WorldWideScience

Sample records for based heat exchanger

  1. Membrane Based Heat Exchanger

    OpenAIRE

    Aarnes, Sofie Marie

    2012-01-01

    Reduction of the energy used to acclimatise buildings is a huge challenge simultaneously with the implementation of air tight low energy buildings. In residential buildings with several living units centralised air handling units are the most energy efficient system. However, in a centralised system there is important to avoid leakages of pollutions between the exhaust air and the supply air. This leads to that flat plate heat exchangers are used instead of the more energy efficient rotary he...

  2. The Gravitational Heat Exchanger

    OpenAIRE

    De Aquino, Fran

    2015-01-01

    The heat exchangers are present in many sectors of the economy. They are widely used in Refrigerators, Air-conditioners, Engines, Refineries, etc. Here we show a heat exchanger that works based on the gravity control. This type of heat exchanger can be much more economic than the conventional heat exchangers.

  3. CTOD-based acceptance criteria for heat exchanger head staybolts

    International Nuclear Information System (INIS)

    The primary coolant piping system of the Savannah River Site (SRS) reactors contains twelve heat exchangers to remove the waste heat from the nuclear materials production. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The heat exchanger head is attached to the tubesheet by 84 staybolts. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The beat exchanger head is analyzed with a three- dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts, that is, bolts that have a flaw exceeding the ultrasonic testing (UT) threshold depth of 25% of the bolt diameter. A limit of 6 inactive staybolts is reached with a fracture criterion based on the maximum allowable local displacement at the active staybolts which corresponds to the crack tip opening displacement (CTOD) of 0.032 inches. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. A total of up to 6 staybolts, reported as containing flaws with depths at or exceeding 25% would be acceptable in the heat exchanger

  4. A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • EHE is based on the reverse Carnot cycle and current heat transfer mechanisms. • EHE can decrease the return water temperature in the PHN to 35 °C. • EHE can increase the heating capacity of the existed PHN by approximately 43%. • The return water temperature in the PHN is much lower than that in the SHN. • EHE has a simpler structure, lower manufacture cost, and better regulation characteristics. - Abstract: As urban construction has been developing rapidly in China, urban heating load has been increasing continually. Heating capacity of the existed primary heating network (PHN) cannot meet district heating requirements of most metropolises in northern China. A new type of ejector heat exchanger (EHE) based on an ejector heat pump and a water-to-water heat exchanger (WWHE) was presented to increase the heating capacity of the existed PHN, and the EHE was also analyzed in terms of laws of thermodynamics. A new parameter, the exergy distribution ratio (EDR), is introduced, which is adopted to analyze regulation characteristics of the EHE. We find that the EHE shows better performance when EDR ranges from 44% to 63%. EHE can decrease the temperature of return water in the PHN to 35 °C, therefore, this can increase the heating capacity of existed PHN by about 43%. The return water with lower temperature in the PHN could recover more low-grade waste heat in industrial systems. Because of its smaller volume and lower investment, EHEs could be applied more appropriately in district heating systems for long-distance heating and waste heat district heating systems

  5. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  6. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  7. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  8. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    OpenAIRE

    Gurpreet Kour

    2014-01-01

    Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat ex...

  9. Heat Exchanger

    International Nuclear Information System (INIS)

    A liquid metal heated tube and shell heat exchanger where straight tubes extend between upper and lower tube sheets. In order to prevent thermal stress problems, one tube sheet is fixed to the shell, and the other tube sheet is sealed to the shell by means of a flexible bellows. In the event of a catastrophic bellows failure, a housing that utilizes a packing gland sliding seal is used to enclose and back-up the bellows. Also, a key and slot arrangement is provided for preventing relative rotation between the shell and tube sheet which could damage the bellows and cause failure thereof. This exchanger is seen to be of use in sodium cooled reactors between the liquid sodium circuit on the steam generator

  10. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Gurpreet Kour

    2014-04-01

    Full Text Available Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat exchanger is theoretically investigated by using ring type roughness geometry. The performance obtained is then compared with smooth tube. Ringed tube has a significant effect on effectiveness of heat exchanger. The effectiveness is 3.2 times as compared with plane tube was reported. The effectiveness found to be increased with increasing roughness and decreasing pitch between the rings.

  11. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  12. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  13. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  14. A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps

    International Nuclear Information System (INIS)

    A new waste heat district heating system with CHP based on ejector heat exchangers and absorption heat pumps (DH-EHE) is presented to decrease heating energy consumption of existing CHP systems by recovering waste heat of exhausted steam from a steam turbine, which could also increase heat transmission capacity of the primary heating network (PHN) by decreasing temperature of the return water of existing PHN. A new ejector heat exchanger based on ejector refrigeration cycle is invented to decrease temperature of the return water of PHN to 30 °C under the designed case. DH-EHE is analyzed in terms of laws of thermodynamics and economics. Compared to conventional district heating systems with CHP (CDH), DH-EHE can decrease consumption of steam extracted from a steam turbine by 41.4% and increase heat transmission capacity of the existing PHN by 66.7% without changing the flow rate of circulating water. The heating cost of DH-EHE is 8.62 ¥/GJ less than that of CDH. Compared to CDH, the recovery period of additional investment of DH-EHE is about two years. DH-EHE shows better economic and environmental benefits, which is promising for both district heating systems for long-distance heat transmission and waste heat district heating systems. - Highlights: • Heating capacity of this new heating system increases by 41% by waste heat recovery. • Temperature of return water of the primary heating network can be reduced to 30 °C. • Heating cost of new heating system is 8.62¥/GJ less than that of conventional one. • The recovery period of additional investment of new heating system is about 2 years. • This new heating system shows better economic and environmental benefits

  15. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  16. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  17. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  18. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  19. Heat exchanger design

    OpenAIRE

    Loukota, Martin

    2014-01-01

    This bachelor thesis solves design of a heat exchanger for hot water boiler with gasification chamber for preheating the combustion air with the heat of the combustion products. Calculation values were experimentally measured. Thesis contains brief description of the shell and tube heat exchanger, stoichiometric combustion calculation, geometrical dimensions design of the heat exchanger, pressure loss and thermal performance calculation. It also includes drawings of the designed exchanger.

  20. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  1. Second-Law based thermodynamic analysis of a novel heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.L.; Lei, Y.G.; Tao, W.Q.; Zhang, J.F.; Chu, P.; Li, R. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University (China)

    2009-01-15

    In the present investigation, second-law based thermodynamics analysis was applied to a new heat exchanger with helical baffles. The helical baffles are designed as quadrant ellipses and each baffle occupies one quadrant of the cross-section of the shell side. Experimental tests were carried out with cold water in the tube side with a constant flow rate, and hot oil on the shell side with flow rate range from 4-24 m{sup 3}/h. The temperatures and pressures for the inlet and outlet of both sides were measured. The heat transfer, pressure drop, entropy generation, and exergy loss of the new heat exchanger were investigated and compared with the results for a conventional shell-and-tube heat exchanger with segmental baffles. The computed results indicated that both the entropy generation number and exergy losses of the new heat exchanger design are lower than those of the heat exchanger with segmental baffles, which means that the novel heat exchanger has a higher efficiency than the heat exchanger with segmental baffles, from the second-law based thermodynamics viewpoint. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  3. Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process

    Institute of Scientific and Technical Information of China (English)

    潘敏强; 李金恒; 汤勇

    2008-01-01

    A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.

  4. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design

    International Nuclear Information System (INIS)

    Highlights: • A new 3D modeling for Mg-based metal hydride reactor is proposed. • Hydriding kinetics of Mg-based alloys is modeled based on the experimental data. • Helical coil heat exchanger has better heat transfer effect than traditional one. • The reactor with smaller non-dimensional pitch has favorable performance. - Abstract: Magnesium based metal hydride has been viewed as one of the most commonly-used materials in the practical applications of hydrogen energy systems. The heat and mass transfer processes have significant effects on the hydrogen storage performance of magnesium based metal hydride reactors. Incorporating helical coil heat exchanger into the reactor could be an effective way to improve the performance of heat and mass transfer. In this work, a new three-dimensional model for magnesium based metal hydride reactor with helical coil heat exchanger is proposed and solved using the commercial software package COMSOL Multiphysics V3.5a. The comparison of hydrogen storage behaviors between the reactors incorporating the traditional straight pipe and new helical coil heat exchangers is firstly conducted based on the numerical simulation. The comparison results show that the helical coil heat exchanger has better effect on improving the characteristics of reactor than the straight pipe heat exchanger due to its secondary circulation. The effects of key parameters, including the initial conditions, heat transfer coefficients of heat transfer fluid and helical coil geometry on the characteristics of reactor with the helical coil heat exchanger are also analyzed systematically. It is discovered that larger initial hydrogen pressure and lower initial temperature are beneficial to the improvement of hydrogen absorption kinetics, because of the greater driving force for the hydriding reaction. The results of optimal design suggest that smaller non-dimensional pitch, the ratio of helical pitch to helical diameter, improves the heat and mass transfer

  5. Microplate Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple...

  6. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  8. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    Science.gov (United States)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  9. SOLAR MULTI-STAGE ABSORPTION REFRIGERATION SYSTEMS BASED ON FILM TYPE HEAT-MASS EXCHANGE APPARATUSES

    OpenAIRE

    Дорошенко, О.В.; Антонова, А.Р.; Людницький, К.В.

    2015-01-01

    The paper presents the developed circuit solutions for alternative refrigeration systems based on the of heat-absorption cycle and solar energy utilization for regeneration (recovery) of the absorbent solution. Cascade principle of heat-mass exchange apparatuses construction was applied, of drying and cooling loops with varying of  temperature level and increasing  of absorbent concentration on the cascade steps. Film type heat and mass transfer equipment, which is the part of the drying and ...

  10. Heat exchangers: operation problems

    International Nuclear Information System (INIS)

    The main operation problems for heat exchangers are fouling, corrosion, vibrations and mechanical resistance. Fouling and corrosion lead to an over dimensioning, energy consumption increase, corroded pieces change, shutdown costs. Vibrations are taken in account during the dimensioning phase of the heat exchangers. Mechanical resistance problems are, for the classical ones, described in regulation texts. (A.B.). 5 figs., 4 tabs

  11. Experimental and numerical investigation of a cross flow air-to-water heat pipe-based heat exchanger used in waste heat recovery

    OpenAIRE

    J. Ramos; Chong, A.; Jouhara, H

    2016-01-01

    This paper applies CFD modelling and numerical calculations to predict the thermal performance of a cross flow heat pipe based heat exchanger. The heat exchanger under study transfers heat from air to water and it is equipped with six water-charged wickless heat pipes, with a single-pass flow pattern on the air side (evaporator) and two flow passes on the water side (condenser). For the purpose of CFD modelling, the heat pipes were considered as solid devices of a known thermal conductivity w...

  12. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  13. Support for heat exchangers

    International Nuclear Information System (INIS)

    The very large heat exchangers which are typical of many nuclear power plants place great demands on their supports. The support here described is for a vertical heat exchanger. A convex Lubrit plate allows a certain amount of transverse and rotational movement of the heat exhanger relative to the foundation. Taps engaging in the support surface of the heat exchanger and between the support box and the concrete foundation ensure that relative movement is restricted to those surfaces where it is intended. A steel box structure embedded in the concrete foundation dissipates heat transferred through the support system and avoids overheating the concrete. Horizontal stays support the heat exchanger against the concrete walls. (JIW)

  14. Combined mass and heat exchange network synthesis based on stage-wise superstructure model☆

    Institute of Scientific and Technical Information of China (English)

    Linlin Liu; Jian Du; Fenglin Yang

    2015-01-01

    Integrating multiple systems into one has become an important trend in Process Systems Engineering research field since there is strong demand from the modern industries. In this study, a stage-wise superstructure-based method is proposed to synthesize a combined mass and heat exchange network (CM&HEN) which has two parts as the mass exchange network (MEN) and heat exchange network (HEN) involved. To express the pos-sible heat exchange requirements resulted from mass exchange operations, a so cal ed“indistinct HEN super-structure (IHS)”, which can contain the all potential matches between streams, is constructed at first. Then, a non-linear programming (NLP) mathematical model is established for the simultaneous synthesis and optimiza-tion of networks. Therein, the interaction between mass exchange and heat exchange is modeling formulated. The NLP model has later been examined using an example from literature, and the effectiveness of the proposed method has been demonstrated with the results.

  15. Membrane and plastic heat exchangers performance

    OpenAIRE

    Masud Behnia; Mohammad Shakir Nasif; Graham L. Morrison

    2005-01-01

    The performance of a membrane-based heat exchanger utilizing porous paper as the heat and moisture transfer media is presented. The measured performance is compared with a plastic film heat exchanger. This novel heat exchanger is used in ventilation energy recovery systems. The results show that the sensible effectiveness is higher than the latent effectiveness. When a similar experiment was conducted using a plastic film heat exchanger surface instead of paper, where only heat is transferred...

  16. Modeling and Optimization for Heat Exchanger Networks Synthesis Based on Expert System and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LIZhihong

    2002-01-01

    A new superstructure from of heat exchanger networks(HEN) is proposed based on expert system (ES). The new superstructure from is combined with the practical engineering.The different investment cost formula for different heat exchanger is also presented based on ES.The mathematical model for the simultaneous optimization of network configuration is established and solved by a genetic algorithm.This method can deal with larger scale HEN synthesis and the optimal HEN configuration is obtained automatically.Finally,a case study is presented to demonstrate the effectiveness of the method.

  17. Synthesis of Flexible Heat Exchanger Networks with Stream Splits Based on Rangers of Stream Supply Temperatures and Heat Capacity Flowrates

    Institute of Scientific and Technical Information of China (English)

    李志红; 罗行; 华贵; W.Roetzel

    2004-01-01

    A new superstructure model of heat exchanger networks (HEN) with stream splits based on rangers of streams supply temperatures and heat capacity flow rates is presented. The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly, the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacity flow rates are pretreated; Secondly, several rules are proposed to establish the superstructure model of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly, the improving genetic algorithm is applied to solve the mathematical model established at the second step effectively, and the original optimal structure of HEN based on the maximum operation limiting condition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat load of heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operation condition between the upper and down bounds of supply temperature and heat capacity flow rates can be obtained based on the original optimal structure of HEN by means of these rules. A case study demonstrates the method presented in this paper is effective

  18. Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oezcelik, Yavuz [Ege University, Bornova, Izmir (Turkey). Engineering Faculty, Chemical Engineering Department

    2007-08-15

    In the computer-based optimization, many thousands of alternative shell and tube heat exchangers may be examined by varying the high number of exchanger parameters such as tube length, tube outer diameter, pitch size, layout angle, baffle space ratio, number of tube side passes. In the present study, a genetic based algorithm was developed, programmed, and applied to estimate the optimum values of discrete and continuous variables of the MINLP (mixed integer nonlinear programming) test problems. The results of the test problems show that the genetic based algorithm programmed can estimate the acceptable values of continuous variables and optimum values of integer variables. Finally the genetic based algorithm was extended to make parametric studies and to find optimum configuration of heat exchangers by minimizing the sum of the annual capital cost and exergetic cost of the shell and tube heat exchangers. The results of the example problems show that the proposed algorithm is applicable to find optimum and near optimum alternatives of the shell and tube heat exchanger configurations. (author)

  19. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  20. Total Heat Exchange Factor Based on Non-Gray Radiation Properties of Gas in Reheating Furnace

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; CHEN Hai-geng; XU Li; WU Bin

    2009-01-01

    Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted.Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated.The resuits show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases.The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.

  1. Compact heat exchangers modeling: Condensation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cascales, J.R.; Vera-Garcia, F. [Technical University of Cartagena, Thermal and Fluid Engineering Department, C/Dr. Fleming, s/n 30202 Cartagena, Murcia (Spain); Gonzalvez-Macia, J.; Corberan-Salvador, J.M. [Technical University of Valencia, Applied Thermodynamic Department, Valencia (Spain); Johnson, M.W.; Kohler, G.T. [Modine Manufacturing Company, Commercial Products Group, Racine, WI (United States)

    2010-01-15

    A model for the analysis of compact heat exchangers working as either evaporators or condensers is presented. This paper will focus exclusively on condensation modeling. The model is based on cell discretization of the heat exchanger in such a way that cells are analyzed following the path imposed by the refrigerant flowing through the tubes. It has been implemented in a robust code developed for assisting with the design of compact heat exchangers and refrigeration systems. These heat exchangers consist of serpentine fins that are brazed to multi-port tubes with internal microchannels. This paper also investigates a number of correlations used for the calculation of the refrigerant side heat transfer coefficient. They are evaluated comparing the predicted data with the experimental data. The working fluids used in the experiments are R134a and R410A, and the secondary fluid is air. The experimental facility is briefly described and some conclusions are finally drawn. (author)

  2. A solar combisystem based on a heat storage with three internal heat exchangers. IEA task 26

    International Nuclear Information System (INIS)

    A Danish solar combisystem is theoretically investigated in this report. The principle of the system is that it is a standard solar domestic hot water system, in which the collector area has been oversized, in order to be able to deliver energy to an existing space heating system. This is made through an extra hat exchanger included in the domestic hot water tank. A TRNSYS model of the system is developed and a sensitivity analysis is performed by means of TRNSYS simulation. This analysis showed that the system could be improved by: 1. Reducing the auxiliary volume, 2. Using an electrical heating element in the storage tank during summertime, 3. Insulating the bottom of the storage better, 4. Eliminating all thermal bridges in the storage tank insulation, 5. Moving up the storage temperature sensor for the collector control to the level of the collector heat exchanger inlet, 6. Reducing the auxiliary set temperature to 45 deg. C. By improving the system, the thermal fractional saving can be increased about 5%pts. (au)

  3. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  4. Fouling analyses for heat exchangers of NPP

    International Nuclear Information System (INIS)

    Fouling of heat exchanges is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. In order to analyze the fouling for heat exchangers of nuclear power plant, the fouling factor is introduced based on the ASME O and M codes and TEMA standards. This paper focuses on the fouling analyses for the heat exchangers of several primary systems; the RHR heat exchanger of the residual heat removal system, the letdown heat exchanger of the chemical and volume control system, and the CCW heat exchanger of the component cooling water system, Based on the results of the fouling levels for the three heat exchangers are assumed

  5. Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems

    International Nuclear Information System (INIS)

    The Lagrange multiplier method is introduced for the global optimization of HENs (heat exchanger networks) with fixed layouts to give the optimal configuration of thermal systems that cannot be determined by other methods, such as HEN synthesis or linear programming method. A four-loop HEN with five heat exchangers and heat exchangers in thermodynamic systems are optimized as two examples from different perspectives. The first perspective is based on energy conservation where the energy and heat transfer equations act as the constraints in the Lagrange function. The second perspective is the heat transfer irreversibility where the entransy dissipation-based equation acts as the constraint. The entransy dissipation-based constraint eliminates the number of unknown intermediate fluid temperatures in the HENs and the corresponding number of constraints for HENs in thermal systems, which greatly simplifies the solution of optimization equations. Although the entropy generation-based equation can also act as a constraint, the intermediate fluid temperatures in the HENs cannot be eliminated because the entropy generation is a function of the absolute fluid temperature. As a result, the number of constraints is the same as when using energy conservation, so the optimization procedure for multi-component thermal systems cannot be simplified. - Highlights: • Lagrange multiplier method is a good option in thermal system optimization. • Entransy balance equation acts as a constraint without intermediate temperatures. • Entransy dissipation-based method greatly simplifies the optimization. • Entransy method is superior to traditional and entropy methods in some cases

  6. Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2015-01-01

    The existing building stock will likely undergo widespread energy renovations to meet future emissions targets. Single-room ventilation may enable the process due to its simple installation, low fan power, and potential for local heat recovery. A short plastic rotary heat exchanger is developed for...... single-room ventilation based on thermal design theory. Performance is predicted from correlations of dimensionless groups for regenerative heat exchangers, and this guides the selection of a polycarbonate honeycomb with small circular channels. Experiments quantify flows and determine temperature...... efficiencies at several ventilation rates while accounting for heat gains from motors and air leakage. The measured and modelled temperature efficiencies show adequate agreement and exceed 80% for a balanced nominal ventilation rate of 28m3/h. This result meets the development criteria but cannot validate the...

  7. Plate heat exchanger

    International Nuclear Information System (INIS)

    In a plate heat exchanger required to handle corrosive, toxic or radioactive fluids, wherein each plate has a peripheral recess or like formation adapted for receiving an elastomeric gasket, the plates are welded together in pairs by the method comprising the steps of inserting into the gasket recess of a first plate of said pair a metal packing piece and welding the second place (e.g. by a laser or electron beam weld running along the base of the recess) superimposing a second plate on to the first in contact with the packing piece and welding the second plate to the packing piece (e.g. by a laser or electron beam weld). The packing piece may be of hollow or solid cross section and is preferably of the same material (e.g. titanium or stainless steel) as the plates. In use a service fluid in heat exchange with the said corrosive etc. fluid is confined by peripheral and normally elastomeric gaskets. (author)

  8. Heat exchanger restart evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  9. Heat exchanger restart evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  10. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  11. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  12. Heat exchanger panel

    Science.gov (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  13. Development of VB Based Software For Design And Analysis of Heat Exchangers

    OpenAIRE

    Prof. Sandeep M. Joshi; Iqbal Mujawar2

    2014-01-01

    The exchange of heat is one of the most important processes in the mechanical industry and heat exchanger is the major equipment used to transfer heat from one medium to another. This project work on the Computer Aided Design (CAD) of shell and tube, double pipe and spiral coil heat exchanger aims to provide an easy way to design it. A case study question was taken and all the necessary calculations in the thermal design are carried out using standard method of heat exchanger ...

  14. Comparison of heat transfer efficiency between heat pipe and tube bundles heat exchanger

    OpenAIRE

    Wu Zhao-Chun; Zhu Xiang-Ping

    2015-01-01

    A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchang...

  15. Heat exchanger vibration

    International Nuclear Information System (INIS)

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  16. Tubular heat exchanger

    International Nuclear Information System (INIS)

    The invention concerns a heat exchanger of which the tubes, placed in a long casing, cross the casing cover in a sealed manner. These tubes are fixed to the tube plate forming this cover or to the branch tubes it comprises by means of compression joints. These joints make it possible to do away with welds that are sources of defects and to improve the operational safety of the apparatus. An advantageous form of the heat exchanger under the invention includes a manifold for each thermal exchange fluid, and one end of each tube is connected to this manifold by a pipe that is itself connected to the tube by a threaded connection. The latter provides for easy disconnection of the pipe in order to introduce a probe for inspecting the state of the tubes

  17. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    Science.gov (United States)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  18. Fouling analyses of heat exchangers for PSR

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper focuses on fouling analyses for six heat exchangers of two primary systems in two nuclear power plants; the regenerative heat exchangers of the chemical and volume control system and the component cooling water heat exchangers of the component cooling water system. To analyze the fouling for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. Based on the results of the fouling analyses, the present thermal performances and fouling levels for the six heat exchangers were predicted

  19. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    Science.gov (United States)

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  20. Optimum geometry of MEMS heat exchanger for heat transfer enhancement

    OpenAIRE

    Nusrat J. Chhanda; Muhannad Mustafa; Maglub Al Nur

    2010-01-01

    The study is based on an analysis of MEMS heat exchanger of three different geometries: wavy, triangular and rectangular using water as test fluid. The problem is solved using finite element method. The aim of this analysis is to evaluate the performance of MEMS heat exchanger for different geometry and to obtain an optimum design for better heat enhancement. It is apparent from this work that rectangular surface heat exchanger shows the best performance for heat enhancement technique in comp...

  1. Optimization of heat exchanger for indirectly heated water heater

    OpenAIRE

    Kaduchová Katarína; Lenhard Richard; Jandačka Jozef

    2012-01-01

    Due to the optimization of geometrical parameters of the heat exchanger in indirect heated water heaters created a mathematical model of heating hot water, by which I have subsequently made the simulation of the device to change its geometrical parameters. Based on these results, the impacts of the geometrical parameters affect the performance of the heat exchanger. The results of the optimization to create a CFD model which watched at the behavior of optimized heat exchanger for indirect hea...

  2. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers

    International Nuclear Information System (INIS)

    Cu-based, single- and double-layered, microchannel heat exchangers (MHEs) were fabricated and assembled. Comparative measurements on liquid flow characteristics and heat transfer performance were conducted on these devices. Results were compared at the individual microchannel level as well as at the device level. The present results demonstrate that double-layered MHEs exhibit similar heat transfer performance while suffering a much lower pressure drop penalty compared to single-layered MHEs. Another Cu-based, double-layered, liquid–liquid counter-flow MHE was fabricated, assembled and tested. Results show that a low-volume, multilayered, high-performance, liquid-to-liquid MHE is achievable following the manufacturing protocols of the present double-layered, liquid–liquid counter-flow MHE. (paper)

  3. Thermal dispersivity based calibration of a numerical borehole heat exchanger model

    Science.gov (United States)

    Wagner, Valentin; Bayer, Peter; Bisch, Gerhard; Klaas, Norbert; Braun, Jürgen; Blum, Philipp

    2013-04-01

    Shallow geothermal energy is used worldwide as a heat and/or cooling source for buildings. The most often used technique to exploit energy from the subsurface is ground source heat pump systems in combination with a borehole heat exchanger (BHE). The BHE consists either of one U-pipe, two U-pipes or a coaxial pipe, which are inserted in a borehole. The remaining void space is filled with a grouting material to improve the thermal connection between the pipes and the subsurface and to protect the subsurface if there is a leakage in the pipes. In the pipes, a heat carrier fluid is circulated to establish a thermal gradient around the BHE and thus promote conductive heat transfer. This causes a temperature anomaly in the subsurface. Extension and magnitude of such temperature anomalies do not only depend on the amount of exchanged energy, but also on the characteristics of the ground and the installed ground source heat pump system itself. In this study, we developed a high-resolution finite element BHE model to simulate the heat propagation from a BHE to the subsurface or vice versa. First, the resulting heat propagation predicted by the numerical model is compared to the analogous analytical solutions. Then the numerical model is calibrated based on a large-scale geothermal tank experiment. The tank has a size of 9m × 6m × 4.5m (length × width × depth), and it hosts a layered artificial aquifer with four BHEs, which are surrounded by a dense temperature sensor network (> 150 PT-100 temperature sensors). In the tank, a hydraulic gradient can be established and thus groundwater flow can be imitated. By calibrating the numerical model, the sensitivity of longitudinal and transversal dispersivity values is evaluated. Our analysis cannot prove that the commonly assumed ratio of 1:10 between transversal and longitudinal dispersivity is correct. Rather, it is shown that there exists a wide range of possible parameter value combinations.

  4. Rational Efficiency of a Heat Exchanger

    OpenAIRE

    McGovern, Jim; Smyth, Brian P.

    2011-01-01

    The authors propose a new and unique definition for the rational efficiency of a heat exchanger. This new rational efficiency is defined in terms of its sub-rational efficiencies: a heat transfer rational efficiency and a friction rational efficiency for each of the fluid systems comprising the heat exchanger. The heat transfer rational efficiency is based on the definition of a mean temperature for the heat source and a mean temperature for the heat sink and reflects the exergy supplied and ...

  5. Heat exchanger with removable orifice

    International Nuclear Information System (INIS)

    A nuclear reactor steam generator heat exchanger is described which has orifices in the entrance openings of the heat exchange tubes which, although securely fastened to the tubes, can be easily removed by remote handling equipment. (U.K.)

  6. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  7. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    Science.gov (United States)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  8. Plate heat exchanger

    International Nuclear Information System (INIS)

    The plate exchanger described includes a series of individual modules joined together, communicating in pairs to delimit two flow circuits separated by two fluids mutually exchanging calories. Each module includes at least one flat frame around a central cavity, at least two apertures made in the frame respectively for the inlet and oulet of the fluids crossing the cavity and at least one opening in the frame for the fluids to pass to a neighbouring module. The frames of the modules form a stack plane upon plane and are isolated by a thin leak-tight sheet parallel to the plane of the frames and separating the fluid substances in two superimposed frames. The heat transfer between these fluids occurs through this thin sheet from one module to the next in the stack

  9. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  10. HEAT EXCHANGERS IN SEWAGE PIPES

    OpenAIRE

    Podobeková, Veronika; Peráčková, Jana

    2014-01-01

    The article discusses utilization of heat from waste water in sewage. During the year, temperature of water in sewage ranges between 10 °C and 20 °C and the heat from sewage could be used for heating, cooling and hot water preparation in building. The heat is extracted through a transfer surface area of the heat exchanger into the heat pump, which is able to utilize the low–potential energy. Different design and types of the heat exchangers in sewage are dealt with: heat exchangers embedded i...

  11. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  12. Counterflow Regolith Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  13. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    Science.gov (United States)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  14. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  15. Heat exchanger staybolt acceptance criteria

    International Nuclear Information System (INIS)

    The structural integrity demonstration of the primary coolant piping system includes evaluating the structural capacity of each component against a large break or equivalent Double-Ended Guillotine Break. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The Savannah River Site heat exchanger head is attached to the tubesheet by 84 staybolts. Access to the staybolts is limited due to a welded seal cap over the staybolts. An ultrasonic testing (UT) inspection technique to provide an in-situ examination of the staybolts has recently been developed at SRS. Examination of the staybolts will be performed to ensure their service condition and configuration is within acceptance limits. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. The heat exchanger head is analyzed with a three-dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts. Evaluation of specific, inactive staybolt configurations based on the UT results can be performed with the finite element model and fracture methodology in this report

  16. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  17. A risk based performance evaluation of plate-and-frame heat exchangers

    Science.gov (United States)

    Rehman Khan, Jameel Ur; Zubair, Syed

    2002-11-01

    Plate-and-frame heat exchangers (PHEs) operating in process industries are fouled to a greater or lesser extent depending on surface temperature, surface condition, material of construction, fluid velocity, flow geometry and fluid composition. This fouling phenomenon is time-dependent and will result in a decrease in the overall heat transfer coefficient and increase in the pressure drop of the PHE. Once the overall heat transfer coefficient decreases to a minimum acceptable level, cleaning of the equipment becomes necessary to restore the performance. In this paper, we present a simple probabilistic approach to characterize various fouling models that are commonly encountered in many industries. These random fouling growth models are then used to investigate the impact on risk based thermal effectiveness, overall heat transfer coefficient and the hot- and cold-fluid outlet temperatures of a PHE. All the results are presented in a generalized form in order to demonstrate the generality of the risk-based procedure discussed in this paper.

  18. Research of characteristics slot-hole heat exchanger with the developed surface of heat exchange

    OpenAIRE

    Malkin E. C.; Nikolaenko Yu. E.; Djachkov M. I.; Nikolaienko T. Yu.

    2010-01-01

    Thermal characteristics of multichannel slot-hole heat exchanger with the developed surface of heat exchange inside the opened-cycle water cooling system are experimentally investigated. Graphic dependences of average value of temperature of the simulator of a heat current and temperatures of the heat exchanger base are presented on tapped-off power. Dependences of tapped-off power and hydraulic losses on the of water consumption are given. It is shown, that use of developed slot-hole heat ex...

  19. Design of heat pipe heat exchanger used in communication base station%通信基站用热管换热器的设计

    Institute of Scientific and Technical Information of China (English)

    鲍玲玲; 王景刚; 王晓明

    2011-01-01

    热管及热管换热器凭借着其优良的传热特性得到了日益广泛的应用.分析了通信基站用重力热管换热器的工作原理及特点,结合通信基站实例,利用VB语言编写了重力热管换热器的计算程序,设计了一款结构和性能较合理的重力热管换热器.%Heat pipe and heat pipe heat exchanger have good heat transfer characteristics,therefore they obtain increasing application. Analyses the characteristics and working principle of the heat pipe heat exchanger used in communication base station,with a communication base station example,and based on VB compiling language,makes the calculation program for gravitation heat pipe heat exchanger and designs a gravitation heat pipe heat exchanger with adequate structure and performance.

  20. Heat exchanger repair

    International Nuclear Information System (INIS)

    There are two ways to rapir heater tubes in tubular heat exchangers, partial replacement of tubes and a technique called sleeving. In the former case, the defective tube section is cut out, removed, and replaced by a new section butt welded to the old piece of tube which remained in place. In the sleeving technique, a tube sleeve is slid into the defective tube and, after expansion, welded to the original tube. In this case, the welding technique employed is not laser welding, as is often maintained in the literature, but TIG pulsation welding. The results of preliminary tests and the qualification of both processes are outlined in the article; an account is given also of the replacement of the tube sections when repairing condensate coolers. (orig.)

  1. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  2. Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger

    International Nuclear Information System (INIS)

    CFD study is done here to propose an efficient PCHE (Printed Circuit Heat Exchanger) model; used as a recuperator in International Thermonuclear Experimental Reactor (ITER). 3D steady state conjugate heat-transfer numerical simulations are done; considering the variation of thermo-physical properties as a function of temperature. Helium is used as a working fluid and alloy 617 as solid substrate. The study is done for various angle of bend (θ = 0°(straight), 5°, 10° and 15°) and Reynolds number (Re = 350, 700, 1400 and 2100). Various types of flow patterns, within one wavy-section, are presented to analyze thermal-hydraulic characteristics. Thermal hydraulic performance parameters are presented for the various wavy-sections as well as within a section; and for the complete PCHE model. Heat transfer enhancement as compared to pressure penalty is higher for the wavy channel; and increases with increasing Re and θ. Wavy as compared to plane channel based PCHE is demonstrated here to give better thermal-hydraulic performance. A detailed characteristics as well as performance-parameters for thermal hydraulics in a 3D wavy channel based PCHE model − not found in the literature − is presented here. - Highlights: • Studied effect of Reynolds number and angle of bend. • Analyzed thermal-hydraulic characteristics, by various types of flow pat-terns. • Demonstrated an increase in local heat flux due to change in the flow-direction. • Demonstrated better performance of wavy as compared to plane channel based PCHE. • Proposed correlation for friction factor and Nusselt number

  3. Numerical research of heat transfer in gas heat exchanger

    OpenAIRE

    Khomutov Eugene O.; Gil Andrey V.

    2015-01-01

    The article presents a numerical study of heat and mass transfer based on the finite volume method. Researched by installing a tubular heat exchanger for heating of natural gas. The results according to changes in temperature of the natural gas depend on the initial temperature of the heating flow. The results can be used in the analysis of further effective combustion.

  4. Experimental research on heat transfer in a coupled heat exchanger

    OpenAIRE

    Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo

    2013-01-01

    The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...

  5. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    Science.gov (United States)

    Mert, Suha Orçun; Reis, Alper

    2016-06-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  6. Heat exchange fluids and techniques. [US patents

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, M.W.

    1979-01-01

    The detailed, descriptive information presented is based on US patents, issued since January 1975, that deal with heat exchange fluids and techniques, and their potential for energy saving. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, an advanced, technically oriented review of heat exchange fluids and techniques is presented. Information is included on the design and construction of heat exchangers; heat transfer fluids; low temperature processes; heat storage; heat transfer control in buildings; solar and geothermal energy processes; and industrial, medical, and residential uses of heat exchangers. (LCL)

  7. Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures

    CERN Document Server

    Neuville, Amélie; Schmittbuhl, Jean; 10.1111/j.1365-246X.2011.05126.x

    2011-01-01

    Natural open joints in rocks commonly present multi-scale self-affine apertures. This geometrical complexity affects fluid transport and heat exchange between the flow- ing fluid and the surrounding rock. In particular, long range correlations of self-affine apertures induce strong channeling of the flow which influences both mass and heat advection. A key question is to find a geometrical model of the complex aperture that describes at best the macroscopic properties (hydraulic conductivity, heat exchange) with the smallest number of parameters. Solving numerically the Stokes and heat equa- tions with a lubrication approximation, we show that a low pass filtering of the aperture geometry provides efficient estimates of the effective hydraulic and thermal properties (apertures). A detailed study of the influence of the bandwidth of the lowpass filtering on these transport properties is also performed. For instance, keeping the information of amplitude only of the largest Fourier length scales allows us to rea...

  8. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  9. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  10. Effect of temperature and pressure on the overall heat transfer coefficient in VHTR-based SI process heat exchangers

    International Nuclear Information System (INIS)

    In this paper, a sensitivity analysis on the overall heat transfer coefficient has been carried out as a function of operation temperature and pressure. The sulfur-iodine (SI) cycle and Westinghouse sulfur hybrid cycle, combined with a very high temperature gas-cooled reactor (VHTR), are well-known as feasible technologies for hydrogen production. The SI process consists of a Bunsen reactor; H2SO4, SO3, and HIx decomposers; and a HI pre-heater. The overall heat transfer coefficient of the process heat exchanger (PHE) used in the SI process is a very important factor when sizing the PHE

  11. Heat transfer in SiC compact heat exchanger

    International Nuclear Information System (INIS)

    For development of a compact SiC heat exchanger, numerical heat transfer analysis was conducted to investigate its performance for a wide range of thermal media, liquid LiPb and helium gas, flow rates. The numerical model used was based on the heat exchanger test module developed by the authors. Within the authors' experimental range, the heat quantity transferred from high temperature liquid LiPb to helium gas and the overall heat transfer coefficients obtained numerically are in agreement with the experimental results. Therefore, the numerical model has proved to be valid for estimation of heat transfer phenomena in the heat exchanger in incompressible regime. The heat quantity transferred from LiPb to He amounts up to 3.7 kW at helium pressure of 0.5 MPa. On the basis of the numerical results, a correlation for helium forced convection heat transfer in the heat exchanger is presented, which describes numerical results with an error of 1%. For heat transfer in LiPb, the Nusselt numbers calculated from an existing correlation for liquid metal heat transfer agree well with the present numerical results. The heat transfer of LiPb in the SiC compact heat exchanger would possibly be predicted from the conventional correlations based on the studies of liquid metal convective heat transfer. A concept of SiC compact heat exchanger studied could be applied to a design of intermediate heat exchangers operating at high temperatures in fusion reactor, as well as HTTR and VHTR systems.

  12. Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power

    Institute of Scientific and Technical Information of China (English)

    郭美茹; 朱启的; 孙志强; 周天; 周孑民

    2015-01-01

    To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles (ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area (UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15−363.15 K or 443.15−453.15 K, heptane is more suitable at 373.15−423.15 K, and R245ca is a good option at 483.15−503.15 K.

  13. Synthesis of Heat Exchanger Network Considering Multipass Exchangers

    Institute of Scientific and Technical Information of China (English)

    李绍军; 姚平经

    2001-01-01

    Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.

  14. Heat Exchangers Networks Synthesis and Optimisation Performed by an Exergy-Based Expert Assistant

    Directory of Open Access Journals (Sweden)

    Enrico Sciubba

    2000-03-01

    Full Text Available This paper presents a novel method for the design of “optimal” (or quasi-optimal Heat Exchanger Network (HEN. The method consists of an Expert System (ES based on a small number of powerful and strongly selective heuristic rules. The important contribution of this study lies in the formulation of the rules (that have been adapted from the existing literature as logical propositions, and in their subsequent implementation in a prototype ES that performs interactively with the user. There is a high demand for an “automatic” (in some sense methodology that may conveniently be adapted to design-and-optimisation problems. Pinch Technology (PT, at present the most widely adopted design procedure, is very successful in most types of applications (except in cases where mechanical and thermal power must be optimised concurrently, but it constitutes an operative tool, and assumes that the user is already familiar with the design of HEN. The approach presented in this paper is entirely different: we do not "mask" the thermodynamic and thermo-economic principles that guide the engineer in the path towards the “optimal” HEN configuration, and do not allow concerns about "user friendliness" to impair the necessary participation of the user to the HEN synthesis procedure. In fact, though ES of this work (which we prefer to call "Expert Assistant", to underline its peculiarity of constantly interacting with the user is still lacking many of the capabilities that a good designer possesses, the underlying procedure is, unlike any of the other existing Design-and-Optimisation Procedures, entirely inspectable by the user about its decision-making rules. It can be interrogated about its decision making, so that the logical path followed from the design data to the final solution can be inspected at will, and it can be used to directly compare different alternatives in a logically systematic fashion. The paper begins with a brief review of the HEN design

  15. Interpretation of ongoing thermal response tests of vertical (BHE) borehole heat exchangers with predictive uncertainty based stopping criterion

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Alberdi Pagola, Maria

    2015-01-01

    A method for real-time interpretation of ongoing thermal response tests of vertical borehole heat exchangers is presented. The method utilizes a statistically based stopping criterion for ongoing tests. The study finds minimum testing times for synthetic and actual TRTs to be in the interval 12–2...

  16. Heat exchanger fouling and corrosion

    International Nuclear Information System (INIS)

    Fouling of heat transfer surfaces introduces perhaps the major uncertainty into the design and operation of heat exchange equipment. After a brief description of the various types of fouling the chapter goes on to review the current theories of fouling including the turbulent burst theory. Fouling in equipment involving boiling and evaporation is often more severe than in single phase heat exchangers and moreover, in aqueous systems, is frequently associated with corrosion. The reasons for this are identified and illustrated by reference to corrosion in nuclear power plant steam generators. Finally the modification of heat transfer and pressure drop characteristics by fouling layers is briefly reviewed

  17. A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ursula Wittstadt

    2015-08-01

    Full Text Available In order to achieve process intensification for adsorption chillers and heat pumps, a new composite material was developed based on sintered aluminum fibers from a melt-extraction process and a dense layer of silico-aluminophosphate (SAPO-34 on the fiber surfaces. The SAPO-34 layer was obtained through a partial support transformation (PST process. Preparation of a composite sample is described and its characteristic pore size distribution and heat conductivity are presented. Water adsorption data obtained under conditions of a large pressure jump are given. In the next step, preparation of the composite was scaled up to larger samples which were fixed on a small adsorption heat exchanger. Adsorption measurements on this heat exchanger element that confirm the achieved process intensification are presented. The specific cooling power for the adsorption step per volume of composite is found to exceed 500 kW/m3 under specified conditions.

  18. Exergy-Economic Criteria for Evaluating Heat Exchanger Performance

    Institute of Scientific and Technical Information of China (English)

    Wu Shuangying; Li Yourong

    2001-01-01

    Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergyeconomic criteria which are defined as the total costs per unit heat transfer rate ηt t for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward.Furthermore, the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.

  19. The Heat Exchanger for Passive Part ECCS of WWER-1000 on Base of the Thermo siphons

    International Nuclear Information System (INIS)

    One of NPP's systems providing safe operation is the system of emergency core cooling system (ECCS), which primary function in accidents is to flood the nuclear reactor core and to assure the sub critical condition and core cooling. At injection of cold water in reactor thermal stresses and thermal fatigue in the vessel cladding and constructional materials are arise. Low temperature of the water injected in reactor is a reason of occurrence of these undesirable consequences. Some variants of the water heating in accumulators of ECCS are considered. Now at Ukrainian NPPs the electrical heating in accumulators is used. Electrical heaters create the essential additional loading to diesel generators at imposing of two accidents - the large break and losses of power supplies on own needs. It is offered to use a heater in accumulators that working by a principle two-phase thermal siphon which advantages is: small dimensions, small delay and design reliability. In such heat exchanger the heating medium is a direct steam and the heated up medium is water with boric acid from accumulators of ECCS. Under requirements of the service regulations of ECCS accumulators it is necessary to guarantee injected water heating up to 90 ?? in case of a small break and to 150 ?? in case of the large break. Results of calculations for different external diameters of a tube of thermal siphon which have allowed to define the constructive sizes of heat exchanger, providing necessary conditions for required functioning of passive part ECCS are submitted The calculation and analysis of operating modes of the changed circuit of passive part ECCS for various accidents is carried out. The calculated pressure drop indicates that changes do not have essential influence on system work as a whole. Thus, the submitted decision provides the increase of reliability of ECCS at small and large breaks accidents, i.e. in all modes stipulated by the project.(author)

  20. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  1. CFD-Based Correlation Development For Air Side Performance Of Finned And Finless Tube Heat Exchangers With Small Diameter Tubes

    OpenAIRE

    Bacellar, Daniel; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Air-to-refrigerant heat exchangers are a key component in air-conditioning and heat pump systems. A great deal of effort is spent on the design and optimization of these heat exchangers. One path towards improving their performance is the transition to smaller hydraulic diameter flow channels. This is evident by the recent introduction of microchannel heat exchangers in the stationary HVAC market. Systematic analyses demonstrates a great potential for improvement in terms of size, weight, ref...

  2. OPTIMASI KINERJA HEAT EXCHANGER TABUNG KOSENTRIS

    OpenAIRE

    Didik Wahjudi

    2000-01-01

    Heat exchanger effectiveness is affected by some factors such as pipe shape, temperature, cold and hot air direction and velocity entering the heat exchanger. Research about heat exchanger has been done but the significance level of the heat exchanger effectiveness resulted is unknown. A designed experiment should be done to optimize the performance of concentric tube heat exchanger with measured significance level. From the analysis of result of previous experiment, factors that seem to affe...

  3. Adaptive predictive control of laboratory heat exchanger

    OpenAIRE

    Bobál, Vladimír; Kubalčík, Marek; Dostál, Petr; Novák, Jakub

    2014-01-01

    Heat exchange belongs to the class of basic thermal processes which occur in a range of industrial technologies, particularly in the energetic, chemical, polymer and rubber industry. The process of heat exchange is often implemented by through-flow heat exchangers. It is apparent that for an exact theoretical description of dynamics of heat exchange processes it is necessary to use partial differential equations. Heat exchange is namely a process with distributed parameters. It is also necess...

  4. Heat exchanger demonstration expert system

    Science.gov (United States)

    Bagby, D. G.; Cormier, R. A.

    1988-05-01

    A real-time expert system intended for detecting and diagnosing faults in a 20 kW microwave transmitter heat exchanger is described. The expert system was developed on a LISP machine, Incorporated (LMI), Lambda Plus computer using Process Intelligent Control (PICON) software. The Heat Exhanger Expert System was tested and debugged. Future applications and extensions of the expert system to transmitters, masers, and antenna subassemblies are discussed.

  5. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 oC and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MWe). (author)

  6. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  7. Experimental evaluation of a Pt based heat exchanger methanol reformer for a HTPEM fuel cell

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2007-01-01

    .g. methanol. A hydrocarbon as methanol can be derived from e.g. biomass and be used directly in a PEM fuel cell, but with a poor performance and often complicated water management system. Another way of using methanol in a fuel cell is by steam reforming it over a catalyst to hydrogen : CH3OH+H2O <=> CO2 + 3H......2. Included in this reaction is the decomposition of methanol, which produces CO : CH3OH <=> CO + 2H2 , The CO can be removed by adding extra water to the gas by a water-gas-shift: CO + H2O <=> CO2 + H2. The hydrogen can then be used in a fuel cell with a much better performance than the DMFC. Many...... (up to 1-2%). This work examines the possibility of using a catalyst coated plate heat exchanger for the reforming process of methanol....

  8. Simulation of induction heating process with radiative heat exchange

    Directory of Open Access Journals (Sweden)

    A. Kachel

    2007-05-01

    Full Text Available Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and thermal fields do not allow taking into consideration radiative heat exchange between calculation model components, which limits thermal calculations only to the charge area. The paper presents a supplementation of the program Flux 2D with radiative heat exchange procedures.Design/methodology/approach: Commercial program Flux 2D designed for coupled electromagnetic and thermal calculation (based on finite element method was supplemented with authors program for radiative heat exchange based on numerical integration of classic equations.Findings: Supplementation EM-T calculations with radiative heat exchange between charge and inductor enables to calculate thermal insulation parameters and increase precision of modelling.Research limitations/implications: Procedures for radiative heat exchange enables calculation of two surfaces (flat or cylindrical with finite dimensions. The surfaces can be displaced relative to each other (charge shorter or longer than thermal insulation of inductor. Material of surfaces is modelled as: flat, diffuse, radiant surfaces absorb energy evenly in the whole spectrum (grey bodies. The whole system is modelled as in a steady thermal state (quasi-steady.Originality/value: Authors program extends Flux 2D features with a possibility for calculating radiative heat transfer. The application of radiative process is possible between all components of the studied model, not only for the boundary conditions.

  9. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  10. Simple and low cost method for metal-based micro-capillary channels for heat exchanger use

    International Nuclear Information System (INIS)

    In this work, we present an alternative, low cost method for the fabrication of a heat exchanger utilizing metal-based microchannels using the UV-LiGA technique. Lithography is used to pattern dry film negative photoresist (Ordyl P-50100) on the substrate. The resist is laminated over the substrate and exposed with a UV source. The use of dry film resist allows for simple and inexpensive microchannel patterns without requiring advanced cleanroom equipment. Following the lithography process, electrodeposition of metals is used to fill the recesses patterned in the resist. In this work, nickel has been electroplated into the bounding resist structure. After electroplating, the remaining resist is dissolved leaving free standing metal structures. The fabricated exchanger is then evaluated based on thermal absorption of simulated waste heat sources and capillary action of the metal channels themselves. Channels are fabricated to heights of 60, 70 and 90 μm respectively on copper substrate using these methods. Working fluid mass transfer rate from the heated microchannel heat exchanger (MHE) is utilized as a basic metric of operation. The mass transfer rate recorded from the nickel-based MHE is 2.19, 2.81 and 3.20 mg s−1 respectively for the different channel heights. This implies an effective thermal power consumption rate of 1.66, 2.13 and 2.42 kW m−2 respectively. By contrast, an MHE fabricated with 115 and 142 μm tall channels on silicon substrate is shown to evaporate up to 2.84 and 3.04 mg s−1 respectively, giving an effective thermal power consumption of 2.15 and 2.31 kW m−2 respectively. An investigation of working fluid contact angle with the electroplated nickel surface is also presented. The surface is found to be a porous structure stemming from the electroplating process. (paper)

  11. Experimental study on heat exchange of several types of exchangers

    Institute of Scientific and Technical Information of China (English)

    周志华; 赵振华; 于洋

    2009-01-01

    Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.

  12. Heat exchanges in coarsening systems

    International Nuclear Information System (INIS)

    This paper is a contribution to the understanding of the thermal properties of ageing systems where statistically independent degrees of freedom with greatly separated time scales are expected to coexist. Focusing on the prototypical case of quenched ferromagnets, where fast and slow modes can be respectively associated with fluctuations in the bulk of the coarsening domains and in their interfaces, we perform a set of numerical experiments specifically designed to compute the heat exchanges between different degrees of freedom. Our studies promote a scenario with fast modes acting as an equilibrium reservoir to which interfaces may release heat through a mechanism that allows fast and slow degrees to maintain their statistical properties independently

  13. MICROMACHINED HEAT EXCHANGER FOR A CRYOSURGICAL PROBE

    OpenAIRE

    Zhu, W; Gianchandani, Yogesh B.; Nellis, G. F.; Klein, Sanford A.

    2005-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920) International audience This paper describes a lithography-based microfabrication process developed for a recuperative heat exchanger intended for use in a cryosurgical probe. The probe, which uses the Joule-Thomson (JT) cooling cycle, must achieve a temperature < -50°C, with a freeze rate of 25-50°C/min. The heat exchanger must maintain high stream-to-stream thermal conductance while restricting...

  14. Gasketed plate type heat exchanger design software

    OpenAIRE

    Gebremariam, Aklilu

    2016-01-01

    The purpose of this thesis was to make the design of gasketed plate type heat exchangers easier, simple, and accurate by reducing human error. Properly designed heat exchangers can provide more benefits and better safety in wide range of applications. Since the design of heat exchangers is so complicated and involves several steps, computer-aided design has come to be widely used. In this design, along with the knowledge of heat exchangers, the Visual Studio 2013 Professional and the programm...

  15. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  16. Development of Submersible Corrugated Pipe Sewage Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    BAI Li; SHI Yan; TAN Yu-fei

    2009-01-01

    Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and de-sign on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimental-ly.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time.the quantity ot heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat ex-changer is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.

  17. Optimal design of the separate type heat pipe heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YU Zi-tao; HU Ya-cai; CEN Ke-fa

    2005-01-01

    Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.

  18. Multidimensional numerical modeling of heat exchangers

    Science.gov (United States)

    Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

  19. Multidimensional numerical modeling of heat exchangers

    International Nuclear Information System (INIS)

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG)

  20. Polymer spiral film gas-liquid heat exchanger for waste heat recovery in exhaust gases

    OpenAIRE

    Breton, Antoine

    2012-01-01

    In this master thesis report the development of an innovative spiral heat exchanger based on polymer materials is described. Building prototypes, erection of a test bench and firsts tests of the heat exchanger are presented. The heat exchanger prototype survived all tests especially several days in contact with aggressive gases. A facility integrating a Diesel exhaust gases production has been developed to test this heat exchanger design. Performance results obtained during the tes...

  1. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    Science.gov (United States)

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  2. Capture zone delineation methodology based on the maximum concentration: Preventative groundwater well protection areas for heat exchange fluid mixtures

    Science.gov (United States)

    Okkonen, Jarkko; Neupauer, Roseanna M.

    2016-05-01

    Capture zones of water supply wells are most often delineated based on travel times of water or solute to the well, with the assumption that if the travel time is sufficiently large, the concentration of chemical at the well will not exceed the drinking water standards. In many situations, the likely source concentrations or release masses of contamination from the potential sources are unknown; therefore, the exact concentration at the well cannot be determined. In situations in which the source mass can be estimated with some accuracy, the delineation of the capture zone should be based on the maximum chemical concentration that can be expected at the well, rather than on an arbitrary travel time. We present a new capture zone delineation methodology that is based on this maximum chemical concentration. The method delineates capture zones by solving the adjoint of the advection-dispersion-reaction equation and relating the adjoint state and the known release mass to the expected chemical concentration at the well. We demonstrate the use of this method through a case study in which soil heat exchange systems are potential sources of contamination. The heat exchange fluid mixtures contain known fluid volumes and chemical concentrations; thus, in the event of a release, the release mass of the chemical is known. We also demonstrate the use of a concentration basis in quantifying other measures of well vulnerability including exposure time and time to exceed a predefined threshold concentration at the well.

  3. Effect of geometrical uncertainties on the performance of heat exchangers using an efficient POD-based model reduction technique

    Science.gov (United States)

    Abraham, S.; Ghorbaniasl, G.; Raisee, M.; Lacor, C.

    2016-06-01

    The present paper aims at assessing the effect of manufacturing tolerances on the performance of heat exchangers. To this end, a two-dimensional square rib-roughened cooling channel is considered and uncertainties are introduced along the rib profile, using a Karhunen-Loéve expansion including 20 uncertainties. In order to break the curse of dimensionality and keep the overall computational cost within acceptable limits, an efficient uncertainty quantification strategy is followed. A sensitivity analysis is first performed on a coarse grid, enabling the most important dimension to be identified and to remove the ones which have not any significant effect on the output of interest. Afterwards, an efficient Proper Orthogonal Decomposition based dimension reduction technique is implemented in order to propagate uncertainties through the CFD model. It is shown that heat transfer predictions are strongly affected by geometrical uncertainties while no significant effect was found for the pressure drop.

  4. Simulation and economic analysis of a liquid-based solar system with a direct-contact liquid-liquid heat exchanger, in comparison to a system with a conventional heat exchanger

    Science.gov (United States)

    Brothers, P.; Karaki, S.

    Using a solar computer simulation package called TRNSYS, simulations of the direct contact liquid-liquid heat exchanger (DCLLHE) solar system and a system with conventional shell-and-tube heat exchanger were developed, based in part on performance measurements of the actual systems. The two systems were simulated over a full year on an hour-by-hour basis at five locations; Boston, Massachusetts, Charleston, South Carolina, Dodge City, Kansas, Madison, Wisconsin, and Phoenix, Arizona. Typically the direct-contact system supplies slightly more heat for domestic hot water and space heating in all locations and about 5 percentage points more cooling as compared to the conventional system. Using a common set of economic parameters and the appropriate federal and state income tax credits, as well as property tax legislation for solar systems in the corresponding states, the results of the study indicate for heating-only systems, the DCLLHE system has a slight life-cycle cost disadvantage compared to the conventional system. For combined solar heating and cooling systems, the DCLLHE has a slight life-cycle cost advantage which varies with location and amounts to one to three percent difference from the conventional system.

  5. Mathematical simulation of heat exchanger working conditions

    OpenAIRE

    Gavlas Stanislav; Ďurčanský Peter; Lenhard Richard; Jandačka Jozef

    2015-01-01

    One of the When designing a new heat exchanger it is necessary to consider all the conditions imposed on the exchanger and its desired properties. Most often the investigation of heat transfer is to find heat surface. When applying exchanger for proposed hot air engine, it will be a counter-flow heat exchanger of gas - gas type. Gas, which transfers the heat will be exhaust gas from the combustion of biomass. An important step in the design and verification is to analyze exchanger designed us...

  6. Exergo-ecological evaluation of heat exchanger

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2014-01-01

    Full Text Available Thermodynamic optimization of thermal devices requires information about the influence of operational and structural parameters on its behaviour. The interconnections among parameters can be estimated by tools such as CFD, experimental statistic of the deviceetc. Despite precise and comprehensive results obtained by CFD, the time of computations is relatively long. This disadvantage often cannot be accepted in case of optimization as well as online control of thermal devices. As opposed to CFD the neural network or regression is characterized by short computational time, but does not take into account any physical phenomena occurring in the considered process. The CFD model of heat exchanger was built using commercial package Fluent/Ansys. The empirical model of heat exchanger has been assessed by regression and neural networks based on the set of pseudo-measurements generated by the exact CFD model. In the paper, the usage of the developed empirical model of heat exchanger for the minimisation of TEC is presented. The optimisationconcerns operational parameters of heat exchanger. The TEC expresses the cumulative exergy consumption of non-renewable resources. The minimization of the TEC is based on the objective function formulated by Szargut. However, the authors extended the classical TEC by the introduction of the exergy bonus theory proposed by Valero. The TEC objective function fulfils the rules of life cycle analysis because it contains the investment expenditures (measured by the cumulative exergy consumption of non-renewable natural resources, the operation of devices and the final effects of decommissioning the installation.

  7. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    Directory of Open Access Journals (Sweden)

    Tansel Koyun

    2014-04-01

    Full Text Available In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc... have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficiency of the new designed heat exchanger has been found between fin and finless heat exchanger efficiencies. The results have been shown in the diagrams.

  8. HEAT EXCHANGE IN SLOT-HOLE RECUPERATORS

    OpenAIRE

    L. E. Rovin; L. N. Rusaja

    2015-01-01

    At calculation of slot heat exchangers it is necessary to take into account the additional stream of heat transferred by emission from internal wall to an external one and further distributed between heated air and environment.

  9. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  10. Solid-state Diffusion Bonding of Candidate Fe-base and Ni-base Alloys for the Application of S-CO2 Cycle Heat Exchanger

    International Nuclear Information System (INIS)

    To achieve efficient heat transfer, compact type heat exchangers, such as printed circuit or plate fin type heat exchanger, are considered for intermediate heat exchangers (IHXs). Solid-state diffusion bonding (DB) is one of key issues for joining the thin metal sheets with flow passages that are either machined or photo-chemically etched. In this study, diffusion bonding was performed for the candidate Fe-base and Ni-base alloys. Tensile properties of the as-bonded were compared with the as-received and characteristics of the aged in high temperature S-CO2 environment were discussed. Studies on diffusion bonding of candidate alloys for the application of super-critical CO2 cycle were carried out. Strength ratios were close to 1 for Fe-base alloys (F91, SS 316H, and SS 347H), while those of Ni-base alloys (Alloy 600, Alloy 690) and Fe-Ni-Cr alloy (Incoloy 800HT) were somewhat decreased to about 0.8 due to the planar grain boundary and precipitates formed along the bond-line. After exposure in high temperature S-CO2 environment for 1000 h, mechanical properties were not changed substantially and the location of the failure was still in the gauge section away from the bond-line for most alloys. Thus, bond-line which plays a role as grain boundary is thought to have superior corrosion and carburization resistance comparable to that of parent matrix

  11. Modelling of Multistream LNG Heat Exchangers

    OpenAIRE

    Soler Fossas, Joan

    2011-01-01

    The main goal of this thesis is to find out if a liquefied natural gas multistream heat exchanger numerical model is achievable. This should include several features usually neglected in nowadays available heat exchanger models, such as flow maldistribution, changes in fluid properties and heat exchanger dynamic behaviour. In order to accomplish that objective a simpler case is modelled. Efforts are put in achieving numerical stability.A counter flow natural gas and mixed refrigerant heat exc...

  12. Discontinuous Operation of Geothermal Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    方肇洪; 刁乃仁; 崔萍

    2002-01-01

    Ground-source heat pump (GSHP) systems for HVAC have aroused more and more interest in China in recent years because of their higher energy efficiency compared with conventional systems. The design and performance simulation of the geothermal heat exchangers is vital to the success of this technology. In GSHP systems, the load of the geothermal heat exchanger varies greatly and is usually discontinuous even during a heating or cooling season. This paper outlines a heat transfer model for geothermal heat exchangers. The model was used to study the influence of the discontinuous operation of the heat pumps on the performance of the geothermal heat exchangers. A simple and practical approach is presented for sizing the geothermal heat exchangers.

  13. Improved ceramic heat exchange material

    Science.gov (United States)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  14. Overhaul of the heat exchanger in JRR-3

    International Nuclear Information System (INIS)

    In JRR-3, heat exchangers are installed in the cooling system equipment to remove the heat generated in the nuclear reactor, For the heat exchangers, overhaul inspection based on the JRR-3 reactor facility maintenance plan, as well as the inspection and maintenance based on reactor facility security provisions and JRR-3 operation guidelines are systematically conducted. Considering the results of overhaul inspection, the second overhaul inspection was applied to the primary coolant heat exchanger. The thinning of heat transfer tubes is within judgment standards with little effects of aging, which verified their soundness. From the fact that the effects of corrosion have been confirmed on the inside of the water chamber, repair work through overlay welding or the like is planned in the next overhaul. As for heavy water heat exchanger and the spent fuel pool water heat exchanger, it is planned to conduct the second overhaul inspection in FY2013 to confirm their soundness. (A.O.)

  15. Ageing studies on shell and tube type heat exchangers at Cirus based on field experience and inservice inspection

    International Nuclear Information System (INIS)

    Cirus is a 40 MWt research reactor located at Trombay, Bombay and commissioned in the year 1960. The reactor uses metallic natural uranium as fuel, demineralized (DM) light water as primary coolant, heavy water as moderator and sea water as secondary coolant. A set of 13 nos. of shell and tube type heat exchangers are used in the main systems for rejecting heat to sea. The heat exchangers are vertically mounted, conforming to TEMA Class R and 70:30 Cu-Ni tubes on sea water side. End covers are made of Si-bronze. The heat exchangers have given satisfactory service for over 33 years. In the initial years, problems such as fouling on sea water side and failure of a few tubes near the sea water entry zones were experienced. Subsequently, the maintenance work greatly reduced after carrying out certain modifications in the operations and maintenance procedures. In-service inspection carried out and the maintenance experience suggest that performance of the heat exchangers may be rated as satisfactory. Deformation of some components, damage to tubes on the DM water side, cracking of heavy water heat exchanger shell (SS type 347) due to intergranular stress corrosion cracking (IGSCC) etc. have been observed. An attempt is made to discuss the experience. (author). 2 refs., 3 tabs., 3 figs

  16. Testing and analysis of immersed heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Bingham, C.E.

    1986-08-01

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  17. Heat transfer from oriented heat exchange areas

    Science.gov (United States)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  18. Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems

    International Nuclear Information System (INIS)

    The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization

  19. Integrated thermochemical reactors/heat exchangers for solar energy storage based on porous ceramic structures

    OpenAIRE

    Agrafiotis, Christos; Roeb, Martin; Sattler, Christian

    2014-01-01

    Thermochemical Storage (TCS) of solar energy exploits the heat effects of reversible chemical reactions. Solar heat produced during on-sun operation of Concentrated Solar Power (CSP) plants is used to power an endothermic chemical reaction; if this reaction is completely reversible the thermal energy can be entirely recovered by the reverse reaction during off-sun operation. Among such possible reversible gas-solid chemical reactions, the utilization of a pair of reduction-oxidation (redox) r...

  20. Micro tube heat exchangers for Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles,...

  1. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  2. Selection of materials for heat exchangers

    International Nuclear Information System (INIS)

    This paper provides a frame work for selecting heat exchangers materials especially those used in nuclear power plants. Typical examples of materials selection for heat exchanger tubing of nuclear power plants and condensers are presented. The paper brings out also, the importance of continued intensive R and D in materials in order to enhance the reliability and reduce cost by improving upon the existing materials by minor additions of alloying elements or new materials. The properties of Cr- Mo - alloys with minor additions of W, V, Nb and N are discussed in view of their use at elevated temperatures in the power industry. These alloys were found to provide considerable operation flexibility due to their low expansion coefficient and high thermal conductivity in comparison with the austenitic stainless steels. Also, the Ni base alloy Inconel 617. Could be selected for his excellent combination of creep and hot corrosion resistance up to a temperature of a 50 degree C. 2 figs., 7 tabs

  3. Process for repairing a cryogenic heat exchanger

    International Nuclear Information System (INIS)

    The patent describes a method for repairing leakage-causing cracks and fissures in a cryogenic heat exchanger. It comprises: reducing the interior pressure of the heat exchanger to a level which does not exceed the external pressure upon the hear exchanger while maintaining the temperature of the heat exchanger at a low level relative to the ambient external temperature; applying a curable liquid filler composition to the surface of the heat exchanger proximal the leakage site for seepage into the cracks and fissures located at the leakage. The composition upon a relatively short period of cure at low temperature forming a solid material which fills the cracks and fissures; curing the filler composition; and, applying a sealant composition to the surface of the heat exchanger at the filled leakage site. The sealant composition having long-term sealing performance under cyrogenic conditions

  4. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  5. Probe Measures Fouling As In Heat Exchangers

    Science.gov (United States)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  6. Design of heat exchangers by numerical methods

    International Nuclear Information System (INIS)

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author)

  7. Heat exchanger network retrofit through heat transfer enhancement

    OpenAIRE

    Wang, Yufei

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often results in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. These probl...

  8. Online performance assessment of heat exchanger using artificial neural networks

    Directory of Open Access Journals (Sweden)

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  9. Optimization of parameters of heat exchangers vehicles

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  10. Heat exchangers. January 1983-January 1992 (Citations from the NTIS Data Base). Rept. for Jan 83-Jan 92

    International Nuclear Information System (INIS)

    The bibliography contains citations concerning biological fouling and associated corrosion of heat exchangers and cooling systems. Topics include chlorination methods and systems, biocides, microbiological corrosion control, and alternative controls that comply with environmental regulations. Applications in cooling towers, ocean thermal energy conversion, nuclear power plants, and conventional oil and coal fired power plants are considered. (Contains 163 citations with title list and subject index.)

  11. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial...

  12. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author)

  13. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  14. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    OpenAIRE

    Abhishek Nandan; Gurpreet Singh Sokhal

    2015-01-01

    Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a la...

  15. Testing and plugging power plant heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sutor, F. [Expando Seal Tools, Inc., Montgomeryville, PA (United States)

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  16. Multidimensional numerical modeling of heat exchanges

    International Nuclear Information System (INIS)

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchanges for liquid metal services. For the shellside fluid, the conservation equations of mass, momentum and energy for continuum fluids are modified using the concept of porosity, surface premeability and distributed resistance to account for the blockage effects due to the presence of heat transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, heat transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phased on the shell side and may undergo phase-change in the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reaction (LMFBR) intermediate heat exchanges (IHX) and steam generators (SG). The analytical model predictions are compared with three sets of test data (one for IHX and two for SG) and favorable results are obtained, thus providing a limited validation of the model

  17. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  18. 40 CFR 63.1409 - Heat exchange system provisions.

    Science.gov (United States)

    2010-07-01

    ... locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers.... (iii) For samples taken at the entrance and exit of each heat exchanger or any combination of heat exchangers, the entrance is the point at which the cooling water enters the individual heat exchanger...

  19. 40 CFR 63.104 - Heat exchange system requirements.

    Science.gov (United States)

    2010-07-01

    ... heat exchange system or at locations where the cooling water enters and exits each heat exchanger or... manufacturing process units. (iii) For samples taken at the entrance and exit of each heat exchanger or any... cooling water enters the individual heat exchanger or group of heat exchangers and the exit is the...

  20. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    OpenAIRE

    Tansel Koyun; Semih Avcı

    2014-01-01

    In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc...) have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficie...

  1. Heat exchanger, head and shell acceptance criteria

    International Nuclear Information System (INIS)

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  2. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  3. Analysis of a Flooded Heat Exchanger

    Science.gov (United States)

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  4. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient

  5. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  6. Thermodynamic Optimization of GSHPS Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ahmad Kahrobaeian

    2007-09-01

    Full Text Available

    In this paper, a new method for determining the optimized dimensions of a ground source heat pump system (GSHPS heat exchanger is presented. Using the GSHPS is one of the ways for utilization of infinite, clean and renewable energies in the environment. In recent years, due to limitation of physical space for installing the heat exchangers and avoiding the environmental effects on heat exchanger operation, vertical GSHP systems are used more than the other ones. Determination of optimum heat exchanger size is one of the most important parameters in the optimization of the heat exchanger design. In this study, optimum length and diameter for the heat exchanger is determined for different mass flows by using the second law of thermodynamics. The optimal length and diameter minimize entropy generation and therefore result in increased efficiency of the heat pump.

    • An initial version of this pa per was published in May of 2004 in the proceedings of Second International Applied Thermodynamics Conference, Istanbul, Turkey.

  7. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  8. Heat Exchanger Support Bracket Design Calculations

    International Nuclear Information System (INIS)

    This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.

  9. Heat exchanger fouling: Prediction, measurement, and mitigation

    Science.gov (United States)

    The US Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200 F and a local heat flux up to 41,000 BTU/hr sq ft. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on the tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

  10. Vibration isolation of dimple plate heat exchangers / Pieter Vergeer

    OpenAIRE

    Vergeer, Pieter

    2012-01-01

    Dimple plate heat exchangers are a new type of welded compact plate heat exchangers. The dimple plates increase the turbulence of the fluid flowing over the plate, increasing the efficiency of the heat exchanger without increasing pressure drop over the heat exchanger. The compact design of the heat exchanger makes it possible to install the heat exchanger at the top of condenser columns, reducing the footprint area of the column by replacing standard shell and tube condense...

  11. A laminar-flow heat exchanger

    Science.gov (United States)

    Doty, F. D.; Hosford, G.; Jones, J. D.; Spitzmesser, J. B.

    The advantages of designing heat exchangers in the laminar flow regime are discussed from a theoretical standpoint. It is argued that laminar flow designs have the advantages of reducing thermodynamic and hydrodynamic irreversibilities and hence increasing system efficiency. More concretely, laminar flow heat exchangers are free from the turbulence-induced vibration common in conventional heat exchangers and can thus offer longer life and greater reliability. The problems of manufacturing heat exchangers suited to laminar flow are discussed. A method of manufacture which allows compact, modular design is outlined. Experience with this method of manufacture is described, and experimental results are presented. The problems of fouling and flow maldistribution are briefly discussed, and some possible applications are mentioned.

  12. Lightweight Thermal Storage Heat Exchangers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal aims to develop thermal energy storage heat exchangers that are significantly lighter and higher conductance than the present art which involves...

  13. Heat Exchanger System Piping Design for a Tube Rupture Event

    OpenAIRE

    Wakim, Fadi Antoine; Kavcar, Pinar Cakir; Samad, Mustafa

    2012-01-01

    ABSTRACT: Tube-rupture events in shell and tube heat exchangers can result in significantly high surge pressures. Steady state and dynamic methods can be used to assess the impacts of these events on heat exchanger system piping networks. This paper presents the findings of a set of dynamic surge simulations on the impacts of tube-rupture events in a Propane-Feed Gas Heat Exchanger System. Once adjacent piping design is considered, the Joukowsky formulation-based method is not always appropri...

  14. Heat exchanger effectiveness in unsteady state

    Science.gov (United States)

    Mai, T. H.; Chitou, N.; Padet, J.

    1999-10-01

    A method is proposed to determine the thermal effectiveness of heat exchangers in situ, when one of the fluids is submitted to any kind of flow rate variations. It leads to the definition of the average effectiveness in unsteady state, which forms an extension of the classical effectiveness used in steady state. It requires an unsophisticated equipment of measurement and should lead to an easy and continuous control of the fouling of heat exchangers.

  15. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    A tube-in-shell heat exchanger is described for use in liquid metal cooled fast breeder reactor constructions. The system consists of a bundle of heat exchange tubes with a central spine extending longitudinally through the shell and a series of longitudinally spaced transverse grids resiliently mounted on the central spine within the shell to provide transverse support for bracing the tubes apart. (U.K.)

  16. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  17. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    A 'tube-in-shell' heat exchanger is described for effecting heat exchange between liquid metal and water. In conventional heat exchangers of this type a condition can arise wherein Na passing through the tube plate at the water inlet end of the heat exchanger may be above the saturation temperature of the water, and although resultant boiling of the water in the region of the tube plate would tend to counter stagnation there is a possibility that sub-cooled boiling associated with stagnation may occur in the central area of the tube plate, and this could be the source of corrosion. The design of heat exchanger described is directed towards a solution of this problem. The heat exchanger comprises an elongated shell having two spaced transverse tube plates sealed to the shell so as to provide end and intermediate chambers. A bundle of spaced parallel heat exchange tubes extends between the tube plates, interconnecting the end chambers with an inlet port for liquid metal flow to one of the end chambers and an outlet port for liquid metal flow from the other of the end chambers, and inlet and outlet ports for flow of water through the intermediate chamber, these ports being at opposite ends of the intermediate chamber. The intermediate chamber has a tube closed to liquid metal flow extending between the tube plates, this tube having an inlet port for water adjacent to the tube plate at the inlet region of the intermediate chamber and an outlet port at the outlet region. This tube has open ends and is laterally supported by neighbouring heat exchange tubes, or alternatively may have closed ends and be end supported by penetration of the tube plates, the inlet and outlet ports for flow of water being perforations in the wall of the tube. (U.K.)

  18. The predictive protective control of the heat exchanger

    Science.gov (United States)

    Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav

    2016-06-01

    The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.

  19. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  20. Heat exchanger tube inspection using ultrasonic arrays

    International Nuclear Information System (INIS)

    Tubing used in industrial heat exchangers is often subject to failure caused by corrosion and cracking. Technical conferences are used as a forum in the steam generator industry to ensure that the failure mechanisms are well understood and that the quality of the heat exchanger is maintained. The quality of a heat exchanger can be thought of as its ability to operate to design specifications over its intended life. This is the motivation to inspect and evaluate these devices periodically. Inspection, however, normally requires shutdown of the heat exchanger which is costly but is much more acceptable than an unscheduled shutdown due to failure of a tube. Therefore, the degree of inspection is established by balancing the cost of inspection with the risk of a tube failure. Any method of reducing the cost of inspection will permit a higher degree of inspection and, therefore, improve heat exchanger quality. This paper reviews the design and performance of an improved method of ultrasonic inspection of heat exchanger tubing with emphasis on applications in the nuclear industry

  1. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  2. Integrated system of nuclear reactor and heat exchanger

    International Nuclear Information System (INIS)

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation

  3. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  4. Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance

    International Nuclear Information System (INIS)

    Highlights: ► The effectiveness of the THENs is defined. ► Thermal resistance decreases monotonously with the increase in effectiveness. ► Entropy generation is not always appropriate to optimize THENs. ► Application of entransy dissipation to THEN optimization is conditional. - Abstract: The two-stream heat exchanger networks (THENs) are widely used in industry. The effectiveness of the THENs is analyzed in this paper. The general expressions for the entransy dissipation, the entransy-dissipation-based thermal resistance and the entropy generation for a generalized THEN are developed. It is found that the expressions are independent of the specific constitution of the THENs. Only the entransy-dissipation-based thermal resistance always decreases monotonously with the increase in effectiveness, while the entransy dissipation and the entropy generation do not. Therefore, the entransy-dissipation-based thermal resistance is most applicable for the optimization of the THENs.

  5. Research of heat exchange rate of the pulsating heat pipe

    OpenAIRE

    Kravets V. Yu.; Naumova A. M.; Vovkogon A. M.

    2010-01-01

    Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP) which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  6. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the...... purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  7. PENGARUH TEBAL ISOLASI TERMAL TERHADAP EFEKTIVITAS PLATE HEAT EXCHANGER

    OpenAIRE

    Ekadewi Anggraini Handoyo

    2000-01-01

    In a heat exchanger, there is heat transferred either from the surrounding or to the surrounding, which is not expected. A thermal insulator is used to reduce this heat transfer. The effectiveness of a heat exchanger will increase if the heat loss to surrounding can be reduced. Theoretically, the thicker the insulator the smaller the heat loss in a plate heat exchanger. A research is carried on to study the effect of an insulator thickness on heat exchanger effectiveness. The insulators used ...

  8. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa;

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module...... are theoretically investigated by Computational Fluid Dynamics (CFD) calculations. The heat transfer rates between the PCM storage and the heating fluid/cooling fluid in the plate heat exchangers are determined. The CFD calculated temperatures are compared to measured temperatures. Based on the studies...

  9. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry,and analyses and optimizations of the performance of heat exchangers are important topics.In this paper,we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process.With this concept,a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed.It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger,while the minimizations of entropy generation rate,entropy generation numbers,and revised entropy generation number do not always.

  10. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  11. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  12. Near Field Investigation of Borehole Heat Exchangers

    OpenAIRE

    Erol, Selcuk

    2015-01-01

    As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the grou...

  13. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  14. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  15. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    This paper reports on a radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium which has been developed for use with nuclear material. The dry heat exchanger calorimeter is 42 in. high by 18 in. in diameter and the preconditioner is a 22 in. cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptable data with an accuracy comparable to those of Mound water bath systems now in use

  16. Heat exchanger identification by using iterative fuzzy observers

    Science.gov (United States)

    Lalot, Sylvain; Guðmundsson, Oddgeir; Pálsson, Halldór; Pálsson, Ólafur Pétur

    2016-05-01

    The principle of fuzzy observers is first illustrated on a general example: the determination of the two parameters of second order systems using a step response. The set of equations describing the system are presented and it is shown that accurate results are obtained, even for a high level of noise. The heat exchanger model is then introduced. It is based on a spatial division of a counter flow heat exchanger into multiple sections. The governing equations are rewritten as a state space representation. The number of sections needed to get accurate results is determined by comparing estimated values to experimental data. Based on the mean value of the root mean squared errors, it is shown that 80 sections is an appropriate value for this heat exchanger. It is then shown that the iterative fuzzy observers can be used to determine the main parameters of the counter flow heat exchanger, i.e. the convection heat transfer coefficients, when in transient state. The final values of these parameters are heat transfer coefficient corresponds to a ±0.5 % variation of the estimated overall heat transfer coefficient. This study also shows that the fuzzy observers are equally efficient when the heat exchanger is in steady state.

  17. Decontamination of Primary Heat Exchanger Heat Transfer Plate in HANARO

    International Nuclear Information System (INIS)

    In HANARO, a multi-purpose research reactor, a 30 MWth open-tank-in-pool type, a plate type primary heat exchanger transfers the reactor core residual heat absorbed by a primary coolant to a secondary coolant. There was a leakage in the gasket of the no. one heat exchanger after about five years of normal operation. The leaking heat transfer plate pack was replaced with a new one and decontaminated. This paper describes the method of decontaminating the radioactivity of the no. 1 heat exchanger used plate pack and the results. A chemical treatment method was applied to the decontamination. This treatment method consists of cleaning the used plate with a hydro jet after properly depositing it in a scale agent

  18. Performance Investigation of Plate Type Heat Exchanger (A Case Study)

    OpenAIRE

    Simarpreet Singh; Sanjeev Jakhar

    2014-01-01

    Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness ...

  19. 14 CFR 29.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have stagnant... an exhaust heat exchanger is used for heating ventilating air used by personnel— (1) There must be...

  20. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger. 870.4240... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood...

  1. 14 CFR 25.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... provisions wherever it is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff... carrying flammable fluids. (b) If an exhaust heat exchanger is used for heating ventilating air— (1)...

  2. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  3. RECITAL SCRUTINY ON TUBE-INTUBE COMPACT HEAT EXCHANGERS

    OpenAIRE

    V.NATARAJAN,; Dr. P. Senthil Kumar

    2011-01-01

    This paper focused on the investigational cram of the recital characteristics of tube-in-tube compact heat exchangers. Experiments are conducted in the compact heat exchangers with R-134a and liquefiedpetroleum gas. The effectiveness of the heat exchangers was calculated using the experiment data and it was found that the effectiveness of heat exchanger-1 is above 75 and heat exchanger-2 is above 84% for R-134a.The effectiveness of heat exchanger-1 is about 60% and heat exchanger-2 is about 8...

  4. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  5. Simulation of induction heating process with radiative heat exchange

    OpenAIRE

    A. Kachel; R. Przyłucki

    2007-01-01

    Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and ...

  6. Modeling particle deposition on HVAC heat exchangers

    International Nuclear Information System (INIS)

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10(micro)m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10(micro)m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy

  7. The dynamic behaviour of heat exchangers

    International Nuclear Information System (INIS)

    In order to study the dynamics of nuclear power plants, one needs mathematical models made up of ordinary differential equations. This report deals with models for heat exchangers. These models allow exact evaluations of the temperatures for any steady state. The deformation of the temperature maps during transients is taken into account. To do this, average temperatures are evaluated keeping In mind, on one hand the partial differential equations, on the other hand, the physical phenomenons which are involved. Seven ordinary differential equations at most, are necessary for one heat exchanger. Theses models were compared with mathematically exact ones and also with experimental results, that EDF was able to measure on EDF-1 heat exchangers. The results appear to be correct. (authors)

  8. Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems

    Science.gov (United States)

    Dahl, Scott David

    1998-11-01

    , for the thermosyphon heat exchanger and thermosyphon loop. Unlike previous models, which are based on forced flow relationships, the new heat exchanger model accounts for mixed convection heat transfer and accurately predicts pressure drop in the connecting piping around the thermosyphon loop. Comparison between the model and experimental data shows excellent agreement. Daily and annual ratings for a sample thermosyphon system are presented.

  9. A study on the development of fouling analysis technique for shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the fouling analysis technique, the fouling analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system

  10. The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    sensitivity to influential parameters, such as infiltration rate, heat recovery, and indoor temperature. With a typical moisture production schedule, the rotary heat exchanger recovered excessive moisture from kitchens and bathrooms,which provided a mold risk. The rotary heat exchanger was only suitable for...... humidity in each room, which could help to avoid negative health impacts. A discussion emphasized the potential benefits of selecting heat recovery to match the individual needs of each room....

  11. Multiple utilities targeting for heat exchanger networks

    International Nuclear Information System (INIS)

    A targeting methodology is proposed to determine the optimum loads for multiple utilities considering the cost tradeoffs in energy and capital for heat exchanger networks (HENs). The method is based on a newly-developed Cheapest Utility Principle (CUP), which simply states that it is optimal to increase the load of the cheapest utility and maintain the loads of the relatively expensive utilities constant while increasing the total utility consumption. In other words, the temperature driving forces at the utility pinches once optimized do not change even when the minimum approach temperature (ΔTmin) at the process pinch is varied. The CUP holds rigorously when the relationship between the exchanger area and the capital cost is linear. Even when the relationship is non-linear, it proves to be an excellent approximation that reduces the computational effort during multiple utilities targeting. By optimizing the utility pinches sequentially and recognizing that these optimized utility pinches essentially do not change with the process ΔTmin, the results can be elegantly represented through the optimum load distribution (OLD) plots introduced in this work. (author)

  12. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  13. Materials for nuclear diffusion-bonded compact heat exchangers

    International Nuclear Information System (INIS)

    This paper discusses the characteristics of materials used in the manufacture of diffusion bonded compact heat exchangers. Heatric have successfully developed a wide range of alloys tailored to meet process and customer requirements. This paper will focus on two materials of interest to the nuclear industry: dual certified SS316/316L stainless steel and nickel-based alloy Inconel 617. Dual certified SS316/316L is the alloy used most widely in the manufacture of Heatric's compact heat exchangers. Its excellent mechanical and corrosion resistance properties make it a good choice for use with many heat transfer media, including water, carbon dioxide, liquid sodium, and helium. As part of Heatric's continuing product development programme, work has been done to investigate strengthening mechanisms of the alloy; this paper will focus in particular on the effects of nitrogen addition. Another area of Heatric's programme is Alloy 617. This alloy has recently been developed for diffusion bonded compact heat exchanger for high temperature nuclear applications, such as the intermediate heat exchanger (IHX) for the very high temperature nuclear reactors for production of electricity, hydrogen and process heat. This paper will focus on the effects of diffusion bonding process and cooling rate on the properties of alloy 617. This paper also compares the properties and discusses the applications of these two alloys to compact heat exchangers for various nuclear processes. (author)

  14. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  15. Fouling of heat exchanger surfaces: General principles

    Science.gov (United States)

    1986-12-01

    This Data Item ESDU 86038 is an addition to the Heat Transfer Sub-series. The importance of various parameters that affect fouling are discussed. Appropriate methods for dealing with fouling in all stages from design through to operation of heat exchanger equipment are indicated. Methods of suppressing fouling by additives, or of cleaning equipment chemically or mechanically, are considered. A brief outline of the physical process of fouling including some mathematical models is given.

  16. Optimization of parameters of heat exchangers vehicles

    OpenAIRE

    Andrei MELEKHIN; Aleksandr MELEKHIN

    2014-01-01

    The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have d...

  17. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    Science.gov (United States)

    Squires, B.

    1992-11-01

    The PS1 heat exchanger is one of three prototype heat exchangers built in support of a contract for Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in Jul. 1983. In Nov. 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld, but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made.

  18. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    International Nuclear Information System (INIS)

    The PS1 heat exchanger is one of three prototype heat exchangers built by Atomic Welders before Meyer was given the contract to build the Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in July 1983. In November 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made

  19. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient Cd as a function of Reynolds number Reh. For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient Cd are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  20. NUMERICAL SIMULATION OF VERTICAL GROUND HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMPS

    OpenAIRE

    Jalaluddin

    2011-01-01

    Abstract: This paper presents the numerical simulation of several types of vertical ground heat exchangers. The ground heat exchangers (GHEs) such as U-tube, double-tube and multi-tube were simulated using the commercial CFD software FLUENT. Water flows through the heat exchangers and exchanges the heat to the ground. The inlet and outlet water temperatures, flow rate, and heat exchange rate are presented. The heat exchange rates in discontinuous short-time period of operation ...

  1. Analysis on Heat Transfer of Vertical U-tube Ground Heat Exchangers Based on Line Heat Source Model%基于线热源模型的垂直U型埋管换热器的换热分析

    Institute of Scientific and Technical Information of China (English)

    张景欣; 彭冬根; 魏昊然; 申传涛

    2015-01-01

    为了研究 U 型地埋管换热,以线热源模型作为基础,以夏季制冷工况为例,运用 C 语言编程软件对其进行了分析求解。研究了运行时间、换热介质的流量、土壤物性、埋管深度对 U 型埋管传热的影响以及周围土壤温度分布变化规律。模拟结果表明:当换热介质流量和埋管深度均增大3倍,土壤导热系数增大1.6倍时,单位管长换热量变化幅度分别为9.9%、-10.7%、23.3%。研究结果可为 U 型垂直埋管换热器的优化设计提供参考。%In order to study the U-tube ground heat exchangers,a mathematical model based on line source model was built and by using C programming language,the effects of running time,flow-rate of heat transfer medium,soil properties and depth of U-tube on U-tube heat transfer and variation of soil temperature distribution around U-tube were investigated under a refrigeration operating condition in summer.The results of simulation show that when the heat transfer medium flow-rate and depth of buried pipes are increased by 3 times and soil thermal conductivity is increased by 1 .6 times,variations of heat transfer per unit length are 9.9%,-10.7%,23.3%.These study results can provide reference for design of the vertical buried U-tube heat ex-changer.

  2. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model

    International Nuclear Information System (INIS)

    Research highlights: → A dynamic mathematical model is built to predict the performance of DCHE system. → Operation time in dehumidification is a crucial parameter to system performance. → Under ARI summer condition, the largest cooling power can reach to 2.6 kW. → Under ARI humid condition, the largest cooling power can reach to 3.4 kW. → System performs better with smaller fin distance and tube diameter. -- Abstract: Desiccant coated heat exchanger (DCHE) system can handle latent and sensible load simultaneously by removing the released adsorption heat in dehumidification process. The system can also be driven by low grade thermal energy such as solar energy. In this paper, a dynamic one-dimensional mathematical model validated by experimental data is established to predict the performance of DCHE system, using conventional silica gel as desiccant material. Cooling performance of DCHE system is calculated under ARI (American Air-conditioning and Refrigeration Institute) summer and humid conditions. Simulated results show that the operation time in dehumidification process is a crucial factor for cooling capacity of DCHE system, which can be enhanced by eliminating the initial period with higher outlet air temperature, the largest cooling power of DCHE system increase from 2.6 kW to 3.5 kW by eliminating first 50 s of operation time under ARI summer condition. The results also prove that the system can provide cooling power to indoor condition with selective operation time when regeneration temperature varies from 50 oC to 80 oC. Besides, the model is adopted to analyze the effects of some structural parameters on system performance under simulated condition. The system performs well in smaller cobber tube external diameter condition, while both transient heat and mass transfer capacity can be enhanced under the condition of smaller distance between the fins.

  3. A Ceramic Heat Exchanger for Solar Receivers

    Science.gov (United States)

    Robertson Jr., C.; Stacy, L.

    1985-01-01

    Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).

  4. Heat exchanger for a contaminated fluid

    International Nuclear Information System (INIS)

    A heat exchanger, in particular for a contaminated fluid in the nuclear industry. The tubes forming the tube core are welded and crimped across the whole width of the tubular plate which defines the floating head together with the sealing cover, and said tubular plate is also welded and crimped to the calandria along the whole of its periphery. (author)

  5. The influence of a radiated heat exchanger surface on heat transfer

    Science.gov (United States)

    Morel, Sławomir

    2015-09-01

    The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame) - uncoated wall and then heating medium (flame) - coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  6. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  7. Thermal hydraulic design of intermediate heat exchanger

    International Nuclear Information System (INIS)

    Intermediate heat exchanger (IHX) is a very important component of Fast Breeder Reactor because it forms the boundary between radioactive primary sodium and non-radioactive secondary sodium. IHX of the 500 MWe Prototype Fast Breeder Reactor is a shell and tube heat exchanger with primary sodium flowing on the shell side. Cross flow heat transfer at the primary sodium entrance demands unequal secondary flow distribution in various tubes to ensure good safety margin in structural design. This paper brings out details of thermal hydraulic studies to arrive at a suitable secondary flow distribution and choice of a suitable flow distribution device to achieve the same. Application of two-dimensional analysis with computer code THYC-2D has been brought out. (author). 5 refs., 14 figs., 2 tabs

  8. Brayton heat exchange unit development program

    Science.gov (United States)

    Morse, C. J.; Richard, C. E.; Duncan, J. D.

    1971-01-01

    A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat sink heat exchanger and a gas ducting system, was designed, fabricated, and tested. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement. Evaluation testing was conducted from which it is estimated that near-design performance can be expected with the use of He-Xe as the working fluid.

  9. Predicting particle deposition on HVAC heat exchangers

    Science.gov (United States)

    Siegel, Jeffrey A.; Nazaroff, William W.

    Particles in indoor environments may deposit on the surfaces of heat exchangers that are used in heating, ventilation and air conditioning (HVAC) systems. Such deposits can lead to performance degradation and indoor air quality problems. We present a model of fin-and-tube heat-exchanger fouling that deterministically simulates particle impaction, gravitational settling, and Brownian diffusion and uses a Monte Carlo simulation to account for impaction due to air turbulence. The model predicts that heat exchangers with air flows and fin spacings that are typical of HVAC systems. For supermicron particles, deposition increases with particle size. The dominant deposition mechanism for 1-10 μm particles is impaction on fin edges. Gravitational settling, impaction, and air turbulence contribute to deposition for particles larger than 10 μm. Gravitational settling is the dominant deposition mechanism for lower air velocities, and impaction on refrigerant tubes is dominant for higher velocities. We measured deposition fractions for 1-16 μm particles at three characteristic air velocities. On average, the measured results show more deposition than the model predicts for an air speed of 1.5 m s -1. The amount that the model underpredicts the measured data increases at higher velocities and especially for larger particles, although the model shows good qualitative agreement with the measured deposition fractions. Discontinuities in the heat-exchanger fins are hypothesized to be responsible for the increase in measured deposition. The model and experiments reported here are for isothermal conditions and do not address the potentially important effects of heat transfer and water phase change on deposition.

  10. Compact heat exchanger technologies for the HTRs recuperator application

    International Nuclear Information System (INIS)

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  11. Entransy dissipation number and its application to heat exchanger performance evaluation

    Institute of Scientific and Technical Information of China (English)

    GUO JiangFeng; CHENG Lin; XU MingTian

    2009-01-01

    Based on the concept of the entransy which characterizes heat transfer ability,a new heat exchanger performance evaluation criterion termed the entransy dissipation number is established.Our analysis shows that the decrease of the entransy dissipation number always increases the heat exchanger effectiveness for fixed heat capacity rate ratio.Therefore,the smaller the entransy dissipation number,the better the heat exchanger performance is.The entransy dissipation number in terms of the number of exchanger heat transfer units or heat capacity rate ratio correctly exhibits the global performance of the counter-,cross-and parallel-flow heat exchangers.In comparison with the heat exchanger performance evaluation criteria based on entropy generation,the entransy dissipation number demonstrates some distinct advantages.Furthermore,the entransy dissipation number reflects the degree of irreversibility caused by flow imbalance.

  12. NUMERICAL INVESTIGATION OF STRESS GENERATED IN HIGH PRESSURE HEAT EXCHANGER

    OpenAIRE

    Sandeep S. Samane*, Sudhakar S. Umale

    2016-01-01

    Heat Exchangers are used to transfer heat effectively from one medium to another medium. There are several aspects to study the performance of heat exchanger. This paper is concerned with thermo-mechanical issues i.e. thermal expansion due to high temperature and high pressure conditions of U-tube heat exchanger. Tubesheet is very complex part of heat exchanger which expands at high temperature. Due to high temperature difference between shell side and channel side fluids thermal stress are g...

  13. Heat exchangers with several heat exchanger matrices mounted in a common casing for separately conducted media

    International Nuclear Information System (INIS)

    The heat exchanger is suited for plants with a closed gas cycle such as, e. g., HTR with a helium turbine or drive units for vehicles. It contains heat exchanger matrices running parallel to each other and formed by the folds of a uniformly folded band and by walls covering the saddles of the folds. Two neighbouring matrices each are combined to form a heat exchanger unit and supported between supporting walls. The heat exchanger unit is not firmly connected with these supporting walls and therefore can easily to be inserted or dismounted. For sealing purposes, the fold saddles are contacting the supporting walls because of the high pressure of the meUWIdium, Ior the remaining seals between hp and lp-compartments labyrinth boxes being provided. (UWI)

  14. Study on heat transfer of heat exchangers in the Stirling engine - Performance of heat exchangers in the test Stirling engine

    Science.gov (United States)

    Kanzaka, Mitsuo; Iwabuchi, Makio

    1992-11-01

    The heat transfer performance of the actual heat exchangers obtained from the experimental results of the test Stirling engine is presented. The heater for the test engine has 120 heat transfer tubes that consist of a bare-tube part and a fin-tube part. These tubes are located around the combustion chamber and heated by the combustion gas. The cooler is the shell-and-tube-type heat exchanger and is chilled by water. It is shown that the experimental results of heat transfer performance of the heater and cooler of the test Stirling engine are in good agreement with the results calculated by the correlation proposed in our previous heat transfer study under the periodically reversing flow condition. Our correlation is thus confirmed to be applicable to the evaluation of the heat transfer coefficient and the thermal design of the heat exchangers in the Stirling engine.

  15. Evaluation on materials performance of Hastelloy Alloy XR for HTTR uses-6. Tensile and creep properties of heat exchanger tube base materials and its welded-joints

    International Nuclear Information System (INIS)

    Tensile and creep properties of heat exchanger tube base materials and its welded-joints were investigated as a series of evaluation tests on Hastelloy Alloy XR heat exchanger tube and filler metal for the High Temperature Engineering Test Reactor (HTTR) components. As for tensile properties after thermal aging of base materials and welded joints, ductility was remarkably reduced at room temperature while it was raised at 950degC. On creep properties, the difference between base materials and welded joints in creep rupture strength was relatively small. Creep rupture elongation tended to decrease with increasing rupture time, and rupture elongation of welded joint had a tendency to be lower than that of base material. On the other hand, a comparison of plate with tube on high temperature tensile ductility after thermal aging was found to be higher in tube than in plate while its difference was slight at room temperature. As for creep properties, base materials and welded joints of tube had a tendency to be slightly shorter in rupture time at lower stress and long terms than those of plate. However, it is concluded that this is not problematic in practical uses from the fact that the rupture time in tube is comparable or greater than that of Hastelloy Alloy XR master curve and that it is much longer than that of design creep rupture strength =SR=. (author)

  16. Investigation of heat exchanger inclination in forced-draught air-cooled heat exchangers

    OpenAIRE

    Kennedy, I.J.; Spence, S.W.T.; Spratt, G.R.; Early, J. M.

    2013-01-01

    The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without incl...

  17. AUTOMATIC EVOLUTION OF HEAT EXCHANGER NETWORKS WITH SIMULTANEOUS HEAT EXCHANGER DESIGN

    OpenAIRE

    F.S. LIPORACE; F.L.P. Pessoa; E.M. Queiroz

    1999-01-01

    Recently, a new software (AtHENS) that automatically synthesizes a heat exchanger network with minima consumption of utilities was developed. This work deals with the next step, which represents the evolution of the initial network. Hence, new procedures to identify and break loops are incorporated, for which a new algorithm is proposed. Also, a heat exchanger design procedure which uses the available pressure drop to determine the film coefficient on the tube side and shell side is added, pr...

  18. Advanced heat exchanger development for molten salts

    International Nuclear Information System (INIS)

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers

  19. Pollution expectation model on gas side of heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Il [Korea Institute of Energy Research, Taejon (Korea)

    2000-02-01

    Energy consumption in industries are huge and heat exchanger has been used widely with a development of process industry. For example, the investment on heat exchanger in West Europe is about $32 billion as of 1996. Heat exchanger is used extensively such as recovering energy. However study on fouling of heat exchanger is yet insignificant. Sticking pollutants on electric heat side of heat exchanger causes a drop in its capability, enormous waste of industrial energy, and low productivity due to frequent clean up of heat exchanger. Particularly, for exhaust fumes process that includes many pollutants like incinerator or glass smelting furnace, it has to stop operation and clean up heat exchanger once in 1-3 weeks. Therefore it is very important to understand on polluting phenomenon in heat exchanger for accurate design and operation and to develop a technology to predict polluting amount. 5 figs., 3 tabs.

  20. Stead-state characteristic study of heat exchanger in water-cooled passive heat removal system for molten salt reactor

    International Nuclear Information System (INIS)

    Background: In the water-cooled passive heat removal system for molten salt reactor, the decay heat generated in molten salt can finally be transferred to the heat exchanger placed in water tank by natural circulation. Purpose: Based on the principles of high safety and simplification, there is a need to transfer the decay heat passively without using external power. Methods: The heat exchanger consists of a set of bundles submerged into the water tank with a tube header at each side. Based on the flow process, corresponding numerical model was constructed in the code of C++. Then the total heat exchange coefficient is got and the heat transfer area is calculated. Continually iterate the heat transfer area until the iteration stopping criterion is met, after that the dimensions of water tank are figured out. Results: While the decay power is 100 kW in the initial of the operation, the power of heat exchanger reaches the maximum value of 130 kW due to the low-temperature water in water tank. Then it drops quickly for the decrease of heat exchanger pressure and the rise of water temperature in water tank. When the heat exchanger pressure begins to rise, the heat exchanger power drops slower than before. The heat transfer ability begins to decrease quickly as the temperature difference between inside and outside of heat exchanger tubes lowers. Then it drops gradually as a result of the slowly changed pressure. During early operation, the heat exchanger pressure decreases because the steam generation rate is lower than the steam condensation rate. Then the condition varies as the heat exchanger power declines gradually. When boiling happens inside the water tank, the steam condensation rate raises due to the increasing heat transfer ability which makes the pressure of heat exchanger drops quickly. Afterwards, the heat exchanger pressure changes very slowly as the steam generation rate is approximate to the steam condensation rate. The mass of water in water tank

  1. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    OpenAIRE

    Ekadewi Anggraini Handoyo

    2001-01-01

    Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffle...

  2. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    Science.gov (United States)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  3. Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

    Science.gov (United States)

    Zampiceni, John J.; Harper, Lon T.

    2002-01-01

    This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

  4. Heat Transfer Analysis of the Passive Residual Heat Removal Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng [Jiaotong University, Shaanxi (China)

    2014-08-15

    In the present study, thermal-hydraulics characteristics of AP1000 passive residual heat removal heat exchanger (PRHR-HX) at initial operating stage were analyzed based on the porous media models. The data predicated by RELAP5 under the condition of the station blackout was employed as the inlet flow rate and temperature boundary of CFD calculation. The heat transfer from the primary side coolant to the in-containment refueling water storage tank (IRWST) side fluid was calculated in a three-dimensional geometry during iterations, and the distributed resistances were added into the C-type tube bundle regions. Three-dimensional distributions of velocity and temperature in the IRWST were calculated by the CFD code ANSYS FLUENT. The primary temperature, heat transfer coefficients of two sides and the heat transfer were obtained using the coupled heat transfer between the primary side and the IRWST side. The simulation results indicated that the water temperature rises gradually which leads to a thermal stratification phenomenon in the tank and the heat transfer capability decreases with an increase of water temperature. The present results indicated that the method containing coupled heat transfer from the primary side fluid to IRWST side fluid and porous media model is a suitable approach to study the transient thermal-hydraulics of PRHR/IRWST.

  5. Heat-Exchanger Computational Procedure For Temperature-Dependent Fouling

    Science.gov (United States)

    Chiappetta, L.; Szetela, E.

    1985-01-01

    Computer program predicts heat-exchanger performance under variety of conditions. Program provides rapid means of calculating distribution of fluid and wall temperatures, fuel deposit formation, and pressure losses at various locations in heat exchanger. Developed for use with heat exchanger that vaporizes fuel prior to fuel ignition; other applications possible.

  6. 14 CFR 23.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ...) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... cooling provisions wherever it is subject to contact with exhaust gases. (b) Each heat exchanger used for... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 23.1125 Section...

  7. 40 CFR 63.1328 - Heat exchange systems provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchange systems provisions. 63... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1328 Heat exchange... of this subpart. (h) The compliance date for heat exchange systems subject to the provisions of...

  8. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  9. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Highlights: • Compact heat exchanger designs evaluated for advanced nuclear reactor applications. • Wavy channel PCHE compared with offset strip-fin heat exchanger (OSFHE). • 15° pitch angle wavy channel PCHE offers optimum performance characteristics. • OSFHE exhibits higher pressure drop and lower compactness than other options. • Comparison technique applicable for evaluating candidate heat exchangers designs. - Abstract: A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well

  10. Numerical Simulation of Heat Transfer in a Gas Solid Crossflow Moving Packed Bed Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Anyuan Liu; Shi Liu; Yufeng Duan; Zhonggang Pan

    2001-01-01

    The mechanism of heat transfer in a crossfiow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM) approach, in which both phases are considered to be continuous and fully interpenetrating. This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.

  11. Fouling detection in heat exchangers by Takagi-Sugeno observers

    International Nuclear Information System (INIS)

    The phenomenon of fouling in heat exchangers is currently an important topic. Indeed, the fouling is a costly issue that increases the energy loss (directly or indirectly through an over-sizing of the equipment), and therefore increases the water consumption. As a side effect, fouling increases CO2 consumption that leads to environmental consequences. Fouling can be detected either on local scale, using expensive and specific sensors or on global scale. Global estimation of fouling can be done by measuring the variation of the mass of the exchanger, or by estimating the efficiency of the exchanger through the transfer coefficient. These two methods require very restricting conditions: a powered exchanger to measure mass variation and a steady state exchanger to estimate the efficiency. The work introduced in this thesis deals with the development of non-linear observers that detect fouling early enough to start an efficient cleaning process. As a beginning, a finite element model of a counter current tubular exchanger was proposed. Then three approaches, based on non-linear Takagi-Sugeno observers, were suggested to detect early fouling in heat exchangers. First approach consisted in a set of observers that estimated the parameters of fouling effect through an interpolation method. The second approach proposed a polynomial Takagi-Sugeno observer, using the theory of sums of squares. Finally, a observer of Takagi-Sugeno type with unknown inputs was developed. As a conclusion, a comparison between those different methods was done. (author)

  12. Heat exchanger life extension via in-situ reconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  13. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalović Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  14. Condensation in horizontal heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, S.; Zacharias, T.; Maisberger, F.; Lamm, M. [AREVA NP GmbH, Paul-Gossen-Strasse 100, Erlangen, 91052 (Germany); Vallee, C.; Beyer, M.; Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, Dresden, 01328 (Germany)

    2012-07-01

    Many innovative reactor concepts for Generation III nuclear power plants use passive safety equipment for residual heat removal. These systems use two phase natural circulation. Heat transfer to the coolant results in a density difference providing the driving head for the required mass flow. By balancing the pressure drop the system finds its operational mode. Therefore the systems depend on a strong link between heat transfer and pressure drop determining the mass flow through the system. In order to be able to analyze these kind of systems with the help of state of the art computer codes the implemented numerical models for heat transfer, pressure drop or two phase flow structure must be able to predict the system performance in a wide parameter range. Goal of the program is to optimize the numerical models and therefore the performance of computer codes analyzing passive systems. Within the project the heat transfer capacity of a heat exchanger tube will be investigated. Therefore the tube will be equipped with detectors, both temperature and pressure, in several directions perpendicular to the tube axis to be able to resolve the angular heat transfer. In parallel the flow structure of a two phase flow inside and along the tube will be detected with the help of x-ray tomography. The water cooling outside of the tube will be realized by forced convection. It will be possible to combine the flow structure measurement with an angular resolved heat transfer for a wide parameter range. The test rig is set up at the TOPLFOW facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), so that it will be possible to vary the pressure between 5 and 70 bar. The steam mass content will be varied between 0 and 100 percent. The results will be compared to the large scaled Emergency Condenser Tests performed at the INKA test facility in Karlstein (Germany). The paper will explain the test setup and the status of the project will be presented. (authors)

  15. New plates for different types of plate heat exchangers

    OpenAIRE

    Fernandes, Carla S.; Dias, Ricardo P.; João M. Maia

    2008-01-01

    The first patent for a plate heat exchanger was granted in 1878 to Albretch Dracke, a German inventor. The commercial embodiment of these equipments has become available in 1923. However, the plate heat exchanger development race began in the 1930’s and these gasketed plate and frame heat exchangers were mainly used as pasteurizers (e.g. for milk and beer). Industrial plate heat exchangers were introduced in the 1950’s and initially they were converted dairy models. Brazed plate heat exchange...

  16. Performance analysis of cylindrical metal hydride beds with various heat exchange options

    International Nuclear Information System (INIS)

    Highlights: • 3D numerical model for the comparison of H2 uptake performances in MH reactors. • 4 options of heat exchange between heat transfer fluid and MH in cylindrical reactor compared. • Straight tube internal heat exchanger. • Helical coil internal heat exchanger. • External heat exchange without and with transversal fins in the MH reactor. - Abstract: A 3D numerical heat-and-mass transfer model was used for the comparison of H2 uptake performances of powdered cylindrical MH beds comprising MmNi4.6Al0.4 hydrogen storage material. The considered options of heat exchange between the MH and a heat transfer fluid included internal cooling using straight (I) or helically coiled (II) tubing, as well as external cooling of the MH bed without (III) and with (IV) transversal fins. The dynamic performances of these layouts were compared based on the numerical simulation. The effect of heat transfer coefficient was also analysed

  17. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  18. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    OpenAIRE

    D. S. Obukhov

    2014-01-01

    The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  19. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  20. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode

    International Nuclear Information System (INIS)

    Highlights: • The work focuses on direct expansion ground source heat pumps in heating mode. • The evaporating process of the refrigerant fluid into boreholes is analyzed. • A method to design the direct expansion borehole heat exchangers is presented. • Direct expansion and the common secondary loop heat pumps are compared. • The comparison is carried out in terms of both borehole length and performance. - Abstract: Ground source heat pump systems represent an interesting example of renewable energy technology for heating and cooling of buildings. The connection with the ground is usually done by means of a closed loop where a heat-carrier fluid (pure water or a solution of antifreeze and water) flows and, in heating mode, moves heat from ground to refrigerant fluid of heat pump. A new solution is the direct expansion heat pump. In this case, the heat-carrier fluid inside the ground loop is the same refrigerant fluid of heat pump. This paper focuses on the energy performance of direct expansion ground source heat pump with borehole heat exchangers in heating mode, looking at residential building installations. For this purpose, the evaporating process of the refrigerant fluid inside vertical tubes is investigated in order to analyze the influence of the convective heat transfer coefficient on the global heat transfer with the surrounding ground. Then, an analytical model reported in literature for the design of common borehole heat exchangers has been modified for direct expansion systems. Finally, the direct expansion and common ground source heat pumps have been compared in terms of both total borehole length and thermal performance. Results indicate that the direct expansion system has higher energy performance and requires lower total borehole length compared to the common system. However, when the two systems are compared with the same mean fluid evaporating temperature, the overall length of the ground heat exchanger of the direct expansion heat

  1. Return temperature control and heat exchanger configurations

    Energy Technology Data Exchange (ETDEWEB)

    Koot, M.H.M.

    1995-07-17

    MESA is a district heating company, supplying heat and domestic hot water to family houses and buildings in Almere, Netherlands, in a number of ways. MESA has been confronted with high return temperatures of the domestic water returning from the city to the combined heat and power generating plant (CHP) through the primary network. The temperature is higher than anticipated in the design and leads to higher operating costs of the CHP plant. In this report the causes of the high return temperatures are identified and measures to reduce them are presented. The primary return temperature at the sub-station of a collective domestic water system can be reduced from 53.7 deg C to 48.9 deg C under the design conditions or from 56.7 deg C to 24.4 deg C in summer conditions. This can be accomplished by proper adjustment of the heating curve, insertion of thermostatic bypasses and by reconfiguring the heat exchangers in the substation. The flow rates would decrease by 7% to 55%. 33 figs., 5 tabs., 8 refs.

  2. Reliability analysis on a shell and tube heat exchanger

    Science.gov (United States)

    Lingeswara, S.; Omar, R.; Mohd Ghazi, T. I.

    2016-06-01

    A shell and tube heat exchanger reliability was done in this study using past history data from a carbon black manufacturing plant. The heat exchanger reliability study is vital in all related industries as inappropriate maintenance and operation of the heat exchanger will lead to major Process Safety Events (PSE) and loss of production. The overall heat exchanger coefficient/effectiveness (Uo) and Mean Time between Failures (MTBF) were analyzed and calculated. The Aspen and down time data was taken from a typical carbon black shell and tube heat exchanger manufacturing plant. As a result of the Uo calculated and analyzed, it was observed that the Uo declined over a period caused by severe fouling and heat exchanger limitation. This limitation also requires further burn out period which leads to loss of production. The MTBF calculated is 649.35 hours which is very low compared to the standard 6000 hours for the good operation of shell and tube heat exchanger. The guidelines on heat exchanger repair, preventive and predictive maintenance was identified and highlighted for better heat exchanger inspection and repair in the future. The fouling of heat exchanger and the production loss will be continuous if proper heat exchanger operation and repair using standard operating procedure is not followed.

  3. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  4. A heat exchanger computational procedure for temperature-dependent fouling

    Science.gov (United States)

    Chiappetta, L. M.; Szetela, E. J.

    1981-01-01

    A novel heat exchanger computational procedure is described which provides a means of rapidly calculating the distributions of fluid and wall temperatures, deposit formation, and pressure loss at various points in a heat exchanger. The procedure is unique in that it is capable of treating wide variations in heat exchanger geometry without recourse to restrictive assumptions concerning heat exchanger type (e.g., co-flow, counterflow, cross flow devices, etc.). The analysis has been used extensively to predict the performance of cross-counterflow heat exchangers in which one fluid behaves as a perfect gas (e.g., air) while the other fluid is assumed to be a distillate fuel. The model has been extended to include the effects on heat exchanger performance of time varying inflow conditions. Heat exchanger performance degradation due to deposit formation with time can be simulated, making this procedure useful in predicting the effects of temperature-dependent fouling.

  5. INTENSIFICATION OF HEAT TRANSFER AND FLOW IN HEAT EXCHANGER WITH SHELL AND HELICALLY COILED TUBE BY USING NANO FLUIDS

    OpenAIRE

    Dr. Khalid Faisal Sultan

    2015-01-01

    This article presents an experimental study on enhancement of heat transfer and pressure drop of nanofluids flow. In this study the method using to enhancement of heat transfer and pressure drop, by used the helically coiled tube heat exchange and the nanofluids instead of the base fluid (oil). The concentrations of nanofluid used are ranging from (5 – 30 wt%). The shell of the heat exchanger is constant wall temperature (CWT) . Two types of nanoparticles used in this paper silver...

  6. HEAT ACCUMULATOR BASED ON THE PHASE TRANSITION WITH A SCREW HEAT EXCHANGER Аккумулятор теплоты на фазовых переходах со шнековым теплообменником

    OpenAIRE

    Ostashenkov A. P.; Onychin E. M.; Medyakov A. A.

    2013-01-01

    In the article, we have presented the variant of the heat accumulator based on phase transition with a screw heat exchanger, designed to meet the demands of heat supplying systems in thermal energy storage

  7. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  8. Heat Exchanger Anchors for Thermo-active Tunnels

    OpenAIRE

    Mimouni, Thomas; Dupray, Fabrice; Minon, Sophie; LALOUI, Lyesse

    2013-01-01

    Shallow geothermal power represents an important energy resource for the heating and cooling of the buildings. Due to relatively low temperature levels encountered at shallow depths in the soil, between 10°C and 20°C, heat pumps are required to process the extracted heat, forming the so called ground source heat pump system. Different types of heat exchangers with the ground were developed in order to optimize the heat exchanges, from simple geothermal loops grouted in boreholes reaching dept...

  9. Microbial fouling control in heat exchangers

    International Nuclear Information System (INIS)

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  10. Fouling and corrosion of freshwater heat exchangers

    International Nuclear Information System (INIS)

    Fouling in freshwater heat exchangers (HX) costs the Canadian nuclear power industry millions of dollars annually in replacement energy and capital equipment. The main reasons are loss of heat transfer and corrosion. Underdeposit pitting is the predominant corrosion mechanism. Erosion corrosion has also been observed. Failure analyses, field studies, and laboratory research have provided us with information to help explain the reasons for reduced performance. Newly installed HX tubing immediately becomes colonized with a complex community of bacteria in a slimey organic matrix. The biofilm itself produces corrosive species and in addition it promotes the attachment of sediment particles and the deposition of calcareous material. The result is a thick, adherent deposit which creates crevices, concentrates aggressive species and alters the system's hydrodynamics

  11. RIBBED DOUBLE PIPE HEAT EXCHANGER: ANALYTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    HUSSAIN H. AL-KAYIEM

    2011-02-01

    Full Text Available This paper presents the findings obtained by modeling a Double Pipe Heat Exchanger (DPHE equipped with repeated ribs from the inside for artificial roughing. An analytical procedure was developed to analyze the thermal and hydraulic performance of the DPHE with and without ribbing. The procedure was verified by comparing with experimental reported results and they are in good agreement. Several parameters were investigated in this study including the effect of ribs pitch to height ratios, P/e= 5, 10, 15, and 20, and ribs to hydraulic diameter ratios, e/Dh= 0.0595, 0.0765, and 0.107. These parameters were studied at various operating Reynolds number ranging from 2500 to 150000. Different installation configurations were investigated, too. An enhan-cement of 4 times in the heat transfer in terms of Stanton number was achieved at the expense of 38 times increase of pressure drop across the flow in terms of friction facto values.

  12. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    OpenAIRE

    A. V. Оvsiannik

    2014-01-01

    The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons) with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating ...

  13. The concept of a new approximate relation for heat transfer effectiveness for a cross-flow heat exchanger with unmixed fluids

    OpenAIRE

    Rafal Marcin Laskowski

    2011-01-01

    This paper presents an approximate relation for the heat transfer effectiveness for a counter-flow heat exchanger, which was compared with the exact solution. Based on the obtained approximate relation for a counter-flow heat exchanger the approximate heat transfer effectiveness for a cross-flow heat exchanger in which both fluids do not mix is proposed. This approximate heat transfer effectiveness was compared with the exact solution proposed by Mason, the most well-known relation. A compari...

  14. Assessment of thermoelectric module with nanofluid heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nnanna, A.G. Agwu [Micro- and Nano-scale Heat Transfer Laboratory, Department of Mechanical Engineering, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323-2094 (United States)], E-mail: nnanna@calumet.purdue.edu; Rutherford, William; Elomar, Wessam; Sankowski, Brian [Micro- and Nano-scale Heat Transfer Laboratory, Department of Mechanical Engineering, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323-2094 (United States)

    2009-02-15

    For applications such as cooling of electronic devices, it is a common practice to sandwich the thermoelectric module between an integrated chip and a heat exchanger, with the cold-side of the module attached to the chip. This configuration results thermal contact resistances in series between the chip, module, and heat exchanger. In this paper, an appraisal of thermal augmentation of thermoelectric module using nanofluid-based heat exchanger is presented. The system under consideration uses commercially available thermoelectric module, 27 nm Al{sub 2}O{sub 3}-H{sub 2}O nanofluid, and a heat source to replicate the chip. The volume fraction of nanofluid is varied between 0% and 2%. At optimum input current conditions, experimental simulations were performed to measure the transient and steady-state thermal response of the module to imposed isoflux conditions. Data collected from the nanofluid-based exchanger is compared with that of deionized water. Results show that there exist a lag-time in thermal response between the module and the heat exchanger. This is attributed to thermal contact resistance between the two components. A comparison of nanofluid and deionized water data reveals that the temperature difference between the hot- and cold-side, {delta}T = T{sub h} - T{sub c} {approx} 0, is almost zero for nanofluid whereas {delta}T > 0 for water. When {delta}T {approx} 0, the contribution of Fourier effect to the overall heating is approximately zero hence enhancing the module cooling capacity. Experimental evidence further shows that temperature gradient across the thermal paste that bonds the chip and heat exchanger is much lower for the nanofluid than for deionized water. Low temperature gradient results in low resistance to the flow of heat across the thermal paste. The average thermal contact resistance, R = {delta}T/Q, is 0.18 and 0.12 deg. C/W, respectively for the deionized water and nanofluid. For the range of optimum current, 1.2 {<=} current {<=} 4

  15. Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers

    OpenAIRE

    H. A. Navarro; L. C. Cabezas-Gómez

    2007-01-01

    Due to the wide range of design possibilities, simple manufactured, low maintenance and low cost, cross-flow heat exchangers are extensively used in the petroleum, petrochemical, air conditioning, food storage, and others industries. In this paper a mathematical model for cross-flow heat exchangers with complex flow arrangements for determining epsilon -NTU relations is presented. The model is based on the tube element approach, according to which the heat exchanger outlet temperatures are ob...

  16. Entropy Generation in Periodic Regenerative Heat Exchanger due to Finite Temperature Difference

    OpenAIRE

    Pitchandi, K.; Natarajan, E.

    2008-01-01

    This paper describes the second law of thermodynamics analysis of a regenerative heat exchanger. The analysis is based on the fact that the dimensionless parameters, known as the reduced periods and reduced length, are the characteristic variables to describe the heat exchanger. The solid matrix in the heat exchanger passage is discretized using trapezoidal rule and the elemental matrix is taken as a thermodynamic system. The second law of thermodynamics is applied to the system and the entro...

  17. Co3O4-based honeycombs as compact redox reactors/heat exchangers for thermochemical storage in the next generation CSP plants

    Science.gov (United States)

    Pagkoura, Chrysoula; Karagiannakis, George; Halevas, Eleftherios; Konstandopoulos, Athanasios G.

    2016-05-01

    Over the last years, several research groups have focused on developing efficient thermochemical heat storage (THS) systems, in-principle capable of being coupled with next generation high temperature Concentrated Solar Power plants. Among systems studied, the Co3O4/CoO redox system is a promising candidate. Currently, research efforts extend beyond basic level identification of promising materials to more application-oriented approaches aiming at validation of THS performance at pilot scale reactors. The present work focuses on the investigation of cobalt oxide based honeycomb structures as candidate reactors/heat exchangers to be employed for such purposes. In the evaluation conducted and presented here, cobalt oxide-based structures with different composition and geometrical characteristics were subjected to redox cycles in the temperature window between 800 and 1000°C under air flow. Basic aspects related to redox performance of each system are briefly discussed but the main focus lies on the evaluation of the segments structural stability after multi-cyclic operation. The latter is based on macroscopic visual observation and also supplemented by pre- (i.e. fresh samples) and post-characterization (i.e. after long term exposure) of extruded honeycombs via combined mercury porosimetry and SEM analysis.

  18. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    International Nuclear Information System (INIS)

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  19. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  20. Shell-and-double concentric-tube heat exchangers

    Science.gov (United States)

    Bougriou, Chérif; Baadache, Khireddine

    2010-03-01

    This study concerns a new type of heat exchangers, which is that of shell-and-double concentric-tube heat exchangers. These heat exchangers can be used in many specific applications such as air conditioning, waste heat recovery, chemical processing, pharmaceutical industries, power production, transport, distillation, food processing, cryogenics, etc. The case studies include both design calculations and performance calculations. It is demonstrated that the relative diameter sizes of the two tubes with respect to each other are the most important parameters that influence the heat exchanger size.

  1. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    OpenAIRE

    Arsana I Made; Susianto; Budhikarjono Kusno; Altway Ali

    2016-01-01

    Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Opti...

  2. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  3. 40 CFR 63.1435 - Heat exchanger provisions.

    Science.gov (United States)

    2010-07-01

    ...) When the HON heat exchange system requirements in § 63.104 refer to Table 4 of 40 CFR part 63, subpart... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchanger provisions. 63.1435... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1435 Heat...

  4. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  5. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    OpenAIRE

    S. Muthuraman

    2013-01-01

    - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs) were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressur...

  6. Research on ground heat exchanger of Ground Source Heat Pump technique

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-sheng; SUN You-hong; GAO Ke; WU Xiao-hang

    2004-01-01

    Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its pattems are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.

  7. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  8. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Singh, Randeep; Akbarzadeh, Aliakbar [Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora East Campus, Bundoora, Victoria 3083 (Australia)

    2010-09-15

    This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

  9. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  10. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  11. Heat exchangers and the performance of heat pumps - Analysis of a heat pump database

    International Nuclear Information System (INIS)

    Heat pumping is a highly energy-efficient technology that could help reduce energy and environmental problems. The efficiency of a heat pump greatly depends on the individual and integral performance of the components inside. In this study, heat pump performance is investigated with a special focus on heat exchangers. Experimental data obtained from comprehensive heat pump measurements performed at the Austrian Institute of Technology (AIT) were analyzed with the help of thermodynamic models developed for this purpose. The analysis shows that the performance of heat exchangers varies widely resulting in substantial COP differences among the heat pumps. The models and methodology developed in this study are found capable of extracting useful information from measurement data quickly and accurately and could be useful for the industry. - Research highlights: → A heat pump database has been analyzed focussing on the influences of heat exchangers on COP. → It was shown that an empirical equation could excellently correlate experimental COP data with relevant parameters. → It was found that heat exchanger design alone caused 15-20% difference in COP.

  12. Heat transfer model in recuperative compact heat exchanger type honeycomb: Experimental and numerical analysis

    International Nuclear Information System (INIS)

    This paper presents a model to calculate the thermal performance of a heat recovery unit fabricated from an alumina honeycomb matrix and a methodology for the discretization of the energy equations necessary to develop a calculation algorithm for designing and sizing compact heat recovery units. Based on the results from the algorithm, a prototype heat recovery unit built from alumina honeycomb was tested. The device reached an efficiency of 84% and an air preheating temperature of 621 °C for an 8.19 kW power level. There was a 7% difference between the model calculations and experimental results. The yield was higher than is typically reported in the literature for this type of heat exchanger. The prototype device was compact, with an areal density of 1860 m2/m3, a hydraulic diameter of 0.75 mm and an overall length of less than 15 cm. -- Highlights: • A simplified heat transfer model for a compact heat recovery unit based on a honeycomb. • Heat exchanger uses an alumina matrix as the heat transfer medium. • Reducing the cross section causes an increase in the heat transfer rate. • The greatest effectiveness achieved was 84%, corresponding to an 8.19 kW burner unit. • A simulation was performed to compare the proposed model to an experimental setup

  13. The LUX prototype detector: Heat exchanger development

    International Nuclear Information System (INIS)

    The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (>1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period

  14. FASTEF Heat exchanger tube rupture CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, V., E-mail: moreau@crs4.it [CRS4, Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy)

    2012-11-15

    The aim of this technical note is to present CFD simulations of a tube rupture incidental scenario in a Primary Heat eXchanger (PHX)/Primary Pump (PP) assembly for two design variants of the FAst-Spectrum Transmutation Experimental Facility FASTEF ongoing design, in the framework of the FP7 Central Design Team (CDT) European project. The simulation domain reproduces with some simplification the entire primary coolant loop. The objective is to understand whether it is necessary take some counter-measures to avoid the ingress of steam in the cold plenum. The simulation has been performed on two successive updates of the design and of the nominal operation. The simulations show a good resistance to steam ingress, under the condition that provision is made to avoid an excessive accumulation of steam at the top of the PHX/PP assembly casing.

  15. Inservice inspection of PFR secondary heat exchangers

    International Nuclear Information System (INIS)

    The author describes the current state of development to meet inservice inspection requirements of secondary heat exchangers of a prototype fast reactor: detection of defects in both the bore and outer surface of the tubes (pitting and cracking in the bore surface and fretting and thinning on the outer), full inspection of bends and straight portions, examination of the tube plate and of the tube/tube plate weld region. He reports the development of an eddy current probe for the in-service inspection (ISI) of the stainless steel tubing in the super-heater and re-heater, describes the influence of sodium concentration on eddy current inspection, and briefly evokes the detection of defects in bends. He describes the eddy current inspection of the evaporator tube bores, the wall thickness measurement in evaporator tubes. Then, he reports the in-service inspection of tube plates: tube bore examination, volumetric examination. He briefly discusses the obtained results

  16. Simultaneous synthesis of work exchange networks with heat integration

    OpenAIRE

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero Suárez, José Antonio

    2014-01-01

    The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure ...

  17. Heat exchanger and water tank arrangement for passive cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  18. Two-phase Flow Distribution in Heat Exchanger Manifolds

    OpenAIRE

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  19. THERMAL ANALYSIS OF EARTH AIR HEAT EXCHANGER USING CFD

    OpenAIRE

    Vaibhav Madane; Meeta Vedpathak

    2015-01-01

    This project focuses on Earth Air Heat Exchanger which is reducing energy consumption in a building. The air is passing through the buried tubes and heat exchange takes place between air and surrounding soil. This equipment helps to reduce energy consumption of an air conditioning unit. This project analyses the thermal performance of earth air heat exchanger by using computational fluid dynamics modeling. The model is validated against experimental observations and investigations...

  20. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  1. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...

  2. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  3. Optimum Design of Heat Exchangers Networks Part -I: Software Development

    International Nuclear Information System (INIS)

    In this paper, we have developed a computerized framework for Heat Exchanger Network Synthesis (HENS) with optimality conditions of achieving the least operating and capital cost. The framework of HEN design involves the development three-computer programs, which applied sequentially to design an optimum HEN. The first program Automatic Minimum Utilities [AMU] developed for automatic formulation of LP equations, these equations can be solved by the optimization software [LINDO] to predict minimum hot and cold utilities. The second program based on Vertical Heat Transfer Method [VHTM] for predicting minimum overall heat transfer area and defining the optimum δbTmin. The third program [Mod.RESHEX] developed for targeting of heat transfer area and automatic synthesis of HEN. This program represents the modifications and development of RESHEX method to overcome the design defects, which appeared on original RESHEX applications

  4. Corrosion problems for heat exchangers of pressurized water reactors

    International Nuclear Information System (INIS)

    The corrosion event should be minimized in the heat exchangers which are used between the primary and the secondary circuits of PWR-PHWR due to radioactivity in the primary coolant.The various corrosion types and the types of heat exchangers are described with the wide-known corrosion regions in them. Corrosion defects in the heat exchangers are investigated according to all defects amount and it is evaluated types and materials of the heat exchangers as statistical values. Recently, some points are defined for the precautions of the corrosion. (Author)

  5. Experimental heat exchanger performance in a thermoacoustic prime mover

    OpenAIRE

    Castro, Nelson C.

    1993-01-01

    This thesis investigates the experimental heat exchanger performance in a neon filled thermoacoustic prime mover. The experimental approach is to measure the waveform and spectrum of the acoustic oscillations, as well as the relevant temperatures for heat exchangers of 0.257, 0.569, and 0.82 cm in length. A temperature gradient is established across the stack by submerging the cold heat exchanger and cold end tube in liquid nitrogen and keeping the hot heat exchanger and hot end tube at ambie...

  6. Liquid-Liquid Heat Exchanger With Zero Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned spacecraft will require thermal management systems that effectively and safely control the temperature in inhabited modules. Interface heat exchangers...

  7. A study on the heat transfer development of heat exchanger with vortex generator

    International Nuclear Information System (INIS)

    A numerical analysis using FLUENT code was carried out to investigate flow characteristics and heat transfer development of heat exchangers. The analysis results for both cases of the fin-circular tube and the fin-flat tube heat exchanger with the vortex generator show relatively higher heat transfer coefficient than that for both cases of the fin-circular tube and the fin-flat tube heat exchangers without the vortex generator. Also, the analysis result for the fin-circular tube heat exchanger with the vortex generator has relatively higher heat transfer coefficient and higher pressure loss than those for the fin-flat tube heat exchanger with the vortex generator. The results of this study can be used to design the heat exchanger with relatively low pressure loss and maximum heat transfer coefficient. 28 figs., 15 refs. (Author) .new

  8. Fouling corrosion in aluminum heat exchangers

    Directory of Open Access Journals (Sweden)

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  9. Optimization for entransy dissipation minimization in heat exchanger

    Institute of Scientific and Technical Information of China (English)

    XIA ShaoJun; CHEN LinGen; SUN FengRui

    2009-01-01

    A common of two-fluid flow heat exchanger, in which the heat transfer between high-and low-temperature sides obeys Newton's law [q∝△(T)], is studied in this paper. By taking entransy dissipation minimization as optimization objective, the optimum parameter distributions in the heat ex-changer are derived by using optimal control theory under the condition of fixed heat load. The condition corresponding to the minimum entransy dissipation is that corresponding to a constant heat flux density. Three kinds of heat exchangers, including parallel flow, condensing flow and counter-flow, are considered, and the results show that only the counter-flow heat exchanger can realize the entransy dissipation minimization in the heat transfer process. The obtained results for entransy dissipation minimization are also compared with those obtained for entropy generation minimization by numerical examples.

  10. A study on the formation of fouling in a heat exchanging system for river water

    International Nuclear Information System (INIS)

    When the water flowing inside of the heat transfer equipment such as heat exchangers, condensers, and boilers is heated, calcium, magnesium sulfate, and other minerals in the water are deposited and built up for scales on the heat transfer surfaces. When those scales accumulate on the heat transfer surfaces, their performance of the heat transfer become progressively reduced due to the increase of the heat transfer resistance. The mechanism of this reduced heat transfer is called fouling. This study investigated the formation of the fouling in a heat exchanger with river and tap water flowed inside of it as a coolant. In order to visualize the formation of the fouling and to measure the fouling coefficients, a lab-scale heat exchanging system was used. Based on the experimental results, it was found that the formation of fouling for river water was quite different with the formation for tap water

  11. Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface

    OpenAIRE

    Rodriguez, Marcos; Ravelet, Florent; Delfos, Rene; Witkamp, Geert-Jan

    2008-01-01

    In a cylindrical scraped heat exchanger crystallizer geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat exchanger surface has been studied by direct measurements of the heat exchanger surface temperature and the fluid velocity field inside the crystallizer. Liquid Crystal Thermometry revealed that the local heat transfer is higher in the middle area of the scraped surface. Stereoscopic PIV measurements demonstrated that the secondary flo...

  12. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  13. Vertical drum heat exchanger for overheated steam production

    International Nuclear Information System (INIS)

    The heat exchange surface of the heat exchanger consists on the primary side of vertical parallel heat transfer tubes with the feeder channel for the water/steam mixture to the steam separators and of a discharge steam channel from the separators. On the secondary side of the heat transfer tubes the heat exchanger is provided with a partition which runs across all tubes. The feeder channel to the separators is connected to the area between the tubes immediately under the partition and the discharge channel immediately above the partition. (M.D.)

  14. Experimental performance studies of a plate heat exchanger

    OpenAIRE

    Plath, Darren R.

    1996-01-01

    A plate and frame heat exchanger experimental test stand was developed. Using this test stand a performance analysis was conducted. The analysis consisted of evaluating the performance of the heat exchanger at varying flow rates and inlet temperatures, to develop an effectiveness-NTU and Log Mean Temperature Difference relationships, under steady state operation. The measured heat rates were compared to the heat rates provided by the manufacturer and good/bad agreement was found. Standard ope...

  15. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    OpenAIRE

    M. Thirumarimurugan; T Kannadasan; E. Ramasamy

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  16. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  17. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D......Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  18. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  19. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  20. Bypass Selection for Control of Heat Exchanger Network

    Institute of Scientific and Technical Information of China (English)

    SUN Lin; LUO Xionglin; HOU Benquan; BAI Yujie

    2013-01-01

    Considering the flexibility and controllability of heat exchanger networks (HENs),bypasses are widely used for effective control of process stream target temperatures.However,the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments.In this paper,based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA).To simplify the calculation process,rules of bypass selection were also proposed.In order to evaluate this method,then,the structural controllability of heat exchanger networks was analyzed.With both the consideration of the controllability and capital investments,the bypasses locations were finally selected.A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.

  1. Development of heat resistant ion exchange resin. First Report

    International Nuclear Information System (INIS)

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.)

  2. Granular flow and thermal performance of Moving Bed Heat Exchangers: Comparison of the Euler-Euler model with experimental results

    OpenAIRE

    Baumann, Torsten

    2014-01-01

    A moving bed heat exchanger (MBHX) is a promising technology option for efficient heat recovery from hot particles and can be used as steam generator for concentrating solar power plants with particle-based thermal energy storage. A moving bed heat exchanger is a tube bundle heat exchanger, in which a granular bulk flows downwards gravity driven while passing the heat exchanger tubes. In the tubes, a heat transfer fluid is heated up, e.g. evaporating water. For the solar specific device in...

  3. Design Calculation of Heat Exchanger of Reflooding Test

    Institute of Scientific and Technical Information of China (English)

    DUAN; Ming-hui; LI; Xiang; LI; Wei-qing

    2013-01-01

    The heat exchanger is very important to the major loop of the reflooding test.It can cool the fluid in the loop,so that the fluid temperature can agree with the requirements of the major pump and the preheater.Herein,an evaporative exchanger with U-shape tubes is adopted.The heat transfer calculation

  4. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-281. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  5. First results of a coated heat exchanger for the use in dehumidification and cooling processes

    International Nuclear Information System (INIS)

    In this work a novel solar driven dehumidification and cooling system is presented. The core components of this combined system are a sorptive dehumidification device based on high performance sorptive coatings and a novel evacuated tube solar air collector providing the driving heat. The essential part of the system is the coated heat exchanger. The chosen adsorbent is attached to the heat exchanger surface by a newly developed coating technique. Besides a brief description of the novel components and the experimental setup, the development of the aluminum heat exchanger, the coating procedure and scale up for geometries comparable to the heat exchanger in the dehumidification setup, as well as a first characterization of a small-sized coated heat exchanger regarding water uptake and dehumidification performance are presented. For estimating an overall system performance, a 2-dimensional thermodynamic model was applied, using the parameters in focus for the development of heat exchanger, coating and demonstration system. Highlights: • A novel developed technology is applied for sorptive coating of heat exchangers. • Upscaling to dimensions of 100 × 100 × 400 mm3 was successful. • A small scale heat exchanger was coated and characterized showing good results. • Evaluation of adsorbents and simulation of system performance were carried out. • SAPO-34 gives best performance for driving temperatures of 100 °C and above

  6. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  7. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    OpenAIRE

    Brouwers, H. J. H.; Geld, van der, C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall condensation and fog formation are considered in some detail. Separate attention is paid to the heat transfer and condensation of pure steam in the heat exchanger. Finally, the experiments performed...

  8. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  9. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  10. A concept of PWR using plate and shell heat exchangers

    International Nuclear Information System (INIS)

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  11. Numerical Study on Heat Transfer Performance of Crossflow Fin-tube Heat Exchanger Depending on Different Fan Positions

    International Nuclear Information System (INIS)

    The convective heat transfer of a crossflow fin-tube heat exchanger was studied numerically. In order to investigate the dependence of the heat transfer performance on the fan position, several cases with different blowing and suction types were selected for the fan position. A staggered tube arrangement was used for the heat exchanger, and the temperatures of the tube wall and air were 50 .deg. C and 30 .deg. C, respectively. The three-dimensional flow structures were examined based on the results. In addition, the convective heat transfer coefficient and mean temperature difference between the inlet and outlet of the heat exchanger were analyzed for the various fan positions, and the heat transfer performance was investigated.

  12. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  13. MATHEMATICAL SIMULATION OF HEAT AND MASS TRANSFER PROCESSES IN A CROSSFLOW HEAT EXCHANGER

    OpenAIRE

    Valiulin, S.; Shabarov, V.

    2008-01-01

    A calculation procedure for gas-dynamic and thermal characteristics of cross flow heat exchanger has been put forward. Heat carriers have been modeled by a turbulent motion of compressible and incompressible liquids. The problem is solved using the ANSYS CFX software system. Some peculiarities of the problem solution have been considered including the possibility to intensify the heat exchange by installing two systems of annular airfoils in the heat exchanger.

  14. Three-dimensional numerical modeling of heat exchangers

    International Nuclear Information System (INIS)

    A comprehensive, multi-dimensional, thermal-hydraulic model is developed for the analysis of shell and tube heat exchangers for liquid metal services. For the shell-side fluid, the conservation equations of mass, momentum and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat transfer tubes, flow baffles/shrouds, tube support plates, etc. On the tube side, the heat transfer tubes are connected in parallel between the inlet and outlet plenums, and tube-side flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phased on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG). The analytical model predictions are compared with three sets of test data (one for IHX and two for SG, and favorable results are obtained, thus providing a limited validation of the model

  15. A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft Excel......TM. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used...... to reduce the number of hardware iterations in heat exchanger design....

  16. Experimental investigations of the sodium/air heat exchanger with natural draught chimney for the EFR

    International Nuclear Information System (INIS)

    In a first series of experiments in the new large sodium experimental plant ILONA, the post-shutdown heat removal system for the European Fast Breeder Reactor EFR developed by Interatom and working by natural convection was tested. The air-side flow in the heat exchanger and chimney was optimized in extensive model experiments and the results were taken into account in the construction of the Na/air heat exchanger in the ILONA. A considerable increase in output was achieved, compared to the design, based on the flow model experiments for the ILONA heat exchanger. (orig.)

  17. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  18. To Design an internal model control based PI/PID controller for low order time delay process model of boiler and heat exchanger

    International Nuclear Information System (INIS)

    In any of the control applications, controller design is the most important part. There are different types of controller architectures available in control literature. In this research work, various low order plus dead time transfer function models of industrial boiler and heat exchanger are considered. A PI/PID controller is used to control various processes that involve boiler and heat exchanger. This comprise of controlling of parameters such as temperature, pressure, flow and level. The technique used for designing the controller is known as Internal Model Control. The designed controller has to give optimal control results irrespective of undesired situation like plant and equipment saturation. So the performance and stability is tested and verified for Linear Time Invariant Systems. (author)

  19. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  20. Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil's moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil's moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard "Technical Code for Ground Source Heat Pump (GB 50366-2005)" is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil's structure, backfilled materials,weather data, and economic analysis.

  1. Basic characteristics of heat-exchanger type steam reformer heated by high temperature helium gas, (2)

    International Nuclear Information System (INIS)

    A computer simulation model has been developed to analyze the basic characteristics of heat-exchanger type steam-methane reformer which is the key component to produce hydrogen using the nuclear process heat from high temperature gas cooled reactor. This model is based on the one-dimensional one taking account of heat transfer and reaction kinetics. In the previous report, the analytical model and the solution procedure have been described, and an example of calculation result has been shown compared with the experimental data in reference. This report describes simulation results of the dependencies of the characteristic quantities such as heat flux, reaction rates and hydrogen production rate in reformer tube on selected parameters, namely, the operating conditions (inlet gas temperatures, pressure and flow rates), the activities of the catalyst, the heat transfer rate and the dimensions of reaction tube. (author)

  2. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    OpenAIRE

    Mičieta Jozef; Jiří Vondál; Jandačka Jozef; Lenhard Richard

    2016-01-01

    Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major adv...

  3. Optimized heat exchanger unit in a thermoacoustic refrigerator

    Science.gov (United States)

    El-Fawal, Mawahib Hassan; Mohd-Ghazali, Normah

    2012-06-01

    Due to concern over the environmental impact caused by hazardous refrigerants, the last ten years or so has seen increasing research into thermoacoustic refrigeration. A thermoacoustic refrigerator is a device which uses acoustic power to pump heat. It holds the merits of simple mechanical design, absence of harmful refrigerants and having no or few moving parts. However, the performance of the thermoacoustic refrigerator, particularly the standing wave types, is currently not competitive compared to its counterpart conventional vapor-compression refrigerator. Thermoacoustic refrigeration prototypes, built up-to-date, achieved 0.1-0.2 relative coefficient of performance (COPR) compared with that of 0.33-0.5 for the conventional vapor-compression refrigerators. The poor heat exchanger design is one of the reasons for this poor efficiency. This paper discussed the influence of the thermoacoustic refrigerator heat exchanger's parameters on its design and the optimization of the performance of the system using the Lagrange multiplier method. The results showed that, the dissipated power is less than the published value by about 49% in the cold heat exchanger and about 38.5% in the hot heat exchanger. Furthermore, the increase of the cold heat exchanger effectiveness is found to be 3%. Thus, the decrease in the dissipated power in both heat exchangers with effective cold heat exchanger increases the performance of the thermoacoustic refrigerator.

  4. Optimum structural design of a heat exchanger for gas-circulation systems

    International Nuclear Information System (INIS)

    Highlights: • The fluid flow structure and heat transfer characters of a finned-tube heat exchanger was numerically investigated. • The optimized heat exchanger is more compact and easy to be miniaturized and utilized. • A novel configuration of tubes region is proposed to reduce the pressure drop penalty of the optimized heat exchanger. • The comprehensive performance of the optimized heat exchanger is enhanced. - Abstract: T-type gas-circulation systems are widely used in gas lasers to remove waste heat from the discharge process. The structure of the heat exchanger is a very important factor that affects the performance of a T-type gas-circulation system. To develop a high-performance heat exchanger for such a gas-circulation application, a computational fluid dynamics approach was adopted for this study. A three-dimensional numerical model was established. A detailed study focused on the influence of the shape of the channel and the location of the finned tubes on the performance of the heat exchanger. Based on the heat-transfer characteristics and the flow structure, a novel geometric structure was proposed to reduce the volume of the heat exchanger. Comprehensive simulations to determine the optimum locations for the finned tubes were also conducted. As a result of this optimization, the heat exchanger for a T-type gas-circulation system could be made more compact and its pressure loss penalty decreased by 11.5% even though its heat-transfer ability remained unchanged. In addition, the results of a theoretical analysis and numerical simulation were found to be in good agreement with the results of the experiment, indicating the validity of the results of the research

  5. An experimental study of a pin-fin heat exchanger

    OpenAIRE

    Ramthun, David L.

    2003-01-01

    Approved for public release; distribution is unlimited A detailed experimental study has been carried out on the heat transfer and pressure drop characteristics of a compact heat exchanger with pin fins. A modular wind-tunnel with a rectangular cross-section duct-flow area was constructed that would accommodate the heat exchanger test section with varying pin designs. The flow in the tunnel was achieved through a suction-type blower, and a leading entrance length section was added to achie...

  6. Multi-period design of heat exchanger networks

    OpenAIRE

    M. I. Ahmad

    2012-01-01

    Heat exchanger networks are an integral part of chemical processes as they recover available heat and reduce utility consumption, thereby improving the overall economics of an industrial plant. This paper focuses on heat exchanger network design for multi-period operation wherein the operating conditions of a process may vary with time. A typical example is the hydrotreating process in petroleum refineries where the operators increase reactor temperature to compensate for catalyst deactivatio...

  7. Principle of equipartition of entransy dissipation for heat exchanger design

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,a principle of equipartition of entransy dissipation(EoED) for heat exchanger design is established,which says that for a heat exchanger design with given heat duty and heat transfer area,the total entransy dissipation rate reaches the minimum when the local entransy dissipation rate is uniformly distributed along the heat exchanger.When the heat transfer coefficient is unfixed,the total entransy dissipation obtained by the EoED principle is less than that obtained by the principle of equipartition of temperature difference(EoTD).Furthermore,the exchanger effectiveness obtained by the EoED principle is larger than that obtained by the EoTD principle.When the heat transfer coefficient is fixed,the EoED principle is equivalent to the EoTD principle.We show that the equipartition of entropy production(EoEP) and EoED principles give rise to difference in entropy generation and entransy dissipation for a heat exchanger optimization design.The discrepancies are caused by distinct features of entropy production minimization and entransy dissipation minimization principles,the former is to optimize the design of heat exchanger by making the lost available work minimum,while the latter is not involved with heat-work conversion.It is found that the entropy generation number is not suitable for evaluating heat exchanger performance,since it directly depends on the inlet and outlet temperatures of working fluids.On the contrary,the entransy dissipation number is not directly related to the inlet and outlet temperatures of working fluids.Therefore,the entransy dissipation number is more suitable for serving as a criterion to evaluate heat exchanger performance.

  8. CFD as a Design Tool for a Concentric Heat Exchanger

    OpenAIRE

    Oosterhuis, J.P.; Bühler, S.; Wilcox, D.; Meer, Van Der

    2012-01-01

    A concentric gas-to-gas heat exchanger is designed for application as a recuperator in the domestic boiler industry. The recuperator recovers heat from the exhaust gases of a combustion process to preheat the ingoing gaseous fuel mixture resulting in increased fuel efficiency. This applied study shows the use of computational fluid dynamics (CFD) simulations as an efficient design tool for heat exchanger design. An experimental setup is developed and the simulation results are validated.

  9. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  10. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  11. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    International Nuclear Information System (INIS)

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  12. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  13. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Ekadewi Anggraini Handoyo

    2001-01-01

    Full Text Available Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffles is smaller until certain spacing, and then it decreases. Abstract in Bahasa Indonesia : Shell-and-tube heat exchanger merupakan jenis alat penukar panas yang banyak digunakan. Untuk membuat perpindahan panas lebih baik dan untuk menyangga tube yang ada di dalam shell, maka sering dipasang baffle. Perpindahan panas yang lebih baik sangat diharapkan dalam suatu heat exchanger. Penelitian dilakukan untuk mengetahui pengaruh penggunaan baffle terhadap efektifitas dan penurunan tekanan dalam heat exchanger. Dari hasil penelitian didapat bahwa efektifitas meningkat dengan dipasangnya baffle. Efektifitas meningkat seiring dengan mengecilnya jarak antar baffle hingga suatu jarak tertentu, kemudian menurun. Kata kunci: penukar kalor, baffle, efektifitas.

  14. Performance of tubes-and plate fins heat exchangers

    International Nuclear Information System (INIS)

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author)

  15. Improvements of U-pipe Borehole Heat Exchangers

    OpenAIRE

    Acuña, José

    2010-01-01

    The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the groun...

  16. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  17. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Directory of Open Access Journals (Sweden)

    Liporace F.S.

    2000-01-01

    Full Text Available Heat exchanger network (HEN synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synthesis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  18. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  19. Heat Exchange and Thermal Modes of Modern Ring Furnaces

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolsky

    2014-06-01

    Full Text Available The paper considers an accumulated experience concerning investigation of heat exchange and thermal modes of ring furnaces applied for heating simulation. Physical and mathematical model and methodology for theoretical investigation of round billet heating in the ring furnace are proposed in the paper.

  20. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  1. Developing the Mathematical Model of Regenerative Heat Exchangers for Energy and Heat Supply Systems of High Temperature Heat Process Units

    OpenAIRE

    Кошельник, Александр Вадимович; Лавинский, Денис Владимирович; Хавин, Евгений Валерьевич; Павлова, Виктория Геннадиевна; Гордиенко, Елена Петровна

    2015-01-01

    A mathematical model for the computation of the heat exchange in the heat accumulation elements of the regenerative heat exchangers of energy and heat supply systems for high temperature heat process units has been presented. The model allows us to obtain the design data about the operation parameters of the regenerators, nozzle temperature state, and a change in heat carrier parameters. The obtained data can be used for the selection of structural and mode-related parameters for the regenera...

  2. Characteristics of cooling water fouling in a heat exchange system

    International Nuclear Information System (INIS)

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  3. Hydraulic Validation of the LHC Cold Mass Heat Exchanger Tube

    CERN Document Server

    Provenaz, P

    1998-01-01

    The knowledge of the helium mass flow vs. the fraction of the tube wetted by the liquid helium II in the heat exchanger is a crucial input parameter for the heat exchange since the heat flux is direct ly proportional to the wetted surface. In the range of liquid and gas velocities inside the heat exchanger, the liquid flow behaves like in an open channel. Looking at the flow equations for such a s ituation, the velocity depends on the fluid properties only by the friction factor which is a function of the Reynolds number. Thus it was decided to build an experiment with water in order to check t he open channel equations in the heat exchanger geometry. This paper shows the results for water and gives the extrapolation for helium.

  4. Experimental and Exergy Analysis of A Double Pipe Heat Exchanger for Parallel Flow Arrangement

    Directory of Open Access Journals (Sweden)

    Parth P. Parekh

    2014-07-01

    Full Text Available This paper presents For Experimental and Exergy Analysis of a Double Pipe Heat Exchanger for Parallel- flow Arrangement. The Double pipe heat exchanger is one of the Different types of heat exchangers. double-pipe exchanger because one fluid flows inside a pipe and the other fluid flows between that pipe and another pipe that surrounds the first.In a parallel flow, both the hot and cold fluids enter the Heatexchanger at same end andmove in same direction. The present work is taken up to carry experimental work and the exergy analysis based on second law analysis of a Double-Pipe Heat Exchanger. In experimental set up hot water and cold water will be used working fluids. The inlet Hot water will be varied from 40 0C and 50 0C and cold water temperature will be varied from between 15 and 20 0C. It has been planned to find effects of the inlet condition of both working fluid flowing through the heat exchanger on the heat transfer characteristics, entropy generation, and Exergy loss. The Mathematical modelling of heat exchanger will based on the conservation equation of mass, energy and based on second law of thermodynamics to find entropy generation and exergy losses.

  5. Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach

    Institute of Scientific and Technical Information of China (English)

    Qiuwang WANG; Gongnan XIE; Ming ZENG; Laiqin LUO

    2006-01-01

    This work used artificial neural network (ANN) to predict the heat transfer rates of shell-and-tube heat exchangers with segmental baffles or continuous helical baffles, based on limited experimental data. The Back Propagation (BP) algorithm was used in training the networks. Different network configurations were also studied. The deviation between the predicted results and experimental data was less than 2%. Comparison with correlation for prediction shows ANN superiority. It is recommended that ANN can be easily used to predict the performances of thermal systems in engineering applications, especially to model heat exchangers for heat transfer analysis.

  6. Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts

    OpenAIRE

    Tescari, Stefania; Agrafiotis, Christos; Breuer, Stefan; de Oliveira, Lamark; Neises-von Puttkamer, Martina; Roeb, Martin; Sattler, Christian

    2014-01-01

    Thermochemical Storage of solar heat exploits the heat effects of reversible chemical reactions for the storage of solar energy. Among the possible reversible gas-solid chemical reactions, the utilization of a pair of redox reactions of multivalent solid oxides can be directly coupled to CSP plants employing air as the heat transfer fluid bypassing the need for a separate heat exchanger. The present work concerns the development of thermochemical storage systems based on such oxide-based r...

  7. Dynamic thermal simulation of ground heat exchangers for renewable heating of buildings

    OpenAIRE

    Gan, Guohui

    2016-01-01

    The temperature of deep soil is relatively stable throughout a year and the thermal energy stored in soil can be used to provide renewable heat or coolth for a building. A ground heat exchanger is required to transfer heat between the fluid in the heat exchanger and surrounding soil. The control volume method is used to solve the equations for coupled heat and moisture transfer in soil and the dynamic interactions between the heat exchanger, soil and atmosphere. The method is used for numeric...

  8. Control strategies in a thermal oil - Molten salt heat exchanger

    Science.gov (United States)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto

    2016-05-01

    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  9. Turbulence and heat exchange under ice

    OpenAIRE

    Sirevaag, Anders

    2003-01-01

    Turbulent fluxes of heat and salt were measured under sea ice at four different locations around Spitsbergen. In Kongsfjorden on West Spitsbergen additional measurements of heat fluxes in the ice and in the atmosphere were done and compared in an air/sea/ice heat budget. Ocean heat flux in Kongsfjorden is about 13 W/m2 and comparison with the other heat fluxes at the ice/ocean interface shows a good agreement. From the heat budget at the ice/ocean interface, the ice growth during three subseq...

  10. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  11. Long-Life, Hydrophilic, Antimicrobial Coating for Condensing Heat Exchangers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned exploration spacecraft and lunar/planetary bases will need a condensing heat exchanger (CHX) to control humidity in crew...

  12. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  13. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Science.gov (United States)

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  14. Xenon Recirculation-Purification with a Heat Exchanger

    CERN Document Server

    Giboni, K L; Choi, B; Haruyama, T; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; 10.1088/1748-0221/6/03/P03002

    2011-01-01

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid...

  15. EVALUASI KINERJA HEAT EXCHANGER DENGAN METODE FOULING F

    Directory of Open Access Journals (Sweden)

    Bambang Setyoko

    2012-02-01

    Full Text Available The performance of heat exchangers usually deteriorates with time as a result of accumulation of depositson heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer and causesthe rate of heat transfer in a heat exchanger to decrease. The net effect of these accumulations on heattransfer is represented by a fouling factor Rf , which is a measure of the thermal resistance introduced byfouling.In this case, the type of fouling is the precipitation of solid deposits in a fluid on the heat transfer surface.The mineral deposits forming on the inner and the outer surfaces of fine tubes in the heat exchanger. Thefouling factor is increases with time as the solid deposits build up on the heat exchanger surface. Foulingincreases with increasing temperature and decreasing velocity.In this research, we obtain the coefisien clean overal 5,93 BTU/h.ft2.oF, Dirt factor 0,004 BTU/h.ft2 0F,Pressure drope in tube 2,84 . 10-3 Psi and pressure drope in shell 4,93 . 10-4 Psi.This result are less thanthe standard of parameter. Its means this Heat exchanger still clean relativity and can operate continousslywithout cleaning.

  16. Performance investigation of multiple-tube ground heat exchangers for ground-source heat pump

    OpenAIRE

    Jalaluddin

    2014-01-01

    The present study aims to investigate the performance of multiple-tube ground heat exchangers (GHEs). The multiple-tube GHEs with a number of pipes installed inside the borehole were simulated. Thermal interferences between the pipes and performance of multiple-tube GHEs are discussed. Increasing the number of inlet tube in the borehole increases the contact surface area and then leads to increase of heat exchange with the ground. However, ineffective of heat exchange in the outle...

  17. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  18. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    International Nuclear Information System (INIS)

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  19. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  20. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  1. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  2. Shell-and-Tube or Plate Heat Exchangers

    OpenAIRE

    Kuzma-Kichta, Y; Savelyev, P; Lodvikov, K

    2008-01-01

    The calculations of heat and hydraulic characteristics and influence of apparatus with intensifiers size analysis to heat exchanger potential of equipment were made onto the basis of known experimental data recommendations. Calculations data were received in a range of parameters, that are typical for a heat and water supply systems. It was obtain, that in studied range of Reynolds’s number, the most better heat transfer coefficient value is for the tubes with dimpled interface...

  3. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Researches Regarding the Efficiency of Water to Air Heat Exchanger with Heat Pipes for the Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Andrei Burlacu

    2007-01-01

    Full Text Available The present paper proposes the analysis of the efficiency of water to air heat exchanger with heat pipes for the mechanical ventilation system. The performed study is based on the necessity of the unconventional energy forms capitalization, increasing of the energy efficiency and the energy consumption decrease in concordance with the sustainable development concept.

  5. Researches Regarding the Efficiency of Water to Air Heat Exchanger with Heat Pipes for the Mechanical Ventilation System

    OpenAIRE

    Andrei Burlacu; Theodor Mateescu

    2007-01-01

    The present paper proposes the analysis of the efficiency of water to air heat exchanger with heat pipes for the mechanical ventilation system. The performed study is based on the necessity of the unconventional energy forms capitalization, increasing of the energy efficiency and the energy consumption decrease in concordance with the sustainable development concept.

  6. On Effectiveness and Entropy Generatioin in Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    XiongDaxi; LiZhixin; 等

    1996-01-01

    Some conceptual problems were discussed in the present paper,Firstly,according to the physical meaning of effectiveness,a new expression of effectiveness was developed by using an ideal heat exchnager model and temperature histogram method,in which the non-uniform inlet temperature profile was considered.Secondly,the relation of entropy generation number to effectiveness was studied,it was pointed out that both of them could express the perfect degree of a heat exchanger to the second thermodynamic law.Finally,to describe both quantity and quality of heat transferred in a heat exchanger a criterion named as comperhensive thermal performance coefficient (CTPE) was presented.

  7. Some extra-high capacity heat exchangers of special design

    International Nuclear Information System (INIS)

    Recent technical advances in developing high-capacity power generating equipment, in using new heat transfer media, in seawater desalination, and in chemical processing require the development of higher unit-capacity heat exchangers. Up-to-date solutions illustrating the progress made in the development of such heat exchangers is discussed and suggestions are made which may be of interest in this field. Specific heat transfer systems discussed include systems for air-cooled condensing power plants, multiple reheating cycles for steam turbines, and systems using liquid lead as the transfer medium. (U.S.)

  8. Effect of Surface Fouling on the Economic Operation of Heat Exchangers

    International Nuclear Information System (INIS)

    In this work we have obtained two mathematical expressions for calculating the optimum operating time period, in terms of the maintenance time period, which produce maxims for the average heat transfer rate across heat exchanger tubes. One of this expression is based on an overall heat transfer coefficient in which the fouling and scale build up increases linearly with time, while for the second expression an empirical overall coefficient-which varies inversely with the square root of time-is used. Based on the results and discussion it is recommended to use those optimum times since at these conditions the heat exchanger is operating in an economic manner. 2 fig., 1 tab

  9. Effect of flow twisting on hydraulic resistance and heat exchange

    Science.gov (United States)

    Suslov, V. Ya.; Makarov, N. A.

    1989-02-01

    On the basis of dimensional analysis through a differentiated approach to the dimensions of length we have obtained formulas for the effect of flow twisting in a circular tube on the hydraulic resistance and exchange of heat.

  10. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  11. The role of sealing strips in tubular heat exchangers

    International Nuclear Information System (INIS)

    Tubular-type heat exchangers contain both baffle plates and sealing strips. The baffles force the flow to pass normal to the axes of the tubes and they serve to support the tubes. In order to facilitate assembly of the heat exchanger, a space exists between the tube bundle and the retaining shell. This space offers a hydraulic short circuit to the fluid, thus reducing the effectiveness of the device to exchange heat. Sealing strips, which are metal strips mounted on the shell and running parallel to the tubes, are introduced to partially block this leakage flow, thereby increasing the effectiveness of the device. The objectives of the research reported here are to experimentally determine the effectiveness of sealing strips, and to investigate the effects of their shape and location. Such results not only supply design information, but they serve to establish the accuracy of computer codes which have been developed for such heat exchangers. (author)

  12. 1-MWE heat exchangers for OTEC. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  13. Various methods to improve heat transfer in exchangers

    Science.gov (United States)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  14. Phase Change Material (PCM) Heat Exchanger Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Project has identified two PCM HX concepts that will be designed, developed and demonstrated on-board the International Space Station (ISS):The first heat exchanger...

  15. ABOUT INVARIANCE IN PROBLEM HEAT OF EXCHANGE WITH BORDER MANAGEMENT

    OpenAIRE

    MUSTAPOKULOV KHAMDAM YANGIBOEVICH; MINAROVA NIGORA XUDAYBERGANOVNA

    2015-01-01

    In given work is considered the question about strong and weak invariance of constant ambiguous image for equations heat of exchange with border management. Sufficient conditions are received for strong or weak invariance given ambiguous image.

  16. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  17. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  18. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  19. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned spacecraft heat rejection systems use two heat exchangers and an intermediate fluid loop to provide isolation between the crew compartment air and...

  20. Experimental investigation of stabilization of flowing water temperature with a water-PCM heat exchanger

    OpenAIRE

    Charvat Pavel; Stetina Josef; Pech Ondrej; Klimes Lubomir; Ostry Milan

    2014-01-01

    Experiments have been carried out in order to investigate the stabilization of water temperature with a water-PCM heat exchanger. The water-PCM heat exchanger was of a rather simple design. It was a round tube, through which the water flowed, surrounded with an annular layer of PCM. The heat exchanger was divided into one meter long segments (modules) and the water temperature was monitored at the outlet of each of the segments. A paraffin-based PCM with the melting temperature of 42 °C was u...

  1. Calculation of heat-mass exchange and friction in near-wall flows based on the two-scale four-parametric model of turbulence

    International Nuclear Information System (INIS)

    The calculational results on heat-mass exchange and friction in near-wall flows by injection through a gap and porous surface of homogeneous or extraneous gases in the main flow are presented. The above results are obtained on the basis of the turbulence model, including two expressions for the turbulence scale and four transfer equations for the second order velocity fields, enthalpy and concentration. The agreement of the calculational results with the known experimental data made it possible to prove more substantially satisfactory compliance of the calculations with the published experimental data by injection of extraneous gas into super-sound area of the Laval's nozzle

  2. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  3. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  4. Controllability and Operability Analysis of Heat Exchanger Networks Including Bypasses

    OpenAIRE

    Hernández, S; Balcazar-López, L.; Sánchez-Márquez, J. A.; González-García, G.

    2010-01-01

    In this paper, the influence of bypasses in heat exchanger networks on theoretical control properties and closed-loop behavior was investigated. According to theoretical control properties obtained using the singular value decomposition technique, the presence of bypasses increases flexibility of the heat exchanger network. This result was corroborated using closed-loop dynamic simulations using a proportional integral controller and a proportional integral controller with dynamic estimati...

  5. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  6. MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR

    OpenAIRE

    Khomenko, I.

    2013-01-01

    Purpose. Existing mathematical models of unsteady heat exchange in a passenger car do not satisfy the need of the different constructive decisions of the life support system efficiency estimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreover quite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisions of the life support s...

  7. Theoretical and experimental studies of crossflow minichannel heat exchanger subjected to external heat ingress

    International Nuclear Information System (INIS)

    The effect of heat in-leak, an unavoidable phenomenon occurring due to the temperature difference between the system and its surroundings, has been studied for two-stream crossflow minichannel heat exchangers with unmixed fluids. Assuming that the amount of heat in-leak is known, an analytical expression for the normalised temperature difference between hot and cold fluids has been derived in terms of dimensionless parameters. The analytical results, in conjugation with the area partitioning of crossflow heat exchanger both in x and y directions, have been used for predicting the outlet fluid temperatures. On the experimental part, one of the end plates in a crossflow-type multistream, minichannel heat exchanger has been subjected to deliberate external heat input given electrically. The variation in the exit fluid temperatures has been recorded as a function of this external heat in-leak entering the exchanger through one of its outer surfaces. Experimental data obtained is employed to validate the fluid exit temperatures predicted by the developed model under the same conditions of external heat ingress. - Highlights: • Theoretical model of crossflow heat exchanger with known ambient heat leak amount. • Numerical technique of partitioning exchanger into smaller segments. • Experimental validation of model by testing of crossflow minichannel heat exchanger

  8. Introduction to Heat Medium Heat Exchanger Constructed with Double Tube and Double Tubesheet (Safe Heat Exchanger)%双管双管板热媒热交换器(安全热交换器)

    Institute of Scientific and Technical Information of China (English)

    朱敏

    2012-01-01

    双管双管板热媒热交换器是近代在双管板基础上发展起来的一种新型管壳式热交换器,也称安全热交换器,适用于管、壳程介质严禁掺混的场合.结合双管板热交换器,对双管双管板热媒热交换器的有关要点做了简要介绍,可为此类热交换器的设计、制造及使用者提供一定的参考.%Heat medium heat exchanger constructed with double tube and double tube-sheet is a new type of tubular heat exchanger developed on the basis of double tube-sheet type in recently times, it is also called safe heat exchanger. This kind of heat exchanger is able to be applied to such occasions where the fluid is strictly prohibited to blend and mix between tube side and shell side. Based on double tube-sheet heat exchanger, some key points of designing and manufacturing for heat medium heat exchanger are introduced, so it can be a reference for designer, manufacturer and uses for this kind of heat exchanger.

  9. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  10. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  11. PERFORMANCE INVESTIGATION OF SLINKY HEAT EXCHANGER FOR SOLAR ASSISTED GROUND SOURCE HEAT PUMP

    OpenAIRE

    ÖZSOLAK, Onur; ESEN, Mehmet

    2014-01-01

    In the following study, 12 m2 test chamber was heated by solar and ground source heat pump under the physical conditions of Elazığ. In order to place slinky heat exchanger pipes, a hole was dug with 1 meter width, 2 meters depth and 15 meters length. Slinky pipes were put horizontally in the hole and water-antifreeze mixture was circulated with the circulating pump in the slinky heat exchanger. The heat taken from the ground was transferred into the environment to be heated through the heat p...

  12. Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles

    International Nuclear Information System (INIS)

    The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increase the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000

  13. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  14. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    OpenAIRE

    Dhanraj S.Pimple; Shreeshail.B.H; Amar Kulkarni

    2014-01-01

    This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data ...

  15. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  16. The fouling in the tubular heat exchanger of Algiers refinery

    Science.gov (United States)

    Harche, Rima; Mouheb, Abdelkader; Absi, Rafik

    2016-05-01

    Crude oil fouling in refinery preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer and pressure drops. In subject of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of the crude oil preheats trains installed in an Algiers refinery. By measuring the inlet and outlet temperatures and mass flows of the two fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the two cells of exchangers studies, showed that the fouling resistance increased with time presented an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the impact between the particles. The bad cleaning of the heat exchangers involved the absence of the induction period and caused consequently, high values of the fouling resistance in a relatively short period of time.

  17. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL)

  18. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    OpenAIRE

    DipankarMandal

    2015-01-01

    The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop) used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger).It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the devel...

  19. Heat exchanger performance in main cooling system on high temperature test operation at high temperature gas-cooled reactor 'HTTR'

    International Nuclear Information System (INIS)

    High Temperature Engineering Test Reactor (HTTR) of high temperature gas-cooled reactor at Japan Atomic Energy Research Institute achieved the reactor outlet coolant temperature of 950degC for the first time in the world at Apr.19, 2004. To remove generated heat at reactor core and to hold reactor inlet coolant temperature as specified temperature, heat exchangers in HTTR main cooling system should have designed heat exchange performance. In this report, heat exchanger performance is evaluated based on measurement data in high temperature test operation. And it is confirmed the adequacy of heat exchanger designing method by comparison of evaluated value with designed value. (author)

  20. Industrially Experimental Investigations and Development of the Curve-ROD Baffle Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    严良文; 吴金星; 王志文

    2004-01-01

    The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tubeside. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.

  1. Examination of processes of heat exchange in collector thermosyphons of switching boards high degree of integration.

    OpenAIRE

    Nikolaenko Yu. Е.; Tsyganskiy А. А.

    2007-01-01

    The article presents the research of heat exchange and hydrodynamics of the heat transfer medium in the channels of the collector thermosyphon built into the heat load switching board. The most rational geometry of evaporation channels is chosen. Experimentally obtained dependences of the temperature of switching boards surface on the power of supplied heat flow are given. It is shown that the insertion of collector thermosiphons based on slot channels into the switching board can halve the...

  2. Continuous cleaning of heat exchanger with recirculating fluidized bed

    International Nuclear Information System (INIS)

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ν < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  3. Investigation into fouling factor in compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Masoud Asadi

    2013-03-01

    Full Text Available Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtained, and this suggests a somewhat different approach to the economics. Fouling is a generic term for the deposition of foreign matter on a heat transfer surface. Deposits accumulating in the small channels of a compact heat exchanger affect both heat transfer and fluid flow. Fouling deposits constricting passages in a compact heat exchanger are likely to increase the pressure drop and therefore reduce the flow rate. Reduced flow rate may be a process constraint; it reduces efficiency and increases the associated energy use and running costs. Maintenance costs will also increase. Fouling remains the area of greatest concern for those considering the installation of compact heat exchangers. The widespread installation of compact heat exchangers has been hindered by the perception that the small passages are more strongly affected by the formation of deposits. In this paper different types of fouling and treatment are presented.

  4. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Geld, van der C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall c

  5. Sprinkled Heat Exchangers in Evaporation Mode

    Directory of Open Access Journals (Sweden)

    Pospisil J.

    2013-04-01

    Full Text Available The paper presents research on the heat transfer at sprinkled tube bundles situated in a test chamber at atmospheric pressure and low-pressure. Dynamic effects of physical quantities influencing the heat transfer coefficient during boiling are examined experimentally. Experimental results were achieved by means of balance measuring using thermocouple probes and by analysis of thermal diagrams created during operation periods.

  6. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  7. Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system

    International Nuclear Information System (INIS)

    This paper presents a systematic approach to develop artificial neural network (ANN) models to predict the performance of a heat exchanger operating in real mechanical ventilation and air-conditioning (MVAC) system. Two approaches were attempted and presented. Every detailed components of the MVAC system have been considered and we attempt to model each of them by one ANN. This study used the neural network technique to obtain a static and a dynamic model for a heat exchanger mounted in an air handler unit (AHU), which is the key component of the MVAC system. It has been verified that almost all of the predicted values of the ANN model were within 95% - 105% of the measured values, with a consistent mean relative error (MRE) smaller than 2.5%. The paper details our experiences in using ANNs, especially those with back-propagation (BP) structures. Also, the weights and biases of our trained-up ANN models are listed out, which serve as good reference for readers to deal with their own situations

  8. NUMERICAL SIMULATION OF THERMAL PERFORMANCE AND TEMPERATURE FIELD IN HEAT PIPE HEAT EXCHANGER%热管换热器传热性能及温度场数值模拟

    Institute of Scientific and Technical Information of China (English)

    孙世梅; 张红

    2004-01-01

    Mathematic model for thermal performance of heat pipe heat exchanger based on the heat transfer model was presented. The infinite volume model was used to calculate the overall thermal performance and the temperature field of heat pipe heat exchanger. The calculation results essentially coincided with the results of an engineering case and provided the theoretical base for engineering application.

  9. Use of Algorithm of Changes for Optimal Design of Heat Exchanger

    Science.gov (United States)

    Tam, S. C.; Tam, H. K.; Chio, C. H.; Tam, L. M.

    2010-05-01

    For economic reasons, the optimal design of heat exchanger is required. Design of heat exchanger is usually based on the iterative process. The design conditions, equipment geometries, the heat transfer and friction factor correlations are totally involved in the process. Using the traditional iterative method, many trials are needed for satisfying the compromise between the heat exchange performance and the cost consideration. The process is cumbersome and the optimal design is often depending on the design engineer's experience. Therefore, in the recent studies, many researchers, reviewed in [1], applied the genetic algorithm (GA) [2] for designing the heat exchanger. The results outperformed the traditional method. In this study, the alternative approach, algorithm of changes, is proposed for optimal design of shell-tube heat exchanger [3]. This new method, algorithm of changes based on I Ching (???), is developed originality by the author. In the algorithms, the hexagram operations in I Ching has been generalized to binary string case and the iterative procedure which imitates the I Ching inference is also defined. On the basis of [3], the shell inside diameter, tube outside diameter, and baffles spacing were treated as the design (or optimized) variables. The cost of the heat exchanger was arranged as the objective function. Through the case study, the results show that the algorithm of changes is comparable to the GA method. Both of method can find the optimal solution in a short time. However, without interchanging information between binary strings, the algorithm of changes has advantage on parallel computation over GA.

  10. A Freezable Heat Exchanger for Space Suit Radiator Systems

    Science.gov (United States)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  11. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt;

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel to...... behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  12. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; WANG YingShuang; HUANG SuYi

    2009-01-01

    ormer is superior to that of the latter.Compared with rod baffle heat exchanger,heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop,especially under the high Reynolds numbers.

  13. Plate type heat exchanger for Reaktor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    The PUSPATI TRIGA reactor (RTP) reached its first criticality status on 28 June 1982 with an installed capacity of 1 MW. After 26 years in operation, the ageing process has set in and many systems in the reactor need maintenance and replacement. Among these systems, the more critical one is the heat exchanger system. Currently, the shell and tube type heat exchanger is being used. It has been observed that the performance of the heat exchanger has dropped significantly over the years. Visual inspections indicate that the tubes are corroded or even to the extent of being totally blocked. With this in mind and also with the setting up of the new Nuclear Power Division, whose mission includes upgrading the present reactor to 3 MW, the heat exchanger system is essential and a critical component. Literature indicates that the use of plate type exchangers are more efficient than the current shell and tube type. This paper will look into the engineering and safety aspects of using the plate type heat exchanger to the current TRIGA PUSPATI reactor. (Author)

  14. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  15. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes

  16. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H., E-mail: victora@umn.edu [MINT Center, Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  17. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation

  18. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  19. Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xing; YANG Dong; CHEN Ting-kuan

    2006-01-01

    Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 ×4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s,the heat transfer rate ranged from 21.8 to 47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8°C. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are proposed based on the experimental results.

  20. Active heat exchange system development for latent heat thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lefrois, R.T.; Knowles, G.R.; Mathur, A.K.; Budimir, J.

    1979-02-01

    The report describes active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250/sup 0/C to 350/sup 0/C, using the heat of fusion of molten salts for storing thermal energy. It identifies over 25 novel techniques for active heat exchange thermal energy storage systems. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. Comparison of these costs with current state-of-the-art systems should be avoided due to significant differences in developmental status. The heat exchange concepts were sized and compared for 6.5 MPa/281/sup 0/C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out. The study resulted in the selection of a shell and coated-tube heat exchanger concept and a direct contact-reflux boiler heat exchange concept. For the storage medium, a dilute eutectic mixture of 99 wt % NaNO/sub 3/ and 1 wt % NaOH is selected for use in experimenting with the selected heat exchanger concepts in subsequent tasks.

  1. A three-dimensional numerical analysis of complete crossflow heat exchangers with conjugate heat transfer

    OpenAIRE

    Perčić, Marko; Lenić, Kristian; TRP, Anica

    2013-01-01

    In this paper, a three dimensional numerical analysis of turbulent fluid flow and heat transfer on the air-side and water-side of plain fin-and-tube heat exchangers is performed in order to obtain their heat transfer characteristics with non-constant physical properties. Besides convection heat transfer on water and air sides, the heat conduction through pipe walls and fins is also considered in the study. The two types of heat exchangers having cascade and in-line flat tube arrangements are ...

  2. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle was...

  3. An innovative plate heat exchanger of enhanced compactness

    International Nuclear Information System (INIS)

    In the framework of CEA R&D program to develop the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), the present work aims to demonstrate the industrial interest of an innovative compact heat exchanger technology. In fact, one of the main innovations of the ASTRID reactor could be the use of a Brayton Gas-power conversion system, in order to avoid the energetic sodium–water interaction that might occur if a traditional Rankine cycle was used. The present work aims to study the thermal-hydraulic performance of the innovative compact heat exchanger concept. Hence, thanks to a trustful numerical model, friction factor and heat transfer correlations are obtained. Then, a global compactness comparison strategy is proposed, taking into account design constraints. Finally, it is demonstrated that the innovative heat exchanger concept is more compact then other already industrial technologies of interest, showing that is can be considered to warrant serious consideration for future ASTRID design as well as for any industrial application that needs very compact heat exchanger technologies. - Highlights: • We propose a new innovative compact heat exchanger technology. • We provide thermal-hydraulic correlations for designers. • We provide a comparison strategy with existing technologies. • We demonstrate the industrial interest of the innovative concept

  4. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m2, the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in quinconcerectangular mini-channel heat exchanger, with a hydraulic diameter Dh = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  5. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  6. Performance analysis of cylindrical metal hydride beds with various heat exchange options

    Energy Technology Data Exchange (ETDEWEB)

    Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kolesnikov, A.; Moropeng, M.L. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Tarasov, B.P. [Laboratory of Hydrogen Storage Materials, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prospect Semenova, 1, Chernogolovka 142432 (Russian Federation); Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • 3D numerical model for the comparison of H{sub 2} uptake performances in MH reactors. • 4 options of heat exchange between heat transfer fluid and MH in cylindrical reactor compared. • Straight tube internal heat exchanger. • Helical coil internal heat exchanger. • External heat exchange without and with transversal fins in the MH reactor. - Abstract: A 3D numerical heat-and-mass transfer model was used for the comparison of H{sub 2} uptake performances of powdered cylindrical MH beds comprising MmNi{sub 4.6}Al{sub 0.4} hydrogen storage material. The considered options of heat exchange between the MH and a heat transfer fluid included internal cooling using straight (I) or helically coiled (II) tubing, as well as external cooling of the MH bed without (III) and with (IV) transversal fins. The dynamic performances of these layouts were compared based on the numerical simulation. The effect of heat transfer coefficient was also analysed.

  7. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  8. Wind sensitivity of the inter-ocean heat exchange

    OpenAIRE

    Corell, Hanna; Nilsson, Johan; Döös, Kristofer; Broström, Göran

    2009-01-01

    An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a 'coarse-grained' image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream functi...

  9. Wind sensitivity of the inter-ocean heat exchange

    OpenAIRE

    Corell, Hanna; Nilsson, Johan; Döös, Kristofer; Broström, Göran

    2009-01-01

    An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a ‘coarse-grained’ image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream functi...

  10. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  11. Evaluation of ORC modules performance adopting commercial plastic heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • Application of plastic heat exchangers in Organic Rankine Cycle module. • Low temperature heat recovery. • Design of a 20 kW regenerative ORC adopting commercial plastic heat exchangers. • Electricity cost comparable with ORC modules with typical carbon steel components. • Economic benefit from plastic evaporator adoption with corrosive heat source media. - Abstract: In this paper the possible replacement of conventional metallic heat exchangers with plastic components is investigated with reference to low size Organic Rankine Cycles, aiming at a reduction of the plant investment cost. A thermodynamic optimization of a 20 kW regenerative ORC plant, representative of a low temperature (<140 °C) heat recovery application, has been carried out according to the presently available data for plastic shell and tubes heat exchangers offered on the market. N-heptane was selected as the working fluid, thanks to the capability to operate within the pressure limits for evaporation and condensation processes imposed by the adoption of plastic components. Finally, the potential economic benefit of the plastic solution in comparison with conventional heat exchangers made of carbon steel was evaluated for the whole plant; the case of enhanced materials adoption, which is mandatory for the evaporator in presence of corrosive heat source media, was also considered. It turns out that advantages of the proposed solution become appreciable whenever the presence of corrosive heat source media requires the use of materials other than carbon steel. For instance, for a plant availability of 5000 h/year and discount rate of 10%, we obtain a cost of the produced electricity of 94.8 $/MW h, 95.4 $/MW h, 101.5 $/MW h, and 118.9 $/MW h respectively for plastic, carbon steel, stainless steel and titanium solutions

  12. Balance-of-plant heat exchanger condition assessment guidelines

    International Nuclear Information System (INIS)

    In nuclear power plants, service water system heat exchanger integrity and thermal performance are receiving close scrutiny to ensure that they perform their functions in an emergency condition. Many safety-related service water systems are called upon to function only in emergency conditions and are therefore difficult to monitor on a regular basis to ensure functionality. For some heat exchangers it is difficult to measure and extrapolate their thermal performance data since performance testing is often conducted at flows, temperatures, and heat loads which are different from design conditions. Tube fouling and plugged tubes may also contribute to this difficulty. Performance testing and analysis of heat exchanger alone does not provide information relative to structural integrity of remaining tubes. This document is provided to complement the existing performance testing with a periodic inservice inspection program

  13. High-temperature heat exchanger design - A review

    International Nuclear Information System (INIS)

    The introduction of high-temperature heat exchangers substantially effects the performance and efficiency of operating and new power and processing plants. The availability of high-temperature materials and the development of reliable design methods are prerequisite to their use in high technology system. High-temperature recuperators are in the development stage. Their design is a complex process due to radiation heat transfer and the still insufficiently explored effects of surface fouling. It is believed that the interpenetrating continua method will, in the first approximation, model real conditions encountered in these heat exchangers. Experience gained in high-temperature regenerator design has yielded data and relevant equations on which information from the literature will be presented in this paper. High-temperature heat exchanger design is greatly upgraded if mathematical modeling is used i.e. mathematical methods are developed and subsequently experimentally verified on the basis of present-day know-how and state-of-the-art computers

  14. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  15. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C.

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  16. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  17. 基于温度和热容流率同时变化的有分流换热网络弹性设计的研究%Synthesis of Flexible Heat Exchanger Networks with Stream Splits Based on Rangers of Stream Supply Temperatures and Heat Capacity Flowrates

    Institute of Scientific and Technical Information of China (English)

    李志红; 罗行; 华贲; W.Roetzel

    2004-01-01

    A new superstructure model of heat exchanger networks (HEN) with stream splits based on rangers of streams supply temperatures and heat capacity flow rates is presented. The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly, the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacity flow rates are pretreated; Secondly, several rules are proposed to establish the superstructure model of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly, the improving genetic algorithm is applied to solve the mathematical model established at the second step effectively, and the original optimal structure of HEN based on the maximum operation limiting condition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat load of heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operation condition between the upper and down bounds of supply temperature and heat capacity flow rates can be obtained based on the original optimal structure of HEN by means of these rules. A case study demonstrates the method presented in this paper is effective

  18. Performance restoration technique developed for fouled heat exchanger

    International Nuclear Information System (INIS)

    Heat exchanger (HE) is one of the important equipments for satisfactory operation of installations like power plants, chemical plants, particle accelerators etc. The performance of HE depends on the material of construction (MOC) as well as good engineering practice adopted, and performance deterioration takes place due to surface deposition, making it a thermal insulator. In Indus Electron Synchrotron Accelerator, RRCAT, Plate Heat Exchangers (PHEs, heat exchangers having corrugated plates) are installed to dissipate heat from primary process coolant (deionised water) to secondary coolant (soft water) through parallel SS 316 corrugated plates. For achieving precise electron beam stability, the process cooling water temperature is maintained within ±1°C. Deposition of scale takes place in secondary coolant side as Saturation Index (SI) of cooling tower water is maintained at + 0.5 to have mild scale of calcium carbonate on pipeline and other wetted parts of the loop to prevent corrosion. This forms scale in HE and affects the heat transfer coefficient, requiring routine cleaning to remove scale of PHE to have designed performance. A hard and sticky scale was formed in PHE and the problem could not be addressed by standard reconditioning techniques available. Samples were systematically analysed in our laboratory to know the content of the deposit so that suitable method could be applied to remove the foulants to clean the HE. About 48.52 % of deposit was found to be acid soluble, whereas approximately 44.14% of deposit dissolves in alkali. The remaining residue (7.43%), neither dissolved in acid nor in alkali, may be mostly dust. The cleaning solution was formulated in-house to remove the scale from heat exchanger plates. Sulfamic acid solution at 80 °C was used to decompose calcium scale to liberate carbon dioxide, whereas sodium hydroxide solution was used to remove remaining scale. The performance of the heat exchangers was restored. The developed formulation

  19. Borehole Heat Exchangers: heat transfer simulation in the presence of a groundwater flow

    Science.gov (United States)

    Angelotti, A.; Alberti, L.; La Licata, I.; Antelmi, M.

    2014-04-01

    The correct design of the Borehole Heat Exchanger is crucial for the operation and the energy performance of a Ground Source Heat Pump. Most design methods and tools are based on the assumption that the ground is a solid medium where conduction is the only heat transfer mechanism. In turn in regions rich in groundwater the groundwater flow influence has to be assessed, by including the convection effects. In this paper a numerical model of a 100 m U-pipe in a saturated porous medium is presented. The model is created adopting MT3DMS coupled to MODFLOW. A Darcy flow is imposed across the medium. The typical operation of a Borehole Heat Exchanger operating both in winter and in summer is simulated for two years, under different groundwater velocities. The energy injected to and extracted from the ground is derived as a function of the Darcy velocity and compared with the purely conductive case. Temperature fields in the ground at key moments are shown and discussed. From both the energy and the aquifer temperature field points of view, the velocity ranges for respectively negligible and relevant influence of the groundwater flow are identified.

  20. Borehole Heat Exchangers: heat transfer simulation in the presence of a groundwater flow

    International Nuclear Information System (INIS)

    The correct design of the Borehole Heat Exchanger is crucial for the operation and the energy performance of a Ground Source Heat Pump. Most design methods and tools are based on the assumption that the ground is a solid medium where conduction is the only heat transfer mechanism. In turn in regions rich in groundwater the groundwater flow influence has to be assessed, by including the convection effects. In this paper a numerical model of a 100 m U-pipe in a saturated porous medium is presented. The model is created adopting MT3DMS coupled to MODFLOW. A Darcy flow is imposed across the medium. The typical operation of a Borehole Heat Exchanger operating both in winter and in summer is simulated for two years, under different groundwater velocities. The energy injected to and extracted from the ground is derived as a function of the Darcy velocity and compared with the purely conductive case. Temperature fields in the ground at key moments are shown and discussed. From both the energy and the aquifer temperature field points of view, the velocity ranges for respectively negligible and relevant influence of the groundwater flow are identified.

  1. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  2. Plugging margin evaluation considering the fouling of shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases, number of tube plugging increases, and thermal performance decreases. The fouling and plugging of tubes are known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the plugging margin evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  3. Plate heat exchanger performance in a nuclear safety-related service water application

    International Nuclear Information System (INIS)

    In the mid-1980's the Tennessee Valley Authority installed plate heat exchangers in the safety-related service water system at the Sequoyah Nuclear Plant. These heat exchangers are compact, they can be assembled in place, they require less flow than more conventional heat exchangers, and they are easily cleaned. However, equations to predict thermal performance are not readily available in the open literature. An analytical model was developed to predict performance of the heat exchangers at off-design conditions and to trend thermal performance. Periodic surveillance tests have been performed and the fouling resistance has been calculated based on these tests and the analytical model. Biological fouling of the plates on the raw water side was determined to be greater than expected due to inadequate biocide treatment of the system

  4. He II Heat Exchanger Test Unit for the LHC Inner Triplet

    CERN Document Server

    Blanco-Viñuela, E; Huang, Y; Nicol, T H; Peterson, T; Van Weelderen, R

    2002-01-01

    The Inner Triplet Heat Exchanger Test Unit (IT-HXTU) is a 30-m long thermal model designed at Fermilab, built in US industry, fully automated and tested at CERN as part of the US LHC program to develop the LHC Interaction Region quadrupole system. The cooling scheme of the IT-HXTU is based on heat exchange between stagnant pressurized He II in the magnet cold mass and saturated He II (two-phase) flowing in a heat exchanger located outside of and parallel to the cold mass. The purposes of this test are, among others, to validate the proposed cooling scheme and to define an optimal control strategy to be implemented in the future LHC accelerator. This paper discusses the results for the heat exchanger test runs and emphasizes the thermal and hydraulic behavior of He II for the inner triplet cooling scheme.

  5. Entropy Generation in Periodic Regenerative Heat Exchanger due to Finite Temperature Difference

    Directory of Open Access Journals (Sweden)

    E. Natarajan

    2008-12-01

    Full Text Available This paper describes the second law of thermodynamics analysis of a regenerative heat exchanger. The analysis is based on the fact that the dimensionless parameters, known as the reduced periods and reduced length, are the characteristic variables to describe the heat exchanger. The solid matrix in the heat exchanger passage is discretized using trapezoidal rule and the elemental matrix is taken as a thermodynamic system. The second law of thermodynamics is applied to the system and the entropy generation equation is obtained using the dimensionless numbers Reduced period (Π and Reduced length (Λ in each element. In the present paper, the variation of entropy generation due to reduced length and reduced period is studied. The influence of the effectiveness of the heat exchanger on entropy generation is also highlighted.

  6. Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies

    Institute of Scientific and Technical Information of China (English)

    Lixia Kang; Yongzhong Liu

    2015-01-01

    Multi-period heat exchanger network (HEN) retrofit is usually performed by targeting and matching heat trans-fer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies of matching heat transfer areas are proposed to minimize the investment cost for the retrofit of HEN in multi-period, in which replacement of heat exchangers, addition of heat exchangers and addition of heat transfer areas are performed. We demonstrate the procedures through three scenarios, including maximum number of substituted heat exchangers after retrofit, minimum additional heat transfer areas in the retrofitted HEN, and minimum investment cost for retrofit. The strategies are extended to a single period HEN retrofit problem. The results of multi-period and single period HEN retrofit problems indicate the effectiveness of the strategies. More-over, these results are better than those reported in literature. The strategies are simple and easy to implement, which are of great benefit to large-scale HEN retrofit in practice.

  7. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    International Nuclear Information System (INIS)

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds

  8. Application of transient analysis methodology to quantify thermal performance of heat exchangers

    International Nuclear Information System (INIS)

    A transient testing technique is developed to evaluate the thermal performance of industrial-scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady-state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of apparent fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady-state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  9. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Science.gov (United States)

    Mičieta, Jozef; Jiří, Vondál; Jandačka, Jozef; Lenhard, Richard

    2016-03-01

    Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  10. Optimisation of the design of shell and double concentric tubes heat exchanger using the Genetic Algorithm

    Science.gov (United States)

    Baadache, Khireddine; Bougriou, Chérif

    2015-10-01

    This paper presents the use of Genetic Algorithm in the sizing of the shell and double concentric tube heat exchanger where the objective function is the total cost which is the sum of the capital cost of the device and the operating cost. The use of the techno-economic methods based on the optimisation methods of heat exchangers sizing allow to have a device that satisfies the technical specification with the lowest possible levels of operating and investment costs. The logarithmic mean temperature difference method was used for the calculation of the heat exchange area. This new heat exchanger is more profitable and more economic than the old heat exchanger, the total cost decreased of about 13.16 % what represents 7,250.8 euro of the lump sum. The design modifications and the use of the Genetic Algorithm for the sizing also allow to improve the compactness of the heat exchanger, the study showed that the latter can increase the heat transfer surface area per unit volume until 340 m2/m3.

  11. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  12. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  13. Intensification of heat transfer between heat exchange surfaces at low RE values

    OpenAIRE

    Cernecky Jozef; Brodnianska Zuzana; Koniar Jan

    2015-01-01

    This contribution deals with the heat transfer parameters and pressure losses in heat exchange sets with six geometrical arrangements at low Re values (Re from 476 to 2926). Geometrical arrangements were characterised by the h/H ratio ranging from 0.2 to 1.0. The experiments used the holographic interferometry method in real time. This method enables visible and quantitative evaluations of images of temperature fields in the examined heat exchange. These images are used to determine the local...

  14. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    International Nuclear Information System (INIS)

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  15. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    International Nuclear Information System (INIS)

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS

  16. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  17. Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design

    International Nuclear Information System (INIS)

    Highlights: ► A new configuration of thermoelectric heat pump is introduced. ► An optimization method based on an analytical model is presented. ► Optimization of the device is realized by maximization of the global COP. ► Results obtained by maximization of the COP or EGM are equivalent. ► An optimal design of the device and operating conditions are deduced of the optimization. - Abstract: This paper introduces an optimization method for improving thermoelectric heat pump performance by operating condition management of the thermoelectric modules (TEMs) and design optimization of the heat exchangers linked to the TEMs. The device studied, corresponding to an original configuration of the thermoelectric heat pump, comprises two commercial thermoelectric modules and two mini-channel heat sinks through which water flows, in contact with both sides of the TEMs. The objective function is the maximization of the device’s coefficient of performance (COP), including the electrical and mechanical consumption of the thermoelectric modules and the circulating auxiliaries. First, the optimization variables are the number and the diameter of mini-channels, and the mass flows for both heat sinks (hot and cold sides). The results show that similar results are obtained by minimization of the entropy generation in the device. Finally, the hot thermal power demand is included in the optimization variables for complete optimization of the device. The results of full optimization converge with those obtained with the previous partial optimization.

  18. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  19. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  20. The consideration of dynamics and control in the design of heat exchanger networks

    International Nuclear Information System (INIS)

    The heat exchanger network method is a way of abstracting the enthalpy and heat flows from the blueprints of a planned or existing processing plant. It enables a systematic design of a plant-wide heat recovery system which is optimal with regard to energy costs, capital costs and operational requirements. A heat exchanger network is a representation of all heat transfer relations between hot process streams and cold process streams within a plant. During the past ten years, the optimal design of heat exchanger networks (i.e. the optimal arrangement of heat transfer relations within a plant) has developed into a field of research of its own. Both, static methods ('interaction analysis') and dynamic methods ('process reaction curve analysis') from control theory have been used to explore the new field of heat exchanger network dynamics. As a major tool, an interactive, portable computer program for network simulation and controllability assessment has been developed (it is available as a design tool within the frame of the International Energy Agency). Based on the well-understood global parameters: effectiveness and NTU, which follow from the network design, some straightforward methods covering the following topics are presented: - 'paths' for control and disturbance signal transfer across the network, - locations of control bypasses around heat exchangers, and their capacity of emitting control signals or absorbing disturbances, - influence of the equipment besides the heat exchangers (which can be regarded as 'surrounding' the network, thus forming an 'associated' network). It has been found that networks which are designed according to the 'pinch-based' method have a potential for good controllability. It is shown how, using the freedoms given in the 'pinch-based' design and the above-mentioned methods, that potential is put into effect. (author)

  1. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Science.gov (United States)

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you...

  2. 40 CFR Table 6 to Subpart Hhhhh of... - Requirements for Heat Exchange Systems

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Requirements for Heat Exchange Systems... Manufacturing Pt. 63, Subpt. HHHHH, Table 6 Table 6 to Subpart HHHHH of Part 63—Requirements for Heat Exchange... your heat exchange systems. For each . . . You must . . . Heat exchange system, as defined in §...

  3. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule

    International Nuclear Information System (INIS)

    Modeling and simulation of heat exchanger networks for estimating the amount of fouling, variations in overall heat transfer coefficient, and variations in outlet temperatures of hot and cold streams has a significant effect on production analysis. In this analysis, parameters such as the exchangers' types and arrangements, their heat transfer surface areas, mass flow rates of hot and cold streams, heat transfer coefficients and variations of fouling with time are required input data. The main goal is to find the variations of the outlet temperatures of the hot and cold streams with time to plan the optimum cleaning schedule of heat exchangers that provides the minimum operational cost or maximum amount of savings. In this paper, the simulation of heat exchanger networks is performed by choosing an asymptotic fouling function. Two main parameters in the asymptotic fouling formation model, i.e. the decay time of fouling formation (τ) and the asymptotic fouling resistance (Rf∼) were obtained from empirical data as input parameters to the simulation relations. These data were extracted from the technical history sheets of the Khorasan Petrochemical Plant to guaranty the consistency between our model outputs and the real operating conditions. The output results of the software program developed, including the variations with time of the outlet temperatures of the hot and cold streams, the heat transfer coefficient and the heat transfer rate in the exchangers, are presented for two case studies. Then, an objective function (operational cost) was defined, and the optimal cleaning schedule of the HEN (heat exchanger network) in the Urea and Ammonia units were found by minimizing the objective function using a numerical search method. Based on this minimization procedure, the decision was made whether a heat exchanger should be cleaned or continue to operate. The final result was the most cost effective plan for the HEN cleaning schedule. The corresponding savings by

  4. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Šeďová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky†-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by ...

  5. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  6. Air-side Particulate Fouling of Microchannel Heat Exchangers: Experimental Comparison of Air-Side Pressure Drop and Heat Transfer with Plate-Fin Heat Exchanger

    OpenAIRE

    Bell, Ian; Groll, Eckhard

    2011-01-01

    In this study, the air-side pressure drop and heat transfer performance of plate-fin and microchannel coils were tested under clean and fouled conditions. The heat exchangers were tested with two different types of dust, ASHRAE Standard Dust and Arizona Road Test Dust. The ASHRAE Standard Dust was found to have a very significant impact on the pressure drop of the microchannel heat exchanger, increasing the air-side pressure drop of the microchannel heat exchanger over 200% for a dust injec...

  7. Nanorod near-field radiative heat exchange analysis

    International Nuclear Information System (INIS)

    A theoretical method for cylinder-to-cylinder radiative heat exchange is formulated. The method utilized was a modified version of a previously published numerical method for near-field sphere-to-sphere radiative exchange. Modifications were made to the numerical procedure to make it applicable to cylindrical geometry of nanorods. Nanorods investigated had length to diameter ratios of 3:1 and 7:1. The heat exchange of nanorods is plotted vs. gap to assess the impact of near-field radiative transfer as gap decreases. Graphical results of energy vs. nanorod radii are also presented. A nanorod-to-plane configuration is estimated utilizing a nanorod asymptotic method. The nanorod-to-nanorod method approximates a nanorod-to-plane geometric configuration when one nanorod radii is held constant, and the second nanorod radii is iteratively increased until the corresponding radiative exchange converges.

  8. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle

  9. On the use of hydration heat for quality management of borehole heat exchanger grouting

    Science.gov (United States)

    Suibert Oskar Seibertz, Klodwig; Händel, Falk; Dietrich, Peter; Vienken, Thomas

    2016-04-01

    The ongoing energy transition from conventional, fossil fuel based energy generation, over to renewable energy sources led to an increase in geothermal energy use. Different systems for extracting heat from the subsurface are in use, whereas a commonly used system is the borehole heat exchanger (BHE). A BHE generally consist of a closed loop pipe system through which a heat exchanging fluid is circulated. The BHE is surrounded by grouting. The grouting, focus of this work, has two main objectives to fulfill: Firstly, to thermally couple the subsurface and the BHE pipes; and, secondly, to protect the pipes and to prevent the heat exchanging fluid from entering the subsurface in case of BHE mechanical failure. Therefore, to provide proper functionality, efficiency, and safety of a BHE, it has to be guaranteed that the grouting does not have defects. The hardening reaction (hydration) of the grouting is exothermic, whereas the grouting is mostly a variant of (thermally enhanced) cement. The hydration temperature depends on the type of grout as well as the possible dilutions (resulting in defects) of the grouting material by water, air or drilling debris, and the thermal transport potential of the subsurface. Therefore the quality of the grouting can be investigated by temperature measurements during the hardening process. To validate this further, tests on field and laboratory scale were conducted. For laboratory testing, different columns were built in which different defects of BHE grouting and pipes were simulated. For defect simulation isolation and mixing with drilling debris were chosen, representing inclusions of water and/or air during cement casting as well as partial collapse of the borehole. The temperature changes during installation and hardening of the grouting are measured by fiber-optic distributed temperature sensing (DTS). This allows for temporal and spatial high resolution, continuous temperature measurements at the interface of pipe to grout

  10. Applications of artificial neural networks for thermal analysis of heat exchangers - A review

    International Nuclear Information System (INIS)

    Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)

  11. Flow-induced vibration of component cooling water heat exchangers

    International Nuclear Information System (INIS)

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs

  12. Efficiency of Vertical Geothermal Heat Exchangers in the Ground Source Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    Heyi Zeng; Nairen Diao; Zhaohong Fang

    2003-01-01

    Taking the fluid temperature distribution along the borehole depth into account, a new quasi-three-dimensional model for vertical ground heat exchangers has been established, which provides a better understanding of the heat transfer processes in the geothermal heat exchangers. On this basis the efficiency of the borehole has been defined and its analytical expression derived. Comparison with the previous two-dimensional model shows that the quasi-three-dimensional model is more rational and more accurate to depict the practical feature of the conduction of geothermal heat exchanger, and the efficiency notion can be easily used to determine the inlet and outlet temperature of the circulating fluid inside the heat exchanger.

  13. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  14. Comparative design evaluation of plate fin heat exchanger and coiled finned tube heat exchanger for helium liquefier in the temperature range of 300-80 K

    International Nuclear Information System (INIS)

    Present indigenous helium liquefaction system at RRCAT uses the cross-counter flow coiled-finned tube heat exchangers developed completely from Indian resources. These coiled-finned tube heat exchangers are mainly suitable up to medium capacity helium liquefiers. For large capacity helium liquefier, plate fin heat exchangers are more suitable options. This paper presents the comparative evaluation of the design of both types of heat exchangers in the temperature range of 300-80 K for helium liquefier. (author)

  15. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    DipankarMandal

    2015-02-01

    Full Text Available The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger.It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software—-―DAIRY –HE ―. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.

  16. ANALYSIS OF HELICAL BAFFLE HEAT EXCHANGER FOR OPTIMUM HELIX ANGLE THROUGH NUMERICAL SIMULATIONS

    OpenAIRE

    Roktutpal Borah; R.K Chitharthan

    2015-01-01

    Heat exchangers are very important heat & mass exchange apparatus in many industries like electric power generation, chemical industries, oil refining, etc. The most common heat exchangers used are shell-&-tube heat exchangers (STHXs). Among different kinds of baffles used in STHX, segmental baffles are most commonly used in conventional STHXs to support tubes & change fluid flow direction. But, conventional heat exchangers with segmental baffles in shell-side have some drawbacks ...

  17. HEAT EXCHANGER EJECTOR APPLICATION IN PRODUCTS REFRIGERATION PROCESSING

    OpenAIRE

    В.О. Когут; В.В. Мінєнков; М.Г. Хмельнюк

    2014-01-01

    This paper describes the use of a heat-exchanger ejector device for air humidification in a refrigeration treatment camera of meat half-carcasses, and the possibility of its application for artificial snow. The system of a two-step meat moistening in the isolated compartment by treating meat with a mixture of cooled air and the fine crystal ice particles is represented in this article. The design scheme and the principle of the heat exchanger ejector is shown. The ice crystals formed at the o...

  18. Heat exchange equipment for the Sizewell 'B' turbine generators

    International Nuclear Information System (INIS)

    The Heat Exchange Equipment associated with the Sizewell 'B' Turbine Generators embodies features specific to the wet steam cycle of the PWR. In comparison with fossil fuelled plant, steam conditions are considerably lower and so for a given electrical output, steam and feed water flows are of necessity much higher. In addition, the plant must embody measures to combat wet steam erosion and to accommodate substantial quantities of draining separated condensate. The paper describes key features of design, layout and materials selection on the Sizewell 'B' heat exchange equipment which address these problems. (author)

  19. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  20. Performance of a liquid flow ultra-compact heat exchanger

    OpenAIRE

    Sammataro, Michael A.

    2006-01-01

    A numerical analysis of the performance of compact pin-fin array heat exchangers was carried out using water and JP-4 fuel as the working fluids. Three different configurations were used with hydraulic diameters ranging from 0.137 to 0.777 mm, and volumetric area densities varying between 4.5 and 14.5 mm2/mm3. Numerical simulations were carried out to determine the performance of each heat exchanger over a series of Reynolds numbers in both the laminar and turbulent flow regimes. It was found...