四方变形的响应

    Institute of Scientific and Technical Information of China (English)

    杨丽娟; 崔磊; 张兆慧; 毛仕春

    2014-01-01

    The responses of density of states to pressure and the responses of density of states and magnetism to tetragonal distortion in the new Heusler alloy RuMn2 Sn are calculated by the first-principles method based on the density functional theory.The calculated results show that:1)With increasing the impressed pressure, the densi-ty of states moves to lower energy, the amplitude for the density of states increases slightly, and the hybridization degree between atoms is enhanced, the reason is that the distance between the Ru、Mn and Sn atoms reduced with increasing the impressed pressure;2 ) In the process of phase transformation from the austenite to the mar-tensite, the density of states will also be moved to lower energy due to the reduction of the distance between at-oms in the alloy and the system energy decreases.Meanwhile in the process of phase transformation from the aus-tenite to the martensite, the energy band becomes broader and the bonding interaction becomes stronger, which lead to the increasing of the stabilization of martensitic;3 ) In the above process of phase transformation, the change of total magnetic moment for RuMn2 Sn is mainly decided by the change of magnetic moment of Ru atom.%采用基于密度泛函理论的第一性原理方法,对新型Heusler合金RuMn2 Sn的态密度对外加压力的响应以及其态密度、磁矩对四方变形的响应进行了系统的研究。研究结果表明:1)随着外加压力的增大,态密度向低能区移动,幅度略有增加,原子之间的杂化程度增强,其原因是随外加压力的增大, Ru、Mn以及Sn原子之间的距离减小;2)在由奥氏体态到马氏体态相变的过程中,同样由于合金中各原子之间的距离减小导致态密度向低能区发生移动,体系的能量降低,同时在相变过程中,发现能带变宽,成键作用增强,从而说明马氏体态的稳定性增大;3)在上述相变的过程中, RuMn2 Sn总磁矩的变

  20. Resonant impurity states in chemically disordered half-Heusler Dirac semimetals

    Science.gov (United States)

    Chadova, K.; Ködderitzsch, D.; Minár, J.; Ebert, H.; Kiss, J.; D'Souza, S. W.; Wollmann, L.; Felser, C.; Chadov, S.

    2016-05-01

    We address the electron transport characteristics in bulk half-Heusler alloys with their compositions tuned to the borderline between topologically nontrivial semimetallic and trivial semiconducting phases. Accurate first-principles calculations based on the coherent potential approximation (CPA) reveal that all the studied systems exhibit sets of dispersionless impurity-like resonant levels, with one of them being located at the Dirac point. By means of the Kubo-Bastin formalism we reveal that the residual conductivity of these alloys is strongly suppressed by impurity scattering, whereas the spin Hall conductivity exhibits a rather complex behavior induced by the resonant states. In particular for LaPt0.5Pd0.5Bi we find that the total spin Hall conductivity is strongly suppressed by two large and opposite contributions: the negative Fermi-surface contribution produced by the resonant impurity and the positive Fermi-sea term stemming from the occupied states. At the same time, we identify no conductivity contributions from the conical states.

  1. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  2. Indentation toughness of Mo5Si3-based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The indentation toughness of Mo5Si3 -based phases was studied with regard to different alloying elements, amount of alloying addition as well as the presence of secondary phases. Cr, Ti, Nb, Ni and Co were added as alloying elements. The results show that the indentation fracture toughness of Mo5Si3 increases with the alloying additions, from 2.4 Mpa *m1/2 for mon olithic to just over 3 Mpa*m1/2 for highly alloyed Mo5Si3. Small volume fractions of brittle secondary phases may have a positive impact on the inde ntation toughness; while larger fractions seems to lower the toughness.

  3. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  4. Casting Accuracy of Base-Metal Alloys,

    Science.gov (United States)

    1981-06-22

    Journal of Prosthodontic Dentistry I.I. SUPPLEMENTARY NOTES ".KL... prosthodontics ; however, the inabilitv to fabricate consistently well fitting fixed prostheses from base-metal alloysS- 7 limit tihe routine use of these...q4- 0 A sm 0 cm CAb F -rr-- I............ 0< Loa,,.’..’ . .- . ... CI w~ cc~ 0 00 (0 Iq on 0 D 0M 0J 004 0 0a .~ .D ....... L .......... (%l) AovdlDov LDNIISV2D 0 Jic r,4wC 0JLL 0 0000 0 co to (%l) ADv /nflDDv cDNIiSVD

  5. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    OpenAIRE

    Yang Li; Dewei Zhao; Jian Liu

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in ...

  6. Modeling of half-Heusler compound NiMnSb within tight-binding approximation

    Science.gov (United States)

    Sugiyanto, Majidi, M. A.; Nanto, D.

    2017-07-01

    Heusler compounds are families of magnetic materials with general stoichiometry of either X2YZ (full-Heusler compound) or XYZ (half-Heusler compound), with X and Y being transition metal elements, and Z a main-group element. Their various potentials for technology development make them be still relevant as a subject of both experimental and theoretical studies. Half-Heusler compounds are generally crystallized in the C1b-type structure. The magnetic moments of such materials may be predicted using Slater-Pauling rule, giving m = (Nvalence electrons - 18)µB per formula unit. However, this simple counting rule does not always work for all compounds in this group. This motivates us to perform a theoretical study to investigate the mechanism of magnetic moment formation microscopically. As a case study, we focus on NiMnSb, a particular half-Heusler compound, for which comparison between existing experimental results and theoretical predictions of its magnetic moment has not yet been quite convincing. We model the system by constructing a tight-binding-based Hamiltonian, incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. We solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with available experimental data.

  7. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  8. Hydrogen solubility in rare earth based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Hirohisa [Tokai Univ., Kanagawa (Japan). School of Engineering; Kuji, Toshiro [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan)

    1999-09-01

    This paper reviews significant results of recent studies on the hydrogen storage properties of rare earth based AB{sub 5} (A: rare earth element, B: transition element) alloys The hydrogen solubility and the hydride formation, typically appeared in pressure-composition isotherms (PCT), are strongly dependent upon alloy composition, structure, morphology and even alloy particle size. Typical experimental results are shown to describe how these factors affect the hydrogen solubility and storage properties.

  9. First-principles calculated spin-gapless semiconducting behavior in quaternary VCoHfGa and CrFeHfGa Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiude; Wu, Xiaolin [Institute of Theoretical Physics, Zunyi Normal College, Zunyi 563002 (China); Wu, Bo, E-mail: fqwubo@zync.edu.cn [Institute of Theoretical Physics, Zunyi Normal College, Zunyi 563002 (China); School of Marine Science and Technology, Northwestern Polytechnical University, Xian 710072 (China); Feng, Yu [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Ping [Institute for Clean Energy & Advanced Materials (ICAEM), Southwest University, Chongqing 400715 (China); Huang, Haishen [Institute of Theoretical Physics, Zunyi Normal College, Zunyi 563002 (China)

    2016-07-15

    Highlights: • Structural, electronic and magnetic properties of quaternary Heusler alloy [VCo,CrFe]HfGa were detected theoretically. • The quaternary Heusler alloy [VCo,CrFe]HfGa are (or are nearly) spin gapless semiconductors at the lowest energy state. • The ferromagnetic coupling plays an important role in magnetism. - Abstract: By using generalized gradient approximation (GGA) scheme within the density functional theory (DFT), the structural, electronic and magnetic properties of LiMgPdSn-type quaternary Heusler alloy CrFeHfGa and VCoHfGa were detected compressively. The results reveal that the two alloys are (or are nearly) potential spin gapless semiconductors with a magnetic moment of 3 μ{sub B} per primitive cell and the minority-spin gap of 0.8 eV and 0.6 eV at Fermi level (ε{sub F}) during the rate of lattice change of about −5%, respectively. We deduce that the ferromagnetic coupling among transitional metals plays an important role in magnetism of Heusler alloy [CrFe,VCo]HfGa.

  10. Non-alloyed Ni3Al based alloys – preparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  11. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  12. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  13. Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMn Z (Z =N,P,Si)

    Science.gov (United States)

    Damewood, L.; Busemeyer, B.; Shaughnessy, M.; Fong, C. Y.; Yang, L. H.; Felser, C.

    2015-02-01

    Due to their similarities to metastable zinc-blende half-metals, we systematically examined the half-Heusler compounds β -LiMnZ (Z =N,P and Si) for their electronic, magnetic, and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. We also report the other phases of the half-Heusler structure (α and γ phases), but they are unlikely to be grown. The magnetic moments of these stable Li-based compounds are expected to reach as high as 4 μB per unit cell when Z =Si and 5 μB per unit cell when Z =N and P; however, the antiferromagnetic spin configuration is energetically favored when Z is a pnictogen. β -LiMnSi at a lattice constant 14% larger than its equilibrium lattice constant is a promising half-metal due to its large magnetic moment, large gap, and vibrational stability. The modified Slater-Pauling rule for these compounds is determined. Finally, we investigated a plausible method for developing half-metallic Li xMn Z at equilibrium by tuning x , but this type of alloying introduces local structural changes that preclude half-metallicity.

  14. First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z=Ge, As, sn and sb) compounds

    Science.gov (United States)

    Allaf Behbahani, Marzieh; Moradi, Mahmood; Rostami, Mohammad; Davatolhagh, Saeed

    2016-05-01

    First-principle calculations based on the density functional theory for new half-Heusler IrCrZ (Z=Ge, As, Sn and Sb) alloys are performed. It is found that the half-Heusler IrCrGe and IrCrSn compounds have an antiferromagnetic ground state while the ferromagnetic state is more stable than the antiferromagnetic and non-magnetic states for both IrCrAs and IrCrSb compounds. IrCrAs and IrCrSb exhibit half-metallic property with integer magnetic moments of 2.00 μB per formula unit and half-metallic gaps of 0.28 and 0.27 eV at their equilibrium volume, respectively. In addition, the density of states (DOSs) and band structures of IrCrAs and IrCrSb compounds are studied and the origin of their half-metallic gaps are discussed in detail. The estimation of Curie temperatures of IrCrAs and IrCrSb compounds is performed within the mean field approximation (MFA). The Curie temperatures of IrCrAs and IrCrSb are estimated to be 1083 and 1470 K, respectively. The stability of the half-metallicity in IrCrAs and IrCrSb compounds with the variation of lattice constant are also investigated.

  15. Strain measurements in ferromagnetic martensitic Heuslers and magnetization easy axis

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda; Acet, Mehmet; Wassermann, Eberhard F. [Experimentalphysik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2008-07-01

    The temperature-dependence of strain under constant magnetic-fields is studied in Ni-Mn-X (X:Ga,In,Sn,Sb) and Ni-Mn-In-X (X:Ga,Sn,Sb) polycrystalline ferromagnetic Heusler alloys which undergo a martensitic transformation close to room-temperature. The applied magnetic-field influences the nucleation of martensite so that decreasing the temperature under a magnetic field leads to large length changes between the austenite and martensite states. The length-change within the martensitic state varies with the magnitude of the cooling-field. This is related to the variant-orientation during martensite nucleation. These strain-data provide information on the easy axis of magnetization.

  16. Electronic structure and magnetism of new scandium-based full Heusler compounds: Sc{sub 2}CoZ (Z = Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Birsan, A., E-mail: anca_birsan@infim.ro

    2014-06-15

    Highlights: • First principles calculations were performed for Sc{sub 2}CoSi, Sc{sub 2}CoGe and Sc{sub 2}CoSn. • The total magnetic moments are 1μ{sub B}/f.u. at equilibrium lattice constants. • Sc{sub 2}CoSi is fully spin polarized for lattice parameters ranging between 6.21 and 6.56 Å. • Sc{sub 2}CoGe presents a pseudogap formed around Fermi level. • Sc{sub 2}CoSn exhibits a half metallic ferromagnetic character, up to 7.05 Å. - Abstract: First principles FPLAPW calculations were performed in the framework of Density Functional Theory (DFT), to study the electronic structures and magnetic properties for the new full-Heusler compounds: Sc{sub 2}CoZ (Z = Si, Ge, Sn). The investigated materials are stable against decomposition, in ferromagnetic configuration and crystallize in the inverse Heusler structures. The half-metallic properties as function of the variation of unit cell volumes are analysed regarding the fourth main group constituent elements. The electronic structure calculations for Sc{sub 2}CoSi and Sc{sub 2}CoSn show half-metallic characters, with indirect band gaps of 0.544 eV and 0.408 eV at optimised lattice parameters of 6.28 Å and 6.62 Å, respectively. For Sc{sub 2}CoGe compound, the Fermi energy is not pinned inside the energy band gap from minority density of states, neither for unit cell contraction nor for enlargement. The calculated total magnetic moments are 1μ{sub B}/f.u., for all compounds, in agreement with Slater–Pauling rule.

  17. INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2013-08-01

    Full Text Available Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test were performed at room temperature at a strain rate of 1.7 × 10−3 s−1 for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

  18. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  19. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  20. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [University of Virginia, Charlottesville, VA 22905 (United States); Deevi, S.C. [Research, Development, and Engineering Center, Philip Morris USA, Richmond, VA 23234 (United States); Shih, H.-R. [Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217 (United States)

    1998-12-31

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60) and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel. (orig.) 18 refs.

  1. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    Science.gov (United States)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  2. Ab initio modeling of decomposition in iron based alloys

    Science.gov (United States)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  3. Synthesis of aluminum-based scandium-yttrium master alloys

    Science.gov (United States)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  4. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  5. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  6. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  7. First-principles study on the ferrimagnetic half-metallic Mn{sub 2}FeAs alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Santao [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Bao; Shen, Jiang [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Nanxian [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn{sub 2}FeAs full-Heusler alloy have been investigated in detail. The Hg{sub 2}CuTi-type Mn{sub 2}FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational lattice constants. We expect that our calculated results may trigger Mn{sub 2}FeAs applying in the future spintronics field. - Graphical abstract: The d orbitals of Mn and Fe atoms split into multi-degenerated levels which create new bonding and nonbonding states. These exchange splitting shift the Fermi level to origin band gap.▪ - Highlights: • The electronic structure and magnetic properties of Mn{sub 2}FeAs full-Heusler alloy were studied. • A total magnetic moment of 3μ{sub B} was obtained for Mn{sub 2}FeAs alloy, following the SP rule M{sub t}=Z{sub t}−24. • The origin of ferrimagnetism and half-metallic character in Mn{sub 2}FeAs were discussed.

  8. Effects of micro-alloying with Sc and Mn on microstructure and mechanical properties of Al-Mg based alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-ming; LUO Cheng-ping; PAN Qing-lin; YIN Zhi-ming

    2005-01-01

    An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine,spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening.

  9. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  10. Corrosion evaluation of gold-based dental alloys.

    Science.gov (United States)

    Corso, P P; German, R M; Simmons, H D

    1985-05-01

    Three commercial gold-based dental alloys and three constant-nobility ternary alloys (Au-Ag-Cu) were evaluated for corrosion using a quantitative test battery. Integration of the current density, in a de-aerated solution of 1% NaCl along the approximate potential range found in the mouth (-300 mV to +300 mV vs. SCE), yields a quantitative rank ordering of the test alloys. The results are combined with prior findings on other commercial alloys to demonstrate the interaction of nobility and microstructure. Nobility determines the overall corrosion resistance for gold-based alloys. However, because of mutual insolubility, alloying with copper induces silver segregation, resulting in a higher corrosion rate at a given nobility. Thus, microstructure has an influence on corrosion, but heat treatments are largely ineffective in altering the basic corrosion characteristics. The test techniques, in combination with tarnish evaluations, provide a quantitative battery for alloy evaluation. The results indicate the combinations of nobility, microstructure, and environment most likely to avoid corrosion difficulties.

  11. Surface segregations in platinum-based alloy nanoparticles

    Science.gov (United States)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  12. Validity of Rigid-Band Approximation in the Study of Thermoelectric Properties of p-Type FeNbSb-Based Half-Heusler Compounds

    Science.gov (United States)

    Fang, Teng; Zheng, Shuqi; Zhou, Tian; Chen, Hong; Zhang, Peng

    2016-11-01

    Recently, we calculated the thermoelectric properties of p-type FeNbSb half-Heusler compounds by employing the rigid-band approximation (RBA) (Fang et al., RSC Adv 6:10507-10512, 2016). Traditionally, the RBA is used to understand and guide doping in semiconductors. It is therefore important to verify its reliability. To this end, we have investigated the validity of the RBA in heavily doped p-type FeNbSb by calculating the electronic structure and Seebeck coefficient of pure and Ti-, Zr-, Hf-, and Ce-doped FeNbSb using ab initio calculations. The results confirm that Ti, Zr, and Hf doping at Nb site shows rigid-band-like behavior, unlike Ce doping, which changes the density of states. We also calculated the electrical transport properties of the doped systems, indicating that the power factor of Ce-doped FeNbSb is lower than those of Ti-, Zr-, and Hf-doped FeNbSb.

  13. A Computationally Based Approach to Homogenizing Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J

    2011-02-27

    We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

  14. Electrochemical properties of TiV-based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东

    2003-01-01

    The electrochemical properties of the super-stoichiometric TiV-based hydrogen storage electrode alloys(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2, 3, 4, 5, 6) were studied. It is found by XRD analysis that all the al-loys mainly consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with BCCstructure. The lattice parameters and the unit cell volumes of the two phases decrease with increasing x. The cyclelife, the linear polarization, the anode polarization and the electrochemical impedance spectra of the alloy electrodeswere investigated systematically. The overall electrochemical properties of the alloy electrode are found improvedgreatly as the result of super-stoichiometry and get to the best when x= 5.

  15. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.

  16. Biphasic thermoelectric materials derived from the half-Heusler/full-Heusler system Ti-Ni-Sn

    Science.gov (United States)

    Douglas, Jason Everett

    Among the possible avenues for increasing the efficiency of global energy usage, thermoelectrics are an exciting, solid-state option. Thermoelectric materials, which convert an internal temperature gradient into a voltage and vice versa, have found applications in refrigeration as well as power generation from waste heat. TiNiSn, a semiconductor of the half-Heusler (hH) crystal structure, is of particular interest due to its very favorable electronic transport properties, conductivity (sigma) and Seebeck coefficient ( S), at relevant temperature regimes (between 600 K and 900 K). Unfortunately, its overall efficiency is hampered by a comparatively high thermal conductivity (kappa). In the design of thermoelectric materials, a number of approaches have been taken to increase the thermoelectric figure of merit, ZT = ( S2sigma/kappa)T, where T is temperature. In this work we examine how microstructure can be used to alter these thermoelectric propertiesin a biphasic Ti-Ni-Sn materials containing full-Heusler (fH) TiNi2Sn embedded within hH thermoelectric TiNiSn. We explored a wide range of Ni compositions in TiNi1+xSn--from stoichiometric TiNiSn to high Heusler volume fraction, TiNi1.25Sn--materials prepared by levitation induction melting followed by annealing. Phase distributions and microstructure were characterized using synchrotron x-ray diffraction and optical and electron microscopy. In a sample of the nominal composition TiNi1.15Sn, a significant decrease in thermal conductivity (about 30%) is observed for the biphasic material despite the metallic second-phase particles existing at the micrometer scale; a 50% increase in the electrical conductivity is also measured. These result in a maximum figure of merit, ZT, of 0.44 at 800 K, which is 25% greater than is observed for the x = 0 sample. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as

  17. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  18. Laser multi-layer cladding of Mg-based alloys

    Institute of Scientific and Technical Information of China (English)

    陈长军; 王东生; 王茂才

    2003-01-01

    By laser multi-layer cladding using a pulsed Nd-YAG irradiation the thickness of the cladding zone Mg-based alloys(ZM2 and ZM5) can reach about 1. 0 mm. The microstructure of the substrate and the cladding zone wasstudied using optical microscope, scanning electron microscopy(SEM), X-ray diffractometry(XRD) and micro hard-ness analysis. It is observed that constituent of ZM5 alloy is δ+Mg17 Al12, that of ZM2 alloy is α+MgZn+Mg9Ce.That of cladding layer ZM2 alloy(L-ZM2) is Mg+ Mg2 Zn11 +MgCe; while that of the cladding layer ZM5 alloy(L-ZM5) is Mg+Mg32 (Al, Zn)49. The hardness of the cladding area can be increased to values above HV127. Veryfine uniform microstructure and the produced new phases of nanometer/sub-micrometer order were obtained. Now,many repaired Mg-based alloy components have been passed by flying test in outside field.

  19. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  20. Effect of Mn Concentration on Magneto-mechnaical Properties in Directionally Solidified Ferromagnetic Shape Memory Ni-Mn-Ga Alloys

    Directory of Open Access Journals (Sweden)

    R.K Singh

    2016-06-01

    Full Text Available Heusler type alloys Ni50Mn25+xGa25-x  (x=2,3,4 and 5 based on near stoichiometric Ni2MnGa compositions were directionally solidified using modified Bridgman method. The alloys thus prepared were characterized for their chemical composition, crystal structure, microstructure, phase transformation, magnetic  and magneto-mechanical properties. The directionally solidified Ni50Mn30Ga20 alloy rod exhibited maximum magnetocrystalline value of 95 kJm-3 and lowest detwinning stresses for martensite phase of about 5MPa. The reversible room temperature magnetic field induced strain of 0.2% under external magnetic field of 0.6T and 0.05kN bias load was obtained for the directionally solidified Ni50Mn30Ga20 alloy.

  1. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  2. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys.

    Science.gov (United States)

    Liang, Chenghao; Huang, Naibao

    2007-10-01

    Biomedical TiNi shape memory alloy and Co-based alloys were ion implanted, and corrosion resistance and hemocompatibility of these had been investigated with electrochemical method, dynamic clotting time, and hemolysis rate tests. The results indicated that the electrochemical stability and anodic polarization behavior of the materials were improved significantly after ion implantation. When TiNi, Co-based alloys were implanted Mo + C and Ti + C, respectively, the corrosion potentials were enhanced more than 200 mV, passive current densities decreased, and passive ranges were broadened. Dynamic clotting time of the ion implanted substances was prolonged and hemolysis rate decreased. All the results pointed out that corrosion resistance and hemocompatibility of the alloys were improved by ion implantation, and effects of dual implantation was better than that of C single implantation. X-ray diffraction analysis of the alloys after dual implantation revealed that TiC, Mo(2)C, Mo(9)Ti(4), and Mo appeared on the surface of TiNi alloy, and CoC(x), Co(3)Ti, TiC, and TiO on the surface of Co-based alloys. These phases dispersing on the alloy surface formed amorphous film, prevented dissolving of alloy elements and improved the corrosion resistance and hemocompatibility of the alloys.

  3. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  4. Durable pd-based alloy and hydrogen generation membrane thereof

    Science.gov (United States)

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  5. I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Kacimi, S.; Mehnane, H.; Zaoui, A., E-mail: ali_zaoui@yahoo.fr

    2014-02-25

    Highlights: • TB-mBJ calculations were performed on 96 half-Heusler materials. • Several criteria were used to select candidates for optoelectronic applications. • Only six compounds fulfill these criteria. -- Abstract: We have investigated structural, electronic and optical properties of 96 half-Heusler materials, including compounds of I–II–V and I–III–IV types using first-principles calculations based on the density functional theory. The calculated lattice constants and band gaps are used as basis informations to select candidate materials favorable for specific optoelectronic applications. The band gap trend in the selected XYZ materials is found to be similar to the one in the zinc-blende III–V compounds. The assignment of the structures in the optical spectra and band structure transitions are investigated in detail. The predicted values of the dielectric constants for selected half-Heusler systems are close to those of the III–V binary compounds.

  6. Several Issues in the Development of Ti-Nb-Based Shape Memory Alloys

    Science.gov (United States)

    Kim, Hee Young; Miyazaki, Shuichi

    2016-12-01

    Ni-free Ti-based shape memory alloys, particularly Ti-Nb-based alloys, have attracted increasing attraction since the early 2000s due to their wide application potentials in biomedical fields. Recently, there has been significant progress in understanding the martensitic transformation behavior of Ti-Nb-based alloys and many novel superelastic alloys have been developed. The superelastic properties of Ti-Nb-based alloys have been remarkably improved through the optimization of alloying elements and microstructure control. In this paper, in order to explore and establish the alloy design strategy, several important issues in the development of Ti-Nb-based shape memory alloys are reviewed. Particularly, the effects of alloying elements on the martensitic transformation temperature and the transformation strain are analyzed. The effects of omega phase and texture on the superelastic properties are also discussed.

  7. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review

    Science.gov (United States)

    Zhang, Li-Nan; Hou, Zeng-Tao; Ye, Xin; Xu, Zhao-Bin; Bai, Xue-Ling; Shang, Peng

    2013-09-01

    This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, byproducts and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

  8. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  9. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  10. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)

    1998-12-31

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  11. Weldability and Microstructure of Nickel-Silicon Based Alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-cai; LIU Yi; YANG Jian; J.W.Newkirk; ZHANG Shan-hong

    2006-01-01

    The NiSix based alloy typically has poor weldability due to its lower ductility. A limited amount of work has been performed on the weldability of NiSix based alloys. Therefore, the effect of heat treatment and welding parameters on weldability of the alloys, and the relationship between the weldability and microstructure were studied. The results show that the as-cast Ni-Si-Nb-B alloy (Ni 76.5%, Si 20%, Nb 3%, and B 0.5%) could be successfully welded after preheating at 600 ℃. The welding procedure should be performed on the alloys before any heat treatment and a preheating at 600 ℃ should be used. The fusion zone is harder than the matrix due to a large amount of γ phase and a finer microstructure. The cracks are predominantly intergranular in heat affected zone and associated with the needle-like γ phase. The heat treatment before welding increases the tendency of cracking in the fusion zone.

  12. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    Science.gov (United States)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  13. Ultralow Thermal Conductivity in Full Heusler Semiconductors

    Science.gov (United States)

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S. Shahab; Hegde, Vinay I.; Hao, Shiqiang; Goedecker, Stefan; OzoliĆš, Vidvuds; Wolverton, Chris

    2016-07-01

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X2Y Z , X =Ca , Sr, and Ba; Y =Au and Hg; Z =Sn , Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κL close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  14. Evidence of ferromagnetism in off-stoichiometric Fe{sub 2.5-x}V{sub 1+x}Al{sub 0.5} (X{sub 2}YZ) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)], E-mail: paduani@fisica.ufsc.br; Silveira, R.G. da; Santos, R.G.C. dos; Poettker, W.E. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil); Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Schaf, J. [IF-UFRGS, Porto Alegre, CEP 91501-970, RS (Brazil); Takeuchi, A.Y. [CBPF, Rio de Janeiro, CEP 22290-180 (Brazil); Yoshida, M.I. [DQ-ICEX-UFMG, Belo Horizonte, CEP 31270-901, MG (Brazil)

    2008-06-12

    In this work we study the structural and magnetic properties of Fe{sub 2.5-x}V{sub 1+x}Al{sub 0.5} alloys. These compounds exhibit a ferromagnetic behavior in the ordered L2{sub 1} phase (X{sub 2}YZ) at low temperature. The increase of the V concentration is detrimental to the onset of a long range ferromagnetic ordering in this system. The results indicate that the Fe atoms are carrying the largest magnetic moment. A re-entrant transition from a spin-glass to a ferromagnetic state was observed at low temperature.

  15. Thermodynamic and structural properties of Bi-based liquid alloys

    Science.gov (United States)

    Yadav, S. K.; Jha, L. N.; Adhikari, D.

    2015-10-01

    Thermodynamic and microscopic structural properties of two Bi-based liquid alloys, such as In-Bi at 900 K and Tl-Bi at 750 K have been studied employing the regular associated solution model. We have estimated the mole fractions of the complexes and the free monomers assuming the existence of complexes In2 Bi in In-Bi melt and TlBi in Tl-Bi melt. The thermodynamic properties have been studied by computing the Gibbs free energy of mixing, enthalpy of mixing, entropy of mixing and activities of the monomers. The compositional contributions of the heat associated with the formation of complexes and the heat of mixing of the monomers to the net enthalpy change has also been studied. The structural properties of the liquid alloys have been studied by computing concentration fluctuation in the long-wavelength limit, chemical short-range order parameter and the ratio of mutual to intrinsic diffusion coefficients. For both of the alloy systems, the theoretical as well as the experimental values of SCC (0) are found to be lower than the corresponding ideal values over the whole composition range, indicating the hetero-coordinating nature of Bi-In and Bi-Tl alloy melts. All the interaction energy parameters are found to be negative and temperature dependent, and both the alloy systems are found to be weakly interacting.

  16. [Dimensional changes of silver and gallium-based alloy].

    Science.gov (United States)

    Ballester, R Y; Markarian, R A; Loguercio, A D

    2001-01-01

    Gallium-based dental alloys were created with the aim of solving the problem of toxicity of mercury. The material shows mechanical properties similar to those of dental amalgam, but researches point out two unfavorable characteristics: great corrosion and excessive post-setting expansion, and the latter is capable of cracking dental structures. The aim of this study was to evaluate, during 7 days, the in vitro dimensional alteration of a gallium dental alloy (Galloy, SDI, Australia), in comparison with a dental amalgam containing zinc (F400, SDI, Australia), as a function of the contact with saline solution (0.9% NaCl) during the setting period. The storage experimental conditions were: storage in dry environment, immersion in saline solution and contamination during condensation. Additionally, the effects of contamination during the trituration of dental amalgam and the effects of protecting the surface of the gallium alloy with a fluid resin were studied. Specimens were stored at 37 degrees C +/- 1 degree C, and measuring was carried out, sequentially, every 24 h during 7 days. When the gallium alloy was either contaminated or immersed, an expansion significantly greater than that observed in the other experimental conditions was noticed after 7 days. The application of a fluid resin to protect the surface of the cylinders was able to avoid the increase in expansion caused by superficial moisture. The amalgam alloy did not show significant dimensional alterations, except when it was contaminated during trituration.

  17. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  18. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  19. Diffusion Bonding between TiAl Based Alloys and Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The joint of 40Cr steel and TiAl based alloy has been studied by means of a high frequency induction diffusion welder. The experimental results show that, the higher the temperature and pressure, the higher the strength of the joints. The optimum parameters are: T=1123~1323 K,t=10~30 min, P=5~20 MPa.

  20. Novel alginate based coatings on Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K.; Roy, Abhijit [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Singh, Satish [Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Coatings on yttrium doped magnesium (Mg4Y) alloy substrates were prepared using alginate hydrogels by dip coating method to improve the surface bioactive properties of the substrate. Furthermore, composite coatings containing nano-sized calcium phosphate corresponding to hydroxyapatite (HA) phase entrapped within alginate hydrogel were also synthesized on the Mg4Y substrates. Surface characteristics of these coated substrates have been investigated using FTIR-ATR, SEM and EDS. The results show that the coatings with alginate alone are not stable in vitro; however, incorporation of NanoCaPs slightly improves the stability of these coatings. In addition, these composite coatings showed cell attachments with fibronectin incorporation. These results indicate that alginate hydrogels have the potential to be used as bioactive coating materials for different biofunctional applications.

  1. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  2. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  3. Engineered Heusler Ferrimagnets with a Large Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2015-09-01

    Full Text Available Synthetic perpendicular magnetic anisotropy (PMA ferrimagnets consisting of 30-nm-thick D022-MnGa and Co2MnSi (CMS cubic Heusler alloys with different thicknesses of 1, 3, 5, 10 and 20 nm, buffered and capped with a Cr film, are successfully grown epitaxially on MgO substrate. Two series samples with and without post annealing at 400 °C are fabricated. The (002 peak of the cubic L21 structure of CMS films on the MnGa layer is observed, even for the 3-nm-thick CMS film for both un-annealed and annealed samples. The smaller remnant magnetization and larger switching field values of CMS (1–20 nm/MnGa (30 nm bilayers compared with 30-nm-thick MnGa indicates antiferromagnetic (AFM interfacial exchange coupling (Jex between MnGa and CMS films for both un-annealed and annealed samples. The critical thickness of the CMS film for observing PMA with AFM coupling in the CMS/MnGa bilayer is less than 10 nm, which is relatively large compared to previous studies.

  4. Structural, electronic, magnetic and thermodynamic properties of full-Heusler compound Co{sub 2}VSi: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Bentouaf, Ali, E-mail: lilo.btf@gmail.com [Département de Physique, Faculté des Sciences, Université de Hassiba Ben Bouali, Chlef 02000 (Algeria); Hassan, Fouad El Haj [Université Libanaise, Faculté des Sciences (I), Laboratoire de Physique et d' Electronique (LPE), Elhadath, Beirut (Lebanon); Condensed Matter Section, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-05-01

    Density functional theory based on full-potential linearized augmented plane wave (FP LAPW) method is used to investigate the structural, electronic and magnetic properties of Co{sub 2}VSi Heusler alloys, with L2{sub 1} structure. It is shown that calculated lattice constants and spin magnetic moments using the general gradient approximation method are in good agreement with experimental values. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions. - Highlights: • Our calculated total magnetic moment is 2.96 μB. • The quasi-harmonic Debye model has been used to predict the thermal properties. • The GGA method is a good tool to calculate the magnetic moment. • The total DOS is calculated for the majority and minority spin densities. • The d–d hybridization is essential for the formation of the gap at E{sub F}.

  5. Replacement of Cobalt base alloys hardfacing by NOREM alloy; EDF experience and development, some metallurgical considerations. Valves application (CLAMA, RAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Carnus, M. [EDF DPN UTO Direction Expertise Technique, Noisy le Grand (France); Confort, X. [VELAN SAS, Lyon (France)

    2011-07-01

    Cobalt base alloys, such as Stellite 6 and 21, are used extensively in applications where superior resistance to wear and corrosion are required. However the use of Cobalt alloys hardfacing materials, especially on valves, is a major contributor to the level of radioactive contamination of nuclear facilities. NOREM alloys, an iron base and cobalt free materials, have been developed through an Electric Power Research Institute (EPRI) long running program during the eighties as an alternative of Stellite. This alloy has relatively good weldability properties, it was developed initially for repairing Stellite hardfacing (deposit over existing hardfacing alloys). This alloy has good corrosion resistance properties associated with elevated hardness (HRC 36-42). Technological properties (such as galling resistance, wear resistance) have been evaluated through different testing programs led by EPRI, AECL(Atomic Energy of Canada Limited), Valves manufacturers, EDF and others during the nineties. More recently EDF (for replacement of globe valves) has carried out testing program focused on weld deposit chemistry and mechanical properties. NOREM is a candidate for replacement of stellite hardfacing on valves. However this alloy is not so versatile as stellite alloys regarding technological properties (such as wear resistance) at elevated temperature and under high contact pressure. As a consequence some limits have to be considered for application on valves operating at elevated temperature and under high contact pressure (> 20 Mpa). Examples of application on valves, from VELAN manufacturer, for EDF PWR equipment are given. The industrial feedback from installed equipment (CLAMA, RAMA) since 2006 on EDF PWR has been good

  6. Characteristics and experimental evaluation of super-heat-resisting Nb-based and Mo-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, Masahiko; Furui, Mitsuaki; Noda, Kenji; Oda, Masaaki [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    Nb-based and Mo-based alloys have been investigated in order to develop the frontiers of materials technique which will be utilized in the environment of high-temperature liquid alkali metals. In this study, both mechanical properties and corrosion resistance to liquid Li were evaluated for two designed Mo-based alloys, Mo-15Re-0.1Zr and Mo-15Re-0.1Zr-0.1Ti. In addition, a series of corrosion test was performed with provisionally designed Nb-based alloys, Nb-(1-4)Hf. High-temperature tensile properties: The designed Mo-based alloys were found to have more excellent high-temperature tensile properties, compared to the commercial TZM alloy. High-temperature creep properties: The designed Mo-based alloys were superior in the high-temperature creep properties to other solid solution hardening Mo-based alloys. Workability: The designed Mo-based alloys exhibited an excellent workability, irrespective of the Ti addition. Corrosion resistance to liquid Li: The Nb-1Hf alloy was chosen as a promising alloy of having the highest corrosion resistance among the Nb-based alloys. Also, the Mo-15Re-0.1Zr-0.1Ti alloy was superior to Mo-15Re-0.1Zr alloy, in view of the corrosion resistance to liquid Li. (J.P.N.)

  7. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart

    2016-05-01

    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  8. Corrosion resistance of Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Botta, W.J., E-mail: wjbotta@ufscar.br [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Berger, J.E.; Kiminami, C.S. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Roche, V.; Nogueira, R.P. [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2014-02-15

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe{sub 66}B{sub 30}Nb{sub 4}, [(Fe{sub 0.6}Co{sub 0.4}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, [(Fe{sub 0.7}Co{sub 0.3}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, Fe{sub 56}Cr{sub 23}Ni{sub 5.7}B{sub 16}, Fe{sub 53}Cr{sub 22}Ni{sub 5.6}B{sub 19} and Fe{sub 50}Cr{sub 22}Ni{sub 5.4}B{sub 23}. The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau.

  9. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    Science.gov (United States)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-08-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z (Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  10. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  11. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    Science.gov (United States)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  12. Temperature of phase transformations in heat-resistant nickel-base alloys

    Science.gov (United States)

    Ivanov, A. D.; Ukhlinov, A. G.

    1997-11-01

    The study of phase transformations in heating and cooling of alloys is needed for choosing optimum regimes of their melting, plastic deformation, and heat treatment. In the present paper differential thermal analysis is used to determine the temperature of phase transformations in complexly alloyed nickel-base alloys. Industrial nickel alloys with intermetallic reinforcement manufactured by means of vacuum arc remelting (VAR) and hot deformation (HD) were studied. Alloy KhN56MBYuD was studied after different metallurgical processes, namely, electroslag remelting (ESR), centrifugal casting (CC), powder spraying (PS), and hot isostatic pressing (HIP). All the alloys were studied in the initial state and after heat treatment.

  13. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  14. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  15. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).

  16. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  17. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究∗%Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

    Institute of Scientific and Technical Information of China (English)

    张元磊; 李哲; 徐坤; 敬超

    2015-01-01

    The Ni50−xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50−xFexMn37In13(x = 1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about −46% and −15%, while their isothermal entropy changes are about 6 J·kg−1 and 9.5 J·kg−1·K−1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg−1 in the process of reverse martensitic transformation.%利用电弧炉制备了Ni50−xFexMn37In13(x =1,3,5)多晶样品,通过结构和磁性测量,系统分析了Ni50−xFexMn37In13(x=1,3,5)样品的晶体结构和马氏体相变.结果表明,三样品在室温下呈现出了不同的晶体结构.同时,随着Fe含量的增加,样品的马氏体相变温度急剧下降,而铁磁性却逐渐增强.研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应.在外加3 T的磁场下,两样品在反马氏体相变区域所表现出的磁电阻效应分别约为−46%和−15%,而等温熵变则约为6 J·kg−1·K−1和9.5 J·kg−1·K−1.然而,伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg−1.

  18. Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn{sub 2}Ge and RuMn{sub 2}Sb Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dinesh C.; Bhat, Idris Hamid, E-mail: idu.idris@gmail.com

    2015-03-15

    Highlights: • The present materials show magnetism and are ferromagnetic. • The materials show high spin-polarization and follow Slater–Pauling rule. • The materials are half-metallic and can be used as spintronic materials. - Abstract: Half-metallic ferromagnets RuMn{sub 2}Ge and RuMn{sub 2}Sb have been studied in stable F-43m phase. The optimized equilibrium lattice constants in F-43m phase were found to be 5.90 Å and 6.10 Å for RuMn{sub 2}Ge and RuMn{sub 2}Sb, respectively. The materials exhibit half-metallic city with an energy gap in the spin-down channel of 0.38 eV for RuMn{sub 2}Ge and 0.4 eV for RuMn{sub 2}Sb. The calculated total magnetic moments of 2.0 μ{sub B} per unit cell for RuMn{sub 2}Ge and 3.0 μ{sub B} per unit cell for RuMn{sub 2}Sb are in good agreement with Slater–Pauling rule. The magnetic moments of Mn-I and Mn-II mainly contribute to the total magnetic moment of the materials and are antiparallel to each other, hence predicting the signature of ferrimagnetism in RuMn{sub 2}Z alloys. The shifting of bands towards lower energies in spin-down channel for RuMn{sub 2}Sb may be due to the strong covalent character of bonding than RuMn{sub 2}Ge.

  19. Magnetocaloric properties and exchange bias effect in Al for Sn substituted Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5} Heusler alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Paweł, E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow (Poland); Maziarz, Wojciech [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow (Poland); Przewoźnik, Janusz; Kapusta, Czesław [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Hawelek, Lukasz [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice 44-100 (Poland); Chrobak, Artur [A. Chelkowski Institute of Physics, University of Silesia, 4 Uniwersytecka Str., Katowice 40-007 (Poland); Drzymała, Piotr [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow (Poland); Fitta, Magdalena [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Krakow (Poland); Kolano-Burian, Aleksandra [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice 44-100 (Poland)

    2014-05-01

    The influence of Al substitution for Sn on magnetocaloric properties and exchange bias behavior in Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5−x}Al{sub x} (x=0, 1, 2, 3) melt spun ribbons have been investigated. All the studied ribbons undergo a martensitic and reverse transformation. At low temperature martensite region, below 100 K, the alloys exhibit exchange bias effect, which appears to enhance with the increase of Al concentration. The loop shift difference (ΔH{sub E}) of up to 7960 A m{sup −1} is recorded between the ribbon containing no Al and the ribbon with x=3. The presence of exchange bias behavior in these samples is attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions. The magnetic entropy change and refrigerant capacity are evaluated for the ribbons studied around both the structural and magnetic transformations under the applied magnetic field induction of 2 T. The maximum entropy change around the magnetic transition and around the structural transition is reported for the Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5} ribbon, and the entropy values amount to 1.8 and 7.8 J kg{sup −1} K{sup −1}, respectively. - Highlights: • Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5−x}Al{sub x} (x=0, 1, 2, 3) melt spun ribbons are found to show exchange bias (EB) effect. • The Al for Sn substitution appears to enhance EB. • Around A{sub s} the magnetic field induces the RMT giving rise to the inverse MCE. • The highest ΔS{sub M} at H= 2 T is observed for the Ni{sub 48}Mn{sub 39.5}Sn{sub 12.5} ribbon.

  20. Noncollinear magnetism in Mn{sub 2}RhSn Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheriakova, Olga

    2014-09-15

    Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn{sub 2}-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn{sub 2}YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn{sub 2}RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I anti 4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80≤T≤ 270) K. The studies of Mn{sub 2}RhSn were expanded to the broad composition range and continued on thin film samples.

  1. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  2. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  3. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    Science.gov (United States)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  4. Synthesis of metastable aluminum-based intermetallics by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Srinivasan, S.; Desch, P.B.

    1991-01-01

    We have used mechanical alloying (MA) to prepare fine-grained powders of Al 25 at. % X (X = Ti, Zr, Hf) having the metastable cubic L1{sub 2} structure. Hexane (C{sub 6}H{sub 14}) is added to the milling media to avoid the agglomeration of the aluminum powder. Carbon from the decomposition of the hexane incorporates into the powder to form a fine dispersion of carbides. These carbides are beneficial because they limit grain growth during consolidation and add strength to the alloy. We have consolidated the mechanically alloyed powders using conventional hot-pressing and non-conventional dynamic pressing. We used hot pressing to consolidate mechanically alloyed L1{sub 2}-Al{sub 3}Ti powder in the presence of excess of Al. The compact has the DO{sub 22} structure. Its room-temperature compressive strength is 1.2 GPa (exceeding that of cast Al{sub 3}Ti by a factor of 10). At 400{degrees}C, the compressive strength decreases to 1 GPa. The ductility, which is negligible at room temperature, increases to 6% at 400{degrees}C. We used dynamic pressing to consolidate L1{sub 2}-Al{sub 5}CuZr{sub 2} powder. The compact, having the L1{sub 2} structure, has fine grains (44 nm) and a fine dispersion of ZrC precipitates (7 nm). Its hardness is in the range of 1030 kg mm{sup {minus}2}. Current efforts are to investigate ternary alloys based on fine-grained trialuminides which include a ductile second phase. 26 refs., 8 figs.

  5. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  6. Microscopic study of the structure of the Steel Ni-based Alloy: Hastelloy G35 Alloy

    Science.gov (United States)

    Sabir, F.; Ben Lenda, O.; Saissi, S.; Marbouh, K.; Tyouke, B.; Zerrouk, L.; Ibnlfassi, A.; Ouzaouit, K.; Elmadani, S.

    2017-03-01

    The study of the influence of heat treatment on changes of mechanical and structural properties of Steel Ni-based Alloy is a highly interdisciplinary topic at the interface of the physical chemistry of metallic materials, which also helps in environmental and economic protection.After heat treatment, the structural and micro-structural studies for the different transformation temperature led to identify phases formed and the morphology. This work has been carried out using different techniques: X-ray diffraction, optical microscopy and scanning electron microscopy.

  7. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  8. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    Science.gov (United States)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  9. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    Science.gov (United States)

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  10. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    Science.gov (United States)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  11. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    various types of implants for osteosynthesis in traumatology and orthopedics. As the analysis of scientific papers over the past decade, the number of scientific articles devoted to the study of the properties of magnesium alloys and their effect on bone formation, as well as their use in osteosynthesis has grown significantly. Implants which are based on magnesium, may have several advantages over bioinert metal alloys, polymers, and bioceramics. They are not toxic, not carcinogenic, the mechanical properties of a structure close to the cortical bone, and may have osteoinductive and anti-bacterial action. Also, there is no need for a second surgical intervention. The main problems to be addressed, in our view, are as follows. 1. Need to examine the nature of -bone formation in the fracture in the presence of the implant based on magnesium alloy. 2. To examine the impact of products of magnesium degradation on the surrounding tissue and the body as a whole. 3. Loss of rigidity of the implant magnesium based alloy in the process of biodegradation.

  12. Development of Fe-based nanocrystalline materials by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Suñol, J. J.

    2008-06-01

    Full Text Available Two alloys, Fe80NbB10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of the nanocrystallites (about 7-8 nm at 80h MA was detected by X-ray diffraction. After milling for 80 h, differential scanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powder weight ratio reduces the necessary time to obtain the powdered form.

    Dos aleaciones, Fe80Nb10B10 (A y Fe70Ni14Zr6B10 (B, han sido producidas por aleado mecánico. Mediante difracción de rayos X se ha detectado la formación de nanocristales (7-8 nm a las 80 h de aleado. Tras molturar 80 h, las curvas calorimétricas muestran procesos exotérmicos asociados a la relajación estructural y al crecimiento cristalino y reordenación de la fase cristalina. Los valores de la energía aparente de activación de las cristalizaciones son 315 ± 40 kJ mol–1 para la aleación A, y 295 ± 20 kJ mol–1 y 320 ± 25 kJ mol–1 para la aleación B. Por otra parte, se ha procedido a la molturación de una cinta de una aleación de base hierro hasta obtener un material en forma de polvo. El incremento de la velocidad de rotación y de la relación en peso bolas polvo reduce el tiempo necesario para obtener este material.

  13. Age-hardening in a commercial Mg-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, C.E. [IFIMAT, UNCentro and CONICET, Pinto 399, B7000GHG Tandil (Argentina); Somoza, A. [IFIMAT, UNCentro and CICPBA, Pinto 399, B7000GHG Tandil (Argentina); Nie, J.F. [School of Physics and Materials Engineering, PO Box 69M, Monash University, Victoria 3800 (Australia)

    2007-07-01

    Age-hardening phenomena induced by thermal and thermo-mechanical treatments in the commercial Mg-based alloy WE54 were studied by positron annihilation lifetime spectroscopy and Vickers microhardness. To this aim, samples were plastically deformed and subsequently aged at 250 C for times ranging from 0 to 1000 hours. The results obtained are discussed in terms of the role of vacancies in the solute transport and therefore they contribute to the discussion on the vacancy-solute clusters (and/or intermediate precipitates) interactions during the precipitation sequence of the WE54. Besides, we show that cold work previous aging not only accelerates but increases the hardening response of the alloy. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Wear resistant zirconium base alloy article for water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, J.E.; Shockling, L.A.; Sherwood, D.G.

    1988-03-01

    In a water reactor operating environment, the combination having improved fretting wear resistance is described comprising: an elongated tubular water displacer rod; having a low neutron absorption cross section guide support plates distributed along the length of the water displacer rod; the water displacer rod intersecting the guide support plates through apertures in the guide support plates; the water displacer rod having a plurality of spaced apart annular electrospark deposited coatings, each coating facing the wall of a respective aperture, the electrospark deposited coatings comprising Cr/sub 2/C/sub 3/; wherein the water displacer rod has a tube wall composed of a zirconium base alloy; and wherein the guide support plates are composed of a stainless steel alloy.

  15. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  16. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  17. Perpendicular magnetic anisotropy of full-Heusler films in Pt/Co2FeAl/MgO trilayers

    OpenAIRE

    Li, Xiaoqi; Yin, Shaoqian; Liu, Yupeng; Zhang, Delin; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2011-01-01

    We report on perpendicular magnetic anisotropy (PMA) in a Pt/Co2FeAl/MgO sandwiched structure with a thick Co2FeAl layer of 2-2.5 nm. The PMA is thermally stable that the anisotropy energy density Ku is 1.3{\\times}106 erg/cm3 for the structure with 2 nm Co2FeAl after annealing at 350 oC. The thicknesses of Co2FeAl and MgO layers greatly affect the PMA. Our results provide an effective way to realize relative thick perpendicularly magnetized Heusler alloy films.

  18. Perpendicular Magnetic Anisotropy of Full-Heusler Films in Pt/Co2FeAl/MgO Trilayers

    Science.gov (United States)

    Li, Xiaoqi; Yin, Shaoqian; Liu, Yupeng; Zhang, Delin; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2011-04-01

    We report on perpendicular magnetic anisotropy (PMA) in a Pt/Co2FeAl/MgO sandwiched structure with a thick Co2FeAl layer of 2-2.5 nm. The PMA is thermally stable and the anisotropy energy density Ku is 1.3×106 erg/cm3 for the structure with 2 nm Co2FeAl after annealing at 350 °C. The annealing temperature and Co2FeAl thickness greatly affect the PMA. Our results provide an effective way to realize relatively thick perpendicularly magnetized Heusler alloy films.

  19. Enhanced thermoelectric figure of merit of p-type half-Heuslers.

    Science.gov (United States)

    Yan, Xiao; Joshi, Giri; Liu, Weishu; Lan, Yucheng; Wang, Hui; Lee, Sangyeop; Simonson, J W; Poon, S J; Tritt, T M; Chen, Gang; Ren, Z F

    2011-02-01

    Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. The highest peak ZT of a p-type half-Heusler has been so far reported about 0.5 due to the high thermal conductivity. Through a nanocomposite approach using ball milling and hot pressing, we have achieved a peak ZT of 0.8 at 700 °C, which is about 60% higher than the best reported 0.5 and might be good enough for consideration for waste heat recovery in car exhaust systems. The improvement comes from a simultaneous increase in Seebeck coefficient and a significant decrease in thermal conductivity due to nanostructures. The samples were made by first forming alloyed ingots using arc melting and then creating nanopowders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Further improvement in ZT is expected when average grain sizes are made smaller than 100 nm.

  20. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  1. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  2. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  3. Structural characteristics of Ni3Al based alloys depending on the preparation conditions

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2015-10-01

    Full Text Available The paper presents an evaluation of the influence of the composition of alloys based on Ni3Al on their mechanical characteristics. The structure of the alloy was controlled through directional solidification. The achieved values of mechanical characteristics are in good agreement with the material structure. The alloys with sub-stoichiometric contents of aluminium have a multiphase structure. These alloys contain network with high values of tensile strain. The microstructure of the samples was investigated and behaviour of dislocations in the alloys was analysed by Transmission electron microscopy methods (TEM.

  4. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  5. Characteristics on Bi-Pb Based Alloys Quenched from Melt

    Institute of Scientific and Technical Information of China (English)

    Rizk Mostafa Shalaby

    2009-01-01

    Three different bismuth-lead systems namely, Wood's alloy (Bi50Pb25Sn12.5Cd12.5), Newton's alloy (Bi50Pb31.2Sn18.8) and Rose's alloy (Bi50Pb28Sn22), with one used as fusible alloys were quenched from melt by melt spinning technique. Thermal analysis, structure and mechanical properties of all alloys have been studied and analyzed. From X-ray diffraction analysis, an intermetallic compound phase, designated Pb7Bi3 is detected. The formation of an intermetallic compound phase causes a pronounced increase in the electrical resistivity. The Wood's alloy containing-cadmium exhibits mechanical properties superior to both the Newton's and Rose's alloys. The presence of cadmium in Wood's alloy decreases its melting point. Wood's alloy has better properties, which make it useful in various applications such as in protection shields for radiotherapy, locking of mechanical devices and welding at low temperature.

  6. On the corrosion behavior and biocompatibility of palladium-based dental alloys

    Science.gov (United States)

    Sun, Desheng

    Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental

  7. Performance of a base isolator with shape memory alloy bars

    Institute of Scientific and Technical Information of China (English)

    Fabio Casciati; Lucia Faravelli; Karim Hamdaoui

    2007-01-01

    A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers.A prototype of the device was built and experimentally tested on the shaking table.The new base isolation device consists of two disks,one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers,and at least three inclined shape memory alloy(SMA) bars.The role of the SMA bars is to limit the relative motion between the base and the superstructure,to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device.To verify the expected performance,a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes.It is shown that the main feature of the proposed base isolation device is that for cyclic loading,the super-elastic behavior of the alloy results in wide load-displacement loops,where a large amount of energy is dissipated.

  8. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  9. Design of Zr-based AB2 type hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    文明芬; 王秋萍; 王兴海; 翟玉春; 陈廉

    2003-01-01

    The influences of the ratio of the radius of atom A(rA)to radius of atom B(rB),electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy.An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model.The results show that the predicted values are in good agreement with the experimental values.The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.

  10. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  11. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  12. Piezostrain tuning non-volatile 90° magnetic easy axis rotation in Co2FeAl Heusler alloy film grown on Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures

    Science.gov (United States)

    Zhou, Cai; Wang, Fenglong; Dunzhu, Gesang; Yao, Jinli; Jiang, Changjun

    2016-11-01

    Non-volatile electric field-based control of magnetic anisotropy in Co2FeAl/ Pb(Mg1/3Nb2/3)O3-PbTiO3 (CFA/PMN-PT) heterostructures is investigated at room temperature. The remnant magnetization response under different electric fields shows a asymmetric butterfly-like behavior; specifically, this behavior is consistent with the asymmetric butterfly-like piezostrain versus applied electric field curve. Thus electric field-induced non-volatile 90° magnetic easy axis rotation can be attributed to the piezostrain effect. Further, the result measured by rotating-angle ferromagnetic resonance demonstrates piezostrain-mediated non-volatile 90° magnetic easy axis rotation at the initial state and the two remnant polarization states after application of the poling fields of 10 and  -10 kV cm-1 turned off. The angular dependence of magnetic damping also indicates a 90° phase shift at the above mentioned three different states. Additionally, the piezostrain-mediated non-volatile stable magnetization reversal in the two directions of easy and hard magnetization axes are observed under positive and negative pulsed electric fields, which can be used to improve the performance of low-loss multiple-state memory devices.

  13. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Sun Jin [Hanyang Univ., Seoul (Korea, Republic of)

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author).

  14. Materials Properties of Modifeied Ni-Based Alloy

    Directory of Open Access Journals (Sweden)

    Kraus, L.

    2007-01-01

    Full Text Available The thermomechanical processing of NiMoCr solid solution nickel base superalloy is the way to considerably influence the grain size. As uniform coarse grain size increases the creep strength and crack growth resistance. In the work, the processing to achieve uniform recrystallized grain structure with variation of thermomechanical parameters is investigated. The creep behavior of the alloy after various hot working conditions is determined. The results of creep tests showed that creep characteristics such as strain rate and lifetime were greatly dependent on the initial hot working conditions and annealing parameters.

  15. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-08-01

    Memory Alloy ( SMA ) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy ( SMA ) by Cory R Knick and Christopher J Morris Sensors...2014 – 05/2015 4. TITLE AND SUBTITLE Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy ( SMA ) 5a. CONTRACT NUMBER

  16. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  17. Mechanochemical method for producing iron-based nitrogen-containing nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Iron-based products account the main volume of powder metallurgy production. Nevertheless its strength and reliability are not enough in comparison with classical cast materials. So that is why making nanostructural powder materials allows to increase strength and extend the range of products. A principally new way of nanostructure production is possible by means of iron mechanical alloying with nitride-forming and nitrogen both at the same time.Unlike classical technology of internal nitrogenation, nitrogen saturation, in our case, occurs by whole volume at plastic deformation conditions. A review of experimental results of phase forming alloys in the Fe-Ni, Fe-Ni-Cr, Fe-Ni-N, Fe-Ni-Cr-N, Fe-Cr-Ni systems prepared by mechanical alloying are given. The influence of the technological parameters of mechanical alloying, atmosphere of mechanical activation on nitrogen content and phase composition of examined alloys has been studied. Experimental results of the influence of mechanical alloying technological parameters on degree of ammonia dissociation and nitrogen content in examined alloys are presented. Heat treatment influence of mechanically alloyed, nitrogen-containing alloys on theirphase composition and structure are investigated.It was shown that using mechanical alloying, it's possible to prepare high-alloyed iron-based alloys containing more than 1% of nitrogen. It was established that technology of mechanical alloying in ammonia atmosphere allows to prepare austenitic steels with nanocrystalline structure, which affords high value of yield stress. Physico-chemical patterns of interaction between the nitrogen-containing atmosphere and nitride-forming elements under their mutual mechanical activation conditions were established in consequence of theoretical and experimental researches. Some scientific principles of nanocrystalline materials were gained by quantitative description of correlation between the mechanical dose, nitrogen potertial, nitrogen content

  18. First principle investigations of the structural, electronic and magnetic properties of predicted new zirconium based full-Heusler compounds, Zr2MnZ (Z=Al, Ga and In)

    Science.gov (United States)

    Birsan, A.; Kuncser, V.

    2016-05-01

    The crystal structure, electronic and magnetic properties of predicted new full-Heusler compounds Zr2MnZ (Z=Al, Ga, In) were studied within the density functional theory (DFT) framework. These materials exhibit unique properties that connect the spin gapless semiconducting character with the completely compensated ferrimagnetism. Magnetically ordered Zr2MnZ (Z=Al, Ga, In) compounds crystallize in inverse Heusler structure are stable against decomposition and have zero magnetic moment per formula unit, in agreement with Slater-Pauling rule. The Zr2MnAl compound presents semiconducting properties with an energy band gap of 0.41 eV in the majority spin channel and a zero band gap in the minority spin channel. By substituting completely the Al in Zr2MnAl via Ga and In elements, semiconducting pseudo band gaps are formed in the majority spin channels due to different neighborhoods around the manganese atoms, which decreases the energy of Mn triple degenerated anti-bonding states.

  19. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    Science.gov (United States)

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  20. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    Science.gov (United States)

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  1. Corrosion behaviour of powder metallurgical and cast Al-Zn-Mg base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sameljuk, A.V.; Neikov, O.D.; Krajnikov, A.V.; Milman, Yu.V.; Thompson, G.E

    2004-01-01

    The behaviour of Al-Zn-Mg base alloys produced by powder metallurgy and casting has been studied using potentiodynamic polarisation in 0.3% and 3% NaCl solutions. The influence of alloy production route on microstructure has been examined by scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectrometry. An improvement in performance of powder metallurgy (PM) materials, compared with the cast alloy, was evident in solutions of low chloride concentration; less striking differences were revealed in high chloride concentration. Both powder metallurgy and cast alloys show two main types of precipitates, which were identified as Zn-Mg and Zr-Sc base intermetallic phases. The microstructure of the PM alloys is refined compared with the cast material, which assists understanding of the corrosion performance. The corrosion process commences with dissolution of the Zn-Mg base phases, with the relatively coarse phases present in the cast alloy showing ready development of corrosion.

  2. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  3. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    Science.gov (United States)

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  4. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  5. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  6. DEGRADATION BEHAVIORS OF NEW TYPE TiV-BASED HYDROGEN STORAGE ELECTRODE ALLOYS

    Institute of Scientific and Technical Information of China (English)

    X.Z. Sun; Y.F. Zhu; Y. Lin; R. Li; M.X. Gao; H.G. Pan

    2006-01-01

    The degradation behaviors of the TiV-based multiphase hydrogen storage alloy Ti0.8Zr0.2V3.2Mn0.64-Cr0.96Ni1.2 during electrochemical cycling in alkaline electrolyte have been studied by XRD, SEM,EIS and AES measurements. XRD analysis indicates that the alloy consists of a C14-type Laves phase and a V-based solid solution. The lattice parameters of both phases are increased after discharged with cycling, which indicates that more irreversible hydrogen remains not discharged in the alloy. It should be responsible for the decrease of discharge capacity. SEM micrographs show that after 10 electrochemical cycles, a large number of cracks can be observed in the alloy, existing mainly in the V-based solid solution phase. Moreover, after 30 cycles, the alloy particles are obviously pulverized due to the larger expansion and shrinkage of cell volumes during hydrogen absorption and desorption, which induces the fast degradation of the TiV-based hydrogen storage alloys. EIS and AES measurements indicate that some passive oxide film has been formed on the surface of alloy electrode, which has higher charge-transfer resistance, lower hydrogen diffusivity, and less electro-catalytic activity. Therefore it can be concluded that the pulverization and oxidation of the alloy are the main factors responsible for the fast degradation of the TiV-based hydrogen storage alloys.

  7. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  8. Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy

    Science.gov (United States)

    Achmad, Tria Laksana; Fu, Wenxiang; Chen, Hao; Zhang, Chi; Yang, Zhi-Gang

    2017-01-01

    The main idea of alloy design is to reduce costs and time required by the traditional (trial and error) method, then finding a new way to develop the efficiency of the alloy design is necessary. In this study, we proposed a new approach to the design of Co-based alloys. It is based on the concept that lowering the ratio of stable and unstable stacking fault energy (SFE) could bring a significant increase in the tendency of partial dislocation accumulation and FCC to HCP phase transformation then enhance mechanical properties. Through the advance development of the computing techniques, first-principles density-functional-theory (DFT) calculations are capable of providing highly accurate structural modeling at the atomic scale without any experimental data. The first-principles calculated results show that the addition of some transition metal (Cr, Mo, W, Re, Os, Ir) and rare-earth (Sc, Y, La, Sm) alloying elements would decrease both stable and unstable SFE of pure Co. The dominant deformation mechanism of binary Co-4.5 at.% X (X = alloying element) is extended partial dislocation. Our study reveals Re, W, Mo and La as the most promising alloying additions for the Co-based alloys design with superior performances. Furthermore, the underlying mechanisms for the SFE reduction can be explained regarding the electronic structure.

  9. Relationship between phase composition and corrosion resistanceof Ni-Ti-Nb based shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stability and microstructure of Ni-Ti-Nb based shape memory alloys were investigated after alloyed with elements Zr, Cr and V. In artificial seawater (3.5%NaCl) and physiological solution (5%NaCl+0.1%H2O2), the results show that the alloying elements influence the corrosion behavior of Ni-Ti-Nb alloys. Generally, Zr improves the corrosion resistance of Ni-Ti-Nb alloy, Cr reduces its corrosion resistance and V does not change the property. In order to investigate the reason of the difference,the relation of the phase components and corrosion resistance of Ni-Ti-Nb based shape memory alloys were studied by element analysis and SEM.

  10. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    Science.gov (United States)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  11. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  12. Wear and isothermal oxidation kinetics of nitrided TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    赵斌; 吴建生; 孙坚

    2002-01-01

    Gas nitridation of TiAl based alloys in an ammonia atmosphere was c arried out. The evaluation of the surface wear resistance was performed to compare with those of the non-nitrided alloys. It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly. The tribol ogical behaviors of the nitrided alloys were also discussed. The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800~1000 ℃ in hot air. It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions. The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800 ℃. However, alloys nitrided at 940 ℃ for 50 hdisplay a sign of better oxidat ion resistance than the other nitrided alloys at more severe oxidizing conditions. The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gainvs time data. As a comparison with it, attempts were made to fit the data with the power law. The oxidation kinetic parameter kn, kp and n were measured and the trends were discussed.

  13. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    produce results on precipitation hardened Al alloys which provide a good indicator of long term field exposure performance in natural environments [15...I \\ I I i i I i i i I 750 ZOO AI-0.15Cu-0.9Mg-0.6Si (wt%) J50 m 100 10000 1000 10000 100000 1000000 i 10o Time, min Time...for good corrosion resistance and simultaneous weld penetration to achieve bonding vi. Designed New Braze alloy based on combined metallurgical

  14. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  15. Oxidation/vaporization of silicide coated columbium base alloys

    Science.gov (United States)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  16. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  17. Laser cladding of Ni-based alloy on copper substrate

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Changsheng Liu; Xingqi Tao; Suiyuan Chen

    2006-01-01

    The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.

  18. The wettability of Fe based alloy on TiO

    Institute of Scientific and Technical Information of China (English)

    李庆奎; 钟海云; 钟晖; 戴艳阳

    2002-01-01

    For developing TiO based imitated gold materials, the wettabilities of Fe and Fe-Cr-Ni-Ti on TiO were studied. The results indicated that the wettabilities of Fe and Fe-Cr on TiO were poor, and their wetting angles were about 90° at melting point. The wetting angles reduced with the increase of wetting temperature, but the influence of temperature was small. Fe and Fe-Cr containing Cr 50% or less could react with TiO on the interface to form Fe2Ti and Ti2O3, but this did not improve the wettability effectively. When Ni-Ti was added into Fe-Cr alloy, Ni3Ti was formed on the interface, which can reduce the interface energy, improve the wettability, and prevent the formation of Fe2Ti and Ti2O3. The wetting angles could go down to about 40° when 3% Ni-Ti was added to Fe-Cr alloy.

  19. Effects of Ti and Co on the Electrochemical Characteristics of MgNi-Based Alloy Electrodes

    Institute of Scientific and Technical Information of China (English)

    FENG,Yan; JIAO,Li-Fang; YUAN,Hua-Tang; ZHAO,Ming

    2007-01-01

    Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni and Mg0.9Ti0.1Ni0.9Co0.1 were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were also studied. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the main phases of the alloys exhibit amorphous structures, and trace of Ni co-exists. The charge-discharge cycle tests indicate these alloys have good electrochemical active characteristics. And the cycle stability of Ti and Co doped alloy was better than that of MgNi alloy. After 50 cycle charge-discharge, the discharge capacity of the Mg0.9Ti0.1Ni0.9Co0.1 alloy was much better than that of MgNi and Mg0.9Ti0.1Ni alloys. The discharge capacity of Mg0.9Ti0.1Ni0.9Co0.1 was 102.8% higher than that of MgNi alloy, and 45.49% higher than that of the Mg0.9Ti0.1Ni alloy. During the process of charge-discharge cycle test, the main reason for the electrode capacity fading is the corrosion of Mg to Mg(OH)2 on the surface of alloys. The Tafel polarization test indicates Ti and Co improve the anticorrosion in an alkaline solution. The EIS results suggest that proper amount of Ti and Co doping improve the electrochemical catalytical activity on the Mg-based alloy surface significantly.

  20. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, I.M. [Argonne National Laboratory, Upton, IL (United States)

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  1. Thermodynamics-Based Computational Design of Al-Mg-Sc-Zr Alloys

    Science.gov (United States)

    Haidemenopoulos, G. N.; Katsamas, A. I.; Kamoutsi, H.

    2010-04-01

    Alloying additions of Sc and Zr raise the yield strength of Al-Mg alloys significantly. We have studied the effects of Sc and Zr on the grain refinement and recrystallization resistance of Al-Mg alloys with the aid of computational alloy thermodynamics. The grain refinement potential has been assessed by Scheil-Gulliver simulations of solidification paths, while the recrystallization resistance (Zener drag) has been assessed by calculation of the precipitation driving forces of the Al3Sc and Al3Zr intermetallics. Microstructural performance indices have been derived, used to rank several alloy composition variants, and finally select the variant with the best combination of grain refinement and recrystallization resistance. The method can be used, with certain limitations, for a thermodynamics-based design of Al-Mg and other alloy compositions.

  2. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    Science.gov (United States)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  3. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    Science.gov (United States)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  4. Characteristics of multi-component MI-based hydrogen storage alloys and their hydride electrodes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of multi-component MI-based hydrogen storage alloys with a cobalt atomic ratio of 0.40-0.75 w ere prepared. The electrochemical properties under different charge-discharge conditions and PCT characteristics measured by electrochemical method were investigated. The addition of other alloying elements for partial substitution of Co lowers the hydrogen equilibrium pressure and discharge capacity, but improves the cycling stability and makes the alloys keep nearly the same rate discharge capability and high-temperature discharge capability as those of the compared alloy.The reasons were discussed.

  5. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  6. A Palladium-Based Alloy for Prosthetic Dentistry:Structure and Properties

    Institute of Scientific and Technical Information of China (English)

    STEPANOVA Galina; PARUNOV Vitaly; VASEKIN Vasily; KAREVA Maria; SINAGEJKINA Julia

    2012-01-01

    Abstract.Using the results of physical and chemical researches and mechanical tests of the Pd-Au-Cu-Sn system alloys,a new palladium-based alloy has been chosen and studied in detail.It has a higher plasticity and a lower hardness than the Palladent alloy,widely used in prosthetic dentistry:its hardness is lower than 300 MPa,and its specific elongation is 10%~14 %.At the same time,such important practical characteristics of the alloys as the strength of adhesion to ceramics and thermal expansion coefficient are almost similar.

  7. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T, E-mail: takulik@rekt.pw.edu.p [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  8. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  9. Thermophysical Properties of Liquid AlTi-Based Alloys

    Science.gov (United States)

    Egry, I.; Holland-Moritz, D.; Novakovic, R.; Ricci, E.; Wunderlich, R.; Sobczak, N.

    2010-05-01

    The surface tension and density of three liquid AlTi-based alloys (AlTiV, AlTiNb, and AlTiTa) have been measured using electromagnetic levitation as a tool for containerless processing. Surface tension has been determined by the oscillating-drop method, while the density was measured using a shadowgraph technique. Both quantities were determined over a wide temperature range, including the undercooled regime. In addition, sessile-drop and pendant-drop experiments to determine the surface tension were performed in a recently built high-temperature furnace. The measured data were compared to thermodynamic calculations using phenomenological models and the Butler equation. Generally, good agreement was found.

  10. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  11. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  12. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  13. Large linear magnetoresistance and shubnikov-de hass oscillations in single crystals of YPdBi heusler topological insulators

    KAUST Repository

    Wang, Wenhong

    2013-07-12

    We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.

  14. Electron-ion plasma modification of Al-based alloys

    Science.gov (United States)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  15. Precipitation hardening in Fe--Ni base austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, K.M.

    1979-05-01

    The precipitation of metastable Ni/sub 3/X phases in the austenitic Fe--Ni-base alloys has been investigated by using various combinations of hardening elements, including Ti, Ta, Al, and Nb. The theoretical background on the formation of transition precipitates has been summarized based on: atomic size, compressibility, and electron/atom ratio. A model is proposed from an analysis of static concentration waves ordering the fcc lattice. Ordered structure of metastable precipitates will change from the triangularly ordered ..gamma..', to the rectangularly ordered ..gamma..'', as the atomic ratio (Ti + Al)/(Ta + Nb) decreases. The concurrent precipitation of ..gamma..' and ..gamma..'' occurs at 750/sup 0/C when the ratio is between 1.5 and 1.9. Aging behavior was studied over the temperature range of 500/sup 0/C to 900/sup 0/C. Typical hardness curves show a substantial hardening effect due to precipitation. A combination of strength and fracture toughness can be developed by employing double aging techniques. The growth of these coherent intermediate precipitates follows the power law with the aging time t : t/sup 1/3/ for the spherical ..gamma..' particles; and t/sup 1/2/ for the disc-shaped ..gamma..''. The equilibrium ..beta.. phase is observed to be able to nucleate on the surface of imbedded carbides. The addition of 5 wt % Cr to the age-hardened alloys provides a non-magnetic austenite which is stable against the formation of mechanically induced martensite.Cr addition retards aging kinetics of the precipitation reactions, and suppresses intergranular embrittlement caused by the high temperature solution anneal. The aging kinetics are also found to be influenced by solution annealing treatments.

  16. Microstructure and nano-mechanical property of cold spray Co-base refractory alloy coating

    Institute of Scientific and Technical Information of China (English)

    Yongli LIANG; Bi SHI; Xiaoping YANG; Junbao ZHANG; Xianming MENG

    2011-01-01

    Co-base refractory alloy coating was prepared on carbon steel substrate by cold spray technology; microstructure and nano-mechenical property were examined by scanning electron microscope (SEM) and nano indenter individually. The results showed that about 250 μm Co-base refractory alloy coating could be deposited on steel substrate by cold spray technique, interface between coating and substrate was combined well, and the refractory alloy particle had a significant plastic deformation during deposition process; mixing Ni powders into Co-base refractory alloy powders could increase the density and decrease the nano-hardness of coating, the nano-hardness and elastic modulus of refractory alloy coating was higher than 6 GPa and 160 GPa, respectively.

  17. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    Science.gov (United States)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  18. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  19. Biocompatibility of new Ti–Nb–Ta base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Abdelrahman H. [Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria (Egypt); Gepreel, Mohamed A.-H.; Gouda, Mohamed K. [Department of Materials Science and Engineering, Egypt–Japan University of Science and Technology, Alexandria (Egypt); Hefnawy, Ahmad M.; Kandil, Sherif H. [Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria (Egypt)

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti{sub 77}Nb{sub 17}Ta{sub 6}) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti–6Al–4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity. - Highlights: • The properties and biocompatibility of new titanium alloys for biomedical applications were investigated. • Biocompatibility is excellent compared to Ti-6Al-4V in terms of a lower young's modulus and better corrosion resistance. • The newly designed alloys have good strength and lower Young's modulus combined with excellent corrosion resistance. • The new alloys have a strong potential for biomedical applications.

  20. Modifying ability of titanium-based pelleted master alloys

    Science.gov (United States)

    Bazhin, V. Yu.; Savchenkov, S. A.; Kosov, Ya. I.

    2017-05-01

    The problem of enhancing the quality of pressed titanium master alloys is discussed to increase the rate and degree of dissolution of their components and to ensure the formation of a fine-grained structure in aluminum alloys. A technology of producing a pelleted titanium master alloy for effective correction of the chemical composition of an aluminum alloy in casting is developed and tested. Incoming inspection of the component composition and the flux distribution in the volume of pressed pellets of various manufacturers is performed. The rate of dissolution of pressed powder master alloys in the aluminum melt is studied, and their modifying ability is estimated after studying the microstructures of cast blanks. Molasses is used as a binder in a pelleted master alloy. As a result, we achieved a uniform flux distribution over the pellet volume and the formation of uniform pores after annealing as compared pelleted master alloys of other manufacturers. The fabricated alloying briquettes have higher strength characteristics and their dissolution rate in the aluminum melt is higher than those of analogs by 15-20%.

  1. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computation...

  2. Cerium-based conversion coatings on magnesium alloys

    Science.gov (United States)

    Castano Londono, Carlos Eduardo

    This research is primarily focused on gaining a better understanding of the deposition and corrosion behavior of cerium-based conversion coatings (CeCCs) on AZ31B and AZ91D Mg alloys. Deposition of homogenous and protective CeCCs was highly dependent on the surface preparation steps. The best results were obtained when Mg samples underwent grinding, acid cleaning, and alkaline cleaning processes. This reduced the number of active cathodic sites and promoted the formation of a protective Al-rich Mg oxide/hydroxide layer. Electrochemical properties of the CeCCs were also strongly correlated with morphological, microstructural, and chemical characteristics. Protective CeCCs were deposited on both AZ31 and AZ91 Mg alloys using a range of deposition times (5 to 180 s) and temperatures (10 to 80 °C). However, shorter deposition times (5 s) and lower deposition temperatures (~10 °C) showed higher impedance and longer bath stability than other deposition conditions. The increase in impedance was related with fewer cracks and smaller nodule sizes. Additional investigations of post-treated CeCCs exposed to NaCl environments showed an increased in the total impedance. The increase in corrosion protection of the CeCCs was associated with an overall increase in coating thickness from 400 to 800 nm. A microstructural evolution from ~3 nm nodular nanocrystals of CeO2/CePO4*H2O embedded in an amorphous matrix to >50 nm CePO4*H2O nanocrystals was responsible for the electrochemically active corrosion protection. Exposure of CeCCs to sunlight in humid environments promoted the reduction of Ce(IV) into Ce(III) species compared to unexposed coatings. This reduction process was related with photocatalytic water oxidation reaction.

  3. Infection free titanium alloys by stabile thiol based nanocoating.

    Science.gov (United States)

    Cökeliler, Dilek; Göktaş, Hilal; Tosun, Pinar Deniz; Mutlu, Selma

    2010-04-01

    As biomedical materials, titanium and titanium alloys (Ti-6Al-4V) are superior to many materials in terms of mechanical properties and biocompatibility. However, they are still not sufficient for prolonged clinical use because the biocompatibility of these materials must be improved. In this study, the prevention of the attachment of test microorganism on the Ti alloy surfaces by thiol (-SH) and hydroxyl (-OH) functional group containing monomer in plasma based electron beam generator was reported in order to prepare anti-fouling surfaces. The precursor, 11-mercaptoundecanoic acid is used as plasma source to create nano-film with 30-60 nm approximately. The surface chemistry and topology of uncoated and coated samples are characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Atomic Force Microscopy (AFM). Static contact angle measurements are performed to state the change of surface hydrophilicity. All coated samples are tested in-vitro environment with Staphylococcus epidermidis that is chosen as the test bacteria strain in view of its significance for the pathogenesis of medical-device-related infections. This test is repeated after certain period of times and samples are waited in dynamic fluid media in order to investigate the stability of nano-coating. Plasma polymerized 11-mercaptoundecanoic acid film (PP MUA) with 42 +/- 4 nm is found alternative, stabile and simple method to create bacterial anti-fouling surfaces. The static contact angle of the coated surface is 34 +/- 80 whereas the uncoated surface is 57 +/- 50. For the coated surface, the presence of C-OH and C==O groups in infrared spectra defining the PP MUA is achieved by the plasma polymerization. The attachment of the model microorganism on the biomaterial surface prepared by PP MUA is reduced 85.3% if compared to unmodified control surface.

  4. Design and characterization of a novel nickel-free cobalt-base alloy for intravascular stents.

    Science.gov (United States)

    Wang, Qiang; Ren, Yibin; Babar Shahzad, M; Zhang, Wei; Pan, Xumeng; Zhang, Song; Zhang, Dan

    2017-08-01

    Co-Cr-W-Ni alloy (L605) with high tensile strength is used in coronary stents. The thickness of individual strut of the stent is reduced which can decrease the stent restenosis rate. However, about 10% Ni element content in L605 is found to cause allergic reactions and pulmonary embolism, similar to the traditional 316L stainless steel. In this study, a novel nickel-free cobalt-base alloy Co-20Cr-12Fe-18Mn-2Mo-4W-N (wt%) was designed and fabricated in order to efficiently avoid the potential hazards of Ni element. Fe and Mn, essential elements of human body, were added in the alloy to substitute part of Co element. In comparison to L605 alloy, the tensile strength of the new alloy was higher than 1000MPa while elongation was above 55%. The pitting potential of the new alloy was measured close to 1000mV, also higher than that of L605 alloy. CCK-8 test indicated that the cytotoxicity of the new alloy is grade 1, reflecting that Co-20Cr-12Fe-18Mn-2Mo-4W-N alloy has no cytotoxic effects. There was no significant difference in the apoptosis rates between Co-20Cr-12Fe-18Mn-2Mo-4W-N and L605 alloy. The newly developed cobalt-base alloy showed excellent mechanical, corrosion resistance and biological properties, which could make it a desirable material for future clinical investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.

    2009-01-01

    The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC) and thermodyna......The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC...... was simulated using the Thermo-Calc software package. This approach enabled us to obtain the enthalpy of cooling for each alloy and to compare its temperature derivative with the experimental DSC curves....

  6. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P. (PNNL); Windisch, C.F. (PNNL); Johnson, C.D. (NETL); Schaeffer, C. (National Energy Research Laboratory, Morgantown, WV)

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  7. Microstructure and tensile properties of magnesium alloy modified by Si/Ca based refiner

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhi-chao; SUN Yang-shan; WEI Yu; DU Wen-wen; XUE Feng; ZHU Tian-bai

    2005-01-01

    Microstructure and mechanical properties of pure magnesium and AZ31 alloy with Ca/Si based refiner addition were investigated. The results indicate that addition of Ca/Si based refiners to pure magnesium and AZ31 alloy results in remarkable microstructure refinement. With proper amount of refiner addition, the grain size in as cast ingots can be one order of magnitude lower than that without refiner addition. Small amount of refiner addition to AZ31 alloy increases both ultimate strength and yield strength significantly, while the ductility of the alloy with refiner addition is similar to that without refiner addition. Addition of refiner improves the deformability of AZ31 alloy and extruded or hot rolled specimens (rods or sheets) with refiner addition exhibit higher surface quality and mechanical properties than those without refiner addition.

  8. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  9. Properties and Application of Iron-based Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jian-chen; Jiang Qing; Dai Jun

    2005-01-01

    The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fel4Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy ( △Hγ→ε) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.

  10. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  11. Influences of Alloying Elements W, Mo, Cr and Nb on Retained Beta Phase in 47Al Based near γ-TiAl Alloys

    Institute of Scientific and Technical Information of China (English)

    Limin DONG; Rui YANG

    2003-01-01

    The influences of alloying elements W, Mo, Cr, and Nb on retainedβ phase in 47Al based near γ-TiAl alloys have been studied.The results reveal that the amount of retained β phase is increased by the addition of Cr, Mo, W in rising rank, although the distribution of β phase in Cr-bearing alloys is different from that of Mo- or W-bearing alloys. For Nb-doped alloys, no retained β was found even when 5 at. pct Nb was added. The as-cast microstructural features and the distribution of theβ phase in the different alloy families were compared and interpreted in terms of the different segregation behaviour of these elements in Ti.

  12. Recent progress in high B{sub s} Fe-based nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M; Yoshizawa, Y, E-mail: motoki_ohta@hitachi-metals.co.jp [Hitachi Metals Ltd., 2-15-17 Egawa, Shimamoto Osaka, 961-0013 (Japan)

    2011-02-16

    High saturation magnetic flux density (high-B{sub s}) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m{sup -1} and a high B{sub s} of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe{sub 80.5}Cu{sub 1.5}Si{sub 4}B{sub 14} nanocrystalline alloy is 0.46 W kg{sup -1}, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg{sup -1}, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  13. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    Science.gov (United States)

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties.

  14. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  15. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  16. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Banu, P. S. Noori; Rani, S. Devaki [Dept. of Metallurgical Engineering, Jawaharlal Nehru Technological University, HyderabadI (India)

    2016-08-15

    In view of emerging applications of alpha+beta titanium alloys in aerospace and defense, we have aimed to develop a Back propagation neural network (BPNN) model capable of predicting the properties of these alloys as functions of alloy composition and/or thermomechanical processing parameters. The optimized BPNN model architecture was based on the sigmoid transfer function and has one hidden layer with ten nodes. The BPNN model showed excellent predictability of five properties: Tensile strength (r: 0.96), yield strength (r: 0.93), beta transus (r: 0.96), specific heat capacity (r: 1.00) and density (r: 0.99). The developed BPNN model was in agreement with the experimental data in demonstrating the individual effects of alloying elements in modulating the above properties. This model can serve as the platform for the design and development of new alpha+beta titanium alloys in order to attain desired strength, density and specific heat capacity.

  17. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  18. Oxidation behaviour of experimental Co-Re-base alloys in laboratory air at 1000 C

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, Michael; Mukherji, Debashis; Roesler, Joachim [Technische Universitaet Braunschweig, Institut fuer Werkstoffe (Germany); Gorr, Bronislava; Christ, Hans-Juergen [Universitaet Siegen, Institut fuer Werkstofftechnik (Germany); Braz da Trindade Filho, Vicente [Vallourec und Mannesmann Tubes, Duesseldorf (Germany)

    2009-01-15

    The oxidation behaviour of experimental Co-Re-based alloy at 1000 C was studied. A set of binary, ternary and quaternary alloys from the Co-Re-Cr-C system was used as model alloys to understand the role each alloying element plays on oxidation. The morphology and composition of the oxide scale that formed was analysed by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. It was found that the present Co-Re alloys with 23 at.% and 30 at.% Cr additions behaved very similarly to Co-Cr binary alloys with equivalent Cr content. The oxide scale was multilayered, consisting of a dense CoO outer layer, a porous mixed oxide layer containing Co-oxide and Co-Cr spinel, and a discontinuous and non-protective Cr{sub 3}O{sub 2} layer. The binary Co-Re alloy behaved differently in oxidation, and it formed only a monolithic CoO scale. However, Re in combination with Cr promotes Cr-Re-rich {sigma} phase formation, which oxidises preferentially compared to the Co matrix. Carbon ties up part of the Cr to form Cr{sub 23}C{sub 6} type carbides. However, these carbides are not stable at 1000 C and dissolved with time, therefore C had only a minor role in the oxidation behaviour. In general, increasing Cr content in the alloy improved oxidation resistance. (orig.)

  19. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  20. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  1. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  2. Phase Transformations and Microstructural Evolution in Aged Mn-Cu-Based Alloys

    Science.gov (United States)

    1990-06-01

    Sakhno, V. M. and Udovenko, V. A., "Fine Crystal Structure of MnCuGe Alloys", Physical Metalurgy and Metallography, Vol. 51, No. 4, pp. 93-97, 1981. 36...93 vi I. INTRODUCTION The physical metallurgy of alloys based on the Cu-Mn system has been a subject of research for more than 40 years [Ref. 1-4...separation within it [Ref. 24-30]. The most thorough and revealing body of research on the metal physics of Cu-Mn-based alloys has been reported in the

  3. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  4. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Dun-Hui; Han Zhi-Da; Xuan Hai-Cheng; Ma Sheng-Can; Chen Shui-Yuan; Zhang Cheng-Liang; Du You-Wei

    2013-01-01

    Ferromagnetic shape memory alloys,which undergo the martensitic transformation,are famous multifunctional materials.They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure.Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance.In this paper,the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.

  5. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  6. Doping designed half-Heusler insulators

    Science.gov (United States)

    Yu, Yonggang; Zhang, Xiuwen; Yu, Liping; Yan, Feng; Nagaraja, A.; Mason, T. O.; Zunger, Alex

    2015-03-01

    The 18-valence-electron 1:1:1 compounds of the type III-X-V, IV-X-IV, IV-IX-V and V-IX-IV include thermoelectric materials, topological insulators, and recently a high mobility p-type transparent conductor TaIrGe (arXiv:1406.0872), yet their intrinsic doping trends are poorly known or understood. Using the ``modern theory of doping'' that addresses via DFT and HSE the thermodynamic formation energies and the DFT-corrected transition levels in the gap, we find the following interesting trends: (1) High atomic number compounds such as TaIrGe made of metallic elements can surprisingly have a large band gap (direct) of ~ 2.5 eV. (2) Half-Heusler such as A(IV)B(X)C(IV) is naturally n-type if its DFT calculated chemical stability field resides within the A-rich or B-rich domain of the stability triangle, while it is p-type if it resides within the C-rich domain. Such calculations provide a good metric. (3) When the B atom [at (1/4,1/4,1/4)] is as large as Ir or Pt, the compound prefers p-type because the C-on-A antisite [such as Ge Ta (1 -) ] is a shallow acceptor producing holes yet the hole-killer donor of B-interstitial is unfavorable. (4) When B =Ni or Co, the compound favors n-type due to the dominance of B-interstitial defects (e.g. TiCoSb). We will show the calculated leading defect types and the dependence of carrier concentrations on chemical conditions for newly predicted half-Heulser insulators. This study is supported by DOE, Office of Science, Basic Energy Science, MSE division grant to CU Boulder.

  7. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  8. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.

  9. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    Potapenko; M.; Shikov; A.; Chernov; V.; Drobishev; V.; Gubkin; I.

    2005-01-01

    Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.……

  10. Rapid iodometric determination of copper in some copper-base alloys

    NARCIS (Netherlands)

    Agterdenbos, J.; Eelberse, P.A.

    1966-01-01

    Copper-base alloys, especially those containing tin, are readily dissolved in a mixture of hydrofluoric and nitric acids. In the resulting solution copper can be titrated iodometrically in the conventional manner.

  11. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  12. New approaches for rare earth-magnesium based hydrogen storage alloys

    Directory of Open Access Journals (Sweden)

    Huaiwei Zhang

    2017-02-01

    Full Text Available As the most possibility applied to the next generation negative electrode materials of Ni/ MH second battery, rare earth (RE-magnesium (Mg based alloys have been developed over the last few years. Recent advances about the RE-Mg based intermetallic compounds on the crystal structures, hydrogenation behaviors and electrochemical performances are reviewed in the paper. On the other hand, new results about the preparation and modification methods of the alloys are also covered in details.

  13. Quality management of dispersion-strengthened beryllium-based composite alloy

    Directory of Open Access Journals (Sweden)

    Дмитро Миколайович Макаренко

    2016-05-01

    Full Text Available The article is devoted to investigation of the composition and properties of dispersion-strengthened beryllium-based composite alloy, used in various industries, including the aircraft manufacture aircraft. Analyzed the properties of these materials are analyzed to ensure their quality management. The mathematical relationship of dispersion strengthened beryllium-based composite alloy parameters from content of beryllium oxide and temperature are built

  14. Thermal Fatigue Behaviour of Co-Based Alloy Coating Obtained by Laser Surface Melt-Casting on High Temperature Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermal fatigue behaviour of C o-based alloy coating obtained by laser surface melt-casting on the high tempe rature alloy GH33 was studied. The results show that after each time of thermal cycling, the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress. Through the first 50 times of thermal cycling, the morphology of coating still inherits the laser casting one, but the dendrites get bigger; After the second 50 times of thermal cycling, corrosion pits emerge from coating, and mostly in the places where coating and substrate meet. The fatigue damage type of coating belongs to stress corrosi on.

  15. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composi