Rule-based transformations for geometric modelling
Bellet, Thomas; Gall, Pascale Le; 10.4204/EPTCS.48.5
2011-01-01
The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (position, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a biological context). We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes hav...
Rule-based transformations for geometric modelling
Directory of Open Access Journals (Sweden)
Thomas Bellet
2011-02-01
Full Text Available The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc. with relevant data as their geometric shape (position, curve, surface, etc. or application dedicated data (e.g. molecule concentration level in a biological context. We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes have multiple labels.
Model-based vision using geometric hashing
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
Institute of Scientific and Technical Information of China (English)
马利民; 王金星; 蒋向前; 李柱; 徐振高
2004-01-01
Geometrical Product Specification and verification (GPS) is an ISO standard system coveting standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,i.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.
Entropy based transportation model: A geometric programming approach
Directory of Open Access Journals (Sweden)
Samanta Bablu
2007-01-01
Full Text Available The entropy model has attached a good deal of attention in transportation analysis, urban and regional planning as well as in other areas. This paper shows the equivalence of entropy maximization models to geometric programs. To provide a better understanding of this entropy based transportation model they are analyzed by geometric programming. Dual mathematical programs and algorithms are also obtained and are supported by an illustrative example. .
Knowledge-based geometric modeling in construction
DEFF Research Database (Denmark)
Bonev, Martin; Hvam, Lars
2012-01-01
a considerably high amount of their recourses is required for designing and specifying the majority of their product assortment. As design decisions are hereby based on knowledge and experience about behaviour and applicability of construction techniques and materials for a predefined design situation, smart...
Image-Based Geometric Modeling and Mesh Generation
2013-01-01
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...
Rule-based spatial modeling with diffusing, geometrically constrained molecules
Directory of Open Access Journals (Sweden)
Lohel Maiko
2010-06-01
Full Text Available Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS, we have chosen an already existing formalism (BioNetGen for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules. When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial
Water flow based geometric active deformable model for road network
Leninisha, Shanmugam; Vani, Kaliaperumal
2015-04-01
A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
Geometric Feature Extraction and Model Reconstruction Based on Scattered Data
Institute of Scientific and Technical Information of China (English)
胡鑫; 习俊通; 金烨
2004-01-01
A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.
08221 Summary -- Geometric Modeling
Farin, Gerald; Hahmann, Stefanie; Peters, Jörg; Wang, Wenping
2008-01-01
Geometric Modeling is an area drawing from computer science, mathematics, engineering, and the life sciences. It is concerned with the computer representation of objects as diverse as - brain scans - mathematical functions - terrains - airplane wings and many more. The seminar succeeded in bringing together leading researchers to present and discuss radically different approaches to the challenge of modeling complex geometric phenomena on the computer. ...
Rule-based spatial modeling with diffusing, geometrically constrained molecules
Lohel Maiko; Lenser Thorsten; Ibrahim Bashar; Gruenert Gerd; Hinze Thomas; Dittrich Peter
2010-01-01
Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction net...
Mask synthesis and verification based on geometric model for surface micro-machined MEMS
Institute of Scientific and Technical Information of China (English)
LI Jian-hua; LIU Yu-sheng; GAO Shu-ming
2005-01-01
Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test results are given.
Usha, K.; M. Ezhilarasan
2013-01-01
Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Kn...
MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING
Directory of Open Access Journals (Sweden)
J. Jung
2016-06-01
Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.
Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing
Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.
2016-06-01
In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.
Surface-based geometric modelling using teaching trees for advanced robots
International Nuclear Information System (INIS)
Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)
Model-based recognition of 3-D objects by geometric hashing technique
International Nuclear Information System (INIS)
A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs
Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape
Energy Technology Data Exchange (ETDEWEB)
XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.
2001-11-01
The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.
Institute of Scientific and Technical Information of China (English)
马利民; 王金星; 蒋向前; 李柱; 徐振高
2004-01-01
Geometrical Product Specification and verification (GPS) is an ISO standard system covering standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,I.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.
Directory of Open Access Journals (Sweden)
K.Usha
2013-08-01
Full Text Available Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Knuckle Surface and Finger Intact Knuckle Surface for the extraction of knuckle feature information. The obtained feature information from both the surfaces is fused using feature information level fusion technique to authenticate the individuals. Experiments were conducted using newly created database for both Bend Knuckle and Intact Knuckle Surface. The results were promising in terms of accuracy, speed and computational complexity.
New geometric design consistency model based on operating speed profiles for road safety evaluation.
Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo
2013-12-01
To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. PMID:23176754
Institute of Scientific and Technical Information of China (English)
SHU Linsen; CAO Huajun; LI Xianchong; ZHANG Chenglong; LI Yuxia
2015-01-01
The current researches on the tooth surface mathematical equations and the theory of gearing malnly pay attention to the ordinary type worm gear set (e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6´10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is avallable to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
Geometric Computing Based on Computerized Descriptive Geometric
Institute of Scientific and Technical Information of China (English)
YU Hai-yan; HE Yuan-Jun
2011-01-01
Computer-aided Design （CAD）, video games and other computer graphic related technology evolves substantial processing to geometric elements. A novel geometric computing method is proposed with the integration of descriptive geometry, math and computer algorithm. Firstly, geometric elements in general position are transformed to a special position in new coordinate system. Then a 3D problem is projected to new coordinate planes. Finally, according to 2D/3D correspondence principle in descriptive geometry, the solution is constructed computerized drawing process with ruler and compasses. In order to make this method a regular operation, a two-level pattern is established. Basic Layer is a set algebraic packaged function including about ten Primary Geometric Functions （PGF） and one projection transformation. In Application Layer, a proper coordinate is established and a sequence of PGFs is sought for to get the final results. Examples illustrate the advantages of our method on dimension reduction, regulatory and visual computing and robustness.
Institute of Scientific and Technical Information of China (English)
ZHU Limin; HE Gaiyun; SONG Zhanjie
2016-01-01
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
Directory of Open Access Journals (Sweden)
Baltzis KonstantinosB
2008-01-01
Full Text Available Abstract A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.
Directory of Open Access Journals (Sweden)
Konstantinos B. Baltzis
2008-10-01
Full Text Available A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.
Geometric Generalisation of Surrogate Model-Based Optimisation to Combinatorial and Program Spaces
Directory of Open Access Journals (Sweden)
Yong-Hyuk Kim
2014-01-01
Full Text Available Surrogate models (SMs can profitably be employed, often in conjunction with evolutionary algorithms, in optimisation in which it is expensive to test candidate solutions. The spatial intuition behind SMs makes them naturally suited to continuous problems, and the only combinatorial problems that have been previously addressed are those with solutions that can be encoded as integer vectors. We show how radial basis functions can provide a generalised SM for combinatorial problems which have a geometric solution representation, through the conversion of that representation to a different metric space. This approach allows an SM to be cast in a natural way for the problem at hand, without ad hoc adaptation to a specific representation. We test this adaptation process on problems involving binary strings, permutations, and tree-based genetic programs.
Samadi, Reza
Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters
Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model
Directory of Open Access Journals (Sweden)
Nurilla Avazov
2012-01-01
Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.
Geometrical approach to fluid models
Kuvshinov, B. N.; Schep, T. J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notio
Computer Graphics & Geometric Modeling
Zsombor-Murray, Paul; O'Leary, Paul
2006-01-01
Least squares fitting of point sets to lines, planes, curves and surfaces is carried out using eigenvalues and eigenvectors to find the major principal moment of inertia axis of a point set taken as representing the mass distribution of a rigid body. This engineering geometric approach produces identical results when compared to methods of conventional minimization using partial derivatives with respect to linear equation coefficients. Extending the approach to the fitting of conics and quadr...
Evolving nutritional strategies in the presence of competition: a geometric agent-based model.
Directory of Open Access Journals (Sweden)
Alistair M Senior
2015-03-01
Full Text Available Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.
Phenomenological modeling of Geometric Metasurfaces
Ye, Weimin; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2015-01-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.
Tang, Xiaoli; Jeong, Yongwon; Radke, Richard J.; Chen, George T. Y.
2004-01-01
We present a computer vision tool to improve the clinical outcome of patients undergoing radiation therapy for prostate cancer by improving irradiation technique. While intensity modulated radiotherapy (IMRT) allows one to irradiate a specific region in the body with high accuracy, it is still difficult to know exactly where to aim the radiation beam on every day of the 30~40 treatments that are necessary. This paper presents a geometric model-based technique to accurately segment the prostate and other surrounding structures in a daily serial CT image, compensating for daily motion and shape variation. We first acquire a collection of serial CT scans of patients undergoing external beam radiotherapy, and manual segmentation of the prostate and other nearby structures by radiation oncologists. Then we train shape and local appearance models for the structures of interest. When new images are available, an iterative algorithm is applied to locate the prostate and surrounding structures automatically. Our experimental results show that excellent matches can be given to the prostate and surrounding structure. Convergence is declared after 10 iterations. For 256 x 256 images, the mean distance between the hand-segmented contour and the automatically estimated contour is about 1.5 pixels (2.44 mm), with variance about 0.6 pixel (1.24 mm).
PlantGL: A Python-based geometric library for 3D plant modelling at different scales
Pradal, Christophe; Boudon, Frédéric; Nouguier, Christophe; Chopard, Jérôme; Godin, Christophe
2009-01-01
International audience In this paper, we present PlantGL, an open-source graphic toolkit for the creation, simulation and analysis of 3D virtual plants. This C++ geometric library is embedded in the Python language which makes it a powerful user-interactive platform for plant modeling in various biological application domains. PlantGL makes it possible to build and manipulate geometric models of plants or plant parts, ranging from tissues and organs to plant populations. Based on a scene g...
5th Dagstuhl Seminar on Geometric Modelling
Brunnett, Guido; Farin, Gerald; Goldman, Ron
2004-01-01
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications
Budiarto, E.; Keijzer, M.; Storchi, P. R.; Hoogeman, M. S.; Bondar, L.; Mutanga, T. F.; de Boer, H. C. J.; Heemink, A. W.
2011-02-01
Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.
Energy Technology Data Exchange (ETDEWEB)
Budiarto, E; Keijzer, M; Heemink, A W [Delft Institute of Applied Mathematics (DIAM), Technische Universiteit Delft, Mekelweg 4, 2628 CD Delft (Netherlands); Storchi, P R; Hoogeman, M S; Bondar, L; Mutanga, T F [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Centre. Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); De Boer, H C J, E-mail: e.budiarto@tudelft.nl [Department of Radiotherapy, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2011-02-21
Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.
Institute of Scientific and Technical Information of China (English)
徐国良; 潘青
2005-01-01
We construct discrete three- and four-sided surface patches with specified C0 or C1 boundary conditions, using several geometric intrinsic curvature driven flows. These flow equations are solved numerically based on discretizations of the involved differential-geometry operators, which are derived from parametric approximations. The constructed surface patches satisfy certain geometric partial differential equations, and therefore have desirable shape. These patches are assembled together for constructing complicated geometric models for shape design. Multi-resolution representations of the models are achieved using repeated subdivision and evolution.%使用若干个几何本质的曲率驱动的偏微分方程来构造符合指定C0或C1边界条件的三边曲面片和四边曲面片,这些方程的数值解由所涉及的微分几何算子的离散化来得到,微分几何算子的离散化则源于参数逼近.所构造的曲面片满足某些特定的几何偏微分方程,故具有理想的形状,将这些曲面片组装起来便构造出复杂的几何模型.通过反复的子分和演化,得到几何模型的多尺度表示.
Phenomenological modeling of geometric metasurfaces.
Ye, Weimin; Guo, Qinghua; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2016-04-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, focusing on achiral meta-atoms only with electric polarizability and thickness far less than the wavelength of light, and ignoring the coupling between meta-atoms, we propose a general phenomenological method to analytically model the metasurfaces based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces constituted by identical meta-atoms with different orientations, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces. PMID:27137005
Connexions for the nuclear geometrical collective model
Rosensteel, G.; Sparks, N.
2015-11-01
The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.
A new geometric-based model to accurately estimate arm and leg inertial estimates.
Wicke, Jason; Dumas, Geneviève A
2014-06-01
Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. PMID:24735506
Hubbard model with geometrical frustration
Energy Technology Data Exchange (ETDEWEB)
Lee, Hunpyo
2009-10-15
At first we present the details of the dual fermion (DF), the cluster extension of dynamical mean field theory (CDMFT) and continuous-time quantum Monte Carlo (CT QMC) methods. Using a panoply of these methods we explore the Hubbard model on the triangular and hyperkagome lattice. We find a first-order transition and continuous transition on the triangular and hyper-kagome lattice, respectively. Moreover, we find the reentrant behavior due to competition between the magnetic correlation and itinerancy of electrons by source of geometrical frustration on both lattices. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Janković, Bojan, E-mail: bojanjan@ffh.bg.ac.rs [Faculty of Physical Chemistry, Department for Dynamics and Matter Structure, University of Belgrade, Studentski trg 12-16, P.O. Box 137, 11001 Belgrade (Serbia); Stopić, Srećko; Güven, Aybars; Friedrich, Bernd [IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen (Germany)
2014-05-01
The stochastic geometric model was applied to kinetic modeling the complex process of thermal decomposition of zinc ferrite from neutral leach residues, at different operating temperatures (600 °C, 750 °C, 950 °C and 1150 °C). Based on functional dependence of Avrami's constant (n) in a function of the effective activation energy (E{sub a}), it was found that at T>950 °C, the crystallization process takes place in autocatalytic stage, under the conditions where the rate of nucleation rapidly increases. It was established that the high nucleation rate can be attributed to formation of both Zn and Fe rich regions which provide a high number of heterogeneous nucleation sites. Based on the obtained final shape of the particles, it was found a strong presence of zinc, iron (present only in the form of Fe{sub 3}O{sub 4} (magnetite)), magnesium (in the form of Mg{sub 2}Si{sub 2}O{sub 6}), and also lead oxides. Thermodynamic analysis showed that the decomposition depends on the introduction of heat, and exerts a positive value of the Gibbs free energy of activation. Such a feature was expected since the ferrite system has been submitted to a forced decomposition and volatilization reactions. - Highlights: • Thermo-chemical investigations. • Autocatalytic stage of process, where the rate of nucleation rapidly increases. • Iron is present in the form of Fe{sub 3}O{sub 4} (magnetite). • The possibility of preparing of the nanosized magnetic particles. • Final product which underwent decomposition has the magnetic properties.
Elastic scattering in geometrical model
Plebaniak, Zbigniew; Wibig, Tadeusz
2016-10-01
The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.
International Nuclear Information System (INIS)
Software aging is characterized by an increasing failure rate, progressive performance degradation and even a sudden crash in a long-running software system. Software rejuvenation is an effective method to counteract software aging. A periodically inspected rejuvenation policy for software systems is studied. The consecutive inspection intervals are assumed to be a decreasing geometric sequence, and upon the inspection times of software system and its failure features, software rejuvenation or system recovery is performed. The system availability function and cost rate function are obtained, and the optimal inspection time and rejuvenation interval are both derived to maximize system availability and minimize cost rate. Then, boundary conditions of the optimal rejuvenation policy are deduced. Finally, the numeric experiment result shows the effectiveness of the proposed policy. Further compared with the existing software rejuvenation policy, the new policy has higher system availability. - Highlights: • A periodically inspected rejuvenation policy for software systems is studied. • A decreasing geometric sequence is used to denote the consecutive inspection intervals. • The optimal inspection times and rejuvenation interval are found. • The new policy is capable of reducing average cost and improving system availability
Geometric Algebra Model of Distributed Representations
Patyk, Agnieszka
2010-01-01
Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.
Pose measurement method based on geometrical constraints
Institute of Scientific and Technical Information of China (English)
Zimiao Zhang; Changku Sun; Pengfei Sun; Peng Wang
2011-01-01
@@ The pose estimation method based on geometric constraints is studied.The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process,the scaling and orthography projection model is used to approximate the perspective projection model.%The pose estimation method based on geometric constraints is studied. The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process, the scaling and orthography projection model is used to approximate the perspective projection model. The initial values of the coordinates of the five feature points in the camera coordinate system are obtained to ensure the accuracy and convergence rate of the non-linear algorithm. In accordance with the perspective projection characteristics of the circular feature landmarks, we propose an approach that enables the iterative acquisition of accurate target poses through the correction of the perspective projection coordinates of the circular feature landmark centers. Experimental results show that the translation positioning accuracy reaches ±0.05 mm in the measurement range of 0-40 mm, and the rotation positioning accuracy reaches ±0.06° in the measurement range of 4°-60°.
Directory of Open Access Journals (Sweden)
Xuan Yang
2015-01-01
Full Text Available This paper presents a geometric least square framework for deriving [0,1]-valued interval weights from interval fuzzy preference relations. By analyzing the relationship among [0,1]-valued interval weights, multiplicatively consistent interval judgments, and planes, a geometric least square model is developed to derive a normalized [0,1]-valued interval weight vector from an interval fuzzy preference relation. Based on the difference ratio between two interval fuzzy preference relations, a geometric average difference ratio between one interval fuzzy preference relation and the others is defined and employed to determine the relative importance weights for individual interval fuzzy preference relations. A geometric least square based approach is further put forward for solving group decision making problems. An individual decision numerical example and a group decision making problem with the selection of enterprise resource planning software products are furnished to illustrate the effectiveness and applicability of the proposed models.
Abraham, S.; Ghorbaniasl, G.; Raisee, M.; Lacor, C.
2016-06-01
The present paper aims at assessing the effect of manufacturing tolerances on the performance of heat exchangers. To this end, a two-dimensional square rib-roughened cooling channel is considered and uncertainties are introduced along the rib profile, using a Karhunen-Loéve expansion including 20 uncertainties. In order to break the curse of dimensionality and keep the overall computational cost within acceptable limits, an efficient uncertainty quantification strategy is followed. A sensitivity analysis is first performed on a coarse grid, enabling the most important dimension to be identified and to remove the ones which have not any significant effect on the output of interest. Afterwards, an efficient Proper Orthogonal Decomposition based dimension reduction technique is implemented in order to propagate uncertainties through the CFD model. It is shown that heat transfer predictions are strongly affected by geometrical uncertainties while no significant effect was found for the pressure drop.
Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.
2008-01-01
We use the Li-Strahler geometric-optical model combined with a scaling-based approach to detect forest structural changes in the Three Gorges region of China. The physical-based Li-Strahler model can be inverted to retrieve forest structural properties. One of the main input variables for the invert
Espath, L. F R
2015-02-03
A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.
Geometric model of robotic arc welding for automatic programming
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.
Some technical issues in geometric modeling
Energy Technology Data Exchange (ETDEWEB)
Peterson, D.P.
1983-01-01
The full impact of CAD/CAM will not be felt until geometric modeling systems support dimensioning and tolerancing, have sophisticated user interfaces, and are capable of routinely handling many representation conversions. The attainment of these capabilities requires a joint effort among users, implementors, and theoreticians of geometric modeling.
International Nuclear Information System (INIS)
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets
International Nuclear Information System (INIS)
Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Template-Based Geometric Simulation of Flexible Frameworks
Directory of Open Access Journals (Sweden)
Stephen A. Wells
2012-03-01
Full Text Available Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers.
Wei, Hui; Ren, Yuan; Wang, Zi Yan
2013-10-01
The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips. PMID:24427212
The Geometrical Modelling of Fluids
Ivanov, Mikhail G.
2009-01-01
The paper considers the nonlinear electrodynamics type model and its relation with relativistic hydrodynamics with no dissipation (including string and membrane hydrodynamics). We are able to convert arbitrary flux of fluid to the family of geodesics by the conformal transformation of metric. The conditions of transformation of nonlinear electrodynamics solution to linear electrodynamics solution by changing of metric are presented.
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. PMID:23079285
Advanced Geometric Modeler with Hybrid Representation
Institute of Scientific and Technical Information of China (English)
杨长贵; 陈玉健; 等
1996-01-01
An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.
3D geometric modelling of hand-woven textile
Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood
2008-02-01
Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
A geometric crescent model for black hole images
Kamruddin, Ayman Bin
2013-01-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g., a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our r...
Geometric Feature Based Face-Sketch Recognition
Pramanik, Sourav; Bhattacharjee, Debotosh
2013-01-01
This paper presents a novel facial sketch image or face-sketch recognition approach based on facial feature extraction. To recognize a face-sketch, we have concentrated on a set of geometric face features like eyes, nose, eyebrows, lips, etc and their length and width ratio because it is difficult to match photos and sketches because they belong to two different modalities. In this system, first the facial features/components from training images are extracted, then ratios of length, width, a...
Fuzzy Clustering Using the Convex Hull as Geometrical Model
Directory of Open Access Journals (Sweden)
Luca Liparulo
2015-01-01
Full Text Available A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms.
The Parametric Geometric Modeling Method for Lettuce Based-template%基于模板的生菜参数化几何建模方法
Institute of Scientific and Technical Information of China (English)
温维亮; 郭新宇; 肖伯祥; 陆声链; 杜建军
2011-01-01
为了对生菜进行快速三维重构,将逆向工程的思想引入到生菜几何建模中来,提出了一种基于参数模板的生菜几何建模方法.借助三维扫描设备构造具有多分辨率的生菜器官模板,分析生菜植株形态结构特征,提取特征参数,进而通过形态参数对模板进行控制,并最终组装成为参数化的生菜几何模型.试验结果表明,该方法可以快速、便捷地重构出具有较高真实感的生菜几何模型,对曲面难以构造的植物器官及植株几何建模具有一定的参考意义.%In order to reconstruct the three-dimensional model of lettuce rapidly, the idea of reverse engineering was introduced to the lettuce geometric modeling and a template based on parameters method is proposed.Firstly, with the help of three-dimensional scanning device, multi-resolution lettuce organ template was constructed.Then, the morphological characteristics of lettuce plants were analyzed to extract characteristic parameters.Finally, parametric geometric model of lettuce plant was assembled through controlling the morphological parametric and the templates.The results showed that this method could reconstruct high realistic geometric model of lettuce quickly and easily, and have reference value for complicated structure plants.
Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG
1996-01-01
A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.
GEOMETRIC METHOD OF SEQUENTIAL ESTIMATION RELATED TO MULTINOMIAL DISTRIBUTION MODELS
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG; LISHOUYE
1995-01-01
In 1980's differential geometric methods are successfully used to study curved expomential families and normal nonlinear regression models.This paper presents a new geometric structure to study multinomial distribution models which contain a set of nonlinear parameters.Based on this geometric structure,the suthors study several asymptotic properties for sequential estimation.The bias,the variance and the information loss of the sequential estimates are given from geomentric viewpoint,and a limit theorem connected with the observed and expected Fisher information is obtained in terms of curvatvre measures.The results show that the sequential estimation procednce has some better properties which are generally impossible for nonsequential estimation procedures.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) are the primary parameters which control the interfacial fracture behaviors. Experimentally,it is hard to determine those quantities,especially forδ_0,which occurs in a very localized region with possibly complicated geometries by material failure.Based on the Dugdale model,we show that the sepa...
Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long
2015-05-01
This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.
International Nuclear Information System (INIS)
The goal of this study is to develop a matching algorithm that can handle large geometric changes in x-ray computed tomography (CT)-derived lung geometry occurring during deep breath maneuvers. These geometric relationships are further utilized to build a dynamic lung airway model for computational fluid dynamics (CFD) studies of pulmonary air flow. The proposed algorithm is based on a cubic B-spline-based hybrid registration framework that incorporates anatomic landmark information with intensity patterns. A sequence of invertible B-splines is composed in a multiresolution framework to ensure local invertibility of the large deformation transformation and a physiologically meaningful similarity measure is adopted to compensate for changes in voxel intensity due to inflation. Registrations are performed using the proposed approach to match six pairs of 3D CT human lung datasets. Results show that the proposed approach has the ability to match the intensity pattern and the anatomical landmarks, and ensure local invertibility for large deformation transformations. Statistical results also show that the proposed hybrid approach yields significantly improved results as compared with approaches using either landmarks or intensity alone.
Energy Technology Data Exchange (ETDEWEB)
Yin Youbing; Lin, Ching-Long [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A [Department of Radiology, University of Iowa, Iowa City, IA 52242 (United States); Ding Kai; Reinhardt, Joseph M, E-mail: ching-long-lin@uiowa.edu [Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242 (United States)
2011-01-07
The goal of this study is to develop a matching algorithm that can handle large geometric changes in x-ray computed tomography (CT)-derived lung geometry occurring during deep breath maneuvers. These geometric relationships are further utilized to build a dynamic lung airway model for computational fluid dynamics (CFD) studies of pulmonary air flow. The proposed algorithm is based on a cubic B-spline-based hybrid registration framework that incorporates anatomic landmark information with intensity patterns. A sequence of invertible B-splines is composed in a multiresolution framework to ensure local invertibility of the large deformation transformation and a physiologically meaningful similarity measure is adopted to compensate for changes in voxel intensity due to inflation. Registrations are performed using the proposed approach to match six pairs of 3D CT human lung datasets. Results show that the proposed approach has the ability to match the intensity pattern and the anatomical landmarks, and ensure local invertibility for large deformation transformations. Statistical results also show that the proposed hybrid approach yields significantly improved results as compared with approaches using either landmarks or intensity alone.
Geometrical model of the Baltic artesian basin
Sennikovs, J.; Virbulis, J.; Bethers, U.
2012-04-01
Baltic artesian basin (BAB) is a multi-layer sedimentary basin spanning around 480'000 km2. BAB is located in the territory of Latvia, Lithuania and Estonia, parts of Poland, Russia, Belarus and large area of the Baltic Sea, including island of Gotland. The thickness of sedimentary cover is about 5000 m in the south-western part. Crystalline bedding reaches the surface in the northern and north-western parts. The aim of the present work is development of the model of geometric structure and three dimensional finite element mesh for the hydrogeological model of the whole BAB. The information that is used to build the geometrical structure includes: (1) Stratigraphic information from boreholes in Latvia and Estonia (2) Maps of height isolines of geological layers for Latvia and Lithuania (3) Maps of sub-quaternary deposits in Latvia and Lithuania (4) Maps of fault lines on the crystalline basement surface in Latvia, Lithuania and Estonia (5) Buried valley data from Latvia and Estonia (6) Earth topography data (7) Baltic sea depth data (8) Data from published geological cross-sections, information from books and other sources. Unification of the heterogeneous information from different sources, which are employed for building of the geometrical structure of the model are performed. Special algorithms are developed for this purpose considering the priority, importance and plausibility of each of the data sources. Pre-processing of the borehole information to screen out the outlying borehole data has been performed. Model of geological structure contains 42 layers. It includes aquifers and aquitards from Cambrian up to the Quaternary deposits. Fault displacements are incorporated into the model taking into account data from the published structural maps. Four reconstructed regional erosion surfaces (upper Ordovician, Devonian, Permian and Quaternary) are included into the model Three dimensional mesh of the geological structure is constructed layer-wise. The triangular
Facial symmetry assessment based on geometric features
Xu, Guoping; Cao, Hanqiang
2015-12-01
Face image symmetry is an important factor affecting the accuracy of automatic face recognition. Selecting high symmetrical face image could improve the performance of the recognition. In this paper, we proposed a novel facial symmetry evaluation scheme based on geometric features, including centroid, singular value, in-plane rotation angle of face and the structural similarity index (SSIM). First, we calculate the value of the four features according to the corresponding formula. Then, we use fuzzy logic algorithm to integrate the value of the four features into a single number which represents the facial symmetry. The proposed method is efficient and can adapt to different recognition methods. Experimental results demonstrate its effectiveness in improving the robustness of face detection and recognition.
A geometric crescent model for black hole images
Kamruddin, Ayman Bin; Dexter, Jason
2013-09-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic centre black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g. a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for the detectability of the black hole shadow, a signature of strong gravity, in future observations.
Forward error correction based on algebraic-geometric theory
A Alzubi, Jafar; M Chen, Thomas
2014-01-01
This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.
Geometric Bessel models for GSp_4 and multiplicity one
Lysenko, Sergey
2004-01-01
I this paper, which is a sequel to math.AG/0310361, we study Bessel models of representations of GSp_4 over a local non archimedian field in the framework of the geometric Langlands program. The Bessel module over the nonramified Hecke algebra of GSp_4 admits a geometric counterpart, the Bessel category of perverse sheaves on some ind-algebraic stack. We use it to prove a geometric version of the multiplicity one for Bessel models. It implies a geometric Casselman-Shalika type formula for the...
Solving Topological and Geometrical Constraints in Bridge Feature Model
Institute of Scientific and Technical Information of China (English)
PENG Weibing; SONG Liangliang; PAN Guoshuai
2008-01-01
The capacity that computer can solve more complex design problem was gradually increased.Bridge designs need a breakthrough in the current development limitations, and then become more intelli-gent and integrated. This paper proposes a new parametric and feature-based computer aided design (CAD) models which can represent families of bridge objects, includes knowledge representation, three-dimensional geometric topology relationships. The realization of a family member is found by solving first the geometdc constraints, and then the topological constraints. From the geometric solution, constraint equations are constructed. Topology solution is developed by feature dependencies graph between bridge objects. Finally, feature parameters are proposed to drive bridge design with feature parameters. Results from our implementation show that the method can help to facilitate bridge design.
D Image Based Geometric Documentation of the Tower of Winds
Tryfona, M. S.; Georgopoulos, A.
2016-06-01
This paper describes and investigates the implementation of almost entirely image based contemporary techniques for the three dimensional geometric documentation of the Tower of the Winds in Athens, which is a unique and very special monument of the Roman era. These techniques and related algorithms were implemented using a well-known piece of commercial software with extreme caution in the selection of the various parameters. Problems related to data acquisition and processing, but also to the algorithms and to the software implementation are identified and discussed. The resulting point cloud has been georeferenced, i.e. referenced to a local Cartesian coordinate system through minimum geodetic measurements, and subsequently the surface, i.e. the mesh was created and finally the three dimensional textured model was produced. In this way, the geometric documentation drawings, i.e. the horizontal section plans, the vertical section plans and the elevations, which include orthophotos of the monument, can be produced at will from that 3D model, for the complete geometric documentation. Finally, a 3D tour of the Tower of the Winds has also been created for a more integrated view of the monument. The results are presented and are evaluated for their completeness, efficiency, accuracy and ease of production.
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Lunar-based Earth observation geometrical characteristics research
Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning
2016-07-01
As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.
Geometrically nonlinear creeping mathematic models of shells with variable thickness
Directory of Open Access Journals (Sweden)
V.M. Zhgoutov
2012-08-01
Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.
GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION
Institute of Scientific and Technical Information of China (English)
Cai Lian; Du Sidan; Gao Duntang
2005-01-01
The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.
Iris-based medical analysis by geometric deformation features.
Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan
2013-01-01
Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis. PMID:23144041
Approach to Weighted Geometric Evaluation Based on Projection Pursuit
Institute of Scientific and Technical Information of China (English)
Yang Shanlin; Wang Shuo; Gong Daning
2006-01-01
Weighted geometric evaluation approach based on Projection pursuit (PP) model is presented in this paper to optimize the choice of schemes. By using PP model, the multi-dimension evaluation index values of schemes can be synthesized into projection value with one dimension. The scheme with a bigger projection value is much better, so the schemes sample can be an optimized choice according to the projection value of each scheme. The modeling of PP based on accelerating genetic algorithm can predigest the realized process of projection pursuit technique, can overcome the shortcomings of large computation amount and the difficulty of computer programming in traditional projection pursuit methods, and can give a new method for application of projection pursuit technique to optimize choice of schemes by using weighted geometric evaluation. The analysis of an applied sample shows that applying PP model driven directly by samples data to optimize choice of schemes is both simple and feasible, that its projection values are relatively decentralized and profit decision-making, that its applicability and maneuverability are high. It can avoid the shortcoming of subjective weighing method, and its results are scientific and objective.
NOVEL RADAR SIGNAL SORTING METHOD BASED ON GEOMETRIC COVERING
Institute of Scientific and Technical Information of China (English)
万建; 国强; 宋文明
2013-01-01
With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars ,signals received by radar reconnaissance receivers become even more intensive and complex .There-fore ,traditional radar sorting methods based on neural network algorithms and support vector machine (SVM ) cannot process them effectively .Aiming at solving this problem ,a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed .By applying the geometric covering algo-rithm to divide input signals into different covering domains based on their distribution characteristics ,the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals .The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains ,thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped param-eters .Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment .
Implementation of geometrically exact beam element for nonlinear dynamics modeling
Energy Technology Data Exchange (ETDEWEB)
Wang, Jielong, E-mail: jelon.wang@gmail.com [Commercial Aircraft Corporation of China, Ltd., Beijing Aeronautical Science & Technology Research Institute (China)
2015-12-15
The paper develops a new type of geometrically exact beam element featuring large displacements and rotations together with small warping. The dimension reduction approach based on variational asymptotic method has been explored, and a linear two-dimensional finite element procedure has been implemented to predict the cross-sectional stiffness and recover the cross-sectional strain fields of the beam. The total and incremental variables mixed formula of governing equations of motion is presented, in which the Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms, the time histories of large translations and rotations with small three-dimensional warping have been integrated. Numerical simulations have been performed and the results have been compared to those of commercial software LS-DYNA. It can be concluded that the current modeling approach features high accuracy and that the new geometrically exact beam with warping is robust enough to predict large deformations with small strain.
Methodology for geometric modelling. Presentation and administration of site descriptive models
International Nuclear Information System (INIS)
This report presents a methodology to construct, visualise and present geoscientific descriptive models based on data from the site investigations, which the SKB currently performs, to build an underground nuclear waste disposal facility in Sweden. It is designed for interaction with SICADA (SKB:s site characterisation database) and RVS (SKB:s Rock Visualisation System). However, the concepts of the methodology are general and can be used with other tools capable of handling 3D geometries and parameters. The descriptive model is intended to be an instrument where site investigation data from all disciplines are put together to form a comprehensive visual interpretation of the studied rock mass. The methodology has four main components: 1. Construction of a geometrical model of the interpreted main structures at the site. 2. Description of the geoscientific characteristics of the structures. 3. Description and geometrical implementation of the geometric uncertainties in the interpreted model structures. 4. Quality system for the handling of the geometrical model, its associated database and some aspects of the technical auditing. The geometrical model forms a basis for understanding the main elements and structures of the investigated site. Once the interpreted geometries are in place in the model, the system allows for adding descriptive and quantitative data to each modelled object through a system of intuitive menus. The associated database allows each geometrical object a complete quantitative description of all geoscientific disciplines, variabilities, uncertainties in interpretation and full version history. The complete geometrical model and its associated database of object descriptions are to be recorded in a central quality system. Official, new and old versions of the model are administered centrally in order to have complete quality assurance of each step in the interpretation process. The descriptive model is a cornerstone in the understanding of the
Formal Relationships Between Geometrical and Classical Models for Concurrency
Goubault, Eric
2010-01-01
A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical flavor have been introduced, based on the notion of cubical set. These models are very rich and expressive since they can represent commutation between any bunch of events, thus generalizing the principle of true concurrency. While they seem to be very promising - because they make possible the use of techniques from algebraic topology in order to study concurrent computations - they have not yet been precisely related to the previous models, and the purpose of this paper is to fill this gap. In particular, we describe an adjunction between Petri nets and cubical sets which extends the previously known adjunction between Petri nets and asynchronous transition systems by Nielsen and Winskel.
Prediction on the viscosity of multi-component melts with a new geometric model
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A geometric model for calculating the viscosity of multi-component melt from related binary physicochemistry properties was derived based on Chou's thermodynamic geometric model. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results show that the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition, the viscosity of Bi-Sn-In systems was also predicted with this model.
A geometric construction of traveling waves in a bioremediation model
M.A. Beck; A. Doelman; T.J. Kaper
2006-01-01
Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,
Multipartite geometric entanglement in finite size XY model
International Nuclear Information System (INIS)
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Modeling Connectionist Networks: Categorical, Geometric Aspects (Towards ``Homomorphic Learning'')
Pfalzgraf, Jochen
2004-08-01
Work in interdisciplinary fields is very interesting and always a great challenge. We present work on applications of mathematical methods to modeling problems arising in the area of artificial neural networks (ANN). We concentrate on modeling network structures that are motivated and based on knowledge about net structures coming from neurophysiology. In past years such insights have been exploited already in computer based ANN-simulations which are well suited for industrial applications. In the analysis of network structures, considering assemblies of cells (neurons) in biological nets, from a geometric point of view one can indentify and interpret, locally, what is called a geometric configuration. Following notions from algebraic topology, we are speaking about simplicial configurations (e.g. triangular, tetrahedral configurations, etc.). It turns out that category theory, geometry, algebra (group theory), graph theory (more general, net theory) come together, in a natural interdisciplinary way. Simplices are of basic importance.The interpretation of a learning step as a morphism in categorical terms suggests the opening of a systematic theory of learning (we call it "Homomorphic Learning").
Point- and curve-based geometric conflation
López-Vázquez, C.
2013-01-01
Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.
Sigma models for genuinely non-geometric backgrounds
Chatzistavrakidis, Athanasios; Lechtenfeld, Olaf
2015-01-01
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.
CCH-based geometric algorithms for SVM and applications
Institute of Scientific and Technical Information of China (English)
Xin-jun PENG; Yi-fei WANG
2009-01-01
The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances.
Body circumferences: clinical implications emerging from a new geometric model
Directory of Open Access Journals (Sweden)
Gallagher Dympna
2008-10-01
Full Text Available Abstract Background Body volume expands with the positive energy balance associated with the development of adult human obesity and this "growth" is captured by two widely used clinical metrics, waist circumference and body mass index (BMI. Empirical correlations between circumferences, BMI, and related body compartments are frequently reported but fail to provide an important common conceptual foundation that can be related to key clinical observations. A two-phase program was designed to fill this important gap: a geometric model linking body volume with circumferences and BMI was developed and validated in cross-sectional cohorts; and the model was applied to the evaluation of longitudinally monitored subjects during periods of voluntary weight loss. Concepts emerging from the developed model were then used to examine the relations between the evaluated clinical measures and body composition. Methods Two groups of healthy adults (n = 494 and 1499 were included in the cross-sectional model development/testing phase and subjects in two previous weight loss studies were included in the longitudinal model evaluation phase. Five circumferences (arm, waist, hip, thigh, and calf; average of sum, C, height (H, BMI, body volume (V; underwater weighing, and the volumes of major body compartments (whole-body magnetic resonance imaging were measured. Results The evaluation of a humanoid geometric model based a cylinder confirmed that V derived from C and H was highly correlated with measured V [R2 both males and females, 0.97; p 0.5. The scaling of individual circumferences to V/H varied, with waist the highest (V/H~0.6 and calf the lowest (V/H~0.3, indicating that the largest and smallest between-subject "growth" with greater body volume occurs in the abdominal area and lower extremities, respectively. A stepwise linear regression model including all five circumferences2 showed that each contributed independently to V/H. These cross
Geometric Distortion Analysis Using CAD/CAM Based Manufacturing Simulation
Werke, Mats; Hedlind, Mikael; Nicolescu, Mihai
2014-01-01
Machining of components may cause geometric distortions and thereby quality issues and increased costs. This paper presents an engineering approach of CAD/CAM based manufacturing simulation in order to be in control of geometric distortions after machining. The method utilises STEP AP209 for communication of CAD/CAM simulation data. The method improves the ability to optimise process parameters, geometry, and material, in order to fulfil the design requirements. The method supports concurrent...
Multiscale geometric modeling of macromolecules II: Lagrangian representation.
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-09-15
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR, and cryo-electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation, and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Geometric models of (d+1)-dimensional relativistic rotating oscillators
Cotaescu, I I
2000-01-01
Geometric models of quantum relativistic rotating oscillators in arbitrary dimensions are defined on backgrounds with deformed anti-de Sitter metrics. It is shown that these models are analytically solvable, deriving the formulas of the energy levels and corresponding normalized energy eigenfunctions. An important property is that all these models have the same nonrelativistic limit, namely the usual harmonic oscillator.
Geometric Deformations Based on 3D Volume Morphing
Institute of Scientific and Technical Information of China (English)
JIN Xiaogang; WAN Huagen; PENG Qunsheng
2001-01-01
This paper presents a new geometric deformation method based on 3D volume morphing by using a new concept called directional polar coordinate. The user specifies the source control object and the destination control object which act as the embedded spaces.The source and the destination control objects determine a 3D volume morphing which maps the space enclosed in the source control object to that of the destination control object. By embedding the object to be deformed into the source control object, the 3D volume morphing determines the deformed object automatically without the tiring moving of control points.Experiments show that this deformation model is efficient and intuitive, and it can achieve some deformation effects which are difficult to achieve for traditional methods.
Geometrically Invariant Watermarking Scheme Based on Local Feature Points
Directory of Open Access Journals (Sweden)
Jing Li
2012-06-01
Full Text Available Based on local invariant feature points and cross ratio principle, this paper presents a feature-point-based image watermarking scheme. It is robust to geometric attacks and some signal processes. It extracts local invariant feature points from the image using the improved scale invariant feature transform algorithm. Utilizing these points as vertexes it constructs some quadrilaterals to be as local feature regions. Watermark is inserted these local feature regions repeatedly. In order to get stable local regions it adjusts the number and distribution of extracted feature points. In every chosen local feature region it decides locations to embed watermark bits based on the cross ratio of four collinear points, the cross ratio is invariant to projective transformation. Watermark bits are embedded by quantization modulation, in which the quantization step value is computed with the given PSNR. Experimental results show that the proposed method can strongly fight more geometrical attacks and the compound attacks of geometrical ones.
Geometric and Colour Data Fusion for Outdoor 3D Models
Directory of Open Access Journals (Sweden)
Ricardo Chacón
2012-05-01
Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.
Cosmological models in Weyl geometrical scalar-tensor theory
Pucheu, M. L.; Alves Junior, F. A. P.; Barreto, A. B.; Romero, C.
2016-09-01
We investigate cosmological models in a recently proposed geometrical theory of gravity, in which the scalar field appears as part of the spacetime geometry. We extend the previous theory to include a scalar potential in the action. We solve the vacuum field equations for different choices of the scalar potential and give a detailed analysis of the solutions. We show that, in some cases, a cosmological scenario is found that seems to suggest the appearance of a geometric phase transition. We build a toy model, in which the accelerated expansion of the early Universe is driven by pure geometry.
Methods for Geometric Data Validation of 3d City Models
Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2015-12-01
Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges
Geometric Reid's recipe for dimer models
Bocklandt, Raf; Velez, Alexander Quintero
2013-01-01
Crepant resolutions of three-dimensional toric Gorenstein singularities are derived equivalent to noncommutative algebras arising from consistent dimer models. By choosing a special stability parameter and hence a distinguished crepant resolution $Y$, this derived equivalence generalises the Fourier-Mukai transform relating the $G$-Hilbert scheme and the skew group algebra $\\CC[x,y,z]\\ast G$ for a finite abelian subgroup of $\\SL(3,\\CC)$. We show that this equivalence sends the vertex simples to pure sheaves, except for the zero vertex which is mapped to the dualising complex of the compact exceptional locus. This generalises results of Cautis-Logvinenko and Cautis-Craw-Logvinenko to the dimer setting, though our approach is different in each case. We also describe some of these pure sheaves explicitly and compute the support of the remainder, providing a dimer model analogue of results from Logvinenko.
Geometric Models for Secondary Structures in Proteins
Toda, Magdalena; Athukorallage, Bhagya
2015-01-01
This research is motivated by a study of special types of surfaces of revolution, using methods from differential geometry, elasticity theory and variational calculus. In particular, we present an elastic membrane model for the beta barrels in protein biology, via a certain {\\em Generalized Willmore type} energy functional. We study the corresponding Euler--Lagrange equation, as well as a specific boundary value problem whose solutions are {\\em Generalized Willmore surfaces of revolution}. We...
Hidden geometrical structures in integrable models
Dorey, Patrick
1992-01-01
The bootstrap equations for the ADE series of purely elastic scattering theories have turned out to be intimately connected with the geometry of root systems and the Coxeter element. An informal review of some of this material is given, mentioning also a couple of other contexts -- the Pasquier models, and the simply-laced affine Toda field theories -- where similar structures are encountered. The relevance of twisted Coxeter elements is indicated, and a construction of these elements inspire...
Mezaal, Yaqeen S.; Eyyuboglu, Halil T.
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequenc...
Geometric accuracy of wax bade models manufactured in silicon moulds
Directory of Open Access Journals (Sweden)
G. Budzik
2010-01-01
Full Text Available The article presents the test results of the geometric accuracy of wax blade models manufactured in silicon moulds in the Rapid Tooling process, with the application of the Vacuum Casting technology. In batch production casting waxes are designed for the manufacture of models and components of model sets through injection into a metal die. The objective of the tests was to determine the possibility of using traditional wax for the production of casting models in the rapid prototyping process. Blade models made of five types of casting wax were measured. The definition of the geometric accuracy of wax blade models makes it possible to introduce individual modifications aimed at improving their shape in order to increase the dimensional accuracy of blade models manufactured in the rapid prototyping process.
A Geometrical Transformations Resistant Digital Watermarking Based on Quantization
Institute of Scientific and Technical Information of China (English)
SHI Lei; HONG Fan; LIU Wei-qun; HU Yu-ping; CHEN Zhuo
2005-01-01
A geometrical transformations resistant digital image watermarking based on quantization is described. Taking advantage of the rotation, scale and translation invariants of discrete Fourier transform(DFT), each watermark bit is embedded into each homocentric circles around the zero frequency term in DFT domain by quantizing the magnitude vector of Fourier spectrum. The embedded sequence can be extracted by "majority principles" without restoring to the original unmarked image. The experimental results show that the watermark is invisible and robust to any combination of geometrical transformations or common image processing techniques.
Geometric Aspects of Force Controllability for a Swimming Model
International Nuclear Information System (INIS)
We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids
Diquark Structure in Heavy Quark Baryons in a Geometric Model
Paria, Lina; Abbas, Afsar
1996-01-01
Using a geometric model for the study of the structure of hadrons, we study baryons having one, two and three heavy quarks. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks.
AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS
Institute of Scientific and Technical Information of China (English)
刘剑飞
2003-01-01
In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.
Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.
Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong
2016-06-25
Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.
Comparison and Analysis of Geometric Correction Models of Spaceborne SAR
Directory of Open Access Journals (Sweden)
Weihao Jiang
2016-06-01
Full Text Available Following the development of synthetic aperture radar (SAR, SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD model, a rational polynomial coefficients (RPC model, a revised polynomial (PM model and an elevation derivation (EDM model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.
Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.
Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong
2016-01-01
Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973
The synthetical application based on the geometric distributed lag model%基于几何分布滞后模型消费与收入的综合应用
Institute of Scientific and Technical Information of China (English)
沈卉卉
2011-01-01
This paper is discussed the adaptive anticipation model and the partial adjustment model based on the geometric distributed lag model. Whereas their different premises that the models are educed the economic hypothesis,and results in the difference of the resid framework. They bring the difference on the estimation of the models, we construct the synthetical model of the partial adjustment and the adaptive anticipation. Using the synthetical model's estimation advantage overcome the impact on the first-order auto-pertinence when we directly estimate the geometric distributed lag model.%在几何分布滞后模型的基础之上,讨论了自适应预期模型和局部调整模型,鉴于它们各自导出模型的经济假设前提不同,导致随机误差项的结构有所不同,从而给模型的估计带来一定的不同.通过建立一个局部调整-自适应预期综合模型,利用它估计模型的优势,克服了几何分布滞后模型直接估计所带来的一阶自相关性的影响.
GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP
Directory of Open Access Journals (Sweden)
A. Sampath
2016-06-01
Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope
Evaluating conducting network based transparent electrodes from geometrical considerations
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)
2016-01-07
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in
Evaluating conducting network based transparent electrodes from geometrical considerations
Kumar, Ankush; Kulkarni, G. U.
2016-01-01
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting
Slochteren, F.J. van; Spoel, T.I. van der; Hansen, H.H.G.; Bovendeerd, P.H.; Doevendans, P.A.; Sluijter, J.P.; Chamuleau, S.A.; Korte, C.L. de
2014-01-01
Local layer-specific myocardial deformation after myocardial infarction (MI) has not been studied extensively although the sub-endocardium is more vulnerable to ischemia and interstitial fibrosis deposition. Radiofrequency (RF) ultrasound-based analysis could provide superior layer-specific radial s
Geometric Modeling and Reasoning of Human-Centered Freeform Products
Wang, Charlie C L
2013-01-01
The recent trend in user-customized product design requires the shape of products to be automatically adjusted according to the human body’s shape, so that people will feel more comfortable when wearing these products. Geometric approaches can be used to design the freeform shape of products worn by people, which can greatly improve the efficiency of design processes in various industries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medical devices, etc.). These products are usually composed of very complex geometric shapes (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with free-form shapes or part of human bodies (e.g., wrist, foot, and head models). Geometric Modeling and Reasoning of Human-Centered Freeform Products introduces the algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improving...
A Dynamical model for non-geometric quantum black holes
Spallucci, Euro
2016-01-01
It has been recently proposed that quantum black holes can be described as N-graviton Bose-Einstein condensates. In this picture the quantum properties of BHs "... can be understood in terms of the single number N". However, so far, the dynamical origin of the occupational number N has not been specified. This description is alternative to the usual one, where black holes are believed to be well described geometrically even at the quantum level. In this paper we pursue the former point of view and develop a non-geometrical dynamical model of quantum black holes (BHs). In our model the occupational number N is proportional to the principal quantum number n of a Planckian harmonic oscillator. The so-called "classicalization" corresponds to the large-n limit, where the Schwarzschild horizon is recovered.
A Physical – Geometrical Model of an Early Universe
Directory of Open Access Journals (Sweden)
Corneliu BERBENTE
2014-12-01
Full Text Available A physical-geometrical model for a possible early universe is proposed. One considers an initial singularity containing the energy of the whole universe. The singularity expands as a spherical wave at the speed of light generating space and time. The relations of the special theory of relativity, quantum mechanics and gas kinetics are considered applicable. A structuring of the primary wave is adopted on reasons of geometrical simplicity as well as on satisfying the conservation laws. The evolution is able to lead to particles very close to neutrons as mass and radius. The actually admitted values for the radius and mass of the universe as well as the temperature of the ground radiation (3-5 K can be obtained by using the proposed model.
Frame-Based Facial Expression Recognition Using Geometrical Features
Anwar Saeed; Ayoub Al-Hamadi; Robert Niese; Moftah Elzobi
2014-01-01
To improve the human-computer interaction (HCI) to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness), with the help of several geometrical featur...
Time evolution in a geometric model of a particle
Atiyah, Michael; Schroers, Bernd
2014-01-01
We analyse the properties of a (4+1)-dimensional Ricci-flat spacetime which may be viewed as an evolving Taub-NUT geometry, and give exact solutions of the Maxwell and gauged Dirac equation on this background. We interpret these solutions in terms of a geometric model of the electron and its spin, and discuss links between the resulting picture and Dirac's Large Number Hypothesis.
A geometric crescent model for black hole images
Kamruddin, Ayman Bin; Dexter, Jason
2013-01-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g., a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivat...
Institute of Scientific and Technical Information of China (English)
LI Zhanli; SUN Xiuying
2006-01-01
VRML(Virtual Reality Modeling Language) format as an international standard for virtual reality, has already been widely adopted for graphical representation of 3D objects over the Web. Adopting VRML model in RP(Rapid Prototyping) can reduce the precision loss which is caused by triangulation in generating STL file. Hence exploring a slicing method and developing a slicing software for VRML model is important and significant to improve the accuracy of RP products. Finding intersections of a plane and VRML model is the key operation in slicing algorithm. This paper presents a method for calculating the intersections between a set of parallel planes and VRML geometric primitives. Based on the analysis of the relative position between a plane and a geometric primitive, intersection conditions in all cases were obtained, and the geometric parameters and corresponding equations of intersections were derived. The algorithm had been tested, and applications show that it is robust and effective.
Geometric Assortative Growth Model for Small-World Networks
Directory of Open Access Journals (Sweden)
Yilun Shang
2014-01-01
Full Text Available It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs.
Geometric assortative growth model for small-world networks.
Shang, Yilun
2014-01-01
It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs.
A Geometric Fuzzy-Based Approach for Airport Clustering
Directory of Open Access Journals (Sweden)
Maria Nadia Postorino
2014-01-01
Full Text Available Airport classification is a common need in the air transport field due to several purposes—such as resource allocation, identification of crucial nodes, and real-time identification of substitute nodes—which also depend on the involved actors’ expectations. In this paper a fuzzy-based procedure has been proposed to cluster airports by using a fuzzy geometric point of view according to the concept of unit-hypercube. By representing each airport as a point in the given reference metric space, the geometric distance among airports—which corresponds to a measure of similarity—has in fact an intrinsic fuzzy nature due to the airport specific characteristics. The proposed procedure has been applied to a test case concerning the Italian airport network and the obtained results are in line with expectations.
GEOMETRIC MODEL OF THE NAZCA PLATE SUBDUCTION IN SOUTHWEST COLOMBIA
Directory of Open Access Journals (Sweden)
Monsalve J Hugo
2007-12-01
Full Text Available A geometric model for the subduction of the Nazca plate beneath the South American plate in southwestern of Colombia is proposed based on the relocation of hypocenters of local and distant
earthquakes. By means of the simultaneous inversion of teleseismic P and SH body waves, the depths of the 15 events with Mw ≥ 5.8 were constrained, and the hypocenters of the 250 earthquakes recorded
between 1990 and 2005 by the International Seismological Centre (ISC and U.S. Geological Survey, National Earthquake Information Center (NEIC were constrained and relocated. A model is proposed
for the hypocentral sections taking into account the trench along of the Earth and Colombia-Ecuador.
Three different possible shapes of subduction of the Nazca plate in the Colombia-Ecuador trench were obtained: The first configuration, in the Cali A segment, the dip angle changes from17º to 45º down to a maximum depth of 100km; the second configuration, in the Popayán B and Nariño C segments, the dip angle holds approximately constant at 30º down to a maximum depth of 200 km; and the third configuration, in the Quito D segment, the dip angle changes of 9º to 50º to a maximum depth 220 km. The maximum depth of seismicity along the Colombia-Ecuador trench shows two increases, the first between latitudes 4.5ºN-5ºN and the second between the latitudes 1ºS-2ºS, which suggest that the presence of the Malpelo and Carnegie Ridges may generate a differential blockage at the Pacific Colombia-Ecuador basin.
Requirements for tolerances in a CAM-I generalized, solid geometric modeling system
Energy Technology Data Exchange (ETDEWEB)
Easterday, R.J.
1980-01-01
For a geometric modeling system to support computer-assisted manufacturing, it is necessary that dimensioning and tolerancing information be available in computer-readable form. The requirements of a tolerancing scheme within a geometric modeling system are discussed; they include structure sufficient to characterize the tolerance specifications currently in use by industry, means to associate tolerance structures to the boundary representation, means to create and edit information in the tolerance structures, means to extract information from the data base, and functions to check for completeness and validity of the tolerances. 1 figure, 8 tables. (RWR)
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....
Connectivity-Based Watermarking Robust to Geometrical Attacks
Institute of Scientific and Technical Information of China (English)
Wang Hongxia; Luo Jian
2006-01-01
A novel robust watermarking scheme based on image connectivity is proposed. In the scheme, the connected objects are obtained according to selected connectivity pattern, and the gravity centers are calculated in several bigger objects as the reference points for watermark embedding. Based on these reference points and the center of the whole image, several sectors are formed, and the same version of watermarks is embedded into these sectors and their opposites. Thanks to the very stable gravity center of the connected objects, watermark detection is synchronized successfully. Simulation results show that the watermark can survive under both local and global geometrical distortions.
International Nuclear Information System (INIS)
The geometrical track degradation is characterized by the evolution over time (or tonnage) of several parameters such as the longitudinal level, the alignment, the gauge, the twist and the cross level. Dynamic track inspections allow monitoring the track geometrical quality which is essential to ensure track availability and reliability, passenger safety and comfort and also energy efficiency. The track geometrical quality is guaranteed by performing condition-based maintenance and renewal actions during the life of the track and for that it is crucial to understand the geometrical track degradation process. In this paper, a stochastic model for characterizing the geometrical track degradation process over time is presented. The Portuguese railway Northern Line is adopted as a case-study and a statistic analysis is performed for different vehicle speed groups, in accordance with CEN [1]. The new contribution of this research is that the Dagum distribution, usually adopted for representing the income distribution, may represent the geometrical track degradation process in terms of the longitudinal level
The geometric Schwinger Model on the Torus II
International Nuclear Information System (INIS)
The geometric Schwinger Model (gSM) is the theory of a U(1)-gauge field in two dimensions coupled to a massless Dirac Kaehler field. It is equivalent to a Schwinger model with Dirac fields Φab(x) carrying iso-spin 1/2. We consider this model on the Euclidean space time of a torus. In Part I we discussed in detail the zero mode structure of this model. The main aim of this Part is the calculation of the correlation functions of currents and densities. Since it turned out that the gSM illustrates the generally interesting structure of anomalous chiral symmetry breaking in a very transparent manner, we present our results in the more familiar language of Dirac fields. In the introduction to the first part of our investigations we mentioned as motivation for the study of the gSM on the torus the possibility of a systematic lattice approximation of this model. In the meanwhile this project was realized to a large extend. Here we give the details of the discussion of the different quantities in the continuum to which we applied the lattice approximation. For these we formulate the 'geometric' description by differential forms of quantities which we consider interesting in this context. (orig.)
Frame-Based Facial Expression Recognition Using Geometrical Features
Directory of Open Access Journals (Sweden)
Anwar Saeed
2014-01-01
Full Text Available To improve the human-computer interaction (HCI to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness, with the help of several geometrical features. Unlike many other geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression; this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected by the errors in the facial point localization, especially for the expressions with subtle facial deformations.
High-fidelity geometric modeling for biomedical applications
Energy Technology Data Exchange (ETDEWEB)
Yu, Zeyun [Univ. of California, San Diego, CA (United States). Dept. of Mathematics; Holst, Michael J. [Univ. of California, San Diego, CA (United States). Dept. of Mathematics; Andrew McCammon, J. [Univ. of California, San Diego, CA (United States). Dept. of Chemistry and Biochemistry; Univ. of California, San Diego, CA (United States). Dept. of Pharmacology
2008-05-19
In this paper, we describe a combination of algorithms for high-fidelity geometric modeling and mesh generation. Although our methods and implementations are application-neutral, our primary target application is multiscale biomedical models that range in scales across the molecular, cellular, and organ levels. Our software toolchain implementing these algorithms is general in the sense that it can take as input a molecule in PDB/PQR forms, a 3D scalar volume, or a user-defined triangular surface mesh that may have very low quality. The main goal of our work presented is to generate high quality and smooth surface triangulations from the aforementioned inputs, and to reduce the mesh sizes by mesh coarsening. Tetrahedral meshes are also generated for finite element analysis in biomedical applications. Experiments on a number of bio-structures are demonstrated, showing that our approach possesses several desirable properties: feature-preservation, local adaptivity, high quality, and smoothness (for surface meshes). Finally, the availability of this software toolchain will give researchers in computational biomedicine and other modeling areas access to higher-fidelity geometric models.
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
Mesh Geometric Editing Approach Based on Gpu Texture
Directory of Open Access Journals (Sweden)
Guiping Qian
2012-09-01
Full Text Available This paper presents a novel interactive mesh editing approach based on GPU texture mapping. The main feature is that it copies 2D surface geometry information to GPU frame buffer. The planar mesh information is transformed into GPU texture and placed on apposite position of target mesh. 3D information is retrieved after stitching two mesh components from the primitive vertex coordinates. When running real-time mesh cloning operator, our mesh editing approach can copy arbitrary irregular geometric features from source mesh to target mesh. Experimental results indicate that our method can outperform previous related mesh editing techniques.
An integrated introduction to computer graphics and geometric modeling
Goldman, Ronald
2009-01-01
… this book may be the first book on geometric modelling that also covers computer graphics. In addition, it may be the first book on computer graphics that integrates a thorough introduction to 'freedom' curves and surfaces and to the mathematical foundations for computer graphics. … the book is well suited for an undergraduate course. … The entire book is very well presented and obviously written by a distinguished and creative researcher and educator. It certainly is a textbook I would recommend. …-Computer-Aided Design, 42, 2010… Many books concentrate on computer programming and soon beco
Geometric Models of the Quantum Relativistic Rotating Oscillator
Cotaescu, I I
1997-01-01
A family of geometric models of quantum relativistic rotating oscillator is defined by using a set of one-parameter deformations of the static (3+1) de Sitter or anti-de Sitter metrics. It is shown that all these models lead to the usual isotropic harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is different. As in the case of the (1+1) models, these will have even countable energy spectra or mixed ones, with a finite discrete sequence and a continuous part. In addition, all these spectra, except that of the pure anti-de Sitter model, will have a fine-structure, given by a rotator-like term.
A geometric level set model for ultrasounds analysis
Energy Technology Data Exchange (ETDEWEB)
Sarti, A.; Malladi, R.
1999-10-01
We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.
Rahman Ziaur; Rehman Shakeel Ur.; Mirza Sikander M.; Arshed Waheed; Mirza Nasir M.
2013-01-01
The Geant4-based comprehensive model has been developed to predict absorbed fraction values for both electrons and gamma photons in spherical, ellipsoidal, and cylindrical geometries. Simulations have been carried out for water, ICRP soft-, brain-, lung-, and ICRU bone tissue for electrons in 0.1 MeV-4 MeV and g-photons in the 0.02 MeV-2.75 MeV energy range. Consistent with experimental observations, the Geant4-simulated values of absorbed fractions show a ...
Huet, Benjamin; Yamato, Philippe; Grasemann, Bernhard
2014-01-01
Here we introduce the Minimized Power Geometric (MPG) model which predicts the viscosity of any polyphase rocks deformed during ductile flow. The volumetric fractions and power law parameters of the constituting phases are the only model inputs required. The model is based on a minimization of the mechanical power dissipated in the rock during deformation. In contrast to existing mixing models based on minimization, we use the Lagrange multipliers method and constraints of strain rate and str...
Geant4.10 simulation of geometric model for metaphase chromosome
Rafat-Motavalli, L.; Miri-Hakimabad, H.; Bakhtiyari, E.
2016-04-01
In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.
International Nuclear Information System (INIS)
Purpose: Using daily cone beam CTs (CBCTs) to develop principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients and to assess the possibility of using these prospectively in adaptive radiation therapy (ART). Methods: Planning CT (pCT) images of 4 H&N patients were deformed to model several different systematic changes in patient anatomy during the course of the radiation therapy (RT). A Pinnacle plugin was used to linearly interpolate the systematic change in patient for the 35 fraction RT course and to generate a set of 35 synthetic CBCTs. Each synthetic CBCT represents the systematic change in patient anatomy for each fraction. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CBCTs with random fraction-to-fraction changes were superimposed on the DVFs. A patient-specific PCA model was built using these DVFs containing systematic plus random changes. It was hypothesized that resulting eigenDVFs (EDVFs) with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: For all 4 patients, the PCA model provided different results depending on the type and size of systematic change in patient’s body. PCA was more successful in capturing the systematic changes early in the treatment course when these were of a larger scale with respect to the random fraction-to-fraction changes in patient’s anatomy. For smaller scale systematic changes, random changes in patient could completely “hide” the systematic change. Conclusion: The leading EDVF from the patientspecific PCA models could tentatively be identified as a major systematic change during treatment if the systematic change is large enough with respect to random fraction-to-fraction changes. Otherwise, leading EDVF could not represent systematic changes reliably. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant
Geometric Model of Topological Insulators from the Maxwell Algebra
Palumbo, Giandomenico
2016-01-01
We propose a novel geometric model of three-dimensional topological insulators in presence of an external electromagnetic field. The gapped boundary of these systems supports relativistic quantum Hall states and is described by a Chern-Simons theory with a gauge connection that takes values in the Maxwell algebra. This represents a non-central extension of the Poincar\\'e algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term, and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.
ON CONFIDENCE REGIONS OF SEMIPARAMETRIC NONLINEAR REGRESSION MODELS(A GEOMETRIC APPROACH)
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve,introduced by Severini and Wong (1992).The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures.The results obtained by Hamilton et al.(1982),Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models.
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.
The Effects of Computer-assisted and Distance Learning of Geometric Modeling
Directory of Open Access Journals (Sweden)
Omer Faruk Sozcu
2013-01-01
Full Text Available The effects of computer-assisted and distance learning of geometric modeling and computer aided geometric design are studied. It was shown that computer algebra systems and dynamic geometric environments can be considered as excellent tools for teaching mathematical concepts of mentioned areas, and distance education technologies would be indispensable for consolidation of successfully passed topics
A geometric reasoning based algorithm for point pattern matching
Institute of Scientific and Technical Information of China (English)
徐文立; 张立华
2001-01-01
Point pattern matching (PPM) is an important topic in computer vision and pattern recognition. It can be widely used in many areas such as image registration, object recognition, motion detection, target tracking, autonomous navigation, and pose estimation. This paper discusses the incomplete matching problem of two point sets under Euclidean transformation. According to geometric reasoning, some definitions for matching clique, support point pair, support index set, and support index matrix, etc. are given. Based on the properties and theorems of them, a novel reasoning algorithm is presented, which searches for the optimal sOlLtion from top to bottom and could find out as many consistent corresponding point pairs as possible. Theoretical analysis and experimental results show that the new algorithm is very effective, and could be, under some conditions, applied to the PPM problem under other kind of transformations.
NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS
Institute of Scientific and Technical Information of China (English)
Jia Xiaomeng; Wang Guoyu
2003-01-01
This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.
Conformal chiral boson models on twisted doubled tori and non-geometric string vacua
Avramis, Spyros D; Prezas, Nikolaos
2009-01-01
We derive and analyze the conditions for quantum conformal and Lorentz invariance of the duality symmetric interacting chiral boson sigma-models, which are conjectured to describe non-geometric string theory backgrounds. The one-loop Weyl and Lorentz anomalies are computed for the general case using the background field method. Subsequently, our results are applied to a class of (on-shell) Lorentz invariant chiral boson models which are based on twisted doubled tori. Our findings are in agreement with those expected from the effective supergravity approach, thereby firmly establishing that the chiral boson models under consideration provide the string worldsheet description of N=4 gauged supergravities with electric gaugings. Furthermore, they demonstrate that twisted doubled tori are indeed the doubled internal geometries underlying a large class of non-geometric string compactifications. For compact gaugings the associated chiral boson models are automatically conformal, a fact that is explained by showing ...
Energy Technology Data Exchange (ETDEWEB)
Battmann, A. [Marburg Univ. (Germany). Abt. fuer Strahlendiagnostik; Dieckmann, K.; Resch, A.; Poetter, R. [Allgemeines Krankenhaus, Wien (Austria). Universitaetsklinik Strahlentherapie und Strahlenbiologie; Battmann, A. [Giessen Univ. (Germany). Zentrum fuer Pathologie
2001-03-01
Background: The importance of the size of the primary tumor in lymphomas and its size after treatment is still uncertain. Assuming a prognostic relevance, an assessment of tumor volume before and after induction of chemotherapy has been performed in the pediatric Hodgkin's disease study (HD-90). Since an exact CT-scan-based volumetric tumor assessment is time-consuming and in some centers not possible, the tumor volume is often estimated based on simple geometric approximations. Aim of this study was the development of an easy to apply and nearly exact model of volume estimation compared to CT-scan-based tumor volume measurements. Material and Methods: thirty computed tomographies (CT) of mediastinal Hodgkin lymphomas of children aged 5 to 16 years have been examined. The CT scans were digitalized using a CCD camera combined with a frame grabber. Applying the Global Lab image software, the true tumor volume was determined excluding local organs, which did not belong to the lymphoma. Subsequently, volumes were assessed using simple geometric models (block, ellipsoid, octaeder) by using the maximum diameters of the tumor. The differences between the volume of the geometric models and the true volume, based on the CT scan evaluation, were compared. Results: the maximum diameters of a tumor can be used to calculate its volume based on simple geometric models. The model 'block' overestimates the volume by 89 to 268%. The model 'ellipsoid' overestimates the volume on average by 29%. The model 'octaeder' underestimates the volume on average by 18%. A division of the block volume by 2.3 approximated the geometric closest to the true volume: the average volume was overestimated by 2% in tumors with a volume larger than 20 ml. No model was sufficient to approximate tumors with a volume of less than 20 ml. Conclusions: for the estimation of tumor volumes in mediastinal Hodgkin lumphomas exceeding 20 ml, the formula 'block /2.3&apos
基于几何结构的2.5D卡通建模%2 . 5 D Cartoon Modeling Based on Geometric Structure
Institute of Scientific and Technical Information of China (English)
刘艳; 胡艳宏; 孙战利
2015-01-01
二维卡通制作技术大致分为计算机辅助2D卡通动画制作和利用3D建模技术渲染生成动画。将两者结合，提出一种2.5D卡通制作模型，通过几何结构的旋转进行纹理贴图，并构造卡通的旋转过程。在2D动画中，一个卡通形象本身隐含几何结构，将卡通形象定义为由只含一个典型几何结构卡通元素构成的卡通对象，利用典型几何结构二维投影变化规律，构建相应结构卡通元素的变形算法，分析长方体和球体卡通元素在转动时投影的变化规律，给出基于这些规律实现相应结构卡通元素伪3D转动效果的算法。通过长方体、球体、圆柱体进行旋转的实验结果证明了算法的有效性。%Technologies of 2 D cartoon animation can be roughly categorized into two types:one is computer-aided 2 D cartoon animation,and the other is rendering 3D models. These two both have their own pros and cons. So this paper proposes a way which combines both of them,that is 2. 5D cartoon modelling method which constructs the rotation of the cartoon by texture mapping. In 2D animation,a character has an implicit geometry structure. So in this paper,it defines a character as a cartoon object composed of only one typical geometry structure. This paper builds the deformation algorithm of corresponding structure through the two dimensional projection transformation of typical geometries. Detailed analysis of projection transformation patterns of rectangular and sphere are provided. Based on patterns founded,this paper provides algorithm for implementing pseudo-3D rotation effects for the corresponding carton elements, and gives the results of cuboid,sphere and cylinder to support the validity of the algorithm.
Energy Technology Data Exchange (ETDEWEB)
Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan [Golder Associates (Sweden)
2001-03-01
This report presents a methodology to construct, visualise and present geoscientific descriptive models based on data from the site investigations, which the SKB currently performs, to build an underground nuclear waste disposal facility in Sweden. It is designed for interaction with SICADA (SKB:s site characterisation database) and RVS (SKB:s Rock Visualisation System). However, the concepts of the methodology are general and can be used with other tools capable of handling 3D geometries and parameters. The descriptive model is intended to be an instrument where site investigation data from all disciplines are put together to form a comprehensive visual interpretation of the studied rock mass. The methodology has four main components: 1. Construction of a geometrical model of the interpreted main structures at the site. 2. Description of the geoscientific characteristics of the structures. 3. Description and geometrical implementation of the geometric uncertainties in the interpreted model structures. 4. Quality system for the handling of the geometrical model, its associated database and some aspects of the technical auditing. The geometrical model forms a basis for understanding the main elements and structures of the investigated site. Once the interpreted geometries are in place in the model, the system allows for adding descriptive and quantitative data to each modelled object through a system of intuitive menus. The associated database allows each geometrical object a complete quantitative description of all geoscientific disciplines, variabilities, uncertainties in interpretation and full version history. The complete geometrical model and its associated database of object descriptions are to be recorded in a central quality system. Official, new and old versions of the model are administered centrally in order to have complete quality assurance of each step in the interpretation process. The descriptive model is a cornerstone in the understanding of the
Transient Analysis of Hysteresis Queueing Model Using Matrix Geometric Method
Directory of Open Access Journals (Sweden)
Wajiha Shah
2011-10-01
Full Text Available Various analytical methods have been proposed for the transient analysis of a queueing system in the scalar domain. In this paper, a vector domain based transient analysis is proposed for the hysteresis queueing system with internal thresholds for the efficient and numerically stable analysis. In this system arrival rate of customer is controlled through the internal thresholds and the system is analyzed as a quasi-birth and death process through matrix geometric method with the combination of vector form Runge-Kutta numerical procedure which utilizes the special matrices. An arrival and service process of the system follows a Markovian distribution. We analyze the mean number of customers in the system when the system is in transient state against varying time for a Markovian distribution. The results show that the effect of oscillation/hysteresis depends on the difference between the two internal threshold values.
Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.
2011-01-01
The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3
Directory of Open Access Journals (Sweden)
Bum-Joo Lee
2013-02-01
Full Text Available In this paper differential kinematics was geometrically derived to be utilized in a calibration algorithm that improves the accuracy of the manipulation of a robot. Even though the mechanical components are manufactured and assembled precisely, small differences between the designed and the actual system always exist, due to both geometric and unmodelled errors. In order to resolve these problems, differential relationships between the model parameters and the end‐effectorʹs posture were formulated. Subsequently, a derivative based estimation algorithm, such as an EKF (Extended Kalman Filter manner, could be adopted to update the model parameters. The proposed algorithm includes joint flexibility, so is an advanced version of previous work, where a rigid joint model was adopted [1]. The effectiveness of the proposed algorithm was verified by a computer simulation with a 6 DOF manipulator robot.
A geometric growth model interpolating between regular and small-world networks
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhongzhi [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Zhou, Shuigeng [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Wang, Zhiyong [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Shen, Zhen [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China)
2007-09-28
We propose a geometric growth model which interpolates between one-dimensional linear graphs and small-world networks. The model undergoes a transition from large to small worlds. We study the topological characteristics by both theoretical predictions and numerical simulations, which are in good accordance with each other. Our geometrically growing model is a complementarity for the static WS model.
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826
Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing
Directory of Open Access Journals (Sweden)
S. Balasubramaniam
2015-01-01
Full Text Available Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
Geometric Lattice Structure of Covering-Based Rough Sets through Matroids
Directory of Open Access Journals (Sweden)
Aiping Huang
2012-01-01
relationship among them. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by a covering. Then its characteristics, such as atoms, modular elements, and modular pairs, are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, we present three sufficient and necessary conditions for two types of covering upper approximation operators to be closure operators of matroids. We also represent two types of matroids through closure axioms and then obtain two geometric lattice structures of covering-based rough sets. Third, we study the relationship among these three geometric lattice structures. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely, geometric lattice, to study covering-based rough sets.
Geometrically robust video watermarking based on wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHAO Yao
2006-01-01
Geometrical attacks can destroy most watermarking systems at present. So how to efficiently resist such kind of attacks remains a challenging direction in watermarking research. In this paper, a novel sequence watermarking scheme, which exploits a geometrical invariant, i.e. average AC energy (AAE) to combat arbitrary geometrical attacks, is presented. The scheme also uses some other measures, such as synchronization and optimal whitening filter to resist other attacks and improve detection performance. The experimental results show that the scheme can efficiently improve the visual quality of the watermarked video and achieve good robustness against random geometrical attacks. The scheme also has good robustness against other attacks, such as low-pass filtering along time axis and frame removal.
The Van Hiele Model of Geometric Thought and possible contributions to the dynamic geometry
Directory of Open Access Journals (Sweden)
ALVES, G. S.
2010-06-01
Full Text Available This work presents the main ideas discussed in an essay written in a Computers and Education class in a Master Course at PPGI-UFRJ. We discuss the need to emphasize the topics related to euclidian geometry in primary and secondary schools. The Van Hiele model of the development of geometric thought is presented as a guideline for learning and as an instrument for the evaluation of students´ geometric abilities. Based on Van Hiele ideas and on tests created by the Fundão/UFRJ Project staff, a quantitative study on the level of geomteric thought was performed with students of a public technical high school in Rio de Janeiro. As conclusions, an exposition on possible contributions of dynamic geometry to the Van Hiele model is made.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.
Hirzel, Alexandre H; Arlettaz, Raphaël
2003-11-01
This paper presents a new habitat suitability modeling method whose main properties are as follows: (1) It is based on the density of observation points in the environmental space, which enables it to fit complex distributions (e.g. nongaussian, bimodal, asymmetrical, etc.). (2) This density is modeled by computing the geometric mean to all observation points, which we show to be a good trade-off between goodness of fit and prediction power. (3) It does not need any absence information, which is generally difficult to collect and of dubious reliability. (4) The environmental space is represented either by an expert-selection of standardized variables or the axes of a factor analysis [in this paper we used the Ecological Niche Factor Analysis (ENFA)]. We first explain the details of the geometric mean algorithm and then we apply it to the bearded vulture (Gypaetus barbatus) habitat in the Swiss Alps. The results are compared to those obtained by the "median algorithm" and tested by jack-knife cross-validation. We also discuss other related algorithms (BIOCLIM, HABITAT, and DOMAIN). All these analyses were implemented into and performed with the ecology-oriented GIS software BIOMAPPER 2.0.The results show the geometric mean to perform better than the median algorithm, as it produces a tighter fit to the bimodal distribution of the bearded vulture in the environmental space. However, the "median algorithm" being quicker, it could be preferred when modeling more usual distribution. PMID:15015699
The geometrical precision of the silicone matrices to the manufacturing of the models of the gear
Directory of Open Access Journals (Sweden)
M. Cygnar
2009-04-01
Full Text Available The article presents the researches of geometrical precision of silicone casting form manufactured with using of the process of rapidprototyping of the tools (RT – Rapid Tooling. The testing casting form is applied to the production of prototypes of sprockets with thepolymer resins and also the casting waxes. The determining of real geometrical precision of silicone form in the relation to the theoretical assumptions determined on the basis of the parameters of the material card of applied silicone was the purpose of researches. Silicone form was created on the basis of the stereolitographic model of sprocket. The coordinates measurable machine WENZEL LH 87 was applied to researches. The measurements of form and also base model were executed in the scanning mode on the basis of model 3D-CAD ofsprocket. In purpose of the acceleration of measurable process of base model, silicone form and also prototypes manufactured in form, the special program CNC was written. Program enables the executing of measurements in automatic mode. Measurements enabled determining of precision of manufacturing of form in the relation to nominal model 3D-CAD and also in the relation to stereolitographic base model. The next stage of the research works will concern of the execution of geometrical measurements of prototypes casted in silicone form with chosen materials: casting waxes, the polyester, the epoxy and polyurethane resins. Executed measurements will enableon determining of real precision of prototypes manufactured in silicone casting forms. The problems concerned of determining ofgeometrical precision of silicone forms and manufactured in them prototypes are considered seldom in the analysed literature from therange of rapid prototyping. From this reason presented researches in article create the original work in the theoretical and practicalaspect.
Directory of Open Access Journals (Sweden)
Jasmine Norman
2011-10-01
Full Text Available Random Geometric Graphs have been a very influential and well-studied model of large networks, such assensor networks, where the network nodes are represented by the vertices of the RGG, and the direct connectivity between nodes is represented by the edges. This assumes homogeneous wireless nodes with uniform transmission ranges. In real life, there exist heterogeneous wireless networks in which devices have dramatically different capabilities. The connectivity of a WSN is related to the positions of nodes, and those positions are heavily affected by the method of sensor deployment. As sensors may be spread in an arbitrary manner, one of the fundamental issues in a wireless sensor network is the coverage problem. In this paper, I study connectivity and coverage in hybrid WSN based on dynamic random geometric graph.
Critical Property of the Geometric Phase in the Dicke Model with the Dipole-dipole Interactions
Institute of Scientific and Technical Information of China (English)
Yunfeng WU; Ping ZHANG; Jianzhou ZHENG
2008-01-01
We obtained the ground-state energy level and associated geometric phase in the Dicke model with the dipole-dipole interactions analytically by the Holstein-Primakoff transformation and the boson expansion approach in the thermodynamic limit.The nonadiabatic geometric phase induced by the photon field was derived with the time-dependent unitary transformation.It is shown that dipole-dipole interactions have a deep influence on scaled behavior of the geometric phase at the critical point.
Recognition of facial expressions based on salient geometric features and support vector machines
Ghimire, Deepak; Lee, Joonwhoan; Li, Ze-Nian; Jeong, Sunghwan
2016-01-01
Facial expressions convey nonverbal cues which play an important role in interpersonal relations, and are widely used in behavior interpretation of emotions, cognitive science, and social interactions. In this paper we analyze different ways of representing geometric feature and present a fully automatic facial expression recognition (FER) system using salient geometric features. In geometric feature-based FER approach, the first important step is to initialize and track dense set of facial p...
Crouseilles, Nicolas; Lemou, Mohammed
2016-01-01
We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to captureaccurately the solutions without numerically resolving the high frequency oscillations {\\em in both space and time}.Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and otherhighly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds theoscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties...
A Novel Geometrical Height Gain Model for Line-of-Sight Urban Micro Cells Below 6 GHz
DEFF Research Database (Denmark)
Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard;
2016-01-01
This paper presents a novel height gain model applicable to line-of-sight urban micro cell scenarios and frequencies below 6 GHz. The model is knife-edge diffraction-based, and it is founded on simple geometrical and physical relationships. Typical system level simulator scenario parameters...
A simple geometrical model describing shapes of soap films suspended on two rings
Herrmann, Felix J.; Kilvington, Charles D.; Wildenberg, Rebekah L.; Camacho, Franco E.; Walecki, Wojciech J.; Walecki, Peter S.; Walecki, Eve S.
2016-09-01
We measured and analysed the stability of two types of soap films suspended on two rings using the simple conical frusta-based model, where we use common definition of conical frustum as a portion of a cone that lies between two parallel planes cutting it. Using frusta-based we reproduced very well-known results for catenoid surfaces with and without a central disk. We present for the first time a simple conical frusta based spreadsheet model of the soap surface. This very simple, elementary, geometrical model produces results surprisingly well matching the experimental data and known exact analytical solutions. The experiment and the spreadsheet model can be used as a powerful teaching tool for pre-calculus and geometry students.
A geometric framework for mixed quantum states based on a Kähler structure
International Nuclear Information System (INIS)
In this paper we introduce a geometric framework for mixed quantum states based on a Kähler structure. The geometric framework includes a symplectic form, an almost complex structure, and a Riemannian metric that characterize the space of mixed quantum states. We argue that the almost complex structure is integrable. We also in detail discuss a visualizing application of this geometric framework by deriving a geometric uncertainty relation for mixed quantum states. The framework is computationally effective and it provides us with a better understanding of general quantum mechanical systems. (paper)
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Mixture models of geometric distributions in genomic analysis of inter-nucleotide distances
Directory of Open Access Journals (Sweden)
Adelaide Valente Freitas
2013-11-01
Full Text Available The mapping defined by inter-nucleotide distances (InD provides a reversible numerical representation of the primary structure of DNA. If nucleotides were independently placed along the genome, a finite mixture model of four geometric distributions could be fitted to the InD where the four marginal distributions would be the expected distributions of the four nucleotide types. We analyze a finite mixture model of geometric distributions (f_2, with marginals not explicitly addressed to the nucleotide types, as an approximation to the InD. We use BIC in the composite likelihood framework for choosing the number of components of the mixture and the EM algorithm for estimating the model parameters. Based on divergence profiles, an experimental study was carried out on the complete genomes of 45 species to evaluate f_2. Although the proposed model is not suited to the InD, our analysis shows that divergence profiles involving the empirical distribution of the InD are also exhibited by profiles involving f_2. It suggests that statistical regularities of the InD can be described by the model f_2. Some characteristics of the DNA sequences captured by the model f_2 are illustrated. In particular, clusterings of subgroups of eukaryotes (primates, mammalians, animals and plants are detected.
Directory of Open Access Journals (Sweden)
J. Del Rio Vera
2009-01-01
Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.
Modeling concepts for communication of geometric shape data
Collins, M. F.; Emnett, R. F.; Magedson, R. L.; Shu, H. H.
1984-01-01
ANSI5, an abbreviation for Section 5 of the American National Standard under Engineering Drawing and Related Documentation Practices (Committee Y14) on Digital Representation for Communication of Product Definition Data (ANSI Y14.26M-1981), allows encoding of a broad range of geometric shapes to be communicated through digital channels. A brief review of its underlying concepts is presented. The intent of ANSI5 is to devise a unified set of concise language formats for transmission of data pertaining to five types of geometric entities in Euclidean 3 space (E(3)). These are regarded as point like, curve like, surface like, solid like, and a combination of these types. For the first four types, ANSI5 makes a distinction between the geometry and topology. Geometry is a description of the spatial occupancy of the entity, and topology discusses the interconnectedness of the entity's boundary components.
A solution to the surface intersection problem. [Boolean functions in geometric modeling
Timer, H. G.
1977-01-01
An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.
Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus
Directory of Open Access Journals (Sweden)
Yan Li
2015-01-01
Full Text Available With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based battery management optimizing policy which aims to minimize the average cost of the operation on the premise of meeting the required sufficient battery availability. Considering the deterioration of the battery after repeated charging and discharging, this paper constructs the model of the operation of the E-bus battery as a geometric process, and the premaintenance time has been considered with the failure repairment time to enhance the GP-based battery operation model considering the battery cannot be as good as new after the two processes. The computer simulation is carried out by adopting the proposed optimizing policy, and the result verifies the effectiveness of the policy, denoting its significant performance on the application of the E-bus battery management.
Managing geometric information with a data base management system
Dube, R. P.
1984-01-01
The strategies for managing computer based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. The research on integrated programs for aerospace-vehicle design (IPAD) focuses on the use of data base management system (DBMS) technology to manage engineering/manufacturing data. The objectives of IPAD is to develop a computer based engineering complex which automates the storage, management, protection, and retrieval of engineering data. In particular, this facility must manage geometry information as well as associated data. The approach taken on the IPAD project to achieve this objective is discussed. Geometry management in current systems and the approach taken in the early IPAD prototypes are examined.
Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.
2014-06-01
The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.
Modeling thermodynamic distance, curvature and fluctuations a geometric approach
Badescu, Viorel
2016-01-01
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.
Samal, Satya Swarup; Grigoriev, Dima; Fröhlich, Holger; Weber, Andreas; Radulescu, Ovidiu
2015-12-01
Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors.
Audio watermarking robust to geometrical distortions based on dyadic wavelet transform
Wang, Yong; Wu, Shaoquan; Huang, Jiwu
2007-02-01
Geometrical transforms such as time-scale modification (TSM), random removal(RR), random duplication(RD), and cropping, are of common operations on audio signals while presents many challenges to robust audio watermarking. The existing algorithms aiming at solving the geometrical distortions have various drawbacks e.g. high false alarm probability, heavy computation load, small data hiding capacity, and low robustness performance. In this paper an audio watermarking algorithm based on dyadic wavelet transform robust to geometrical distortions is proposed. Watermark synchronization is achieved using the geometrical invariant properties of dyadic wavelet transform. A well-designed coding scheme is proposed for lowering the bit error rate of the watermark. The experimental results show that the watermark is robust to geometrical transforms and other common operations. Compared with other existing algorithms the proposed algorithm has several advantages of high robustness, large data hiding capacity and low computation load.
Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image
Baligh Jahromi, Ali; Sohn, Gunho
2016-06-01
Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D
Institute of Scientific and Technical Information of China (English)
盛光磊; 张腾; 裴铮
2013-01-01
提出一个人脸检测算法，该算法使用3×3块划分的梯度图像和几何人脸模型来进行人脸检测.3×3块划分用来初步检测特定区域中是否有人脸，接下来利用几何人脸模型把人脸检测出来.实验结果表明所提出的人脸检测算法检测结果比较好，并且对于光照并不敏感.%This paper presents a face detection algorithm, the algorithm uses a gradient image of 3 Í3 block partition and geometric human face model for face detection. 3 Í 3 block partition is used to and preliminary detect whether someone in the specific area of the face, followed by the use of geometric face model face detection. The experimental results show that the proposed face detection algorithms to detect better results,and is not sensitive to light.
Directory of Open Access Journals (Sweden)
Gayo Willy
2016-01-01
Full Text Available Philippine Stock Exchange Composite Index (PSEi is the main stock index of the Philippine Stock Exchange (PSE. PSEi is computed using a weighted mean of the top 30 publicly traded companies in the Philippines, called component stocks. It provides a single value by which the performance of the Philippine stock market is measured. Unfortunately, these weights, which may vary for every trading day, are not disclosed by the PSE. In this paper, we propose a model of forecasting the PSEi by estimating the weights based on historical data and forecasting each component stock using Monte Carlo simulation based on a Geometric Brownian Motion (GBM assumption. The model performance is evaluated and its forecast compared is with the results using a direct GBM forecast of PSEi over different forecast periods. Results showed that the forecasts using WGBM will yield smaller error compared to direct GBM forecast of PSEi.
Geometric data transfer between CAD systems: solid models
DEFF Research Database (Denmark)
Kroszynski, Uri; Palstroem, Bjarne; Trostmann, Erik;
1989-01-01
, and attributes supporting three kinds of representations: facilities for the transfer of parametric designs; referencing library components; and other general mechanisms. They also describe the current state of the specification and processor implementations and include an example of a CAD*I neutral file......The first phase of the ESPRIT project CAD*I resulted in a specification for the exchange of solid models as well as in some pilot implementations of processors based on this specification. The authors summarize the CAD*I approach, addressing the structure of neutral files for solids, entities...
Geometrical properties of avalanches in self-organized critical models of solar flares
International Nuclear Information System (INIS)
We investigate the geometrical properties of avalanches in self-organized critical models of solar flares. Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward comparing these properties to those inferred from spatially and temporally resolved flare observations, we consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions, and the two-dimensional projections of the latter. The nature of the relationship between the avalanching volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of avalanches can bring into agreement hitherto discrepant results of observational analyses based on simple, nonfractal geometries for the flaring volume
Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation
Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.
2016-06-01
As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.
Understanding geometric instabilities in thin films via a multi-layer model.
Lejeune, Emma; Javili, Ali; Linder, Christian
2016-01-21
When a thin stiff film adhered to a compliant substrate is subject to compressive stresses, the film will experience a geometric instability and buckle out of plane. For high film/substrate stiffness ratios with relatively low levels of strain, the primary mode of instability will either be wrinkling or buckling delamination depending on the material and geometric properties of the system. Previous works approach these systems by treating the film and substrate as homogenous layers, either consistently perfectly attached, or perfectly unattached at interfacial flaws. However, this approach neglects systems where the film and substrate are uniformly weakly attached or where interfacial layers due to surface modifications in either the film or substrate are present. Here we demonstrate a method for accounting for these additional thin surface layers via an analytical solution verified by numerical results. The main outcome of this work is an improved understanding of how these layers influence global behavior. We demonstrate the utility of our model with applications ranging from buckling based metrology in ultrathin films, to an improved understanding of the formation of a novel surface in carbon nanotube bio-interface films. Moving forward, this model can be used to interpret experimental results, particularly for systems which deviate from traditional behavior, and aid in the evaluation and design of future film/substrate systems.
Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape
Directory of Open Access Journals (Sweden)
Pei-Jian eShi
2015-10-01
Full Text Available Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modelled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.
Trees on Geometrical Deformations to Model the Statistical Variability of Organs in Medical Images
Seiler, Christof
2012-01-01
In medical image analysis, geometrical deformations are used to model intersubject variability. In orthopaedic applications, the geometrical variability is usually observable across anatomical scales. For instance, anatomical differences between mandible bones of different patients can be found on a coarse scale, between the entire left or right side, or on a fine scale, between teeth. Each level of granularity has specific regions of interest in clinical applications. The challenge is to con...
An Improved Method for the Geometrical Calibration of Parallelogram-based Parallel Robots
Savoure, Ludovic; Maurine, Patrick; Corbel, David; Krut, Sébastien
2006-01-01
International audience This paper presents an improved method for the geometrical calibration of parallel robots for which the structure is based upon some parallelogram mechanisms. Its originality is to identify the complete geometry of the mechanism's parallelograms, and to compensate the positioning error of the TCP (Tool Centre Point), due to the infinitesimal rotation of the traveling plate, induced by the parallelogram geometrical errors. The main difficulties are: (i) to derive the ...
Mezaal, Yaqeen S; Eyyuboglu, Halil T
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.
Mezaal, Yaqeen S; Eyyuboglu, Halil T
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered. PMID:27054755
Directory of Open Access Journals (Sweden)
A. Van Hirtum
2015-01-01
Full Text Available Several engineering problems are confronted with elastic tubes. In the current work, homothetic quasi-analytical geometrical ring models, ellipse, stadium, and peanut, are formulated allowing a computationally low cost ring shape estimation as a function of a single parameter, that is, the pinching degree. The dynamics of main geometrical parameters due to the model choice is discussed. Next, the ring models are applied to each cross section of a circular elastic tube compressed between two parallel bars for pinching efforts between 40% and 95%. The characteristic error yields less than 4% of the tubes diameter when the stadium model was used.
The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer
International Nuclear Information System (INIS)
The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)
Philippon, Mélody; Le Carlier de Veslud, Christian; Gueydan, Frédéric; Brun, Jean-Pierre; Caumon, Guillaume
2015-09-01
Superposed to ductile syn-metamorphic deformations, post-foliation deformations affect metamorphic units during their exhumation. Understanding the role of such deformations in the structuration of metamorphic units is key for understanding the tectonic evolution of convergence zones. We characterize post-foliations deformations using 3D modelling which is a first-order tool to describe complex geological structures, but a challenging task where based only on surface data. We propose a modelling procedure that combines fast draft models (interpolation of orientation data), with more complex ones where the structural context is better understood (implicit modelling), allowing us to build a 3D geometrical model of Syros Island blueschists (Cyclades), based on field data. With our approach, the 3D model is able to capture the complex present-day geometry of the island, mainly controlled by the superposition of three types of post-metamorphic deformations affecting the original metamorphic pile: i) a top-to-South ramp-flat extensional system that dominates the overall island structure, ii) large-scale folding of the metamorphic units associated with ramp-flat extensional system, and iii) steeply-dipping normal faults trending dominantly NNW-SSE and EW. The 3D surfaces produced by this method match outcrop data, are geologically consistent, and provide reasonable estimates of geological structures in poorly constrained areas.
Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.
Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J
2014-02-01
In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved. PMID:26270910
The Geometric Modelling of Furniture Parts and Its Application
Institute of Scientific and Technical Information of China (English)
张福炎; 蔡士杰; 王玉兰; 居正文
1989-01-01
In this paper, a 3-D solid modelling method appropriate for the design of furniture parts, which has been used in FCAD (Computer Aided Design for Furniture Structure )system, is introduced. Some interactive functions for modifying part models and deriving a variety of practical parts are described. Finally. the application of the modelling method to computer aided manufacturing of furniture parts is prospected.
Fixing Geometric Errors on Polygonal Models: A Survey
Institute of Scientific and Technical Information of China (English)
Tao Ju
2009-01-01
Polygonal models are popular representations of 3D objects. The use of polygonal models in computational applications often requires a model to properly bound a 3D solid. That is, the polygonal model needs to be closed, manifold, and free of self-intersections. This paper surveys a sizeable literature for repairing models that do not satisfy this criteria, focusing on categorizing them by their methodology and capability. We hope to offer pointers to further readings for researchers and practitioners, and suggestions of promising directions for future research endeavors.
Automatic registration of geometric distortions in satellite images based on control points
International Nuclear Information System (INIS)
This paper presents an automatic registration scheme to register geometric distortion in satellite images; A novel feature based matching scheme is proposed which establishes correspondence between the corner points in the reference and target images either by correlating the intensity values around a circular neighborhood of these corner points or by exploiting the relative orientation of lines connecting these corner points. Affine transformation model is used to estimate transformation parameters. Re-sampling is carried out by nearest neighborhood interpolation. The registration process is automatic and can efficiently serve as preprocessing stage for multitemporal analysis, image fusion, image mosaicking and change detection. The effectiveness of the algorithm has been verified by an intensive experiment on a large number of real images. Experimental results reveal high supremacy of the proposed registration method. (author)
Forest crown closure retrieval and change detection using an inverted geometric-optical model
Zeng, Y.; Wu, B.
2012-12-01
The objective of this study is to use an inversion of the Li-Strahler geometric-optical model combined with a scaling-based endmember extraction method and a spatial interpolation technique to retrieve and detect the changes of a forest canopy structural property, crown closure (CC), in the Three Gorges reservoir region of China. A MODIS image covered the whole study area and a Landsat TM data located in the typical region are collected together for each year from 2001 to 2010. We firstly extract the viewed surface components endmembers from the MODIS data by the regional scaling-based linear unmixing model using the corresponding Landsat TM image; secondly, derive and map the forest structural variable CC by inverting the Li-Strahler model based on the extracted endmembers for each year; thirdly, complement prediction deficiencies of the inverted Li-Strahler model derived CC by using a spatial interpolation algorithm (regression kriging) in the infeasible regions; finally produce spatially continuous CC maps for the 10 years and representing CC changes between 2001 and 2010. The results show a decrease in CC in the eastern counties of the Three Gorges region located close to the Three Gorges Dam, which is the largest hydroelectric dam in the world. An increase in CC has been observed in other counties of the Three Gorges region, implying a preliminary positive feedback on certain policy measures taken safeguarding forest structure.
Geometrical Standard Model Enhancements to the Standard Model of Particle Physics
Strickland, Ken; Duvernois, Michael
2011-10-01
The Standard Model (SM) is the triumph of our age. As experimentation at the LHC tracks particles for the Higgs phenomena, theoreticians and experimentalist struggle to close in on a cohesive theory. Both suffer greatly as expectation waivers those who seek to move beyond the SM and those who cannot do without. When it seems like there are no more good ideas enter Rate Change Graph Technology (RCGT). From the science of the rate change graph, a Geometrical Standard Model (GSM) is available for comprehensive modeling, giving rich new sources of data and pathways to those ultimate answers we punish ourselves to achieve. As a new addition to science, GSM is a tool that provides a structured discovery and analysis environment. By eliminating value and size, RCGT operates with the rules of RCGT mechanics creating solutions derived from geometry. The GSM rate change graph could be the ultimate validation of the Standard Model yet. In its own right, GSM is created from geometrical intersections and comes with RCGT mechanics, yet parallels the SM to offer critical enhancements. The Higgs Objects along with a host of new objects are introduced to the SM and their positions revealed in this proposed modification to the SM.
International Nuclear Information System (INIS)
In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement
Parametric geometric model and shape optimization of an underwater glider with blended-wing-body
Sun, Chunya; Song, Baowei; Wang, Peng
2015-11-01
Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
2007-01-01
This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines...
METHOD FOR ADAPTIVE MESH GENERATION BASED ON GEOMETRICAL FEATURES OF 3D SOLID
Institute of Scientific and Technical Information of China (English)
HUANG Xiaodong; DU Qungui; YE Bangyan
2006-01-01
In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refmed mesh. With the guidance of the defined criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed coveting the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delaunay triangulation is then developed for generating 3D adaptive fmite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.
Institute of Scientific and Technical Information of China (English)
张民悦; 黄鹏远
2013-01-01
A special system model was given, where three failure states existed The first kind of failure was open failure, the second one could be maintained, and the last one would need to be dealt with system replacement A binary function composed of the number of times of first failure M and that of second failure N was taken as the policy (M,N). By using the theory of geometric process, the expressions of average cost rate C(M, N) and average availability rate A(M,N) were calculated Accordingly, a trade-off optimization model of average cost rate and average availability rate was established.%给出一种特殊的系统模型,该系统有三种失效状态,第一种失效为开路失效,第二种失效可以维修,第三种失效需要更换系统,以系统第一种失效的次数M和第二种失效的次数N组成的二元函数为策略(M,N),运用几何过程的理论,推导出平均费用率表达式C(M,N)和平均可用率的表达式A(M,N),在此基础上建立平均费用率和平均可用率的权衡优化模型.
Models for determining the geometrical properties of halo coronal mass ejections
Zhao, X.; Liu, Y.
2005-12-01
To this day, the prediction of space weather effects near the Earth suffer from a fundamental problem: the necessary condition for determining whether or not and when a part of the huge interplanetary counterpart (ICME) of frontside halo coronal mass ejections (CMEs) is able to hit the Earth and generate goemagnetic storms, i.e., the real angular width, the propagation direction and speed of the CMEs, cannot be measured directly because of the unfavorable geometry. To inverse these geometrical and kinematical properties we have recently developed a few geometrical models, such as the cone model, the ice cream cone model, and the spherical cone model. The inversing solution of the cone model for the 12 may 1997 halo CME has been used as an input to the ENLIL model (a 3D MHD solar wind code) and successfully predicted the ICME near the Earth (Zhao, Plukett & Liu, 2002; Odstrcil, Riley & Zhao, 2004). After briefly describing the geometrical models this presentation will discuss: 1. What kind of halo CMEs can be inversed? 2. How to select the geometrical models given a specific halo CME? 3. Whether or not the inversing solution is unique?
Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data
Directory of Open Access Journals (Sweden)
Clemens Nothegger
2011-12-01
Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
International Nuclear Information System (INIS)
Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry developed for the simulation of the FFF beams of the Varian TrueBeam linac is presented. The Monte Carlo geometrical model of the TrueBeam linac uses information provided by Varian that reveals large similarities between the TrueBeam machine and the Clinac 2100 downstream of the jaws. Thus, the upper part of the TrueBeam linac was modeled by introducing modifications to the Varian Clinac 2100 linac geometry. The most important of these modifications is the replacement of the standard flattening filters by ad hoc thin filters. These filters were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6 MV and 10 MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements performed with a diode detector for radiation fields ranging from 3 × 3 to 40 × 40 cm2 at depths of maximum dose of 5 and 10 cm. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were performed for dose profiles obtained from Monte Carlo simulations using the phase-space files distributed by Varian for the TrueBeam linac as the sources of particles. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TrueBeam phase-space files for all fields and depths considered, except for the
GEOMETRIC CONTEXT AND ORIENTATION MAP COMBINATION FOR INDOOR CORRIDOR MODELING USING A SINGLE IMAGE
Directory of Open Access Journals (Sweden)
A. B. Jahromi
2016-06-01
Full Text Available Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected
Institute of Scientific and Technical Information of China (English)
TIE Zuo-Xiu; QIN Meng; ZOU Da-Wei; CAO Yi; WANG Wei
2011-01-01
@@ The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels.In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by n - TT stacking among the phenyl groups.Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions.Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous.%The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π - π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive “smart”materials.
Region-based geometric active contour for classification using hyperspectral remote sensing images
Yan, Lin
2011-12-01
The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the theories of Bernoulli-Euler beams and Vlasov’s thin-walled members,a new geometrical and physical nonlinear beam element model is developed by applying an interior node in the element and independent interpolations on bending angles and warp,in which factors such as traverse shear deformation,torsional shear deformation and their coupling,coupling of flexure and torsion,and second shear stress are all considered.Thereafter,geometrical nonlinear strain in total Lagarange(TL) and the corresponding stiffness matrix are formulated.Ideal plastic model is applied to physical nonlinearity to comply with the yield rule of Von Mises and incremental relationship of Prandtle-Reuss.Elastoplastic stiffness matrix is derived by numerical integration on the basis of the finite segment method.Examples show that the developed model is feasible in analysis of thin-walled structures with high accuracy.
MAP: Medial axis based geometric routing in sensor networks
Bruck, Jehoshua; Gao, Jie; Jiang, Anxiao
2007-01-01
One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, quality of communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing...
An outline of Weyl geometric models in cosmology
Scholz, E E
2004-01-01
Already the simplest examples of Weyl geometry, the static space-time models of general relativity modified by an additional time-homogeneous Weylian length connection lead to beautiful cosmological models (Weyl universes) . The magnitude-redshift relation of recent supernovae Ia measurements is in perfect agreement with the prediction of decrease of energy flux in the Weyl models. These data allow to estimate the (ex-ante) spacelike curvature of Weyl universes. Quasar frequency data from the SDSS provide strong evidence of a positive ex-ante curvature. Thus an Einstein-Weyl universe, i.e., an Einstein universe endowed with a Weylian length connection, is in good agreement with supernovae and quasar data. The relative mass-energy density with respect to the critical density of the standard approach, and the relative contribution of the ``vacuum term'' are time-independent in Weyl gauge. Thus the time-evolution anomaly of vacuum energy does not arise. The intervals given in the literature for the dynamically d...
Institute of Scientific and Technical Information of China (English)
YANG YuanXi; ZENG AnMin
2009-01-01
There are two kinds of methods in researching the crust deformation: geophysical method and geometrical (or observational) method. Considerable differences usually exist between the two kinds of results, because of the datum differences, geophysical model errors, observational model errors, and so on. Thus, it is reasonable to combine the two kinds of information to collect the crust deformation information. To use the reliable geometrical and geophysical information, we have to control the observational and geophysical model error influences on the estimated deformation parameters, and to balance their contributions to the evaluated parameters. A hybrid estimation strategy is proposed here for evaluating the deformation parameters employing an adaptively robust filtering. The effects of measurement outliers on the estimated parameters are controlled by robust equivalent weights. Adaptive factors are introduced to balance the contribution of the geophysical model information and the geometrical measurements to the model parameters. The datum for the local deformation analysis is mainly determined by the highly accurate IGS station velocities. The hybrid estimation strategy is applied in an actual GPS monitoring network. It is shown that the hybrid technique employs locally repeated geometrical displacements to reduce the displacement errors caused by the mis-modeling of geophysical technique, and thus improves the precision of the estimated crust deformation parameters.
Country neighborhood network on territory and its geometrical model
Xuan, Qi; Wu, Tie-Jun
2009-04-01
The country neighborhood network, where nodes represent countries and two nodes are considered linked if the corresponding countries are neighbors on territory, is created and its giant component, the Asia, Europe, and Africa (AEA) cluster, is carefully studied in this paper. It is found that, as common, the degree distribution and the clustering function of the AEA cluster are both compatible with scale-free property, besides, the AEA cluster presents a little disassortativity, and its near power-law country area-degree relationship with the exponent close to 1.7 may imply a fractal dimension close to 1.2 of country borderlines in the AEA continent. It is also revealed that the average difference of population density between two countries obeys an approximately increasing function of the shortest path length between them, which may suggest a gradual consensus of population density in the AEA cluster. A simple unity rule is then adopted to model the AEA cluster and such model explains the AEA cluster very well in most aspects, e.g., power-law domain area distribution and fractal domain borderlines, etc., except that the network derived by the model has stronger disassortativity, which may be explained by the fact that, in the evolution history of countries, unbalanced neighbors are more likely to be united as one than balanced neighbors. Additionally, the network evolving process can be divided into three periods, defined as formation period, growth period, and combination period, and there are indications that the AEA cluster is in its third period.
Abbasi, Bahman
2012-11-01
Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.
GEOMETRICAL MODELING OF 3D PATTERNS FOR TRADITIONAL INDIAN KUNDAN JEWELRY
Directory of Open Access Journals (Sweden)
GOEL VINEET KUMAR
2011-07-01
Full Text Available India is famous for its art and culture, which can be found in traditional handicrafts, carvings, potteries, as well as in Jewelry. The traditional Jewelry of India is what makes the Indian Jewelry so rich and unique in their manner. India has a rich tradition of gold ornamental designs and there are a number of styles of ornamentmaking in practice, each with its uniqueness, special forms and style. Our work is based on semantics; 3D patterns are created on the bases of parametric representation. This work aims to associate advantages unfolded by Computer Aided Design (CAD technology in developing traditional design patterns for Jewelry design andmanufacturing. The work also presents three dimensional (3D semantics used in Traditional Indian Kundan Jewelry with the help of mathematical modeling; to generate the traditional patterns.The goal will be achieved by devising mathematical models for various 3D semantics, for the modeling of Traditional Indian Kundan jewelry (TIKJ. Jewelry Add-In is developed for inventor using c++. Aim of this Jewelry add-in is to develop pattern of 3D geometrical shapes on 3D surface and for communication between Jewelry Add-In and Inventor.
Semi-stationary subdivision operators in geometric modeling
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the view of operator, a novel uniform subdivision construction method is proposed for free form curve and surface design. This method can give an appropriate manner of parameter change in the subdivision iteration with fewer parameters and better shape control, such as building local revolving surfaces. The convergent property of order 2 subdivision surface is elegantly analyzed using computing techniques of matrix. This method is promised to be valuable in Computer Aided Design and computer graphics, due to the simplicity both in mathematical theory and practical implementation, the similarity to the B-spline curve and surface, G1 continuity, the affine invariability and local flexible control.
Difference Energy Based Blind Image Watermarking Resisting to Geometrical Distortions
Institute of Scientific and Technical Information of China (English)
YU Yanwei; LU Zhengding; LING Hefei
2006-01-01
In this paper a blind image watermarking that can resist to rotation, scaling and translation (RST) attacks is proposed. Based on the spread spectrum, the watermark is modulated before embedding. The log-polar mapped discrete fourier transform (LPM-DFT) magnitude of a disk, a part of the origin image, constitutes the RST-invariant domain, where the origin of the LPM is the center of the disk and the sampling rates of the LPM are constant. After the middle frequency band of LPM-DFT magnitude, namely the watermark-embedding domain, is grouped according to the watermark length, the watermark is embedded by adjusting the difference between the two sub-region energy in each group. To improve the imperceptibility, the watermark-embedding domain is shuffled before embedding and the watermark is not embedded directly into the watermark-embedding domain. In watermark detection procedure, neither the original image nor any knowledge about the distortions is required. Experimental results show that the proposed scheme is very robust against RST distortion and common image processing attacks.
A geometrical model for the catalogs of galaxies
Lorenzo, Zaninetti
2010-01-01
The 3D network originated by the faces of irregular Poissonian Voronoi Polyhedrons may represent the backbone on which the galaxies are originated. As a consequence the spatial appearance of the catalogs of galaxies can be reproduced. The selected catalogs to simulate are the 2dF Galaxy Redshift Survey and the Third Reference Catalog of Bright Galaxies. In order to explain the number of observed galaxies for a given flux/magnitude as a function of the redshift, the photometric properties of the galaxies should be carefully examined from both the astronomical and theoretical point of view. The statistics of the Voronoi normalized volume is modeled by two distributions and the Eridanus super-void is identified as the largest volume belonging to the Voronoi Polyhedron. The behavior of the correlation function for galaxies is simulated by adopting the framework of thick faces of Voronoi Polyhedrons on short scales, while adopting standard arguments on large scales.
Kou, Jisheng
2015-07-16
In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.
Mathematical calculation model for geometrical parameters of timber mesh design with orthogonal grid
Directory of Open Access Journals (Sweden)
Loktev Dmitriy Aleksandrovich
Full Text Available Mesh cover design, a multi-element design, which ensures the correct geometrical arrangement of the elements, is a very important task. The purpose of the given article is the development of a mathematical model for selecting the geometric parameters of wooden arches with mesh orthogonal grid with different input data. In this article three variants of design were observed. The main differences between them are in the relative position of longitudinal and transverse components. When performing static calculations of such designs in order to achieve their subsequent correct assembly, the following location conditions were observed: all the items must strictly match with each other without a gap and without overlap. However, these conditions must be met for any ratio of height to the arch span, the number of longitudinal members and the thickness of longitudinal members. Inverse problems also take place. In this case, the geometric calculation is not possible to vary the cross-section elements, and the stress-strain state of the cover is provided by varying the pitch of the transverse arches of the elements, on which the geometric calculation has no influence. All this determines the need for universal mathematical models describing any geometrical parameter of the designs needed for their geometrical calculation. The basic approach for the development of such models is the use of the known trigonometric formulas, giving a complete description of the desired geometry of the arch. Finally three transcendental equations were obtained, the solution algorithm of which using Newton’s method is presented in the MathCAD. The complexity of solving such equations using the proposed algorithm in the MathCAD is reduced to a minimum.
Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk
2016-05-01
In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.
Boyer, Frederic; Porez, Mathieu; Renda, Federico
This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.
Maximum Matchings of a Digraph Based on the Largest Geometric Multiplicity
Directory of Open Access Journals (Sweden)
Yunyun Yang
2016-01-01
Full Text Available Matching theory is one of the most forefront issues of graph theory. Based on the largest geometric multiplicity, we develop an efficient approach to identify maximum matchings in a digraph. For a given digraph, it has been proved that the number of maximum matched nodes has close relationship with the largest geometric multiplicity of the transpose of the adjacency matrix. Moreover, through fundamental column transformations, we can obtain the matched nodes and related matching edges. In particular, when a digraph contains a cycle factor, the largest geometric multiplicity is equal to one. In this case, the maximum matching is a perfect matching and each node in the digraph is a matched node. The method is validated by an example.
Institute of Scientific and Technical Information of China (English)
ZHAO Pei-dong; XIE Jian-ying
2008-01-01
A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant watermark is adaptively embedded in the discrete wavelet transform(DWT) domain based on the statistical characteristics of the wavelet coefficient block. The coordinate system of watermarked image is reestablished as a calibration system. Regardless of the host image rotated, scaled, or translated(RST), all the geometric attacks are eliminated while the watermarked image is transformed into the standard coordinate system. The proposed watermark detection is a blind detection. Experimental results demonstrate the proposed scheme is robust against common and geometric image processing attacks, particularly its robustness against joint geometric attacks.
Physical modeling of geometrically confined disordered protein assemblies
Ando, David
The mental health of soldiers is a growing concern as rates of depression and suicide have increased in soldiers with recently more deaths attributed to suicide than deaths due to combat in Afghanistan in 2012. Previous research has demonstrated the potential for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), vitamin D, physical activity, and physical fitness to improve and arachidonic acid (AA) to threaten depression/quality of life scores. This study examined whether blood fatty acid levels, vitamin D status and/or physical activity are associated with physical fitness scores, measures of mood, and measures of resiliency in active duty soldiers. 100 active duty males at Fort Hood, TX underwent a battery of psychometric tests, anthropometric, fitness tests, and donated fasting blood samples. Pearson bivariate correlation analysis revealed significant correlations among psychometric tests, anthropometric, physical performance, reported physical inactivity (sitting time), and fatty acid and vitamin D blood levels. Categorical analysis revealed significant difference in levels of fatty acids and vitamin D, anthropometric, physical performance, and psychometric measures. Based on these findings, a regression equation was developed to predict a depressed mood status as determined by the Patient Health Questionnaire-9. The equation accurately predicted 80% of our participants with a sensitivity of 76.9% and a specificity of 80.5%. Results indicate that lack of physical activity and fitness, high levels of AA and low levels of EPA, DHA, and vitamin D could increase the risk of depressed mood and that use of a regression equation may be helpful in identifying soldiers at higher risk for possible intervention. Future studies should evaluate the impact of exercise and diet interventions as a means of improving resiliency and reducing depressed mood in soldiers.
Institute of Scientific and Technical Information of China (English)
陈婵娟; 康宝生; 冯筠
2011-01-01
为了克服传统的照片图像拼接方法中利用特征线进行不同照片之间公共交界线定位不准确的缺点,提出一种“几何模型切分”的人脸纹理图像生成算法.通过对人脸几何模型进行切分,以切分后模型图片的轮廓作为边界线裁剪相应的人脸照片,实现不同照片之间交界线的准确对接,并采用柱面纹理映射方法将生成的纹理图像映射到特定人脸几何模型上.实验结果表明,采用提出的“几何模型切分”算法生成的人脸纹理图像进行纹理映射可以得到较好的真实感三维人脸模型,是一种生成人脸纹理图像的有效方法.%To avoid the shortcomings that it is imprecise to use feature line to locate the intersection of the adjacent photographic images in traditional texture image generation method,a new algorithm called "geometric model segmentation" is introduced. Through cutting the geometry model of human's head,the contours of the divided model photos are obtained to manicure the corresponding face photos as the boundary line.The manicured face photos can be used to generate texture picture without overlapping and gap between the adjacent pictures.The cylindrical projection is introduced to construct 3D specific face model through the texture mapping by using of the above texture picture.The experiments show that the new algorithm is an effective way to generate texture images in photo-realistic 3D human face modeling.
Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters
DEFF Research Database (Denmark)
Kofoed, Jens Peter
2000-01-01
The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregular...
On the geometrical interpretation of scale-invariant models of inflation
Karananas, Georgios K
2016-01-01
We study the geometrical properties of scale-invariant two-field models of inflation. In particular, we show that when the field-derivative space in the Einstein frame is maximally symmetric during inflation, the inflationary predictions can be universal and independent of the details of the theory.
Azcoiti, V; Follana, E; Giordano, M
2012-01-01
We study the two-dimensional Antiferromagnetic Ising Model with an imaginary magnetic field i\\theta at \\theta=\\pi. We use a new geometric algorithm which does not present a sign problem. This allows us to perform efficient numerical simulations of this system.
Optimal control for mathematical models of cancer therapies an application of geometric methods
Schättler, Heinz
2015-01-01
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft; Volk, Wolfram
2013-01-01
, the reaction speed may be insufficient compared to the production rate in an industrial application. We propose to design an iterative learning control (ILC) algorithm which can control and update the blank-holder force as well as the distribution of the blank-holder force based on limited geometric data from...
International Nuclear Information System (INIS)
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (cross-disciplinary physics and related areas of science and technology)
Tie, Zuo-Xiu; Qin, Meng; Zou, Da-Wei; Cao, Yi; Wang, Wei
2011-02-01
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive “smart" materials.
International Nuclear Information System (INIS)
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π-π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (authors)
Arici, Sevil; Aslan-Tutak, Fatma
2015-01-01
This research study examined the effect of origami-based geometry instruction on spatial visualization, geometry achievement, and geometric reasoning of tenth-grade students in Turkey. The sample ("n" = 184) was chosen from a tenth-grade population of a public high school in Turkey. It was a quasi-experimental pretest/posttest design. A…
A geometric model for cold water and liquid-liquid transitions
Guisoni, Nara; Henriques, Vera Bohomoletz
2001-01-01
Water is an associated liquid in which the main intermolecular interaction is the hydrogen bond (HB) which is limited to four per atom, independently of the number of neighbours. We have considered a hydrogen bond net superposed on Bernal's geometric model for liquids, which allows for different local environments for the liquid particles. In this study, a mean-field treatment of the two-dimensinal version of the model is discussed. Under pressure the model exhibits three phases of different ...
International Nuclear Information System (INIS)
We present a three-dimensional geometry model for tortuosity of streamlines in porous media with randomly placed cylindrical particles. The proposed model is expressed as functions of porosity and geometrical parameters with no empirical constant. This might be helpful for understanding the physical mechanism for tortuosity of streamlines in three-dimensional porous media. The model predictions are found to be in good agreement with the experimental data available
Xin, Q.; Gong, P.; Li, W.
2015-02-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sauerwein, Wolfgang; Brualla, Lorenzo
2015-01-01
Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TrueBeam linac. The upper part of the TrueBeam linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by {\\it ad hoc} thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6~MV and 10~MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from $3\\times3$ to $40\\times40$ cm$^2$. The same comparisons were done for dose profiles ob...
Geometric modeling for citation networks with linearly growing scientific paper increment
Liu, Qi; Dong, Engming; Li, Jianping
2016-01-01
For the case that the numbers of annual published papers in some citation networks grow linearly, a geometric model is proposed to predict some statistical features of those networks, in which the academic influence scopes of papers are denoted through specific geometric areas related to time and space. In the model, nodes (papers) are uniformly and randomly sprinkled onto a cluster of circles of the Minkowski space whose centers are on the time axis. Edges (citations) are linked according to an influence mechanism which indicates an existing paper will be cited by a new paper locating in its influence zone. Considering the citations between papers in different disciplines, an interdisciplinary citation mechanism is added into the model in which some papers chosen with a small probability will cite some existing papers randomly and uniformly. Different from most existing models which only study the scale-free tail of the in-degree distribution, this model characterize the overall in-degree distribution well. ...
A Geometric Computational Model for Calculation of Longwall Face Effect on Gate Roadways
Mohammadi, Hamid; Ebrahimi Farsangi, Mohammad Ali; Jalalifar, Hossein; Ahmadi, Ali Reza
2016-01-01
In this paper a geometric computational model (GCM) has been developed for calculating the effect of longwall face on the extension of excavation-damaged zone (EDZ) above the gate roadways (main and tail gates), considering the advance longwall mining method. In this model, the stability of gate roadways are investigated based on loading effects due to EDZ and caving zone (CZ) above the longwall face, which can extend the EDZ size. The structure of GCM depends on four important factors: (1) geomechanical properties of hanging wall, (2) dip and thickness of coal seam, (3) CZ characteristics, and (4) pillar width. The investigations demonstrated that the extension of EDZ is a function of pillar width. Considering the effect of pillar width, new mathematical relationships were presented to calculate the face influence coefficient and characteristics of extended EDZ. Furthermore, taking GCM into account, a computational algorithm for stability analysis of gate roadways was suggested. Validation was carried out through instrumentation and monitoring results of a longwall face at Parvade-2 coal mine in Tabas, Iran, demonstrating good agreement between the new model and measured results. Finally, a sensitivity analysis was carried out on the effect of pillar width, bearing capacity of support system and coal seam dip.
Shakir, Muhammad
2011-12-01
In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.
A geometric graph model for citation networks of exponentially growing scientific papers
Xie, Zheng; Ouyang, Zhenzheng; Liu, Qi; Li, Jianping
2016-08-01
In citation networks, the content relativity of papers is a precondition of engendering citations, which is hard to model by a topological graph. A geometric graph is proposed to predict some features of the citation networks with exponentially growing papers, which addresses the precondition by using coordinates of nodes to model the research contents of papers, and geometric distances between nodes to diversities of research contents between papers. Citations between modeled papers are drawn according to a geometric rule, which addresses the precondition as well as some other factors engendering citations, namely academic influences of papers, aging of those influences, and incomplete copying of references. Instead of cumulative advantage of degree, the model illustrates that the scale-free property of modeled networks arises from the inhomogeneous academic influences of modeled papers. The model can also reproduce some other statistical features of citation networks, e.g. in- and out-assortativities, which show the model provides a suitable tool to understand some aspects of citation networks by geometry.
A geometric graph model of the coevolution between citations and coauthorships in scientific papers
Xie, Zheng; Li, Jianping; Li, Miao; Yi, Dongyun
2016-01-01
Collaborations and citations within scientific research grow simultaneously and interact dynamically. Modelling the coevolution between them helps to study many phenomena that can be approached only through combining citation and coauthorship data. A geometric graph for the coevolution is proposed, the mechanism of which synthetically expresses the interactive impacts of authors and papers in a geometrical way. The model is validated against a data set of papers published in PNAS during 2000-2015. The validation shows the ability to reproduce a range of features observed with citation and coauthorship data combined and separately. Particulary, in the empirical distribution of citations per author there exist two limits, in which the distribution appears as a generalized Poisson and a power-law respectively. Our model successfully reproduces the shape of the distribution, and provides an explanation for how the shape emerges. The model also captures the empirically positive correlations between the numbers of ...
A geometrical construction of rational boundary states in linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Kennaway, Kristian D. E-mail: kennaway@usc.edu
2002-12-30
Starting from the geometrical construction of special Lagrangian submanifolds of a toric variety, we identify a certain subclass of A-type D-branes in the linear sigma model for a Calabi-Yau manifold and its mirror with the A- and B-type Recknagel-Schomerus boundary states of the Gepner model, by reproducing topological properties such as their labeling, intersection, and the relationships that exist in the homology lattice of the D-branes. In the non-linear sigma model phase these special Lagrangians reproduce an old construction of 3-cycles relevant for computing periods of the Calabi-Yau, and provide insight into other results in the literature on special Lagrangian submanifolds on compact Calabi-Yau manifolds. The geometrical construction of rational boundary states suggests several ways in which new Gepner model boundary states may be constructed.
Radmap: ''as-built'' cad models incorporating geometrical, radiological and material information
International Nuclear Information System (INIS)
EDF intends to achieve successful and cost-effective dismantling of its obsolete nuclear plants. To reach this goal, EDF is currently extending its ''as-built'' 3-D modelling system to also include the location and characteristics of gamma sources in the geometrical models of its nuclear installations. The resulting system (called RADMAP) is a complete CAD chain covering 3-D and gamma data acquisitions, CAD modelling and exploitation of the final model. Its aim is to describe completely the geometrical and radiological state of a particular nuclear environment. This paper presents an overall view of RADMAP. The technical and functional characteristics of each element of the chain are indicated and illustrated using real (EDF) environments/applications. (author)
Analysis of Data from a Series of Events by a Geometric Process Model
Institute of Scientific and Technical Information of China (English)
Yeh Lam; Li-xing Zhu; Jennifer S. K. Chan; Qun Liu
2004-01-01
Geometric process was first introduced by Lam[10,11]. A stochastic process {Xi, i = 1, 2,…} is called a geometric process (GP) if, for some a > 0, {ai-1Xi, i = 1, 2,…} forms a renewal process. In thispaper, the GP is used to analyze the data from a series of events. A nonparametric method is introduced forthe estimation of the three parameters in the GP. The limiting distributions of the three estimators are studied.Through the analysis of some real data sets, the GP model is compared with other three homogeneous andnonhomogeneous Poisson models. It seems that on average the GP model is the best model among these fourmodels in analyzing the data from a series of events.
Geometric optimization of a neutron detector based on a lithium glass–polymer composite
International Nuclear Information System (INIS)
We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from 252Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10−7 for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection
Geometric optimization of a neutron detector based on a lithium glass–polymer composite
Energy Technology Data Exchange (ETDEWEB)
Mayer, M., E-mail: mike.f.mayer@gmail.com [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Nattress, J. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2015-06-01
We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from {sup 252}Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10{sup −7} for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection.
Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries
Directory of Open Access Journals (Sweden)
Yan Li
2016-01-01
Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.
Institute of Scientific and Technical Information of China (English)
季超; 荆建平; 陈昌敏
2015-01-01
The geometric model describing the boundary conditions of tilting-pad bearings was studied. The coupling effect of the shaft axis, pad center and bearing center locations was analyzed to solve the Reynolds equation and analyze the film pressure distribution by means of finite difference method. Theoretical derivation indicates that the position of each pad is determined by preset parameters and the location of shaft center only. Numerical results show that the bearing capacity increases with the increase of the eccentricity ratio. A case study demonstrates that once the shaft center location is determined, the angle of displacement and the eccentricity ratio can be determined correspondingly, thus the dynamic equation of each pad can be solved. The feasibility law of the boundary conditions has been established, which provides a theoretical basis for the modeling of tilting pad bearings.%针对可倾瓦轴承的雷诺方程，基于瓦块几何模型获得各个瓦块的边界条件，利用轴心、各瓦块中心与轴承之间的耦合关系，采用有限差分法计算分析油膜压力的分布。理论推导表明，瓦块的位置仅由瓦块预置参数、轴心的位置决定；数值结果表明，轴承的承载力随偏心率增大呈增大趋势。结合具体算例看出，当轴颈位置确定时，可确定各瓦块实际偏位角和偏心率，进而可对各瓦块方程分别进行求解。建立一种可行的边界条件确定法则，为可倾瓦轴承的建模提供了理论依据。
Geometric-Phase approach to macroscopic polarization in lattice fermion models
Ortiz, Gerardo; Martin, Richard M.; Ordejón, Pablo
1996-03-01
The Geometric-Phase approach is a convenient way to calculate changes in the macroscopic polarization of an insulating system, based on the concept that the integrated current is connected to the phase of the wavefunction of interacting electrons. The method has provided a powerful mathematical scheme to study dielectric phenomena in correlated systems. We have applied these ideas to a variety of strongly correlated lattice fermion models in one and two dimensions; in particular, the 3-band Hubbard model in Cu-O planes in the parent compounds of High-Temperature superconductors. We analyze the information contained in the phase when a quantum transition takes place as one parameter of the hamiltonian is adiabatically changed. Previous results assume a correlated insulator in zero macroscopic electric field. In presence of such a singular perturbation there is no stable ground state. We present a way to overcome this problem, the main idea of which consists in constraining the manifold where the electrons move, i.e., the configuration space of the N identical particles.
Institute of Scientific and Technical Information of China (English)
林煜东; 和红杰; 陈帆; 尹忠科
2015-01-01
The profile of rigid ob jects has the geometrical characteristic and is insusceptible to illumination, texture or color. In this paper, a hierarchical detection algorithm for ridge objects based on geometric sparse representation of profile is presented. In the framework of part-based model (PBM), the object profile is automatically divided into geometrical parts by the sparse representation using the matching pursuit algorithm. To describe the spatial relationship of the geometrical parts, an ordered chain-like structure is constructed according to the order of the matching degree of the parts and the ob ject profile. With the ordered chain-like structure, the detection range is gradually shrunk at each hierarchy. The final salient map of the object is the weighted summation of the parts0 salient maps, and the weights are defined as the matching degrees. The simulation on the PASCAL datasets shows that the proposed method outperforms the existing models in rigid objects detection, and saves 60%to 90%detection time compared to the state-of-art methods.%刚性目标轮廓具有明显几何特性且不易受光照、纹理和颜色等因素影响。结合上述特性和图像稀疏表示原理,提出一种适用于刚性目标的分级检测算法。在基于部件模型(Part-based model, PBM)的框架下,采用匹配追踪算法将目标轮廓自适应地稀疏表示为几何部件的组合,根据部件与目标轮廓的匹配度,构建描述部件空间关系的有序链式结构。利用该链式结构的有序特性逐级缩小待检测范围,以匹配度为权值对各级部件显著图进行加权融合生成目标显著图。 PASCAL 图像库上的检测结果表明,该检测方法对具有显著轮廓特征的刚性目标有较好的检测结果,检测时耗较现有算法减少约60%∼90%。
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
Rodríguez Niedenführ, Miquel; Sempau Roma, Josep; Fogliata, Antonella; Cozzi, L.; Sauerwein, W.; Brualla, L
2015-01-01
Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry develop...
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2004-01-01
This paper presents a model of an active sensor array which can determine the spatial position of a passive object by illuminating the object via a small set of emitters and measure the intensity of the reflection by means of a small set of receivers. All emitters and receivers are located...... in the same two-dimensional plane. The model is based on geometrical observations and provides a mapping of the measured reflected intensities to spatial position. The mapping is derived from intersection sets of prolate spheroids with emitters and receivers in the focal points, and it is shown...
Directory of Open Access Journals (Sweden)
Daniela A Schmieder
Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Holcomb-Wygle, D L; Schmitz, K A; Lindemann, C B
1999-11-01
The central tenet of the Geometric Clutch hypothesis of flagellar beating is that the internal force transverse to the outer doublets (t-force) mediates the initiation and termination of episodes of dynein engagement. Therefore, if the development of an adequate t-force is prevented, then the dynein-switching necessary to complete a cycle of beating should fail. The dominant component of the t-force is the product of the longitudinal force on each outer doublet multiplied by the local curvature of the flagellum. In the present study, two separate strategies, blocking and clipping, were employed to limit the development of the t-force in Triton X-100 extracted bull sperm models. The blocking strategy used a bent glass microprobe to restrict the flagellum during a beat, preventing the development of curvature in the basal portion of the flagellum. The clipping strategy was designed to shorten the flagellum by clipping off distal segments of the flagellum with a glass microprobe. This limits the number of dyneins that can contribute to bending and consequently reduces the longitudinal force on the doublets. The blocking and clipping strategies both produced an arrest of the beat cycle consistent with predictions based on the Geometric Clutch hypothesis. Direct comparison of experimentally produced arrest behavior to the behavior of the Geometric Clutch computer model of a bull sperm yielded similar arrest patterns. The computer model duplicated the observed behavior using reasonable values for dynein force and flagellar stiffness. The experimental data derived from both blocking and clipping experiments are fully compatible with the Geometric Clutch hypothesis. PMID:10542366
Fuzzy Decision-Making Approach in Geometric Programming for a Single Item EOQ Model
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2015-06-01
Full Text Available Background and methods: Fuzzy decision-making approach is allowed in geometric programming for a single item EOQ model with dynamic ordering cost and demand-dependent unit cost. The setup cost varies with the quantity produced/purchased and the modification of objective function with storage area in the presence of imprecisely estimated parameters are investigated. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered, and demand per unit compares both fuzzy geometric programming technique and other models for linear membership functions. Results and conclusions: Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and the results discu ssed. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values.
Partial SUSY Breaking for Asymmetric Gepner Models and Non-geometric Flux Vacua
Blumenhagen, Ralph; Plauschinn, Erik
2016-01-01
Using the method of simple current extensions, asymmetric Gepner models of Type IIB with N=1 space-time supersymmetry are constructed. The combinatorics of the massless vector fields suggests that these classical Minkowski string vacua provide fully backreacted solutions corresponding to N=1 minima of N=2 gauged supergravity. The latter contain abelian gaugings along the axionic isometries in the hypermultiplet moduli space, and can be considered as Type IIB flux compactifications on Calabi-Yau manifolds equipped with (non-)geometric fluxes. For a particular class of asymmetric Gepner models, we are able to explicitly specify the underlying CICYs and to check necessary conditions for a GSUGRA interpretation. If this conjecture is correct, there exists a large class of exactly solvable non-geometric flux compactifications on CY threefolds.
A note on geometric method-based procedures to calculate the Hurst exponent
Trinidad Segovia, J. E.; Fernández-Martínez, M.; Sánchez-Granero, M. A.
2012-03-01
Geometric method-based procedures, which we will call GM algorithms hereafter, were introduced in M.A. Sánchez-Granero, J.E. Trinidad Segovia, J. García Pérez, Some comments on Hurst exponent and the long memory processes on capital markets, Phys. A 387 (2008) 5543-5551, to calculate the Hurst exponent of a time series. The authors proved that GM algorithms, based on a geometrical approach, are more accurate than classical algorithms, especially with short length time series. The main contribution of this paper is to provide a mathematical background for the validity of these two algorithms to calculate the Hurst exponent H of random processes with stationary and self-affine increments. In particular, we show that these procedures are valid not only for exploring long memory in classical processes such as (fractional) Brownian motions, but also for estimating the Hurst exponent of (fractional) Lévy stable motions.
Interdisciplinary development of smart systems with functional and geometrical modeling techniques
Kuemmel, Martin A.; Henke, Andreas; Wallaschek, Joerg
1999-06-01
The functionality of modern products is increased by the distinct interaction of mechanics, electronics, control engineering and computer science. Simultaneously the life cycles of such smart and often called mechatronic systems are becoming shorter. Thus it becomes more difficult to minimize development time and cost. The development process can be improved significantly by using interdisciplinary development methods and tools. However, all existing design strategies of the participating disciplines are ineligible. Either the strategies are domain specific or they are insufficient for the development of mechatronic systems. In addition, software tools, involved persons and organization structures are often not regarded. This paper suggests a new strategy for the development of mechatronic systems that tempts to meet five major challenges: simultaneous engineering, integration of shape and function, virtual prototyping, experimental validation and computer aided engineering. It considers the development process from the product idea to the first functioning prototype and combines functional and geometrical modeling techniques. The strategy bases on established strategies and our experiences in the development of wire bonding machines, which are used in semiconductor manufacturing. The development of an exemplary subsystem is resumed.
Directory of Open Access Journals (Sweden)
S. Merkt
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Selective laser melting (SLM is becoming an economically viable choice for manufacturing complex serial parts. This paper focuses on a geometric complexity analysis as part of the integrative technology evaluation model (ITEM presented here. In contrast to conventional evaluation methodologies, the ITEM considers interactions between product and process innovations generated by SLM. The evaluation of manufacturing processes that compete with SLM is the main goal of ITEM. The paper includes a complexity analysis of a test part from Festo AG. The paper closes with a discussion of how the expanded design freedom of SLM can be used to improve company operations, and how the complexity analysis presented here can be seen as a starting point for feature-based complexity analysis..
AFRIKAANSE OPSOMMING: Selektiewe lasersmelting word geleidelik ’n gangbare ekonomiese keuse vir die vervaar-diging van opeenvolgende komplekse onderdele. Die navorsing is toegespits op die ontleding van meetkundige kompleksiteit as ’n gedeelte van ’n integrerende tegnologiese evalueringsmodel. Gemeet teen konvensionele evalueringsmodelle behandel die genoemde metode interaksies tussen produkte- en prosesinnovasies wat gegenereer word. Die navorsing behandel ’n kompleksiteitsontleding van ’n toetsonderdeel van die firma FESTO AG. Die resultaat toon hoe kompleksiteits-analise gebruik kan word as die vertrekpunt vir eienskapsgebaseerde analise.
Parametric geometric model and shape optimization of an underwater glider with blended-wing-body
Directory of Open Access Journals (Sweden)
Sun Chunya
2015-11-01
Full Text Available Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB, is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO, is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.
Non-crimp 3D woven composites unit cell: from geometric modelling to damage simulation
Bedogni, Enrico
2013-01-01
In the last twenty years, the research on composite materials has increased and many progresses have been made. However, there are still unresolved issues concerning the geometric modelling of a material at the meso-level (i.e. on a unit cell) and its damage simulation. In particular, the complexity of the internal geometry of some composite materials, such as 3D textiles, yields to new challenges for the research community. A correct definition of the internal structure in all the important ...
S. Merkt; Hinke, C.; H. Schleifenbaum; H. Voswinckel
2012-01-01
ENGLISH ABSTRACT: Selective laser melting (SLM) is becoming an economically viable choice for manufacturing complex serial parts. This paper focuses on a geometric complexity analysis as part of the integrative technology evaluation model (ITEM) presented here. In contrast to conventional evaluation methodologies, the ITEM considers interactions between product and process innovations generated by SLM. The evaluation of manufacturing processes that compete with SLM is the main goal o...
Studies on a Double Poisson-Geometric Insurance Risk Model with Interference
Directory of Open Access Journals (Sweden)
Yujuan Huang
2013-01-01
Full Text Available This paper mainly studies a generalized double Poisson-Geometric insurance risk model. By martingale and stopping time approach, we obtain adjustment coefficient equation, the Lundberg inequality, and the formula for the ruin probability. Also the Laplace transformation of the time when the surplus reaches a given level for the first time is discussed, and the expectation and its variance are obtained. Finally, we give the numerical examples.
Directory of Open Access Journals (Sweden)
MENG Weican
2015-12-01
Full Text Available Push-broom cameras using TDI CCD arranged in an alternating pattern are widely carried by typical high-resolution optical satellites in order to obtain high space resolution and enough strip width. For this kind of cameras, several TDI CCD are arranged in an alternating pattern in two lines on the focal plane and push-broom imaging mode is always adopted. Imaging principle and characteristic of this kind of camera is introduced. Exterior parameters of TDI CCD are modeled together based on their same values in any instant of time and an integrated geometric model is finally established. Error compensation methods are designed to remove exterior error and interior error based on this integrated geometric model. A series of tests are designed to verify models and methods proposed in this paper using original image of TH-1 Satellite HR Camera whose detectors are divided into 8 modules arranged in an alternating pattern. As the results, the imaging geometry of this kind of camera can be rigorously described by this integral geometrical model. The positioning accuracy can be obviously improved by our exterior error compensation method, however, different residual error would be remained for different TDI CCD. The positioning accuracy will not be obviously improved while systematic errors of different TDI CCD can be effectively removed by the interior error compensation method. 2 m positioning accuracy in X, Y and Z directions can be achieved and different systematic errors can be removed when both exterior and interior error were compensated. The same accuracy can be achieved in the other scenes when the calculated inner distortion parameters are adopted.
Image Retrieval based on Integration between Color and Geometric Moment Features
International Nuclear Information System (INIS)
Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.
Amorphous forming ranges of Al-Fe-Nd-Zr system predicted by Miedema and geometrical models
Institute of Scientific and Technical Information of China (English)
张雷; 陈红梅; 欧阳义芳; 杜勇
2014-01-01
A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary systems. The amorphous forming composition ranges were analyzed based on different criteria such asΔGam-ss and PHSS (PHSS=ΔHchem (ΔSC/R)(ΔSσ/R)) for Al-Fe-Nd system. The predicted amorphous forming range was in good agreement with the experimental results. The results showed that the criterion ofΔGam-ss was more accurate, and agreed well with the experiment results. The Gibbs free energy differenceΔGam-ss and pa-rameter PHSS were then used to predict the amorphous forming composition range for the rest of the constitutive ternary systems of Al-Fe-Nd-Zr. In addition, the amorphous forming composition ranges of the (Al-Fe-Zr)100-xNdx (x=50, 60, 70) systems were predicted byΔGam-ss and the modified parameter PHSS. The Gibbs free energy of Al10(Fe1-xZrx)30Nd60 were also calculated. The GFA parameter PHSS indicated that the composition with the highest GFA was Al33.5Fe13.5Zr3Nd50 for the (Al-Fe-Zr)50Nd50 system, Al28.8Fe10Zr1.2Nd60 for the (Al-Fe-Zr)40Nd60 system and Al22.8Fe6.9Zr0.3Nd70 for the (Al-Fe-Zr)30Nd70 system, and the results suggested that those alloys with high content of Al had higher GFA. The appropriate content of neodymium and zirconium resulted in the lower value of PHSS and increased the GFA obviously.
Turbulence Dynamics based on Lagrange Mechanics and Geometrical Field Theory of Deformation
Jianhua, Xiao
2009-01-01
The turbulence field is stacked on the laminar flow. In this research, the laminar flow is described as a macro deformation which forms an instant curvature space. On such a curvature space, the turbulence is viewed as a micro deformation. So, the fluid flow is described by the geometrical field theory of finite deformation. Based on the Lagrange mechanics and the deformation energy concept, using the Least Action Principle, the Euler-Lagrange motion equations are obtained. According to A E Green formulation, the stress concept is introduced by deformation tensor. The fluid motion is described by the multiplication of a macro deformation tensor and a micro deformation tensor. By this way, the geometrical field of fluid motion is well constructed. Then, the spatial derivative of deformation energy is expressed by the gradient of deformation tensors. By this way, the deformation energy related items in the Euler-Lagrange motion equations are expressed by the stress tensor and deformation tensor. The obtained Eu...
Directory of Open Access Journals (Sweden)
Charistos Leonidas
2014-06-01
Full Text Available Honey bees collected from 32 different localities in Greece were studied based on the geometric morphometrics approach using the coordinates of 19 landmarks located at wing vein intersections. Procrustes analysis, principal component analysis, and Canonical variate analysis (CVA detected population variability among the studied samples. According to the Principal component analysis (PCA of pooled data from each locality, the most differentiated populations were the populations from the Aegean island localities Astypalaia, Chios, and Kythira. However, the populations with the most distant according to the canonical variate analysis performed on all measurements were the populations from Heraklion and Chania (both from Crete island. These results can be used as a starting point for the use of geometric morphometrics in the discrimination of honey bee populations in Greece and the establishment of conservation areas for local honey bee populations.
CERN. Geneva
2012-01-01
We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modelling in Monte Carlo detector simulations. We plan to replace and unify current geometrical primitive classes in the CERN software projects Geant4 and ROOT with this library. Each solid is represented by a C++ class with methods suited for measuring distances of particles from the surface of a solid and for determination as to whether the particles are located inside, outside or on the surface of the solid. We use numerical tolerance for determining whether the particles are located on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for validation of the shape codes. These include also special performance and numerical value comparison tests for help with analysis of possible candidates of class methods as well as to verify that our new implementation proposals were designed and implemented properly. Currently, bridge classes are u...
Institute of Scientific and Technical Information of China (English)
韦博成; 唐年胜; 王学仁
2000-01-01
A modified Bates and Watts geometric framework is proposed for quasi-likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi-likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi-likelihood nonlinear models.
Lu, Hongyu
2012-01-01
The image force in active contours plays a key role for shape recovery in medical image analysis. The image force constructed from the heat diffusion model can not indicate segment the image accurately through it exhibits a uniform distribution of force field around the object. The features of the image force based on electrostatic field model are opposite. Firstly, this study introduces a fusion scheme of these two image forces, which capable of extracting the object boundary with high precision and fast speed. Till now, there is no satisfied analysis of the relationship between Snakes and Geometric Active Contour. The second contribution of this study indicates that the GAC model can be deduced directly from Snakes models. It proves that the each term in GAC and Snakes is correspondent and has the same function. These two models are only expressed using different mathematics.
DEFF Research Database (Denmark)
Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard;
2012-01-01
Base station antenna downtilt is one of the most important parameters for optimizing a cellular network with tight frequency reuse. By downtilting, inter-site interference is reduced, which leads to an improved performance of the network. In this study we show that a simple geometrical...
Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool
Directory of Open Access Journals (Sweden)
Klyachin Vladimir Aleksandrovich
2015-10-01
Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.
Geometric constraint solving with geometric transformation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper proposes two algorithms for solving geometric constraint systems. The first algorithm is for constrained systems without loops and has linear complexity. The second algorithm can solve constraint systems with loops. The latter algorithm is of quadratic complexity and is complete for constraint problems about simple polygons. The key to it is to combine the idea of graph based methods for geometric constraint solving and geometric transformations coming from rule-based methods.
A method for geometric modelling of magnetic anomalies: Two dimensional bodies
Digital Repository Service at National Institute of Oceanography (India)
Rao, T.C.S.
be flipped so that the X co-ordinates of the comers 1 and 2 increase on the positive X axis as shown in Fig. 2C. Having done this, the anomalies for the vertical dyke with GEOMETRIC MODELLING OF MAGNETIC AN0!\\1AUES 17 horizontal surface could be calculated... to place the body corners in proper dircction as shown in Fig. 3C, the model in Fig. 3B has to be flipped. This involves change in sign of the c I I I I r I r I B I 0= d-90° 2 1~ \\'-:---- 2 A Fig. 3 A) Step with sloping surface. (B) Verticaldyk...
Comparative study of the geometric quantum discord in the transverse Ising model
International Nuclear Information System (INIS)
We investigate geometric quantum discords (GQDs) in the two- and three-spin transverse Ising model at both zero and finite temperature. We showed that GQDs measured by the trace distance and the Hellinger distance can be enhanced greatly by the applied transverse magnetic field. For the three-spin isotropic Ising model, the ferromagnetic interaction is more advantageous than that of the antiferromagnetic interaction on creating GQDs. Moreover, the two GQDs can be further increased by the nonuniform Ising interaction between neighbors. In particular, the adjustable antiferromagnetic Ising interaction between two spins is advantageous for enhancing GQDs between them, while the opposite case happens for the other pairs of spins
Institute of Scientific and Technical Information of China (English)
韩成顺; 尚元江; 王景贺; 唐余勇; 董申
2004-01-01
This paper presents a new approach of designing the revolving cutter with constant pitch, and pro-vides geometric models. The corresponding models in the non-numerically controlled manufacturing, such asdesigning the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of thecutting edge, are introduced. The examples are given to testify that the design approach is simple and readilyrealized in machining the revolving cutter with constant pitch. The effective design and manufacture method pro-vides general references for non-NC machining revolving cutter with constant pitch and reducing the equipmentsinput.
International Nuclear Information System (INIS)
The regularities of austenite grain structure transformation due to primary recrystallization of hot worked steels of various chemical composition (carbon, low alloy and high alloy steels) are studied. A geometrical model of refinement of recrystallized austenite grain is developed to predict grain structure parameters in rolled products at any reduction ratio. The model is for use in quality control automatic systems to realize needed structure, texture, mechanical and processing properties in a hot rolled steel with regard to its chemical composition and structure formation features
Comparative study of the geometric quantum discord in the transverse Ising model
Energy Technology Data Exchange (ETDEWEB)
Gong, Jia-Min, E-mail: jmgong@yeah.net [School of Electronic Engineering, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China); Wang, Quan [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China); Zhang, Ya-Ting [School of Electronic Engineering, Xi' an University of Posts and Telecommunications, Xi' an 710121 (China)
2015-10-15
We investigate geometric quantum discords (GQDs) in the two- and three-spin transverse Ising model at both zero and finite temperature. We showed that GQDs measured by the trace distance and the Hellinger distance can be enhanced greatly by the applied transverse magnetic field. For the three-spin isotropic Ising model, the ferromagnetic interaction is more advantageous than that of the antiferromagnetic interaction on creating GQDs. Moreover, the two GQDs can be further increased by the nonuniform Ising interaction between neighbors. In particular, the adjustable antiferromagnetic Ising interaction between two spins is advantageous for enhancing GQDs between them, while the opposite case happens for the other pairs of spins.
Li, Xiaowen; Strahler, Alan H.; Woodcock, Curtis E.
1995-01-01
A new model for the bidirectional reflectance of a vegetation cover combines principles of geometric optics and radiative transfer. It relies on gap probabilities and path length distributions to model the penetration of irradiance from a parallel source and the single and multiple scattering of that irradiance in the direction of an observer. The model applies to vegetation covers of discrete plant crowns that are randomly centered both on the plane and within a layer of variable thickness above it. Crowns assume a spheroidal shape with arbitrary height to width ratio. Geometric optics easily models the irradiance that penetrates the vegetation cover directly, is scattered by the soil, and exits without further scattering by the vegetation. Within a plant crown, the probability of scattering is a negative exponential function of path length. Within-crown scattering provides the source for singly-scattered radiation, which exits with probabilities proportional to further path-length distributions in the direction of exitance (including the hotspot effect). Single scattering provides the source for double scattering, and then higher order pairs of scattering are solved successively by a convolution function. As an early exercise in validation, the model is applied to an open jack pine canopy and ground-level irradiance is predicted with good accuracy.
Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech
2016-09-01
We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. PMID:27358193
Liu, Jun Jie; Dolev, Maya Bar; Celik, Yeliz; Wettlaufer, J S; Braslavsky, Ido
2012-01-01
The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.
Optimising and extending the geometrical modeller of a physics simulation framework
Urban, P
1998-01-01
The design of highly complex particle detectors used in High Energy Physics involves both CAD systems and physics simulation packages like Geant4. Geant4 is able to exchange detector geometries with CAD systems, conforming to the Standard for the Exchange of Product Model Data (STEP); Boundary Representation (B-Rep) models are transferred. Particle tracking is performed in these models, requiring efficient and accurate intersection computations from the geometrical modeller. The results of extending and optimising the modeller of Geant4 form the contents of this thesis. Swept surfaces: surfaces of linear extrusion and surfaces of revolution have been implemented. The problem of classifying points on surfaces bounded by curves as being inside or outside has been solved. These tasks necessitated the extension and optimisation of code related to curves and lead to a re-design of this code. Emphasis was put on efficiency and on dealing with numerical errors. The results will be integrated into the upcoming beta t...
The Beta-Geometric Model Applied to Fecundability in a Sample of Married Women
Adekanmbi, D. B.; Bamiduro, T. A.
2006-10-01
The time required to achieve pregnancy among married couples termed fecundability has been proposed to follow a beta-geometric distribution. The accuracy of the method used in estimating the parameters of the model has an implication on the goodness of fit of the model. In this study, the parameters of the model are estimated using the Method of Moments and Newton-Raphson estimation procedure. The goodness of fit of the model was considered, using estimates from the two methods of estimation, as well as the asymptotic relative efficiency of the estimates. A noticeable improvement in the fit of the model to the data on time to conception was observed, when the parameters are estimated by Newton-Raphson procedure, and thereby estimating reasonable expectations of fecundability for married female population in the country.
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB. PMID:24690870
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.
2013-12-01
In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations
Bennequin, Daniel
2016-01-01
We propose a geometric explanation of the standard model of Glashow, Weinberg and Salam for the known elementary particles. Our model is a generic Quantum Field Theory in dimension four, obtained by developing along a Lorentz sub-manifold the lagrangian of Einstein and Dirac in dimension twelve. The main mechanism which gives birth to the standard model is a certain gauge fixing of triality, which permits to identify the multiplicity of fermions, as seen from the four dimensional world, with the eight unseen dimensions of the generating universe. In this way we get the known tables of particles, explaining the series of fermions and the gauge bosons. We suggest that the Higgs field dynamics could appear through a bosonization of the right handed neutrino and correspond to a displacement in the unseen dimensions. We also propose hypotheses for dark matter, and perhaps dark energy. Then we suggest predictions to go beyond the standard model.
A new representation of orientable 2-manifold polygonal surfaces for geometric modelling
Institute of Scientific and Technical Information of China (English)
LIU Yong-jin; TANG Kai; JOENJA Ajay
2006-01-01
Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modern point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.
Directory of Open Access Journals (Sweden)
Pooyan Vahidi Pashsaki
2016-06-01
Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.
Naeimi, M.; Alimoradi, Z.; Razi, M.; Monajjem, S.
2014-01-01
The present article involves in evaluation and engineering judgment of various geometric configurations for highway interchanges by considering substantial parameters over the discretion process. The geometric, economical and architectural criteria as the fundamental indicators are divided into rela
Quasi-Topological Gauged Sigma Models, The Geometric Langlands Program, And Knots
Tan, Meng-Chwan
2011-01-01
We construct and study a closed, two-dimensional, quasi-topological (0,2) gauged sigma model with target space a smooth G-manifold, where G is any compact and connected Lie group. When the target space is a flag manifold of simple G, and the gauge group is a Cartan subgroup thereof, the perturbative model describes, purely physically, the recently formulated mathematical theory of "Twisted Chiral Differential Operators". This paves the way, via a generalized T-duality, for a natural physical interpretation of the geometric Langlands correspondence for simply-connected, simple, complex Lie groups. In particular, the Hecke eigensheaves and Hecke operators can be described in terms of the correlation functions of certain operators that underlie the infinite-dimensional chiral algebra of the flag manifold model. Nevertheless, nonperturbative worldsheet twisted-instantons can, in some situations, trivialize the chiral algebra completely. This leads to a spontaneous breaking of supersymmetry whilst implying certain...
Three-Dimensional Geometrical Modelling of Wild Boar Head by Reverse Engineering Technology
Institute of Scientific and Technical Information of China (English)
Liang Xu; Min-xu Lin; Jian-qiao Li; Zhao-liang Wang; B. Chirende
2008-01-01
In this paper, a wild boar head was taken as the bionic research object for the development of new ridgers, a kind of plough."The reverse engineering technology was adopted to obtain the surface geometrical information of the head. Several three-dimensional (3D) point clouds of the head were captured first using a non-touch laser scanner, and an integrated point cloud was generated by aligning these point clouds using UG/Imageware. Then, the digital surface model of the head was rebuilt by means of CATIA. The characteristic curves of the surface model were analyzed. The results show that the average error between the rebuilt surface and the point cloud is -0.431 mm. The max curvature of the ridge on the neb of the head is 0.187 mm-1, and the max and rain Gauss curvatures on the surface are 0.008 mm-2 and -0.002 mm-2. These geometrical information are the essential parameters for biomimetics study of the ridger.
Institute of Scientific and Technical Information of China (English)
Abdul Wahid Khan; Chen Wuyi
2010-01-01
A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine.This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process.Although its topology is RPPPR (P:prismatic;R:rotary),its design is quite distinct from the competitive machine tools.As error quantification is the only way to investigate,maintain and improve its accuracy,calibration is recommended for its performance assessment and acceptance testing.Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors ofworkpiece and cutting tool.39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume.Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.
Growing Random Geometric Graph Models of Super-linear Scaling Law
Zhang, Jiang
2012-01-01
Recent researches on complex systems highlighted the so-called super-linear growth phenomenon. As the system size $P$ measured as population in cities or active users in online communities increases, the total activities $X$ measured as GDP or number of new patents, crimes in cities generated by these people also increases but in a faster rate. This accelerating growth phenomenon can be well described by a super-linear power law $X \\propto P^{\\gamma}$($\\gamma>1$). However, the explanation on this phenomenon is still lack. In this paper, we propose a modeling framework called growing random geometric models to explain the super-linear relationship. A growing network is constructed on an abstract geometric space. The new coming node can only survive if it just locates on an appropriate place in the space where other nodes exist, then new edges are connected with the adjacent nodes whose number is determined by the density of existing nodes. Thus the total number of edges can grow with the number of nodes in a f...
Augmentation of Explicit Spatial Configurations by Knowledge-Based Inference on Geometric Fields
Directory of Open Access Journals (Sweden)
Dan Tappan
2009-04-01
Full Text Available A spatial configuration of a rudimentary, static, realworld scene with known objects (animals and properties (positions and orientations contains a wealth of syntactic and semantic spatial information that can contribute to a computational understanding far beyond what its quantitative details alone convey. This work presents an approach that (1 quantitatively represents what a configuration explicitly states, (2 integrates this information with implicit, commonsense background knowledge of its objects and properties, (3 infers additional, contextually appropriate, commonsense spatial information from and about their interrelationships, and (4 augments the original representation with this combined information. A semantic network represents explicit, quantitative information in a configuration. An inheritance-based knowledge base of relevant concepts supplies implicit, qualitative background knowledge to support semantic interpretation. Together, these structures provide a simple, nondeductive, constraint-based, geometric logical formalism to infer substantial implicit knowledge for intrinsic and deictic frames of spatial reference.
Geometric Corroboration of the Earliest Lensed Galaxy at z~10.8 from Robust Free-Form Modelling
Chan, Brian M Y; Lim, Jeremy; Diego, Jose M; Zitrin, Adi; Coe, Dan; Ford, Holland C
2016-01-01
A multiply-lensed galaxy, MACS0647-JD, with a probable photometric redshift of $z\\simeq 10.7^{+0.6}_{-0.4}$ is claimed to constitute one of the very earliest known galaxies, formed well before reionization was completed. However, spectral evidence that MACS0647-JD lies at high redshift has proven infeasible and so here we seek an independent lensing based "geometric redshift" derived from the angles between the three lensed images of MACS0647-JD, using our free-form mass model (WSLAP+) for the lensing cluster MACSJ0647.7+7015 (at $z=0.591$). Our lens model uses the 9 sets of multiple images, including those of MACS0647-JD, identified by the CLASH survey towards this cluster. We convincingly exclude the low redshift regime of $z<3$, for which convoluted critical curves are generated by our method, as the solution bends to accommodate the wide angles of MACS0647-JD for this low redshift. Instead, a best fit to all sets of lensed galaxy positions and redshifts provides a geometric redshift of $z\\simeq 10.8^{+...
Sampling-based exploration of folded state of a protein under kinematic and geometric constraints
Yao, Peggy
2011-10-04
Flexibility is critical for a folded protein to bind to other molecules (ligands) and achieve its functions. The conformational selection theory suggests that a folded protein deforms continuously and its ligand selects the most favorable conformations to bind to. Therefore, one of the best options to study protein-ligand binding is to sample conformations broadly distributed over the protein-folded state. This article presents a new sampler, called kino-geometric sampler (KGS). This sampler encodes dominant energy terms implicitly by simple kinematic and geometric constraints. Two key technical contributions of KGS are (1) a robotics-inspired Jacobian-based method to simultaneously deform a large number of interdependent kinematic cycles without any significant break-up of the closure constraints, and (2) a diffusive strategy to generate conformation distributions that diffuse quickly throughout the protein folded state. Experiments on four very different test proteins demonstrate that KGS can efficiently compute distributions containing conformations close to target (e.g., functional) conformations. These targets are not given to KGS, hence are not used to bias the sampling process. In particular, for a lysine-binding protein, KGS was able to sample conformations in both the intermediate and functional states without the ligand, while previous work using molecular dynamics simulation had required the ligand to be taken into account in the potential function. Overall, KGS demonstrates that kino-geometric constraints characterize the folded subset of a protein conformation space and that this subset is small enough to be approximated by a relatively small distribution of conformations. © 2011 Wiley Periodicals, Inc.
Institute of Scientific and Technical Information of China (English)
LI Haifeng; HU Zunhe; LIU Jingtai
2016-01-01
To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.
Papaioannou, G.; Loukas, Athanasios
2010-05-01
Floodplain modeling is a recently new and applied method in river engineering discipline and is essential for prediction of flood hazards. The issue of flood inundation of upland environments with topographically complex floodplains is an understudied subject. In most areas of the U.S.A., the use of topographic information derived from Light Detection and Ranging (LIDAR) has improved the quality of river flood inundation predictions. However, such high quality topographical data are not available in most countries and the necessary information is obtained by topographical survey and/or topographical maps. Furthermore, the optimum dimensionality of hydraulic models, cross-section configuration in one-dimensional (1D) models, mesh resolution in two-dimensional models (2D) and modeling approach is not well studied or documented. All these factors introduce significant uncertainty in the evaluation of the floodplain zoning. This study addresses some of these issues by comparing flood inundation maps developed using different topography, geometric description and modeling approach. The methodology involves use of topographic datasets with different horizontal resolutions, vertical accuracies and bathymetry details. Each topographic dataset is used to create a flood inundation map for different cross-section configurations using 1D (HEC-RAS) model, and different mesh resolutions using 2D models for steady state and unsteady state conditions. Comparison of resulting maps indicates the uncertainty introduced in floodplain modeling by the horizontal resolution and vertical accuracy of topographic data and the different modeling approaches.
Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model
Rangani Jahromi, H.; Amniat-Talab, M.
2015-10-01
After presenting an exact analytical solution of time-dependent Schrödinger equation, we study the dynamics of entanglement for a two-qubit Ising model. One of the spin qubits is driven by a static magnetic field applied in the direction of the Ising interaction, while the other is coupled with a rotating magnetic field. We also investigate how the entanglement can be controlled by changing the external parameters. Because of the important role of maximally entangled Bell states in quantum communication, we focus on the generalized Bell states as the initial states of the system. It is found that the entanglement evolution is independent of the initial Bell states. Moreover, we can preserve the initial maximal entanglement by adjusting the angular frequency of the rotating field or controlling the exchange coupling between spin qubits. Besides, our calculation shows that the entanglement dynamics is unaffected by the static magnetic field imposed in the direction of the Ising interaction. This is an interesting result, because, as we shall show below, this driving field can be used to control and manipulate the noncyclic geometric phase without affecting the system entanglement. Besides, the nonadiabatic and noncyclic geometric phase for evolved states of the present system are calculated and described in detail. In order to identify the unusable states for quantum communication, completely deviated from the initial maximally entangled states, we also study the fidelity between the initial Bell state and the evolved state of the system. Interestingly, we find that these unusable states can be detected by geometric quantum computation.
Optimizing the geometrical accuracy of curvilinear meshes
Toulorge, Thomas; Remacle, Jean-François
2015-01-01
This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a part...
Fusion of inertial and visual: a geometrical observer-based approach
International Nuclear Information System (INIS)
The problem of combination between inertial sensors and CCD cameras is of paramount importance in various applications in robotics and autonomous navigation. In this paper we develop a totally geometric model for analysis of this problem, independently from a camera model and from the structure of the scene (landmarks etc.). This formulation can be used for data fusion in several inertial navigation problems. The estimation is then decoupled from the structure of the scene. We use it in the particular case of the estimation of the gyroscopes bias and we build a nonlinear observer which is easy to compute, provides an estimation of the biais, filters the image, and is by construction very robust to noise.
Ritwik Mondal; Pemola Devi, N.; R.K. Jauhari
2015-01-01
Background & objectives: Insect wing morphology has been used in many studies to describe variations among species and populations using traditional morphometrics, and more recently geometric morphometrics. A landmark-based geometric morphometric analysis of the wings of three species of Aedes (Diptera: Culicidae), viz. Ae. aegypti, Ae. albopictus and Ae. pseudotaeniatus, at District Dehradun was conducted belling on the fact that it can provide insight into the population structure, ecology ...
Classifying Data Sets Using Support Vector Machines Based on Geometric Distance
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Support vector machines (SVMs) are not as favored for large-scale data mining as for pattern recognition and machine learning because the training complexity of SVMs is highly dependent on the size of data set. This paper presents a geometric distance-based SVM (GDB-SVM). It takes the distance between a point and classified hyperplane as classification rule,and is designed on the basis of theoretical analysis and geometric intuition. Experimental code is derived from LibSVM with Microsoft Visual C ++ 6.0 as system of translating and editing. Four predicted results of five of GDB-SVM are better than those of the method of one against all (OAA). Three predicted results of five of GDB-SVM are better than those of the method of one against one (OAO). Experiments on real data sets show that GDB-SVM is not only superior to the methods of OAA and OAO,but highly scalable for large data sets while generating high classification accuracy.
A comparison of geometric- and regression-based mobile gaze-tracking
Directory of Open Access Journals (Sweden)
Björn eBrowatzki
2014-04-01
Full Text Available Video-based gaze-tracking systems are typically restricted in terms of their effective tracking space. This constraint limits the use of eyetrackers in studying mobile human behavior. Here, we compare two possible approaches for estimating the gaze of participants who are free to walk in a large space whilst looking at different regions of a large display. Geometrically, we linearly combined eye-in-head rotations and head-in-world coordinates to derive a gaze vector and its intersection with a planar display, by relying on the use of a head-mounted eyetracker and body-motion tracker. Alternatively, we employed Gaussian process regression to estimate the gaze intersection directly from the input data itself. Our evaluation of both methods indicates that a regression approach can deliver comparable results to a geometric approach. The regression approach is favored, given that it has the potential for further optimization, provides confidence bounds for its gaze estimates and offers greater flexibility in its implementation. Open-source software for the methods reported here is also provided for user implementation.
QRS complex detection based on simple robust 2-D pictorial-geometrical feature.
Hoseini Sabzevari, S A; Moavenian, Majid
2014-01-01
In this paper a heuristic method aimed for detecting of QRS complexes without any pre-process was developed. All the methods developed in previous studies were used pre-process, the most novelty of this study was suggesting a simple method which did not need any pre-process. Toward this objective, a new simple 2-D geometrical feature space was extracted from the original electrocardiogram (ECG) signal. In this method, a sliding window was moved sample-by-sample on the pre-processed ECG signal. During each forward slide of the analysis window an artificial image was generated from the excerpted segment allocated in the window. Then, a geometrical feature extraction technique based on curve-length and angle of highest point was applied to each image for establishment of an appropriate feature space. Afterwards the K-Nearest Neighbors (KNN), Artificial Neural Network (ANN) and Adaptive Network Fuzzy Inference Systems (ANFIS) were designed and implemented to the ECG signal. The proposed methods were applied to DAY general hospital high resolution holter data. For detection of QRS complex the average values of sensitivity Se = 99.93% and positive predictivity P+ = 99.92% were obtained. PMID:24144188
Different faces of chaos in FRW models with scalar fields -- geometrical point of view
Hrycyna, O; Hrycyna, Orest; Szydlowski, Marek
2006-01-01
FRW cosmologies with conformally coupled scalar fields are investigated in a geometrical way by the means of geodesics of the Jacobi metric. In this model of dynamics, trajectories in the configuration space are represented by geodesics. Because of the singular nature of the Jacobi metric on the boundary set $\\partial\\mathcal{D}$ of the domain of admissible motion, the geodesics change the cone sectors several times (or an infinite number of times) in the neighborhood of the singular set $\\partial\\mathcal{D}$. We show that this singular set contains interesting information about the dynamical complexity of the model. Firstly, this set can be used as a Poincar{\\'e} surface for construction of Poincar{\\'e} sections, and the trajectories then have the recurrence property. We also investigate the distribution of the intersection points. Secondly, the full classification of periodic orbits in the configuration space is performed and existence of UPO is demonstrated. Our general conclusion is that, although the pre...
Mean-field dynamic criticality and geometric transition in the Gaussian core model
Coslovich, Daniele; Ikeda, Atsushi; Miyazaki, Kunimasa
2016-04-01
We use molecular dynamics simulations to investigate dynamic heterogeneities and the potential energy landscape of the Gaussian core model (GCM). Despite the nearly Gaussian statistics of particles' displacements, the GCM exhibits giant dynamic heterogeneities close to the dynamic transition temperature. The divergence of the four-point susceptibility is quantitatively well described by the inhomogeneous version of the mode-coupling theory. Furthermore, the potential energy landscape of the GCM is characterized by large energy barriers, as expected from the lack of activated, hopping dynamics, and display features compatible with a geometric transition. These observations demonstrate that all major features of mean-field dynamic criticality can be observed in a physically sound, three-dimensional model.
Institute of Scientific and Technical Information of China (English)
ZHANG Suying; DENG Zichen
2005-01-01
Based on Magnus or Fer expansion for solving linear differential equation and operator semi-group theory, Lie group integration methods for general nonlinear dynamic equation are studied. Approximate schemes of Magnus type of 4th, 6th and 8th order are constructed which involve only 1, 4 and 10 different commutators, and the time-symmetry properties of the schemes are proved. In the meantime, the integration methods based on Fer expansion are presented. Then by connecting the Fer expansion methods with Magnus expansion methods some techniques are given to simplify the construction of Fer expansion methods. Furthermore time-symmetric integrators of Fer type are constructed. These methods belong to the category of geometric integration methods and can preserve many qualitative properties of the original dynamic system.
International Nuclear Information System (INIS)
We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modeling in Monte Carlo detector simulations. We plan to replace and unify the current implementations for geometrical primitive classes in the software projects Geant4 and ROOT with this library. Each solid is implemented as a C++ class providing methods to compute distances of rays to the surface of a solid or to find whether a position is located inside, outside or on the surface of the solid. A numerical tolerance is used for determining whether a position is on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for the validation of the code; these also include performance and consistency tests used for the analysis of candidate implementations of class methods for the new library. We have implemented simple adapter classes to allow the use of the new optimized solids with Geant4 and ROOT geometries.
Geometrical influence of pulmonary acinar models on respiratory flows and particle deposition
Hofemeier, Philipp; Sznitman, Josue
2012-11-01
Due to experimental challenges in assessing respiratory flows in the deep regions of the lungs, computational simulations are typically sought to quantify inhaled aerosol transport and deposition in the acinus. Most commonly, simulations are performed using generic geometries of alveoli, including spheres, toroids and polyhedra to mimic the acinar region. However, local respiratory flows and ensuing particle trajectories are anticipated to be highly influenced by the specific geometrical structures chosen. To date, geometrical influences have not yet been thoroughly quantified. Knowing beforehand how geometries affect acinar flows and particle transport is critical in translating simulated data to predictions of aerosol deposition in real lungs. Here, we conduct a systematic investigation on a number of generic acinar models. Simulations are conducted for simple alveolated airways featuring a selection of geometries. Deposition patterns and efficiencies are quantified both for massless particles, highlighting details of the local flow, and micron-scale aerosols. This latter group of particles represents an important class of inhaled aerosols known to reach and deposit in the acinus. Our work emphasizes the subtleties of acinar geometry in determining the fate of inhaled aerosols.
The generalization of a class of impulse stochastic control models of a geometric Brownian motion
Institute of Scientific and Technical Information of China (English)
LIU XiaoPeng; LIU KunHui
2009-01-01
Recently, international academic circles advanced a class of new stochastic control models of a geometric Brownian motion which is an important kind of impulse control models whose cost structure is different from the others before, and it has a broad applying background and important theoretical significance in financial control and management of investment. This paper generalizes substantially the above stochastic control models under quite extensive conditions and describes the models more exactly under more normal theoretical system of stochastic process. By establishing a set of proper variational equations and proving the existence of its solution, and applying the means of stochastic analysis, this paper proves that the generalized stochastic control models have optimal controls.Meanwhile, we also analyze the structure of optimal controls carefully. Besides, we study the solution function of variational equations in a relatively deep-going way, which constitutes the value function of control models to some extent. Because the analysis methods of this paper are greatly different from those of original reference, this paper possesses considerable originality to some extent. In addition,this paper gives the strict proof to the part of original reference which is not fairly well-knit in analyses,and makes analyses and discussions of the model have the exactitude of mathematical sense.
Enhancement of Generic Building Models by Recognition and Enforcement of Geometric Constraints
Meidow, J.; Hammer, H.; Pohl, M.; Bulatov, D.
2016-06-01
Many buildings in 3D city models can be represented by generic models, e.g. boundary representations or polyhedrons, without expressing building-specific knowledge explicitly. Without additional constraints, the bounding faces of these building reconstructions do not feature expected structures such as orthogonality or parallelism. The recognition and enforcement of man-made structures within model instances is one way to enhance 3D city models. Since the reconstructions are derived from uncertain and imprecise data, crisp relations such as orthogonality or parallelism are rarely satisfied exactly. Furthermore, the uncertainty of geometric entities is usually not specified in 3D city models. Therefore, we propose a point sampling which simulates the initial point cloud acquisition by airborne laser scanning and provides estimates for the uncertainties. We present a complete workflow for recognition and enforcement of man-made structures in a given boundary representation. The recognition is performed by hypothesis testing and the enforcement of the detected constraints by a global adjustment of all bounding faces. Since the adjustment changes not only the geometry but also the topology of faces, we obtain improved building models which feature regular structures and a potentially reduced complexity. The feasibility and the usability of the approach are demonstrated with a real data set.
A MAP estimator based on geometric Brownian motion for sample distances of laser triangulation data
Herrmann, Markus; Otesteanu, Marius
2016-11-01
The proposed algorithm is designed to enhance the line-detection stability in laser-stripe sensors. Despite their many features and capabilities, these sensors become unstable when measuring in dark or strongly-reflective environments. Ambiguous points within a camera image can appear on dark surfaces and be confused with noise when the laser-reflection intensity approaches noise level. Similar problems arise when strong reflections within the sensor image have intensities comparable to that of the laser. In these circumstances, it is difficult to determine the most probable point for the laser line. Hence, the proposed algorithm introduces a maximum a posteriori estimator, based on geometric Brownian motion, to provide a range estimate for the expected location of the reflected laser line.
Archer, Cristina; Ghaisas, Niranjan
2015-04-01
that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.
Directory of Open Access Journals (Sweden)
Mohamed I. Abdel-Fattah
2015-01-01
Full Text Available 3D geometric modeling has received renewed attention recently, in the context of visual scene understanding. The reservoir geometry of the Baltim fields is described by significant elements, such as thickness, depth maps, and fault planes, resulting from an interpretation based on seismic and well data. Uncertainties affect these elements throughout the entire interpretation process. They have some bearing on the geometric shape and subsequently on the gross reservoir volume (GRV of the fields. This uncertainty on GRV also impacts volumes of hydrocarbons in place, reserves, and production profiles. Thus, the assessment of geometrical uncertainties is an essential first step in a field study for evaluation, development, and optimization purposes. Seismic data are best integrated with well and reservoir information. A 3D geometric model of the Late Messinian Abu Madi reservoirs in the time and depth domain is used to investigate the influence of the reservoir geometry on the gas entrapment. Important conceptual conclusions about the reservoir system behavior are obtained using this model. The results show that the reservoir shape influences the seismic response of the incised Abu Madi Paleovalley, making it necessary to account for 3D effects in order to obtain accurate results.
Geometrical mutual information at the tricritical point of the two-dimensional Blume-Capel model
Mandal, Ipsita; Melko, Roger G
2016-01-01
The spin-1 classical Blume-Capel model on a square lattice is known to exhibit a finite-temperature phase transition described by the tricritical Ising CFT in 1+1 space-time dimensions. This phase transition can be accessed with classical Monte Carlo simulations, which, via a replica-trick calculation, can be used to study the shape-dependence of the classical R\\'enyi entropies for a torus divided into two cylinders. From the second R\\'enyi entropy, we calculate the Geometrical Mutual Information (GMI) introduced by St\\'ephan et. al. [Phys. Rev. Lett. 112, 127204 (2014)] and use it to extract a numerical estimate for the value of the central charge near the tricritical point. By comparing to the known CFT result, $c=7/10$, we demonstrate how this type of GMI calculation can be used to estimate the position of the tricritical point in the phase diagram.
复合 Poisson-Geometric 过程风险模型推广%Improvement with compound Poisson-Geometric process risk model
Institute of Scientific and Technical Information of China (English)
王永茂; 李杰
2013-01-01
针对经典风险模型中 Poisson 过程均值必须等于方差这一局限，将其推广到复合 Poisson-Geometric 过程，并将保费收取次数看作是一个 Poisson 过程，且每次收到的保费看作是一个随机变量且服从指数分布，得到了对古典风险模型的一个推广。解释了做出这种推广的实际意义，经过推算，得到了调节系数以及破产概率的表达式，进而得到了模型对应的 Lundeberg 不等式。%The Poisson process in a classical risk model has some limitations, i.e., the mean must be equal to its variance. This paper extends the Poisson process into a compound Poisson-Geometric process. The times of premium collection are regarded as a Poisson process, and the premium collected is considered as a random variable following exponential distribution. Therefore, the study extends a classical risk model. This paper will explain the significance of the improvement. With the calculation, the expressions of adjustment coefficient and ruin probability are obtained. Furthermore, the Lundeberg inequality for this risk model is derived.
A full photometric and geometric model for attached webcam/matte screen devices
Quéau, Yvain; Modrzejewski, Richard; Gurdjos, Pierre; Durou, Jean-Denis
2016-01-01
International audience We present a thorough photometric and geometric study of the multimedia devices composed of both a matte screen and an attached camera, where it is shown that the light emitted by an image displayed on the monitor can be expressed in closed-form at any point facing the screen, and that the geometric calibration of the camera attached to the screen can be simplified by introducing simple geometric constraints. These theoretical contributions are experimentally validat...
Jacot Des Combes, H.; Abelmann, A.
2009-05-01
Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.
Kashani, Rojano
External beam radiation therapy is an effective method for treating cancer in many body sites. Highly conformal plans can be created to provide good target coverage while sparing the surrounding normal tissue. A fundamental problem in delivering these conformal plans is the inter- and intra-fractional variations in patient geometry, which result in deviation of the delivered dose from the planned dose, thus reducing the probability of tumor control or increasing the risk of normal tissue toxicity. To address this problem, various motion management strategies have been implemented in the clinic, and several others are under investigation. While the technique employed for management of geometric variation can change depending on the type and source of the variation (set up error, respiratory-induced motion and deformation, or tumor shrinkage or tissue loss in response to treatment) as well as other clinical factors, all these techniques have one thing in common and that is the fact that they are not perfect. This work investigates the uncertainties associated with the measurement and management of motion and deformation, and evaluates the impact of these uncertainties on the accuracy of geometry and dose tracking for treatment adaptation. This research quantified the magnitude and distribution of error in deformable image registration for aligning image volumes acquired at different breathing states. It further explored the potential of reducing the registration error in deforming lung geometry, by applying a method from multivariate statistics (principal component analysis) to identify the significant modes of variation in this geometry. It also demonstrated the potential for tracking respiratory induced deformation in various regions in the lung, using a few surrogates such as implanted markers. In addition to the evaluation of registration error for thoracic geometry affected by respiratory motion, this work also investigates the accuracy of deformable image
Investigation of the pore geometrical structure of nanofibrous membranes using statistical modelling
Khanmohammadi Khoshui, Sedigheh; Hosseini Ravandi, Seyed Abdolkarim; Bagherzadeh, Roohollah; Saberi, Zahra; Karimi, Mohammad
2016-10-01
The pore size and its distribution are the two main geometrical properties of nanofibrous membranes in various applications such as filtration and tissue engineering. In the current paper, a modified approach (model) is suggested to predict pore size and its distribution in nanofibrous membranes. In the present work, inter-fibre pores are considered as polygons arising from the fibre contacts. For the first time, these polygons are assumed to be three-, four- and five-gons, and the hydraulic radius of the pores was obtained instead of the equal radius. The pore size of multilayer mats was provided with a different insight. The pore mean size and its distribution were obtained by statistical methods. In order to validate the model, polycaprolactone (PCL) nanofibrous mats were electrospun, and the mean pore size and its distribution were measured using porosimetry. It was found that the probability distribution function of the pore size in both single and multi nanofibrous layers was the Gamma function with two parameters. The effect of the fibre width and porosity raise was increasing of mean pore diameter of multilayer networks. A comparison between the modified model and previous models revealed that the modified approach was more realistic.
Competition and fixation of cohorts of adaptive mutations under Fisher geometrical model.
Moura de Sousa, Jorge A; Alpedrinha, João; Campos, Paulo R A; Gordo, Isabel
2016-01-01
One of the simplest models of adaptation to a new environment is Fisher's Geometric Model (FGM), in which populations move on a multidimensional landscape defined by the traits under selection. The predictions of this model have been found to be consistent with current observations of patterns of fitness increase in experimentally evolved populations. Recent studies investigated the dynamics of allele frequency change along adaptation of microbes to simple laboratory conditions and unveiled a dramatic pattern of competition between cohorts of mutations, i.e., multiple mutations simultaneously segregating and ultimately reaching fixation. Here, using simulations, we study the dynamics of phenotypic and genetic change as asexual populations under clonal interference climb a Fisherian landscape, and ask about the conditions under which FGM can display the simultaneous increase and fixation of multiple mutations-mutation cohorts-along the adaptive walk. We find that FGM under clonal interference, and with varying levels of pleiotropy, can reproduce the experimentally observed competition between different cohorts of mutations, some of which have a high probability of fixation along the adaptive walk. Overall, our results show that the surprising dynamics of mutation cohorts recently observed during experimental adaptation of microbial populations can be expected under one of the oldest and simplest theoretical models of adaptation-FGM. PMID:27547562
A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries
Linares, J.; Nistal, M. C.
2011-01-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…
Towards modelling of the frictional behaviour of deforming fibrous tows: A geometrical approach
Cornelissen, Bo; Akkerman, Remko
2010-01-01
Fibrous tows used in continuous fibre-reinforced polymers (CFRPs) deform geometrically during the production of composite products. The cross-sectional geometry of the tow is influenced by the load-induced deformation mechanisms. A study of the effect of two commonly assumed geometrical tow shapes o
Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle.
Kosiuk, Ilona; Szmolyan, Peter
2016-04-01
A minimal model describing the embryonic cell division cycle at the molecular level in eukaryotes is analyzed mathematically. It is known from numerical simulations that the corresponding three-dimensional system of ODEs has periodic solutions in certain parameter regimes. We prove the existence of a stable limit cycle and provide a detailed description on how the limit cycle is generated. The limit cycle corresponds to a relaxation oscillation of an auxiliary system, which is singularly perturbed and has the same orbits as the original model. The singular perturbation character of the auxiliary problem is caused by the occurrence of small Michaelis constants in the model. Essential pieces of the limit cycle of the auxiliary problem consist of segments of slow motion close to several branches of a two dimensional critical manifold which are connected by fast jumps. In addition, a new phenomenon of exchange of stability occurs at lines, where the branches of the two-dimensional critical manifold intersect. This novel type of relaxation oscillations is studied by combining standard results from geometric singular perturbation with several suitable blow-up transformations. PMID:26100376
Generalised Geometrical CP Violation in a $T^{\\prime}$ Lepton Flavour Model
Girardi, Ivan; Petcov, S T; Spinrath, Martin
2014-01-01
We analyse the interplay of generalised CP transformations and the non-Abelian discrete group $T^{\\prime}$ and use the semi-direct product $G_f= T^{\\prime}\\rtimes H_{\\text{CP}}$, as family symmetry acting in the lepton sector. The family symmetry is shown to be spontaneously broken in a geometrical manner. In the resulting flavour model, naturally small Majorana neutrino masses for the light active neutrinos are obtained through the type I see-saw mechanism. The known masses of the charged leptons, lepton mixing angles and the two neutrino mass squared differences are reproduced by the model with a good accuracy. The model allows for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP violation (CPV) phase $\\delta$ in the lepton mixing matrix is predicted to be $\\delta \\cong \\pi/2~{\\rm or}~ 3\\pi/2$. Thus, the CP violating effects in ...
Directory of Open Access Journals (Sweden)
S. SAXENA
2013-07-01
Full Text Available Geometric process model has been used in a variety of situations such as the determination of the optimal replacement policy and the optimal inspection-repair replacement policy for standby systems, and the analysis of data with trends. This study deals with the analysis of accelerated life testing for Log-Logistic distribution using geometric process model. The case of type-I censoring is considered in this study. It is assumed that the lifetimes under increasing stress levels form a geometric process. The maximum likelihood estimates of the parameters and their confidence intervals using the asymptotic method are derived. The performance of the estimators is evaluated by a simulation study with different pre-fixed parameters.
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T
2016-05-05
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.
Directory of Open Access Journals (Sweden)
Hong-Jun Yang
2011-12-01
Full Text Available Train wheel sets must be periodically inspected for possible or actual premature failures and it is very significant to record the wear history for the full life of utilization of wheel sets. This means that an online measuring system could be of great benefit to overall process control. An online non-contact method for measuring a wheel set’s geometric parameters based on the opto-electronic measuring technique is presented in this paper. A charge coupled device (CCD camera with a selected optical lens and a frame grabber was used to capture the image of the light profile of the wheel set illuminated by a linear laser. The analogue signals of the image were transformed into corresponding digital grey level values. The ‘mapping function method’ is used to transform an image pixel coordinate to a space coordinate. The images of wheel sets were captured when the train passed through the measuring system. The rim inside thickness and flange thickness were measured and analyzed. The spatial resolution of the whole image capturing system is about 0.33 mm. Theoretic and experimental results show that the online measurement system based on computer vision can meet wheel set measurement requirements.
Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials
International Nuclear Information System (INIS)
This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed. (paper)
Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials
Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.
2016-05-01
This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.
Numerical analysis of bypass model geometrical parameters influence on pulsatile blood flow
Directory of Open Access Journals (Sweden)
Jonášová A.
2011-06-01
Full Text Available The present study is focused on the analysis of pulsatile blood flow in complete idealized 3D bypass models in dependence on three main geometrical parameters (stenosis degree, junction angle and diameter ratio. Assuming the blood to be an incompressible Newtonian fluid, the non-linear system of Navier-Stokes equations is integrated in time by a fully implicit second-order accurate fractional-step method. The space discretization is performed with the help of the cell-centred finite volume method formulated for unstructured tetrahedral grids. In order to model a realistic coronary blood flow, a time-dependent flow rate taken from corresponding literature is considered. For the analysis of obtained numerical results, special emphasis is placed on their comparison in the form of velocity isolines at several selected cross-sections during systolic and diastolic phases. The remainder of this paper is devoted to discussion of walls shear stress distribution and its oscillatory character described by the oscillatory shear index with regard to areas prone to development of intimal hyperplasia or to thrombus formation.
Towards Geometric D6-Brane Model Building on non-Factorisable Toroidal $\\mathbb{Z}_4$-Orbifolds
Berasaluce-González, Mikel; Seifert, Alexander
2016-01-01
We present a geometric approach to D-brane model building on the non-factorisable torus backgrounds of $T^6/\\mathbb{Z}_4$, which are $A_3 \\times A_3$ and $A_3 \\times A_1 \\times B_2$. Based on the counting of `short' supersymmetric three-cycles per complex structure {\\it vev}, the number of physically inequivalent lattice orientations with respect to the anti-holomorphic involution ${\\cal R}$ of the Type IIA/$\\Omega\\cal{R}$ orientifold can be reduced to three for the $A_3 \\times A_3$ lattice and four for the $A_3 \\times A_1 \\times B_2$ lattice. While four independent three-cycles on $A_3 \\times A_3$ cannot accommodate phenomenologically interesting global models with a chiral spectrum, the eight-dimensional space of three-cycles on $A_3 \\times A_1 \\times B_2$ is rich enough to provide for particle physics models, with several globally consistent two- and four-generation Pati-Salam models presented here. We further show that for fractional {\\it sLag} three-cycles, the compact geometry can be rewritten in a $(T^...
Application of Geometric Moiré to the Analysis of Large Deformation in Three-dimensional Models
Cicinelli, V.; Pappalettere, C.; Sun, W. M.; Surace, L.
The application of geometric moiré in large deformation of 3-D models is discussed. Different aspects of the method, such as mismatch technique and mechanical differentiation, are taken into consideration for the measurement. An application of the method is given to the cushion disk of an artificial knee joint in whose axis-symmetric cross section a cross specimen grating of 0.5mm pitch was replicated. The analysis shows the applicability of the geometric moiré, together with its various approaches, in the large deformation measurement giving the whole field quantitative definition.
Microscopic foundation and geometric interpretation of the interacting-boson model
International Nuclear Information System (INIS)
A number of aspects of the relation between the shell model and the interacting-boson model are studied. The IBM is assumed to describe that part of the shell-model space where all states are built from selected, correlated pairs with angular momentum zero or two, which are mapped onto bosons. The goal of a microscopic derivation of IBM is to determine this subspace and to obtain the parameters that govern the dynamics in boson space. A formalism is introduced to calculate the expectation value of the hamiltonian between states containing such correlated fermion pairs. This formalism only applies to spherical nuclei, where zero-coupled pairs dominate. It is applied to the semimagic tin nuclei. Several methods are compared to determine the structure of the collective pairs in order to find a method which gives the 'best pairs'. The formalism is also applied to the mercury isotopes for which both neutrons and protons are active. In this more realistic case the above-mentioned methods to determine the pairs are also studied. The IBM-2 parameters are derived from the microscopic calculation. Group-theoretical aspects of the SU(3) limits of IBM-1 and IBM-2 are investigated. A complete decomposition for the SU(3) limits is given. Specific attention is paid to the 'triaxial-rotor' SU(3)*-limit, which is thought to describe nuclei with a triaxial shape. The SU(3)* symmetry of IBM-2 is applied in a study of the 192Os nucleus. The relation between IBM and geometrical models is discussed. (Auth.)
Schmieder, Daniela A.; Hugo A. Benítez; Ivailo M Borissov; Carmelo Fruciano
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horse...
Institute of Scientific and Technical Information of China (English)
CHEN Gui-ming; WANG Han-gong; ZHANG Bao-jun; PAN Wei
2003-01-01
This paper analyzes the potential color formats of ferrograph images, and presents the algorithms of converting the formats to RGB(Red, Green, Blue) color space. Through statistical analysis of wear par-ticles' geometric features of color ferrograph images in the RGB color space, we give the differences of ferro-graph wear panicles' geometric features among RGB color spaces and gray scale space, and calculate their respective distributions.
Geometrical Bioelectrodynamics
Ivancevic, Vladimir G
2008-01-01
This paper proposes rigorous geometrical treatment of bioelectrodynamics, underpinning two fast-growing biomedical research fields: bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism, and bioelectromagnetics, which deals with the effect on life from external electromagnetism. Keywords: Bioelectrodynamics, exterior geometrical machinery, Dirac-Feynman quantum electrodynamics, functional electrical stimulation
Emery, J. D.
1985-01-01
Two topics in topology, the comparison of plane curves and faces on geometric models, are discussed. With regard to the first problem, a curve is defined to be a locus of points without any underlying parameterization. A metric on a class of plane curves is defined, a finite computation of this metric is given for the case of piecewise linear curves, and it is shown how to approximate curves that have bounded curvature by piecewise linear curves. In this way a bound on the distance between two curves can be computed. With regard to the second problem, the questions to be discussed are under what circumstances do geometrical faces make sense; how can they be explicity defined; and when are these geometrical faces homeomorphic to the realization of the abstract (topological) face.
Structural damage identification based on change in geometric modal strain energy-eigenvalue ratio
Nguyen, Khac-Duy; Chan, Tommy HT; Thambiratnam, David P.
2016-07-01
This study presents a new damage identification method to locate and quantify damage using measured mode shapes and natural frequencies. A new vibration parameter, ratio of geometric modal strain energy to eigenvalue (GMSEE), has been developed and its change due to stiffness reduction has been formulated using a sensitivity matrix. This sensitivity matrix is estimated with measured modal parameters and basic information of the structure. For damage identification, firstly, the locations of damage and the correlative damage extents are identified by maximizing the correlation level between an analytical GMSEE change vector and a measured one. Herein, the genetic algorithm, which is a powerful evolutionary optimization algorithm, is utilized to solve this optimization problem. Secondly, the size of damage can be estimated using the proposed GMSEE technique and compared with a conventional technique using frequency change. A numerical 2D Truss bridge is used to demonstrate the performance of the proposed method in identifying single and multiple damage cases. Also, practicality of the method is tested with a laboratory eight degree-of-freedom system and a real bridge. Results illustrate the high capability of the method to identify structural damage with less modeling efforts.
A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers
Directory of Open Access Journals (Sweden)
Muhammad Nadeem Iqbal
2014-01-01
Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.
A Location-Based Service Using Geometric Location Methods to Unite Mobile Users
Directory of Open Access Journals (Sweden)
Wen-Chen Hu
2016-02-01
Full Text Available Since the introduction of iPhone in 2007, many location-based services (LBSs have been created and new LBSs are found every day. This research proposes yet another LBS, which is practical and was not found before to the best of authors' knowledge. The problem is described as follows. It happens all the times while several groups of people are traveling towards a destination, they lose contact from each other on the way. This research tries to have the groups travel as closely as possible until they reach the destination. It uses a method of minimum covering ellipses to find whether the groups are separated by more than a threshold/distance. If they are, the system will find a convenient rendezvous for all groups by using a method of geometric median. After meeting at the rendezvous, the groups reset the service and continue their journey. By using this LBS, travelers do not need to worry about losing connections with others. This method can also be applied to the problem of finding a convenient meeting place for mobile users.
Object-Based Analysis of LIDAR Geometric Features for Vegetation Detection in Shaded Areas
Lin, Yu-Ching; Lin, ChinSu; Tsai, Ming-Da; Lin, Chun-Lin
2016-06-01
The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class.
Towards modelling of the frictional behaviour of deforming fibrous tows: A geometrical approach
Cornelissen, Bo; Akkerman, Remko
2010-01-01
Fibrous tows used in continuous fibre-reinforced polymers (CFRPs) deform geometrically during the production of composite products. The cross-sectional geometry of the tow is influenced by the load-induced deformation mechanisms. A study of the effect of two commonly assumed geometrical tow shapes on an equivalent pressure distribution in a tow-on-a-pin spreading arrangement was performed. The preliminary results show that both elliptic and parabolic tow geometries have qualitatively the comp...
Formation enthalpies of Al-Fe-Zr-Nd system calculated by using geometric and Miedema's models
Zhang, Lei; Wang, Rongcheng; Tao, Xiaoma; Guo, Hui; Chen, Hongmei; Ouyang, Yifang
2015-04-01
Formation enthalpy is important for the phase stability and amorphous forming ability of alloys. The formation enthalpies of Fe17RE2 (RE=Ce, Pr, Nd, Gd and Er) obtained by Miedema's theory are in good agreement with those of the experiments. The dependence of formation enthalpy on concentration of Al for intermetallic (AlxFe1-x)17Nd2 have been calculated by Miedema's theory and the geometric model. The solid solubility of Al in (AlxFe1-x)17Nd2 is coincident with the concentration dependence of formation enthalpy. The mixing enthalpies of liquid alloys and formation enthalpies of alloys for Al-Fe-Zr-Nd system have been predicted. The calculated mixing enthalpy indicates that the adding of Fe or Nd decreases monotonously the magnitude of enthalpy. The formation enthalpies of Al-Fe-Zr-Nd system indicate that the shape of the enthalpy contour map changes when the content of Al is less than 50.0 at% and then it remains unchanged except the decrease of magnitude. The formation enthalpy of Al-Fe-Zr-Nd increases with the increase of Fe and/or Nd content. The negative formation enthalpy indicates that Al-Fe-Zr-Nd system has higher amorphous forming ability and wide amorphous forming range. The certain contents of Zr and/or Al are beneficial for the formation of Al-Fe-Zr-Nd intermetallics.
Lower Bounds for Sorted Geometric Queries in the I/O Model
DEFF Research Database (Denmark)
Afshani, Peyman; Zeh, Norbert
2012-01-01
asks us to preprocess an input point set S in the plane so that, given a query point q, the clockwise ordering of the points in S around q can be computed efficiently. In the latter problem, the output is the list of K points in S closest to q, sorted by increasing distance from q. The goal in both...... problems is to construct a small data structure that can answer queries efficiently. We study sorted geometric query problems in the I/O model and prove that, when limited to linear space, the naïve approach of sorting the elements in S in the desired output order from scratch is the best possible....... This is highly relevant in an I/O context because storing a massive data set in a superlinear-space data structure is often infeasible. We also prove that answering queries using I/Os requires space, where N is the input size, B is the block size, and M is the size of the main memory. This bound is unlikely...
Fisher's geometric model predicts the effects of random mutations when tested in the wild.
Stearns, Frank W; Fenster, Charles B
2016-02-01
Fisher's geometric model of adaptation (FGM) has been the conceptual foundation for studies investigating the genetic basis of adaptation since the onset of the neo Darwinian synthesis. FGM describes adaptation as the movement of a genotype toward a fitness optimum due to beneficial mutations. To date, one prediction of FGM, the probability of improvement is related to the distance from the optimum, has only been tested in microorganisms under laboratory conditions. There is reason to believe that results might differ under natural conditions where more mutations likely affect fitness, and where environmental variance may obscure the expected pattern. We chemically induced mutations into a set of 19 Arabidopsis thaliana accessions from across the native range of A. thaliana and planted them alongside the premutated founder lines in two habitats in the mid-Atlantic region of the United States under field conditions. We show that FGM is able to predict the outcome of a set of random induced mutations on fitness in a set of A. thaliana accessions grown in the wild: mutations are more likely to be beneficial in relatively less fit genotypes. This finding suggests that FGM is an accurate approximation of the process of adaptation under more realistic ecological conditions. PMID:26768168
Energy Technology Data Exchange (ETDEWEB)
Dahlstrom, C.D.A. (Chevron Corp., San Francisco, CA (USA))
1990-03-01
This paper presents geometric arguments for modifying the conventional concept for the evolution of concentric fold trains above nonductile detachment zones. The common geometric model for concentric folding above a detachment invokes a wave train with fixed fold axes regularly spaced along the fold panel. Limb lengths from crest to trough remain constant as the limb dips increase to uplift the anticlinal crests while the synclinal troughs slide parallel to the detachment plane. The basic depth to detachment calculation, which derives from the Law of Conservation of Volume, requires that the area of uplift above regional for a concentric anticline be equal to the arithmetic product of the shortening and the depth to detachment. This imposes a geometric constraint with which a constant limb length anticline, growing by increasing limb dip above a fixed detachment plane, cannot comply unless, in the early stages, mobile material in the detachment zone flows from the synclinal troughs to the anticlinal crests and then, in the later stages, the flow direction reverses. Relatively few detachment zones contain a significant amount of mobile salt or shale. Therefore, in most concentric detachment fold trains, a basic geometric incompatibility exists between the conventional geometric model and the Law of Conservation of Volume. The conflict can be resolved by an evolutionary fold model wherein the anticlinal fold limbs are short at the inception of folding and grow longer as dips increase and the fold grows. In this model, the anticlinal axes generally are fixed and the synclinal axes active, which has structural and economic implications for the distribution of permeability and syntectonic sediments as well as for the migration and entrapment of hydrocarbons. 18 figs.
Lindlein, Norbert; Leuchs, Gerd
This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.
Xin, Q.; Gong, P.; Li, W.
2015-06-01
Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.
International Nuclear Information System (INIS)
This study develops a quantitative analysis and model for the differences in left ventricular dynamics in normal and spontaneously hypertensive rats, as determined using non-invasive magnetic resonance imaging (MRI). We emerge with a characterization of the geometrical changes in the left ventricle resulting from hypertension. In addition, the techniques we have adopted are potentially applicable to the study of other disease models for important human cardiac pathologies. A gradient-echo multislice imaging sequence (echo time 4.3 ms) achieved complete image coverage of the heart at high time resolution (13 ms) through the cardiac cycle. Cardiac anatomy in two age-matched groups of young adult (8 and 12 weeks old) normal Wistar-Kyoto (WKY, n=8) and spontaneously hypertensive rats (SHR, n=8) was imaged in synchrony with the electrocardiographic R wave in defined planes both parallel and perpendicular to the principal cardiac axis. The transverse left ventricular image sections were circularly symmetrical; this permitted application of different analytical models for the three-dimensional geometry of the epi- and endocardial borders. An ellipsoidal figure of revolution offered an effective description of the three-dimensional left ventricular geometry throughout the cardiac cycle in both normal WKY and SHR animals. The model successfully characterized both the changes in the shape of the left ventricle through the cardiac cycle and the pathological alterations resulting from spontaneous hypertension. The elliptical model also formed the basis of a simple stress distribution analysis. Such parametric descriptions thus provided a useful alternative to more complex finite element analyses of cardiac function. The eccentricity of the ventricle was characterized by an ellipticity factor a, where a=1 for a sphere and a<1 for a prolate ellipsoid. At end systole, the endocardial surface of the left ventricle gave a=0.43±0.02 and 0.49±0.02 for the WKY and SHR animals
A wave-optics approach to paraxial geometrical laws based on continuity at boundaries
Liñares, J.; Nistal, M. C.
2011-09-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for several instructive cases and without using Fresnel diffraction theory. The primary aim is to provide a complementary insight into the standard axiomatic approach of paraxial geometrical optics and likewise to allow the introduction of some wave imaging concepts, such as the transmittance function, with a notable didactic interest for advanced subjects such as Fourier optics. This approach provides a more homogeneous vision of classical optics in which the use of the optical field continuity conditions at a boundary is a usual requirement as is clearly seen, for example, in the case of the derivation of Fresnel formulas. The work is particularly intended for university physics teachers and pregraduate and first year postgraduate students.
Liu, M.; Ma, N; Hua, B.-Z.
2016-01-01
Wing shape variation was investigated between the sexes and among four populations of the scorpionfly Dicerapanorpa magna (Chou, 1981) endemic to the Qin-Ba Mountains area, China through the landmark-based geometric morphometric approach. The results show that sexual dimorphism exists both in wing size and shape in D. magna. Significant differences exist in female wing size and shape among D. magna populations. The possible reasons of the wing variation are discussed based on the divergence t...
Image Coding Using Generalized Predictors Based on Sparsity and Geometric Transformations.
Lucas, Luis F R; Rodrigues, Nuno M M; da Silva, Eduardo A B; Pagliari, Carla L; de Faria, Sergio M M
2016-09-01
Directional intra prediction plays an important role in current state-of-the-art video coding standards. In directional prediction, neighbouring samples are projected along a specific direction to predict a block of samples. Ultimately, each prediction mode can be regarded as a set of very simple linear predictors, a different one for each pixel of a block. Therefore, a natural question that arises is whether one could use the theory of linear prediction in order to generate intra prediction modes that provide increased coding efficiency. However, such an interpretation of each directional mode as a set of linear predictors is too poor to provide useful insights for their design. In this paper, we introduce an interpretation of directional prediction as a particular case of linear prediction, which uses the first-order linear filters and a set of geometric transformations. This interpretation motivated the proposal of a generalized intra prediction framework, whereby the first-order linear filters are replaced by adaptive linear filters with sparsity constraints. In this context, we investigate the use of efficient sparse linear models, adaptively estimated for each block through the use of different algorithms, such as matching pursuit, least angle regression, least absolute shrinkage and selection operator, or elastic net. The proposed intra prediction framework was implemented and evaluated within the state-of-the-art high efficiency video coding standard. Experiments demonstrated the advantage of this predictive solution, mainly in the presence of images with complex features and textured areas, achieving higher average bitrate savings than other related sparse representation methods proposed in the literature. PMID:27333603
Crystal bases and quiver varieties (Geometric construction of crystal bases II)
Saito, Yoshihisa
2001-01-01
We give a crystal structure on the set of all irreducible components of Lagrangian subvarieties of quiver varieties. One con show that, as a crystal, it is isomorphic to the crystal base of an irreducible highest weight representation of a quantized universal enveloping algebra.
Haider, Clifton R.; Manduca, Armando; Camp, Jon J.; Fletcher, Joel G.; Robb, Richard A.; Bharucha, Adil E.
2006-03-01
The rectum can distend to accommodate stool, and contracts in response to distention during defecation. Rectal motor dysfunctions are implicated in the pathophysiology of functional defecation disorders and fecal incontinence. These rectal motor functions can be studied by intra-luminal measurements of pressure by manometry, or combined with volume during rectal balloon distention. Pressure-volume (p-v) relationships provide a global index of rectal mechanical properties. However, balloon distention alone does not measure luminal radius or wall thickness, which are necessary to compute wall tension and stress respectively. It has been suggested that the elastic modulus, which is the linear slope of the stress-strain relationship, is a more accurate measure of wall stiffness. Also, measurements of compliance may not reflect differences in rectal diameter between subjects prior to inflation, and imaging is necessary to determine if, as has been suggested, rectal pressure-volume relationships are affected by extra-rectal structures. We have developed a technique to measure rectal stress:strain relationships in humans, by simultaneous magnetic resonance imaging (MRI) during rectal balloon distention. After a conditioning distention, a rectal balloon was distended with water from 0 to 400 ml in 50 ml steps, and imaged at each step with MRI. The fluid filled balloon was segmented from each volume, the phase-ordered binary volumes were transformed into a geometric characterization of the inflated rectal surface. Taken together with measurements of balloon pressure and of rectal wall thickness, this model of the rectal surface was used to calculate regional values of curvature, tension, strain, and stress for the rectum. In summary, this technique has the unique ability to non-invasively measure the rectal stress:strain relationship and also determine if rectal expansion is limited by extra-rectal structures. This functional information allows the direct clinical analysis
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
A landmark-based method for the geometrical 3D calibration of scanning microscopes
Energy Technology Data Exchange (ETDEWEB)
Ritter, M.
2007-04-27
This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean
The Geometric Transition Revisited
Gwyn, Rhiannon
2007-01-01
Our intention in this article is to review known facts and to summarise recent advances in the understanding of geometric transitions and the underlying open/closed duality in string theory. We aim to present a pedagogical discussion of the gauge theory underlying the Klebanov--Strassler model and review the Gopakumar--Vafa conjecture based on topological string theory. These models are also compared in the T-dual brane constructions. We then summarise a series of papers verifying both models on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov--Strassler) and resolved (Pando Zayas--Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach th...
Institute of Scientific and Technical Information of China (English)
吴泽福
2013-01-01
本文变革已有的利率期限结构模型估计依赖于定价误差平方和最小化原则，引入几何双重变换程序解决非线性约束的误差绝对距离最小化问题，丰富国债市场利率波动和定价研究的理论体系和研究方法；运用负指数平滑立方L1样条优化模型，克服B样条函数对节点数目与定位的过度敏感和放宽对贴现函数的二阶导数平滑要求，协同拟合误差绝对距离与贴现函数波动率最小化，保留B样条函数刻画中长期利率波动趋势的优势，增强对短期利率波动结构突变的估计、定价和预测能力，缓解B样条和NSS模型在利率期限结构拟合存在的过度波动问题。% Based on the minimization principle of quadratic sum on pricing error for term structure of interest rate (TSIR), we introduce a geometric transformation program to solve optimization of absolute value on pricing error with nonlinear constraints, which enriches theory framework and research methods on pricing and volatility of in-terest rate in T-bill Market.To overcome excessive sensitivity of B-spline’s node distribution and C 2 smoothness condition of discount function, we introduce negative exponential smoothness cubic L1-spline optimization model with optimal constraint of absolute value of estimate error and second derivative of discount function , to increase the estimate, pricing and prediction ability of short-term interest rate’s volatility structure mutation, improve the advantage on depicting the medium or long term interest rate volatility trend , and reduce the excessive volatility of TSIR estimate based on NSS model and B-spline.
Institute of Scientific and Technical Information of China (English)
SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can
2006-01-01
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.
Directory of Open Access Journals (Sweden)
O. V. Fomin
2013-10-01
Full Text Available Purpose. Presentation of features and example of the use of the offered determination algorithm of optimum geometrical parameters for the components of freight cars on the basis of the generalized mathematical models, which is realized using computer. Methodology. The developed approach to search for optimal geometrical parameters can be described as the determination of optimal decision of the selected set of possible variants. Findings. The presented application example of the offered algorithm proved its operation capacity and efficiency of use. Originality. The determination procedure of optimal geometrical parameters for freight car components on the basis of the generalized mathematical models was formalized in the paper. Practical value. Practical introduction of the research results for universal open cars allows one to reduce container of their design and accordingly to increase the carrying capacity almost by100 kg with the improvement of strength characteristics. Taking into account the mass of their park this will provide a considerable economic effect when producing and operating. The offered approach is oriented to the distribution of the software packages (for example Microsoft Excel, which are used by technical services of the most enterprises, and does not require additional capital investments (acquisitions of the specialized programs and proper technical staff training. This proves the correctness of the research direction. The offered algorithm can be used for the solution of other optimization tasks on the basis of the generalized mathematical models.
Leforestier, A.; Livolant, F.
1992-10-01
Freeze-fracture electron microscopy allows an ultrastructural analysis of deformations of a DNA cholesteric liquid crystalline sample subjected to a compressive stress applied parallel to the layers, when quickly frozen by projection onto a copper block cooled down to about 10K. A geometrical model of these deformations is proposed. After a brief recall of the usual representation of the cholesteric structure as a succession of equidistant pseudoplanes, we show that these planes are distorted into sinusoidal surfaces whose wavelength is much smaller than the cholesteric pitch and its amplitude modulated with the average molecular orientation relative to the compressive force. The consequences of these deformations regarding double twist occurrence within the structure are analysed. When the DNA concentration in the cholesteric mesophase is low, a complex helicoidal structure is observed. A relationship between these two phenomena is considered and discussed. La microscopie électronique associée à la technique de cryofracture permet une analyse ultrastructurale des déformations de l'organisation cristalline liquide cholestérique d'un échantillon d'ADN en solution : lors de la congélation par projection contre un bloc de cuivre refroidi à environ 10K par de l'hélium liquide, l'échantillon est soumis à des forces de compression parallèles à la stratification cholostérique. Nous présentons une modélisation géométrique de ces déformations. Après un bref rappel de la représentation schématique de la structure cholestérique par une série de plans fictifs, nous montrons que ces plans sont alors transformés en surfaces sinusoïdales dont la période est très inférieure au pas cholostérique et l'amplitude modulée en fonction de l'orientation relative des molécules et de la force de compression. Les conséquences de telles déformations sur l'émergence de double twist dans la structure sont examinées. Pour les plus faibles valeurs de
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Geometric moment based nonlocal-means filter for ultrasound image denoising
Dou, Yangchao; Zhang, Xuming; Ding, Mingyue; Chen, Yimin
2011-06-01
It is inevitable that there is speckle noise in ultrasound image. Despeckling is the important process. The original nonlocal means (NLM) filter can remove speckle noise and protect the texture information effectively when the image corruption degree is relatively low. But when the noise in the image is strong, NLM will produce fictitious texture information, which has the disadvantageous influence on its denoising performance. In this paper, a novel nonlocal means (NLM) filter is proposed. We introduce geometric moments into the NLM filter. Though geometric moments are not orthogonal moments, it is popular by its concision, and its restoration ability is not yet proved. Results on synthetic data and real ultrasound image show that the proposed method can get better despeckling performance than other state-of-the-art method.
Sharkawi, K.-H.; Abdul-Rahman, A.
2013-09-01
to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).
Birtea, Petre; Cernazanu-Glavan, Cosmin; Sisu, Alexandru
2016-01-01
We propose a new training method for a feedforward neural network having the activation functions with the geometric contraction property. The method consists of constructing a new functional that is less nonlinear in comparison with the classical functional by removing the nonlinearity of the activation functions from the output layer. We validate this new method by a series of experiments that show an improved learning speed and also a better classification error.
Cryptography-Based Chaos via Geometric Undersampling of Ring-Coupled Attractors
Lozi, René
2015-01-01
17 pages, 19 figures International audience We propose a new mechanism for undersampling chaotic numbers obtained by the ringcoupling of one-dimensional maps. In the case of 2 coupled maps this mechanism allows thebuilding of a PRNG which passes all NIST Test.This new geometric undersampling is very effective for generating 2 parallel streams of pseudorandomnumbers, as we show, computing carefully their properties, up to sequences of 10^12consecutives iterates of the ring coupled mappin...
Geometric dilution of precision for GPS single-point positioning based on four satellites
Institute of Scientific and Technical Information of China (English)
Wang Huihui; Zhan Xingqun; Zhang Yanhua
2008-01-01
To improve the positioning accuracy in GPS point positioning,the geometric dilution of precision (GDOP) including HDOP,VDOP,TDOP,PDOP is commonly considered.The properties of the DOP for the GPS satellite navigation system are studied and the coordinate system is improved in order to decrease the amount of variables.In the end,by simulation and discussing the results,the corresponding conclusions are presented.
Koide, T
2016-01-01
We derive a model of quantum-classical hybrids for a simplified model of quantum electrodynamics in the framework of the stochastic variational method. In this model, charged particle trajectories are affected by the interaction with quantized electromagnetic fields, and this quantum-classical interaction induces a displacement current. We further investigate a geometric phase in the wave functional of the gauge field configuration, which is induced by adiabatic motions of the charged particles. This phase contains the quantum-classical backreaction effect and usual Berry's phase is reproduced in the vanishing limit of the fluctuation of the charged particle trajectories.
Ye, Yuanxin; Shen, Li
2016-06-01
Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.
Nikita, Efthymia; Siew, Yun Ysi; Stock, Jay; Mattingly, David; Lahr, Marta Mirazón
2011-11-01
The Garamantian civilization flourished in modern Fezzan, Libya, between 900 BC and 500 AD, during which the aridification of the Sahara was well established. Study of the archaeological remains suggests a population successful at coping with a harsh environment of high and fluctuating temperatures and reduced water and food resources. This study explores the activity patterns of the Garamantes by means of cross-sectional geometric properties. Long bone diaphyseal shape and rigidity are compared between the Garamantes and populations from Egypt and Sudan, namely from the sites of Kerma, el-Badari, and Jebel Moya, to determine whether the Garamantian daily activities were more strenuous than those of other North African populations. Moreover, sexual dimorphism and bilateral asymmetry are assessed at an intra- and inter-population level. The inter-population comparisons showed the Garamantes not to be more robust than the comparative populations, suggesting that the daily Garamantian activities necessary for survival in the Sahara Desert did not generally impose greater loads than those of other North African populations. Sexual dimorphism and bilateral asymmetry in almost all geometric properties of the long limbs were comparatively low among the Garamantes. Only the lower limbs were significantly stronger among males than females, possibly due to higher levels of mobility associated with herding. The lack of systematic bilateral asymmetry in cross-sectional geometric properties may relate to the involvement of the population in bilaterally intensive activities or the lack of regular repetition of unilateral activities.
Model of counterparty risk with geometric attenuation and valuation of CDS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
To investigate the impact of microstructure interdependency of a counterparty explicitly, a geometric function is introduced in one firm's default intensity to reflect the attenuation behavior of the impact of its counterparty firm's default. The general joint distribution and marginal distributions of default times are derived by employing the change of measure. The fair premium of a vanilla CDS (credit default swap) is obtained in continuous and discrete contexts, respectively. The swap premium in a discr...
On modeling of geometrically necessary dislocation densities in plastically deformed single crystals
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2013-01-01
A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009) for...... numerically and geometrically necessary dislocation densities are derived from the slip fields and discussed relative to experimental results in the literature (Kysar et al., 2010)....
Wang, Deming; Yang, Zhengyi
2008-03-01
The use of polynomial functions for modeling geometric distortion in magnetic resonance imaging (MRI) that arises from scanner's hardware imperfection is studied in detail. In this work, the geometric distortion data from four representative MRI systems were used. Modeling of these data using polynomial functions of the fourth, fifth, sixth, and seventh orders was carried out. In order to investigate how this modeling performed for different size and shape of the volume of interest, the modeling was carried out for three different volumes of interest (VOI): a cube, a cylinder, and a sphere. The modeling's goodness was assessed using both the maximum and mean absolute errors. The modeling results showed that (i) for the cube VOI there appears to be an optimal polynomial function that gives the least modeling errors and the sixth order polynomial was found to be the optimal polynomial function for the size of the cubic VOI considered in the present work; (ii) for the cylinder VOI, all four polynomials performed approximately equally well but a trend of a slight decrease in the mean absolute error with the increasing order of the polynomial was noted; and (iii) for the sphere VOI, the maximum absolute error showed some variations with the order of the polynomial, with the fourth order polynomial producing the smallest maximum absolute errors. It is further noted that extrapolation could lead to very large errors so any extrapolation needs to be avoided. A detailed analysis on the modeling errors is presented.
Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model
DEFF Research Database (Denmark)
Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul;
2010-01-01
In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...
Quantum computation using geometric algebra
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Flower solid modeling based on sketches
Institute of Scientific and Technical Information of China (English)
Zhan DING; Shu-chang XU; Xiu-zi YE; Yin ZHANG; San-yuan ZHANG
2008-01-01
In this paper we propose a method to model flowers of solid shape. Based on (Ijiri et al., 2005)'s method, we separate individual flower modeling and inflorescence modeling procedures into structure and geometry modeling. We incorporate interactive editing gestures to allow the user to edit structure parameters freely onto structure diagram. Furthermore, we use free-hand sketching techniques to allow users to create and edit 3D geometrical elements freely and easily. The final step is to automatically merge all independent 3D geometrical elements into a single waterproof mesh. Our experiments show that this solid modeling approach is promising. Using our approach, novice users can create vivid flower models easily and freely. The generated flower model is waterproof. It can have applications in visualization, animation, gaming, and toys and decorations if printed out on 3D rapid prototyping devices.
Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I
2016-01-25
The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. PMID:26708963
Addressing geometric non-linearities with cantilever MEMS: beyond the Duffing model
Collin, Eddy; Bunkov, Yuriy M.; Godfrin, Henri
2010-01-01
International audience We report on low temperature measurements performed on micro-electro-mechanical systems (MEMS) driven deeply into the non-linear regime. The materials are kept in their elastic domain, while the observed non-linearity is purely of geometrical origin. Two techniques are used, harmonic drive and free decay. For each case, we present an analytic theory ﬁtting the data. The harmonic drive is ﬁt with a Lorentz-like lineshape obtained from an extended version of Landau and...
Time Stretching of the GeV Emission of GRBs: Fermi-LAT Data versus Geometrical Model
Piskunov, Maxim S.; Rubtsov, Grigory I.
2016-06-01
It is known that the high-energy (\\gt 100 {MeV}) emission of gamma-ray bursts is delayed with respect to the low-energy emission. However, the dependence of light curves on energy has not been studied for the high-energy bands. In this paper, we consider the bursts observed by Fermi LAT from 2008 August 4 to 2011 August 1, for which at least 10 photons were observed with energy greater than 1 {GeV}. These include four bursts: GRB 080916C, GRB 090510, GRB 090902B, and GRB 090926A. We use the Kolmogorov-Smirnov test to compare the light curves in the two bands 100 {MeV}\\lt E\\lt 1 {GeV} and E\\gt 1 {GeV}. For GRB 080916C and GRB 090510 the light curves in the two bands are statistically compatible. However, for GRB 090926A, the higher-energy light curve is stretched compared to the lower-energy one with a statistical significance of 3.3σ and, for GRB 090902B, on the contrary, the lower-energy curve is stretched with 2.3σ significance. We argue that the observed diversity of stretching factors may be explained using a simple geometrical model. The model assumes that the jet opening angle depends on the emission energy in a way that the most energetic photons are radiated near the axis of the jet. All of the bursts are considered equivalent in their rest frames, and the observed light curves differ only due to different redshifts and view directions. The model conforms to the total burst energy constraint and matches the Fermi-LAT observations of the fraction of GRBs visible in the 100 {MeV}\\lt E\\lt 1 {GeV} band, which may be observed at higher energies. The model predicts the distribution of observable stretching factors, which may be tested in future data. Finally, we propose a method to estimate the observer's off-axis angle based on the stretching factor and the fraction of the high-energy photons. The code for modeling is open source and is publicly available on GitHub (https://github.com/maxitg/GammaRays).
Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory
Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro
2016-04-01
Nowadays, mobile laser scanning has become a valid technology for infrastructure inspection. This technology permits collecting accurate 3D point clouds of urban and road environments and the geometric and semantic analysis of data became an active research topic in the last years. This paper focuses on the detection of vertical traffic signs in 3D point clouds acquired by a LYNX Mobile Mapper system, comprised of laser scanning and RGB cameras. Each traffic sign is automatically detected in the LiDAR point cloud, and its main geometric parameters can be automatically extracted, therefore aiding the inventory process. Furthermore, the 3D position of traffic signs are reprojected on the 2D images, which are spatially and temporally synced with the point cloud. Image analysis allows for recognizing the traffic sign semantics using machine learning approaches. The presented method was tested in road and urban scenarios in Galicia (Spain). The recall results for traffic sign detection are close to 98%, and existing false positives can be easily filtered after point cloud projection. Finally, the lack of a large, publicly available Spanish traffic sign database is pointed out.
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Energy Technology Data Exchange (ETDEWEB)
Motta, R.S.; Afonso, S.M.B.; Willmersdorf, R.B.; Lyra, P.R.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Cabral, H.L.D. [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Andrade, E.Q. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)
2009-07-01
Although the Finite Element Method (FEM) has proved to be a powerful tool to predict the failure pressure of corroded pipes, the generation of good computational models of pipes with corrosion defects can take several days. This makes the use of computational simulation procedure difficult to apply in practice. The main purpose of this work is to develop a set of computational tools to produce automatically models of pipes with defects, ready to be analyzed with commercial FEM programs, starting from a few parameters that locate and provide the main dimensions of the defect or a series of defects. Here these defects can be internal and external and also assume general spatial locations along the pipe. Idealized rectangular and elliptic geometries can be generated. These tools were based on MSC.PATRAN pre and post-processing programs and were written with PCL (Patran Command Language). The program for the automatic generation of models (PIPEFLAW) has a simplified and customized graphical interface, so that an engineer with basic notions of computational simulation with the FEM can generate rapidly models that result in precise and reliable simulations. Some examples of models of pipes with defects generated by the PIPEFLAW system are shown, and the results of numerical analyses, done with the tools presented in this work, are compared with, empiric results. (author)
Directory of Open Access Journals (Sweden)
Ingrid Paine
2016-04-01
Full Text Available Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB, the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct.
Kirk, R. L.; Barrett, J. M.; Wahl, D. E.; Erteza, I.; Jackowatz, C. V.; Yocky, D. A.; Turner, S.; Bussey, D. B. J.; Paterson, G. W.
2016-06-01
The spaceborne synthetic aperture radar (SAR) instruments known as Mini-RF were designed to image shadowed areas of the lunar poles and assay the presence of ice deposits by quantitative polarimetry. We have developed radargrammetric processing techniques to enhance the value of these observations by removing spacecraft ephemeris errors and distortions caused by topographic parallax so the polarimetry can be compared with other data sets. Here we report on the extension of this capability from monostatic imaging (signal transmitted and received on the same spacecraft) to bistatic (transmission from Earth and reception on the spacecraft) which provides a unique opportunity to measure radar scattering at nonzero phase angles. In either case our radargrammetric sensor models first reconstruct the observed range and Doppler frequency from recorded image coordinates, then determine the ground location with a corrected trajectory on a more detailed topographic surface. The essential difference for bistatic radar is that range and Doppler shift depend on the transmitter as well as receiver trajectory. Incidental differences include the preparation of the images in a different (map projected) coordinate system and use of "squint" (i.e., imaging at nonzero rather than zero Doppler shift) to achieve the desired phase angle. Our approach to the problem is to reconstruct the time-of-observation, range, and Doppler shift of the image pixel by pixel in terms of rigorous geometric optics, then fit these functions with low-order polynomials accurate to a small fraction of a pixel. Range and Doppler estimated by using these polynomials can then be georeferenced rigorously on a new surface with an updated trajectory. This "semi-rigorous" approach (based on rigorous physics but involving fitting functions) speeds the calculation and avoids the need to manage both the original and adjusted trajectory data. We demonstrate the improvement in registration of the bistatic images for
Linear stochastic systems a geometric approach to modeling, estimation and identification
Lindquist, Anders
2015-01-01
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of pas...
Baocheng Shi; Jinjia Wei
2014-01-01
For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, there exist several problems including how to design geometrical shape of the calculation model to represent the real pump and how to predict pump performance accurately to guide the design of pump. To solve these problems, four kinds of geometric models were designed. The performance of a low specific speed solid-liquid centrifugal pump was predicted, and the results showed that the improved pr...
Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.
2016-08-01
The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.
Blanquart, François; Bataillon, Thomas
2016-06-01
The fitness landscape defines the relationship between genotypes and fitness in a given environment and underlies fundamental quantities such as the distribution of selection coefficient and the magnitude and type of epistasis. A better understanding of variation in landscape structure across species and environments is thus necessary to understand and predict how populations will adapt. An increasing number of experiments investigate the properties of fitness landscapes by identifying mutations, constructing genotypes with combinations of these mutations, and measuring the fitness of these genotypes. Yet these empirical landscapes represent a very small sample of the vast space of all possible genotypes, and this sample is often biased by the protocol used to identify mutations. Here we develop a rigorous statistical framework based on Approximate Bayesian Computation to address these concerns and use this flexible framework to fit a broad class of phenotypic fitness models (including Fisher's model) to 26 empirical landscapes representing nine diverse biological systems. Despite uncertainty owing to the small size of most published empirical landscapes, the inferred landscapes have similar structure in similar biological systems. Surprisingly, goodness-of-fit tests reveal that this class of phenotypic models, which has been successful so far in interpreting experimental data, is a plausible in only three of nine biological systems. More precisely, although Fisher's model was able to explain several statistical properties of the landscapes-including the mean and SD of selection and epistasis coefficients-it was often unable to explain the full structure of fitness landscapes.
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
1998-01-01
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism
Gardner, Jason S.
2011-04-01
Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals
Yan, Yun-an
2009-01-01
Hybrid QM(DFT)/MM molecular dynamics simulations have been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. Trajectories are analyzed putting special attention to the geometric correlations of the $\\NHN$ and $\\NHO$ hydrogen bonds in the base pair. Further, based on empirical correlations between the hydrogen bond bond length and the fundamental NH stretching frequency its fluctuations are obtained along the trajectory. Using the time dependent frequencies the infrared lineshape is determined assuming the validity of a second order cumulant expansion. The deviations for the fundamental transition frequencies are calculated to amount to less than 2% as compared with experiment. The width of the spectrum for the $\\NHN$ bond is in reasonable agreement with experiment while that for the $\\NHO$ case is underestimated by the present model. Comparing the performance of different pseudopotentials it is found that the Troulli...
Vogt, Mark; van Gerwen, Dennis J; van den Dobbelsteen, John J; Hagenaars, Martin
2016-01-01
Performance of neuraxial blockade using a midline approach can be technically difficult. It is therefore important to optimize factors that are under the influence of the clinician performing the procedure. One of these factors might be the chosen point of insertion of the needle. Surprisingly few data exist on where between the tips of two adjacent spinous processes the needle should be introduced. A geometrical model was adopted to gain more insight into this issue. Spinous processes were represented by parallelograms. The length, the steepness relative to the skin, and the distance between the parallelograms were varied. The influence of the chosen point of insertion of the needle on the range of angles at which the epidural and subarachnoid space could be reached was studied. The optimal point of insertion was defined as the point where this range is the widest. The geometrical model clearly demonstrated, that the range of angles at which the epidural or subarachnoid space can be reached, is dependent on the point of insertion between the tips of the adjacent spinous processes. The steeper the spinous processes run, the more cranial the point of insertion should be. Assuming that the model is representative for patients, the performance of neuraxial blockade using a midline approach might be improved by choosing the optimal point of insertion.
Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio
2014-05-01
We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.
Geometric model of black hole quantum $N$-portrait, extradimensions and thermodynamics
Frassino, Antonia M; Nicolini, Piero
2016-01-01
Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum $N$-portrait beyond the semi-classical limit. We show that for a generic $N$ this corresponds to having an effective energy momentum tensor in Einstein equations or, equivalently, non-local terms in the gravity action. We also consider the higher dimensional extension of the metric and the case of an AdS cosmological term. We provide a detailed thermodynamic analysis of both cases, with particular reference to the repercussions on the Hawking-Page phase transition.
Makashev, N. K.; Buzykin, O. G.; Asmolov, E. S.
1996-03-01
The gas flow in the system of nozzle-cut is investigated for the case of gas-assisted laser cutting of materials. The direct measurement of pressure fields is used with geometrically similar models which simulate the configuration forming during the laser cutting of metal sheet. The effect of geometric parameters of the system on the flow pattern in the kerf and on its features responsible for the cutting quality is analyzed. The choice and proper implementation of the assisting gas blowing to the cut front zone if of great importance for the gas-assisted laser cutting. There exist many various methods and facilities for the gas delivery. Nozzle configurations of many kinds and the peculiarities of free jet streams formed by them was the subject of extensive exploration. The efficiency of the nozzle under investigation was evaluated empirically or by the pressure exerted to the flat plate in the stagnation point of normally impinging jet. Recently the attention of investigators has been redirected to the details of the gas flow in the cut kerf. This activity is connected with the development of the theoretical models of gas-assisted laser cutting which serves to appreciate the role of the gas flow parameters in the phenomena responsible for the cutting efficiency. The efficiency of the gas delivery which is characterized by the cutting speed, the maximum thickness of the cut material, or the quality parameters of cut edges depends mainly on the flow features in the cut kerf. In the present paper these features are discussed closely. The results of the investigation provide the ability to choose purposefully the geometrical parameters of the nozzle facilities for laser cutter.
Gozzi, E
2004-01-01
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional "supertime", we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schroedinger, the momentum and the coherent states ones.
A geometric network model of intrinsic grey-matter connectivity of the human brain
Lo, Yi-Ping; O'Dea, Reuben; Crofts, Jonathan J.; Han, Cheol E.; Kaiser, Marcus
2015-10-01
Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections.
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.
基于链码的人脸表情几何特征提取%Facial Expression Geometrical Feature Extraction Based on Chain Code
Institute of Scientific and Technical Information of China (English)
张庆; 代锐; 朱雪莹; 韦穗
2012-01-01
已有人脸表情特征提取算法的表情识别率较低.为此,提出一种基于链码的人脸表情几何特征提取算法.以主动形状模型特征点定位为基础,对面部目标上定位的特征点位置进行循环链码编码,以提取出人脸表情几何特征.实验结果表明,相比经典的LBP表情特征鉴别方法,该算法的识别率提高约10％.%The existing facial expression recognition rate of facial expression feature extraction algorithm is low. For this, this paper proposes a facial geometric feature extraction algorithm based chain codes. Based on active shape model that locates feature points and outputs the points' coordinates of facial targets the coding method gives a circular codes to extract the facial geometric feature. Experimental results show that, compared with the method of typical LBP expression recognition, the accuracy of the algorithm is increased by nearly 10%.
Directory of Open Access Journals (Sweden)
Khalaf A. M.
2014-01-01
Full Text Available The critical points of potential energy surface (PES’s of the limits of nuclear struc- ture harmonic oscillator, axially symmetric rotor and deformed -soft and discussed in framework of the general geometric collective model (GCM. Also the shape phase transitions linking the three dynamical symmetries are studied taking into account only three parameters in the PES’s. The model is tested for the case of 238 92 U , which shows a more prolate behavior. The optimized model parameters have been adjusted by fit- ting procedure using a simulated search program in order to reproduce the experimental excitation energies in the ground state band up to 6 + and the two neutron separation energies.
Ferretti, J L; Capozza, R F; Mondelo, N; Zanchetta, J R
1993-11-01
A compensation for differences in bone material quality by bone geometric properties in femora from two different strains of rats was previously shown by us. A feedback mechanism controlling the mechanical properties of the integrated bones was then proposed, in accordance with Frost's mechanostat theory. Evidence of such a system is now offered by the finding of a negative correlation between the modeling-dependent cross-sectional architecture (moment of inertia) and the mineral-dependent stiffness (elastic modulus) of bone material in the femoral diaphyses of 45 normal Wistar rats of different sexes, ages, and sizes. The strength and stiffness of the integrated diaphyses were found to depend on both cross-sectional inertia and body weight, not on bone mineral density. These findings are interpreted as supporting the hypothesis that the architectural efficiency of diaphyseal cross-sectional design resulting from the spatial orientation of bone modeling during growth is optimized as a function of the body weight-dependent bone strain history, within the constraints imposed by bone stiffness. Results suggest a modulating role of biomass, related to the system set point determination, and explain the usually observed lack of a direct correlation between mineral density and strength or stiffness of long bones in studies of geometrically inhomogeneous populations. PMID:8266830
Buliding and Application of Model for Cutter Frame Geometric Errors%刀架几何误差模型的建立及应用
Institute of Scientific and Technical Information of China (English)
王建亮; 刘润爱
2016-01-01
The characteristics of cutter frame of topological structure on general purpose lathe were analyzed systematically.Based on the multi-body system theory and the homogeneous coordinate transformation principle, taking an example for CA6140 lathe, a geo-metric error model for lathe cutter frame system was established through using Matlab programming.Through using man-machine inter-active input method, geometric error modeling and analyzing on cutter frame system were quickly done on tha cutter frame system.The analysis results of error sensitivity and error regularity can be used as important basis for tolerance design and stiffness distribution on cutter frame system.%系统地分析了普通车床刀架的结构特点，以多体系统理论和齐次坐标变换原理为基础，以CA6140车床为例，采用Matlab编程建立了该车床刀架系统的几何误差模型。应用人机交互的模式可以对刀架系统进行快速的几何误差建模与分析。其误差敏感性和规律分析结果可以为刀架系统的公差设计、刚度分配提供重要依据。
Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots
International Nuclear Information System (INIS)
The Poincaré plot emerges as an effective tool for assessing cardiovascular autonomic regulation. It displays nonlinear characteristics of heart rate variability (HRV) from electrocardiographic (ECG) recordings and gives a global view of the long range of ECG signals. In the telemedicine or computer-aided diagnosis system, it would offer significant auxiliary information for diagnosis if the patterns of the Poincaré plots can be automatically classified. Therefore, we developed an automatic classification system to distinguish five geometric patterns of the Poincaré plots from four types of cardiac arrhythmias. The statistics features are designed on measurements and an ensemble classifier of three types of neural networks is proposed. Aiming at the difficulty to set a proper threshold for classifying the multiple categories, the threshold selection strategy is analyzed. 24 h ECG monitoring recordings from 674 patients, which have four types of cardiac arrhythmias, are adopted for recognition. For comparison, Support Vector Machine (SVM) classifiers with linear and Gaussian kernels are also applied. The experiment results demonstrate the effectiveness of the extracted features and the better performance of the designed classifier. Our study can be applied to diagnose the corresponding sinus rhythm and arrhythmia substrates disease automatically in the telemedicine and computer-aided diagnosis system. (paper)
Improved Treatment of the Breast and Supraclavicular Fossa Based on a Simple Geometrical Principle
Energy Technology Data Exchange (ETDEWEB)
Yavetz, Dalia, E-mail: dalia.yavetz@gmail.com [Institute of Radiotherapy, Tel Aviv (Israel); Corn, Benjamin W.; Matceyevsky, Diana; Ben-Josef, Rahamim; Soyfer, Viacheslav [Institute of Radiotherapy, Tel Aviv (Israel); Bershtein, Igal [Diagnostic Imaging, Tel Aviv Medical Center, Tel Aviv (Israel); Inbar, Moshe; Ron, Ilan [Department of Medical Oncology, Tel Aviv (Israel); Jiveliouk, Irena [Institute of Radiotherapy, Tel Aviv (Israel); Department of Medical Oncology, Tel Aviv (Israel); Diagnostic Imaging, Tel Aviv Medical Center, Tel Aviv (Israel); Schifter, Dan [Institute of Radiotherapy, Tel Aviv (Israel)
2011-01-01
In breast cancer, nodal irradiation has become routine, but adds time and creates concerns for field overlap if the 'match' is not accurate. We developed a technique to address these issues by using only one isocenter for both areas. Tangents are designed at simulation. The isocenter is then shifted to the upper border of the breast using a straightforward geometrical calculation. After determining the new isocenter, fields are recreated wherein the tangents are treated with a quarter beam and the supraclavicular field fashioned with a half-beam block. The gantry, collimator, and couch angles of the supraclavicular field are adjusted to achieve an accurate match. Ten patients were evaluated. Doses to the spinal cord and brachial plexus were lowered relative to conventional techniques. The hot spots were not augmented. In comparison with standard arrangements, setup time decreased. Accurate matching was consistently achieved and verified by portal imaging. A new approach for treating the supraclavicular fossa is easily executed. Advantages include negligible doses to the critical neural structures (i.e., spinal cord and brachial plexus), optimized matchline, and reduced setup time.
Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots.
Zhang, Lijuan; Guo, Tianci; Xi, Bin; Fan, Yang; Wang, Kun; Bi, Jiacheng; Wang, Ying
2015-02-01
The Poincaré plot emerges as an effective tool for assessing cardiovascular autonomic regulation. It displays nonlinear characteristics of heart rate variability (HRV) from electrocardiographic (ECG) recordings and gives a global view of the long range of ECG signals. In the telemedicine or computer-aided diagnosis system, it would offer significant auxiliary information for diagnosis if the patterns of the Poincaré plots can be automatically classified. Therefore, we developed an automatic classification system to distinguish five geometric patterns of the Poincaré plots from four types of cardiac arrhythmias. The statistics features are designed on measurements and an ensemble classifier of three types of neural networks is proposed. Aiming at the difficulty to set a proper threshold for classifying the multiple categories, the threshold selection strategy is analyzed. 24 h ECG monitoring recordings from 674 patients, which have four types of cardiac arrhythmias, are adopted for recognition. For comparison, Support Vector Machine (SVM) classifiers with linear and Gaussian kernels are also applied. The experiment results demonstrate the effectiveness of the extracted features and the better performance of the designed classifier. Our study can be applied to diagnose the corresponding sinus rhythm and arrhythmia substrates disease automatically in the telemedicine and computer-aided diagnosis system. PMID:25582837
Sharpness in the k-nearest neighbours random geometric graph model
Falgas-Ravry, Victor
2011-01-01
Let $S_{n,k}$ denote the random geometric graph obtained by placing points in a square box of area $n$ according to a Poisson process of intensity $1$ and joining each point to its $k$ nearest neighbours. Balister, Bollob\\'as, Sarkar and Walters conjectured that for every $0< \\epsilon <1$ and all $n$ sufficiently large there exists $C=C(\\epsilon)$ such that whenever the probability $S_{n,k}$ is connected is at least $\\epsilon $ then the probability $S_{n,k+C}$ is connected is at least $1-\\epsilon $. In this paper we prove this conjecture. As a corollary we prove that there is a constant $C'$ such that whenever $k=k(n)$ is a sequence of integers such that the probability $S_{n,k(n)}$ is connected tends to one as $n$ tends to infinity, then for any $s(n)$ with $s(n)=o(\\log n)$, the probability that $S_{n,k(n)+C's\\log \\log n}$ is $s$-connected tends to one This proves another conjecture of Balister, Bollob\\'as, Sarkar and Walters.
Geometric Clutch model version 3: the role of the inner and outer arm dyneins in the ciliary beat.
Lindemann, Charles B
2002-08-01
The Geometric Clutch model of ciliary and flagellar beating uses the transverse force (t-force) that develops between the outer doublets of the axoneme as the regulator for activating and deactivating the dynein motors and organizing the flagellar beat. The version of the model described here adds detail to the formulations used in the two previous versions as follows: (1) In place of two opposing sets of dyneins, the new model has four sets of dyneins, corresponding to two sets on each side of the axoneme acting in series. (2) The four sets of dyneins are each subdivided into two ranks representing inner and outer arm dyneins. (3) The force produced by each dynein is governed by a force-velocity relationship that is independently specified for the inner and outer arms. Consistent with the original model, the new version of the Geometric Clutch model can simulate both the effective and recovery stroke phases of the ciliary beat using a single uniform algorithm. In addition, the new version can operate with the outer arms disabled. Under this condition, the simulation exhibits a beat pattern similar to the original but the beat frequency is reduced to approximately one third. These results are contingent on using force-velocity relationships for the inner and outer arms similar to those described by Brokaw [1999: Cell Motil. Cytoskeleton 42:134-148], where the inner arms contribute most of the driving force at low shear velocities. This constitutes the first examination of the effects of the force-velocity characteristics of dynein on a cilia-like beat in a theoretical framework. PMID:12112138
Redaelli, A; Di Martino, E; Gamba, A; Procopio, A M; Fumero, R
1997-12-01
In recent years several researchers have suggested that the changes in the geometry and angular dimensions of the aortic root which occur during the cardiac cycle are functional to the optimisation of aortic valve function, both in terms of diminishing leaflet stresses and of fluid-dynamic behaviour. The paper presents an analytical parametric model of the aortic valve which includes the aortic root movement. The indexes used to evaluate the valve behaviour are the circumferential membrane stress and the stress at the free edge of the leaflet, the index of bending strain, the bending of the leaflet at the line attachment in the radial and circumferential directions and the shape of the conduit formed by the leaflets during systole. In order to evaluate the role of geometric changes in valve performance, two control cases were considered, with different reference geometric configuration, where the movement of the aortic root was ignored. The results obtained appear consistent with physiological data, especially with regard to the late diastolic phase and the early ejection phase, and put in evidence the role of the aortic root movement in the improvement of valve behaviour. PMID:9450254
An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms
Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.
2008-07-01
In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving
Geometrical versus semiclassical quantization
International Nuclear Information System (INIS)
The dynamical variational approach based on geometrical quantization is demonstrated to be capable in describing the most important quantum mechanical quantities. In particular, the method appears to be much better under control than the traditional semiclassical methods in treating the systems whose classical counterparts are chaotic. The formal considerations are illustrated using an exactly solvable SU(3)-spin system. (orig.)
Geometric programming for communication systems
Chiang, Mung
2014-01-01
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. ""Geometric Programming for Communication Systems"" begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in
A Multiple-Mechanism Developmental Model for Defining Self-Organizing Geometric Structures
Fleischer, Kurt W.
1995-01-01
This thesis introduces a model of multicellular development. The model combines elements of the chemical, cell lineage, and mechanical models of morphogenesis pioneered by Turing, Lindenmayer, and Odell, respectively. The internal state of each cell in the model is represented by a time-varying state vector that is updated by a differential equation. The differential equation is formulated as a sum of contributions from different sources, describing gene transcription, kinetics, and cell meta...
Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua
2015-12-01
We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic
International Nuclear Information System (INIS)
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity
Berczynski, P; Kravtsov, Y A; Stateczny, A; Kravtsov, Yu.A.
2005-01-01
A simple and effective method based on the eikonal form of complex geometrical optics is presented to describe scalar Gaussian beams propagation and diffraction in arbitrary 3D smoothly inhomogeneous medium. Similarly to paraxial WKB approach the method reduces the wave problem to a set of ordinary differential equations of Riccati type. This substantially simplifies the solution as compared to full wave or quasy-optics equations. The method assumes the complex eikonal equation to be solved in paraxial approximation in curvilinear coordinate frame, which is associated with the central ray of the beam and performs Levi-Civita parallel transport. In this way the system of Riccati-type equations is obtained for complex parameters, which characterize both the beam cross-section and the shape of the phase front. For Gaussian beam propagating in homogeneous medium or along the symmetry axis in lens-like medium, these equations possess analytical solutions, otherwise they can be readily solved numerically. In contra...
Berczynski, P.; Kravtsov, Yu. A.
2004-10-01
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.
Energy Technology Data Exchange (ETDEWEB)
Berczynski, P. [Institute of Physics, Technical University of Szczecin, Szczecin 70-310 (Poland); Kravtsov, Yu.A. [Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation) and Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)]. E-mail: kravtsov@wsm.szczecin.pl
2004-10-18
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.
Welch, Bryan W.
2016-01-01
NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.
A geometric Model for the Spatial Correlation of an Acoustic Vector Field in Surface-generated Noise
Institute of Scientific and Technical Information of China (English)
Yiwang Huang; Qunyan Ren; Ting Li
2012-01-01
Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.
3D Geometric and Haptic Modeling of Hand-Woven Textile Artifacts
Shidanshidi, Hooman; Naghdy, Fazel; Naghdy, Golshah; Conroy, Diana Wood
2010-01-01
International audience Haptic Modeling of textile has attracted significant interest over the last decade. In spite of extensive research, no generic system has been proposed. The previous work mainly assumes that textile has a 2D planar structure. They also require time-consuming objective measurement of textile properties in mechanical/physical model construction. A novel approach for haptic modeling of textile is proposed to overcome the existing shortcomings. The method is generic, ass...
Directory of Open Access Journals (Sweden)
Kotb A.E.H.M. Kotb
2011-01-01
Full Text Available Problem statement: In this study, we provide a simple method to determine the inventory policy of probabilistic single-item Economic Order Quantity (EOQ model, that has varying order cost and zero lead time. The model is restricted to the expected holding cost and the expected available limited storage space. Approach: The annual expected total cost is composed of three components (expected purchase cost, expected ordering cost and expected holding cost. The problem is then solved using a modified Geometric Programming method (GP. Results: Using the annual expected total cost to determine the optimal solutions, number of periods, maximum inventory level and minimum expected total cost per period. A classical model is derived and numerical example is solved to confirm the model. Conclusion/Recommendations: The results indicated the total cost decreased with changes in optimal solutions. Possible future extension of this model was include continuous decreasing ordering function of the number of periods and introducing expected annual demand rate as a decision variable.
Schwartz, Eric
1988-08-01
Much of vertebrate midbrain and mammalian cortex is dedicated to two-dimensional "maps" in which two or more stimulus parameters are encoded by the position of neural activation in the map. Moreover, there are a large number of such maps which interact in an unknown fashion to yield a unified perception of the world. Our research program is based on studying the structure and function of brain maps. In the present paper, we review a recently constructed system of computer aided neuro-anatomy which allows high resolution texture mapped models of cortical surfaces in two and three dimensions to be displayed and manipulated. At the same time, this work demonstrates some of the basic geometric patterns of architecture of the primate brain, such as columnar and topographic mapping.
Scale effects and scaling-up by geometric-optical model
Institute of Scientific and Technical Information of China (English)
李小文; 王锦地; A.H.Strahler
2000-01-01
This is a follow-up paper to our "Scale effect of Planck’s law over nonisothermal blackbody surface". More examples are used to describe the scale effect in detail, and the scaling-up of Planck law over blackbody surface is further extended to three-dimension nonisothermal surface. This scaling-up results in a conceptual model for the directionality and spectral signature of thermal radiation at the scale of remote sensing pixels. This new model is also an improvement of Li-Strahler-Friedl conceptual model in a sense that the new model needs only statistic parameters at the pixel scale, without request of sub-pixel scale parameters as the LSF model does.
Scale effects and scaling-up by geometric-optical model
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This is a follow-up paper to our "Scale effect of Planck's law over nonisothermal blackbody surface".More examples are used to describe the scale effect in detail,and the scaling-up of Planck law over blackbody surface is further extended to three-dimension nonisothermal surface.This scaling-up results in a conceptual model for the directionality and spectral signature of thermal radiation at the scale of remote sensing pixels.This new model is also an improvement of Li-Strahler-Friedl conceptual model in a sense that the new model needs only statistic parameters at the pixel scale,without request of sub-pixel scale parameters as the LSF model does.
Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing
Balasubramaniam, S; Kavitha, V.
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third pa...
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Geometric calibration for a SPECT system dedicated to breast imaging
Institute of Scientific and Technical Information of China (English)
WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci
2012-01-01
Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.
Stationarity and geometric ergodicity of a class of nonlinear ARCH models
Saidi, Youssef; Zakoian, Jean-Michel
2006-01-01
A class of nonlinear ARCH processes is introduced and studied. The existence of a strictly stationary and $\\beta$-mixing solution is established under a mild assumption on the density of the underlying independent process. We give sufficient conditions for the existence of moments. The analysis relies on Markov chain theory. The model generalizes some important features of standard ARCH models and is amenable to further analysis.
Kovalenko Iaroslav; Garan Maryna; Shynkarenko Andrii; Zelený Petr; Šafka Jiří
2016-01-01
In the case of stereolithography 3D printing technology, detaching formed model from the tank with photopolymer is a lengthy process. Forces, which appear during removing of solid photopolymer layerformed in stereolithography 3D DLP printer, can destroy the built model. In this article the detachment force is measured, obtained results arestatistically analyzed and relation between detach force, area of produced layer and thickness of the layer are verified. Linear dependence between detach f...
Institute of Scientific and Technical Information of China (English)
LU Hong; PENG Jun; ZHOU Yongqing
2006-01-01
Perforation of tympanic membrane is one of the main reasons for both deafness and dyssaudia. We could improve and restore audition by restoring or replacing the tympanic membrane. So, whether you can make the spurious tympanic membrane successfully is one of the keys to a successful operation. Utilizing CMM (Coordinate Measuring Machine) measurement equipment, we measured tympanic membrane model precisely and digitally. We also analysed the measured data by point to surface and we have successfully reconstructed the CAD model of the spurious tympanic membrane. Using the model we have got, we schemed out the mold of spurious tympanic membrane. In addition, we utilized MasterCAM compiling CNC (Computerized Numerical Control) code and simulating the course of working. Ultimately, we obtained the mold of spurious tympanic membrane. Our research in this article has great significance to the success of spurious tympanic membrane grafting operation.
Institute of Scientific and Technical Information of China (English)
李小文; 王锦地; Alan H.Strahler
1995-01-01
A new model for light-absorption and alhedo of a vegetation cover combines principles ofgeometric optics and radiative transfer.It relies on the gap probabilities and path length distributions to modelthe penetration of the irradiance from a parailel source and the single and multiple scattering of that irradi-ance.The model is applied to the vegetation covers of the discrete plant crowns that are randomly centredboth on the plane and within a layer of variable thickness（from h1 to h2）above it.Crowns assume a spheroi-dal shape with an arbitrary height to width ratio（B/R）.Geometric optics easily models the irradianee thatpenetrates the vegetation cover directly,and is scattered by the soil,and exist without further scattering by thevegetation.Within a plant crown,the probability of scattering is a negative exponential function of pathlength.Within crown scattering provides the source for the singly scattered radiation,which provides thesource for double scattering,and then higher order pairs of scattering are solved successively by a convolution-like funaion.Early validations using data from a conifer stand near Howland,Maine of USA show reasonableagreement between the modeled and observed albedo.
Cappetti, N; Naddeo, A; Naddeo, F; Solitro, G F
2016-09-01
The aim of this work is to show a quick and simple procedure able to identify the geometrical parameters of the intervertebral disc that strongly affect the behavior of the FEM model. First, we allocated a selection criterion for the minimum number of geometrical parameters that describe, with a good degree of approximation, a healthy human vertebra. Next, we carried out a sensitivity analysis using the 'Taguchi orthogonal array' to arrive at a quick identification of the parameters that strongly affect the behavior of the Fem model. PMID:26693883
Clifford algebras geometric modelling and chain geometries with application in kinematics
Klawitter, Daniel
2015-01-01
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...
Quartic oscillator potential in the γ-rigid regime of the collective geometrical model
International Nuclear Information System (INIS)
A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscillator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at a differential Schroedinger equation with a quartic anharmonic oscillator potential and a centrifugal-like barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single parameter up to an overall scaling factor. The applicability of the model is discussed in connection to the existence interval of the free parameter, which is limited by the accuracy of the approximation, and by comparison with the predictions of the related X(3) and X(3)-β 2 models. The model is applied to qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features. (orig.)
Directory of Open Access Journals (Sweden)
Kovalenko Iaroslav
2016-01-01
Full Text Available In the case of stereolithography 3D printing technology, detaching formed model from the tank with photopolymer is a lengthy process. Forces, which appear during removing of solid photopolymer layerformed in stereolithography 3D DLP printer, can destroy the built model. In this article the detachment force is measured, obtained results arestatistically analyzed and relation between detach force, area of produced layer and thickness of the layer are verified. Linear dependence between detach force and built area is determined. On the other hand, relation between detach force and thickness of the layer is not confirmed.
几何模型在线性代数教学中的应用%Application of Geometric Model in Linear Algebra Teaching
Institute of Scientific and Technical Information of China (English)
席政军
2013-01-01
Through analyzing the relationship between geometric model and linear algebra, this article focuses on the application of geometric model in linear algebra, and discusses the classroom teaching of linear algebra.%本文通过几何模型与线性代数之间的关系，重点讨论几何模型在线性代数中的应用，并对线性代数课堂教学进行了初步探讨。
Simulations of geometrically pinched argon plasmas using an extended one-dimensional model
K.T.A.L. Burm,; W. J. Goedheer,; D.C. Schram,
2001-01-01
The subject of this paper is the modelling of a wall-stabilized cylinder symmetric cascaded are which is to be used as a high-density plasma source. To enhance the ion flux emerging from cascaded are argon plasmas the confining wall can be changed into a nozzle geometry. Such pinched geometries incr
Karipidis, Eleftherios; Sidiropoulos, Nicholas; Tassiulas, Leandros
2008-01-01
The joint power control and base station (BS) assignment problem is considered under Quality-of-Service (QoS) constraints. If a feasible solution exists, the problem can be efficiently solved using existing distributed algorithms. Infeasibility is often encountered in practice, however, which brings up the issue of optimal admission control. The joint problem is NP-hard, yet important for QoS provisioning and bandwidth-efficient operation of existing and emerging cellular and overlay/underlay...
Fay, S; Fay, Stephane; Tavakol, Reza
2006-01-01
We put forward a new model-independent reconstruction scheme for dark energy which utilises the expected geometrical features of the luminosity-distance relation. Using the recently released supernovae data by the Supernova Legacy Survey together with a phase space representation, we show that the reconstructed luminosity-distance curves best fitting the data favour a slower rate of expansion than the $\\Lambda CDM$ model, with a varying dark energy density which goes through a transition from an accelerating to a decelerating phase at a redshift of around 0.45. However, the $\\Lambda CDM$ model cannot be ruled out at 95.4% significance level, in agreement with other recent reconstructions. Interpreting the dark energy as a minimally coupled scalar field we find that the reconstructed scalar field evolution best fitting the data corresponds to an increasing kinetic energy and a decreasing potential energy as the redshift increases. The important advantage of this scheme is that it does not assume explicit ansat...
A three-part geometric model to predict the radar backscatter from wheat, corn, and sorghum
Ulaby, F. T. (Principal Investigator); Eger, G. W., III; Kanemasu, E. T.
1982-01-01
A model to predict the radar backscattering coefficient from crops must include the geometry of the canopy. Radar and ground-truth data taken on wheat in 1979 indicate that the model must include contributions from the leaves, from the wheat head, and from the soil moisture. For sorghum and corn, radar and ground-truth data obtained in 1979 and 1980 support the necessity of a soil moisture term and a leaf water term. The Leaf Area Index (LAI) is an appropriate input for the leaf contribution to the radar response for wheat and sorghum, however the LAI generates less accurate values for the backscattering coefficient for corn. Also, the data for corn and sorghum illustrate the importance of the water contained in the stalks in estimating the radar response.
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
Bioucas-Dias, José M; Dobigeon, Nicolas; Parente, Mario; Du, Qian; Gader, Paul
2012-01-01
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observ...
Volta, Chiara; Gildas Laruelle, Goulven; Arndt, Sandra; Regnier, Pierre
2016-03-01
This study applies the Carbon-Generic Estuary Model (C-GEM) modeling platform to simulate the estuarine biogeochemical dynamics - in particular the air-water CO2 exchange - in three idealized tidal estuaries characterized by increasing riverine influence, from a so-called "marine estuary" to a "riverine estuary". An intermediate case called "mixed estuary" is also considered. C-GEM uses a generic biogeochemical reaction network and a unique set of model parameters extracted from a comprehensive literature survey to perform steady-state simulations representing average conditions for temperate estuaries worldwide. Climate and boundary conditions are extracted from published global databases (e.g., World Ocean Atlas, GLORICH) and catchment model outputs (GlobalNEWS2). The whole-system biogeochemical indicators net ecosystem metabolism (NEM), C and N filtering capacities (FCTC and FCTN, respectively) and CO2 gas exchanges (FCO2) are calculated across the three idealized systems and are related to their main hydrodynamic and transport characteristics. A sensitivity analysis, which propagates the parameter uncertainties, is also carried out, followed by projections of changes in the biogeochemical indicators for the year 2050. Results show that the average C filtering capacities for baseline conditions are 40, 30 and 22 % for the marine, mixed and riverine estuary, respectively, while N filtering capacities, calculated in a similar fashion, range from 22 % for the marine estuary to 18 and 15 % for the mixed and the riverine estuaries. Sensitivity analysis performed by varying the rate constants for aerobic degradation, denitrification and nitrification over the range of values reported in the literature significantly widens these ranges for both C and N. Simulations for the year 2050 suggest that all estuaries will remain largely heterotrophic, although a slight improvement of the estuarine trophic status is predicted. In addition, our results suggest that, while the
Crowdsourcing Based 3d Modeling
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
Semerdzhieva, E. G.; Boyadzhiev, T. L.; Shukrinov, Yu. M.
2005-10-01
The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasi-one-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view.
Zhang, Yue; Sun, Xian; Thiele, Antje; Hinz, Stefan
2015-10-01
Synthetic aperture radar (SAR) systems, such as TanDEM-X, TerraSAR-X and Cosmo-SkyMed, acquire imagery with high spatial resolution (HR), making it possible to observe objects in urban areas with high detail. In this paper, we propose a new top-down framework for three-dimensional (3D) building reconstruction from HR interferometric SAR (InSAR) data. Unlike most methods proposed before, we adopt a generative model and utilize the reconstruction process by maximizing a posteriori estimation (MAP) through Monte Carlo methods. The reason for this strategy refers to the fact that the noisiness of SAR images calls for a thorough prior model to better cope with the inherent amplitude and phase fluctuations. In the reconstruction process, according to the radar configuration and the building geometry, a 3D building hypothesis is mapped to the SAR image plane and decomposed to feature regions such as layover, corner line, and shadow. Then, the statistical properties of intensity, interferometric phase and coherence of each region are explored respectively, and are included as region terms. Roofs are not directly considered as they are mixed with wall into layover area in most cases. When estimating the similarity between the building hypothesis and the real data, the prior, the region term, together with the edge term related to the contours of layover and corner line, are taken into consideration. In the optimization step, in order to achieve convergent reconstruction outputs and get rid of local extrema, special transition kernels are designed. The proposed framework is evaluated on the TanDEM-X dataset and performs well for buildings reconstruction.
Can, Tolga; Wang, Yuan-Fang
2003-01-01
We present a new method for conducting protein structure similarity searches, which improves on the accuracy, robustness, and efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. To improve matching accuracy, we smooth the noisy raw atomic coordinate data with spline fitting. To improve matching efficiency, we adopt a hierarchical coarse-to-fine strategy. We use an efficient hashing-based technique to screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to discover new, meaningful motifs that were not reported by other structure alignment methods.
Rajesh, C.; Majumder, C.; Rajan, M. G. R.; Kulshreshtha, S. K.
2005-12-01
The geometric and electronic structure of the Pbn clusters (n=2-15) has been calculated to elucidate its structural evolution and compared with other group-IV elemental clusters. The search for several low-lying isomers was carried out using the ab initio molecular dynamics simulations under the framework of the density functional theory formalism. The results suggest that unlike Si, Ge, and Sn clusters, which favor less compact prolate shape in the small size range, Pb clusters favor compact spherical structures consisting of fivefold or sixfold symmetries. The difference in the growth motif can be attributed to their bulk crystal structure, which is diamond-like for Si, Ge, and Sn but fcc for Pb. The relative stability of Pbn clusters is analyzed based on the calculated binding energies and second difference in energy. The results suggest that n=4 , 7, 10, and 13 clusters are more stable than their respective neighbors, reflecting good agreement with experimental observation. Based on the fragmentation pattern it is seen that small clusters up to n=12 favor monomer evaporation, larger ones fragment into two stable daughter products. The experimental observation of large abundance for n=7 and lowest abundance of n=14 have been demonstrated from their fragmentation pattern. Finally a good agreement of our theoretical results with that of the experimental findings reported earlier implies accurate predictions of the ground state geometries of these clusters.
Barr, Cameron J.; McDonald, Daniel T.; Xia, Kenong
2015-09-01
Nickel aluminum bronze (NAB) with a duplex structure was subjected to equal channel angular pressing (ECAP). Samples were pressed for up to four passes at 673 K (400 °C) using routes A, BA, BC, and C, respectively, and the evolution of the microstructures was characterized. A detailed geometric model was developed to enable systematic and quantitative analysis of the transformation of the lamellar structure during ECAP. Depending on their orientations before each ECAP pass, the lamellae were either stretched, leading to fragmentation, or compressed, resulting in buckling and spheroidisation at locations of high curvature. Thanks to the continuous rotation of lamellae into the stretching orientations in route A and the non-plane strain deformation in the two B routes, they are demonstrated to be the most effective in breaking down the lamellar structure. In contrast, partial restoration due to redundant strain in route C makes it least efficient. The model applies generally to materials with a duplex structure, such as NAB and low and medium carbon steels, consisting of a hard and brittle lamellar phase and a softer and ductile matrix phase.
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
A quasi-Bohmian approach for a homogeneous spherical solid body based on its geometric structure
Energy Technology Data Exchange (ETDEWEB)
Koupaei, Jalaledin Yousefi [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran 19839 (Iran, Islamic Republic of); Institutes for Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Golshani, Mehdi [Institutes for Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2013-12-15
In this paper we express the space of rotation as a Riemannian space and try to generalize the classical equations of motion of a homogeneous spherical solid body in the domain of quantum mechanics. This is done within Bohm's view of quantum mechanics, but we do not use the Schrödinger equation. Instead, we assume that in addition to the classical potential there is an extra potential and try to obtain it. In doing this, we start from a classical picture based on Hamilton-Jacobi formalism and statistical mechanics but we use an interpretation which is different from the classical one. Then, we introduce a proper action and extremize it. This procedure gives us a mathematical identity for the extra potential that limits its form. The classical mechanics is a trivial solution of this method. In the simplest cases where the extra potential is not a constant, a mathematical identity determines it uniquely. In fact the first nontrivial potential, apart from some constant coefficients which are determined by experiment, is the usual Bohmian quantum potential.
PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats
Energy Technology Data Exchange (ETDEWEB)
Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC
2012-04-06
We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.
Mortari, F.; Zlatanova, S.; Liu, L.; Clementini, E.
2014-04-01
Over the past few years Personal Navigation Systems have become an established tool for route planning, but they are mainly designed for outdoor environments. Indoor navigation is still a challenging research area for several reasons: positioning is not very accurate, users can freely move between the interior boundaries of buildings, path network construction process may not be easy and straightforward due to complexity of indoor space configurations. Therefore the creation of a good network is essential for deriving overall connectivity of a building and for representing position of objects within the environment. This paper reviews current approaches to automatic derivation of route graphs for indoor navigation and discusses some of their limitations. Then, it introduces a novel algorithmic strategy for extracting a 3D connectivity graph for indoor navigation based on 2D floor plans.
Noncommutative Geometric Gauge Theory from Superconnections
Lee, Chang-Yeong
1996-01-01
Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment
Li, D.; Li, R.; Yilmaz, A.
2014-08-01
ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping accuracy, quantitative error analysis of the PanCam design will improve scientists' awareness of the achievable level of accuracy, and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal length, and pixel size, etc.
Marianelli, Prisca; Berthoz, Alain; Bennequin, Daniel
2015-02-01
The crista ampullaris is the epithelium at the end of the semicircular canals in the inner ear of vertebrates, which contains the sensory cells involved in the transduction of the rotational head movements into neuronal activity. The crista surface has the form of a saddle, or a pair of saddles separated by a crux, depending on the species and the canal considered. In birds, it was described as a catenoid by Landolt et al. (J Comp Neurol 159(2):257-287, doi: 10.1002/cne.901590207 , 1972). In the present work, we establish that this particular form results from principles of invariance maximization and energy minimization. The formulation of the invariance principle was inspired by Takumida (Biol Sci Space 15(4):356-358, 2001). More precisely, we suppose that in functional conditions, the equations of linear elasticity are valid, and we assume that in a certain domain of the cupula, in proximity of the crista surface, (1) the stress tensor of the deformed cupula is invariant under the gradient of the pressure, (2) the dissipation of energy is minimum. Then, we deduce that in this domain the crista surface is a minimal surface and that it must be either a planar, or helicoidal Scherk surface, or a piece of catenoid, which is the unique minimal surface of revolution. If we add the hypothesis that the direction of invariance of the stress tensor is unique and that a bilateral symmetry of the crista exists, only the catenoid subsists. This finding has important consequences for further functional modeling of the role of the vestibular system in head motion detection and spatial orientation.
Alsmadi, Mutasem Khalil Sari; Noah, Shahrul Azman; Almarashdah, Ibrahim
2009-01-01
We presents in this paper a novel fish classification methodology based on a combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task and do not make the combination between the feature selection, image segmentation and geometrical parameter, we propose a general set of features extraction using robust feature selection, image segmentation and geometrical parameter and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a black box and focus our research in the determination of which input information must bring a robust fish discrimination.The main contribution of this paper is enhancement recognize and classify fishes...
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback. PMID:15794139
Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.
2000-01-01
Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.
Barone, S; Paoli, A; Razionale, A V
2011-02-01
Chronic wounds represent a particular debilitating health care problem, mainly affecting elderly people. A full and correct diagnosis of tissue damage should be carried out considering both dimensional, chromatic, and thermal parameters. A great variety of methods have been proposed with the aim of producing objective assessment of skin lesions, but none of the existing technologies seem to be robust enough to work for all ulcer typologies. This paper describes an innovative and non-invasive system that allows the automatic measurement of non-healing chronic wounds. The methodology involves the integration of a three-dimensional (3D) optical scanner, based on a structured light approach, with a thermal imager. The system enables the acquisition of geometrical data, which are directly related to chromatic and temperature patterns through a mapping procedure. Damaged skin areas are detected by combining visible and thermal imaging. This approach allows for the automatic measurement of extension and depth of ulcers, even in the absence of significant and well-defined chromatic patterns. The proposed technology has been tested in the measurement of ulcers on human legs. Clinical tests have demonstrated the effectiveness of this methodology in supporting medical experts for the assessment of chronic wounds. PMID:21428152
International Nuclear Information System (INIS)
Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes
Energy Technology Data Exchange (ETDEWEB)
Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne (Australia); Te Marvelde, Luc [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Mengersen, Kerrie [School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane (Australia); Foroudi, Farshad [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Eade, Thomas [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Northern Clinical School, University of Sydney (Australia); Pham, Daniel [Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne (Australia); Caine, Hannah [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Kron, Tomas [The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia)
2015-06-01
Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.
Studies in geometric quantization
International Nuclear Information System (INIS)
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Vannitsem, Stephane
2015-01-01
We study a simplified coupled atmosphere-ocean model using the formalism of covariant Lyapunov vectors (CLVs), which link physically-based directions of perturbations to growth/decay rates. The model is obtained via a severe truncation of quasi-geostrophic equations for the two fluids, and includes a simple yet physically meaningful representation of their dynamical/thermodynamical coupling. The model has 36 degrees of freedom, and the parameters are chosen so that a chaotic behaviour is observed. One finds two positive Lyapunov exponents (LEs), sixteen negative LEs, and eighteen near-zero LEs. The presence of many near-zero LEs results from the vast time-scale separation between the characteristic time scales of the two fluids, and leads to nontrivial error growth properties in the tangent space spanned by the corresponding CLVs, which are geometrically very degenerate. Such CLVs correspond to two different classes of ocean/atmosphere coupled modes. The tangent space spanned by the CLVs corresponding to the ...
Diggle, Peter J
2007-01-01
Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume provides a treatment of model-based geostatistics and emphasizes on statistical methods and applications. It also features analyses of datasets from a range of scientific contexts.
Geometric model and visualization of wheat spike%小麦麦穗几何模型构建与可视化
Institute of Scientific and Technical Information of China (English)
雷晓俊; 汤亮; 张永会; 姜海燕; 曹卫星; 朱艳
2011-01-01
Crop organ morphological model is one of the key technologies of virual crop. By observing and analyzing the morphological and topological structures of wheat spike, the morphological parameter-based 3D geometric model and visualization method were developed. Based on the existing morphological model of spike in wheat, the 3D morphological geometric model of wheat spike was constructed by integrating the topological structure of spike, including the submodels of ear axis, spikelet (including outer bran, awn and anther) and spike shape. The ear axis was constructed by connected proglottids which were represented by slant cylinder. Based on the surface vertical curve, the outer bran was simulated by approximate semiellipsoid with triangular faces. The awn, with transversal surface as nearly equilateral triangular, was constructed by triangular faces based on the curve of awn. The anther on the top of floret in flowering stage was simulated with NURBS surface. In addition, the spike shape was controlled by using hierarchical model. Then according to the topological structure, the above organ models were organized together to rebuild the whole 3D geometric model of wheat spike. By further integrating the rendering models of color, texture and light, the visualization of growth dynamic of wheat spike was realized based on the platform of Microsoft .Net and CSOpenGL graphic library. The reconstructed geometric model with three dimensions can simulate visualization of growth dynamic of wheat spike under different varieties and treatments. The result will be helpful to realizing the realistic simulation of wheat plant, and the digitalization and visualization of growth dynamic of wheat.%作物器官几何建模是虚拟作物研究的关键技术之一.通过对小麦穗形态结构的观测分析,提出基于形态特征参数的麦穗几何模型及可视化实现方法.在已有麦穗形态模拟模型的基础上,结合麦穗拓扑结构,构建麦穗形态结构几何
Geometrical deployment for braided stent.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes
2016-05-01
The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065
Directory of Open Access Journals (Sweden)
KAMBIZ ABEDI
2011-08-01
Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
Geometric interpretations for resonances of plasmonic nanoparticles
Liu, Wei; Kivshar, Yuri S
2014-01-01
The rapidly developing field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in plasmonic waveguides and localized surface plasmons (LSPs) supported by scattering plasmonic particles. Investigations along these two directions usually employ quite different approaches and techniques, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have b...
Geometric multipartite entanglement measures
Energy Technology Data Exchange (ETDEWEB)
Paz-Silva, Gerardo A. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)]. E-mail: gerapaz@univalle.edu.co; Reina, John H. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia) and Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)]. E-mail: j.reina-estupinan@physics.ox.ac.uk
2007-05-21
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive.