Fast Multipole-Based Elliptic PDE Solver and Preconditioner
Ibeid, Huda
2016-12-07
Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity
Fourier-Based Fast Multipole Method for the Helmholtz Equation
Cecka, Cris
2013-01-01
The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.
Fast Multipole-Based Preconditioner for Sparse Iterative Solvers
Ibeid, Huda
2014-05-04
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.
Toivanen, Elias A; Losilla, Sergio A; Sundholm, Dage
2015-12-21
Algorithms and working expressions for a grid-based fast multipole method (GB-FMM) have been developed and implemented. The computational domain is divided into cubic subdomains, organized in a hierarchical tree. The contribution to the electrostatic interaction energies from pairs of neighboring subdomains is computed using numerical integration, whereas the contributions from further apart subdomains are obtained using multipole expansions. The multipole moments of the subdomains are obtained by numerical integration. Linear scaling is achieved by translating and summing the multipoles according to the tree structure, such that each subdomain interacts with a number of subdomains that are almost independent of the size of the system. To compute electrostatic interaction energies of neighboring subdomains, we employ an algorithm which performs efficiently on general purpose graphics processing units (GPGPU). Calculations using one CPU for the FMM part and 20 GPGPUs consisting of tens of thousands of execution threads for the numerical integration algorithm show the scalability and parallel performance of the scheme. For calculations on systems consisting of Gaussian functions (α = 1) distributed as fullerenes from C20 to C720, the total computation time and relative accuracy (ppb) are independent of the system size.
A pragmatic overview of fast multipole methods
Energy Technology Data Exchange (ETDEWEB)
Strickland, J.H.; Baty, R.S.
1995-12-01
A number of physics problems can be modeled by a set of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only 0 (N lnN) or O (N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.
Gaussian translation operator for Multi-Level Fast Multipole Method
DEFF Research Database (Denmark)
Borries, Oscar Peter; Hansen, Per Christian; Sorensen, Stig B.
2014-01-01
Results using a new translation operator for the Multi-Level Fast Multipole Method are presented. Based on Gaussian beams, the translation operator allows a significant portion of the plane-wave directions to be neglected, resulting in a much faster translation step.......Results using a new translation operator for the Multi-Level Fast Multipole Method are presented. Based on Gaussian beams, the translation operator allows a significant portion of the plane-wave directions to be neglected, resulting in a much faster translation step....
Efficient fast multipole method for low-frequency scattering
International Nuclear Information System (INIS)
Darve, Eric; Have, Pascal
2004-01-01
The solution of the Helmholtz and Maxwell equations using integral formulations requires to solve large complex linear systems. A direct solution of those problems using a Gauss elimination is practical only for very small systems with few unknowns. The use of an iterative method such as GMRES can reduce the computational expense. Most of the expense is then computing large complex matrix vector products. The cost can be further reduced by using the fast multipole method which accelerates the matrix vector product. For a linear system of size N, the use of an iterative method combined with the fast multipole method reduces the total expense of the computation to NlogN. There exist two versions of the fast multipole method: one which is based on a multipole expansion of the interaction kernel expιkr/r and which was first proposed by V. Rokhlin and another based on a plane wave expansion of the kernel, first proposed by W.C. Chew. In this paper, we propose a third approach, the stable plane wave expansion (SPW-FMM), which has a lower computational expense than the multipole expansion and does not have the accuracy and stability problems of the plane wave expansion. The computational complexity is NlogN as with the other methods
Directory of Open Access Journals (Sweden)
María-Jesús Algar
2014-01-01
Full Text Available This paper proposes a hybrid technique for treating electromagnetic problems of scattering and radiation in which the source structure is described as an array of antennas. This strategy is based on the combination of the rigorous method multilevel fast multipole algorithm (MLFMA and the high frequency technique geometrical theory of diffraction (GTD. Thanks to the use of MLFMA, the source can be discretized into several cubic regions considering each of them as a source point in order to reduce the number of times required to compute the ray tracing when GTD is applied to obtain the scatter field. In this analysis, objects with complex shapes are described by using nonuniform rational B-splines (NURBS which is a very common way to model geometrical bodies. Numerical results that demonstrate the accuracy and efficiency in terms of CPU time are shown.
An overview of fast multipole methods
Energy Technology Data Exchange (ETDEWEB)
Strickland, J.H.; Baty, R.S.
1995-11-01
A number of physics problems may be cast in terms of Hilbert-Schmidt integral equations. In many cases, the integrals tend to be zero over a large portion of the domain of interest. All of the information is contained in compact regions of the domain which renders their use very attractive from the standpoint of efficient numerical computation. Discrete representation of these integrals leads to a system of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only O(Nln N) or O(N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.
Scalable fast multipole accelerated vortex methods
Hu, Qi
2014-05-01
The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.
Performance Benchmarking of Fast Multipole Methods
Al-Harthi, Noha A.
2013-06-01
The current trends in computer architecture are shifting towards smaller byte/flop ratios, while available parallelism is increasing at all levels of granularity – vector length, core count, and MPI process. Intel’s Xeon Phi coprocessor, NVIDIA’s Kepler GPU, and IBM’s BlueGene/Q all have a Byte/flop ratio close to 0.2, which makes it very difficult for most algorithms to extract a high percentage of the theoretical peak flop/s from these architectures. Popular algorithms in scientific computing such as FFT are continuously evolving to keep up with this trend in hardware. In the meantime it is also necessary to invest in novel algorithms that are more suitable for computer architectures of the future. The fast multipole method (FMM) was originally developed as a fast algorithm for ap- proximating the N-body interactions that appear in astrophysics, molecular dynamics, and vortex based fluid dynamics simulations. The FMM possesses have a unique combination of being an efficient O(N) algorithm, while having an operational intensity that is higher than a matrix-matrix multiplication. In fact, the FMM can reduce the requirement of Byte/flop to around 0.01, which means that it will remain compute bound until 2020 even if the cur- rent trend in microprocessors continues. Despite these advantages, there have not been any benchmarks of FMM codes on modern architectures such as Xeon Phi, Kepler, and Blue- Gene/Q. This study aims to provide a comprehensive benchmark of a state of the art FMM code “exaFMM” on the latest architectures, in hopes of providing a useful reference for deciding when the FMM will become useful as the computational engine in a given application code. It may also serve as a warning to certain problem size domains areas where the FMM will exhibit insignificant performance improvements. Such issues depend strongly on the asymptotic constants rather than the asymptotics themselves, and therefore are strongly implementation and hardware
An adaptive fast multipole accelerated Poisson solver for complex geometries
Askham, T.; Cerfon, A. J.
2017-09-01
We present a fast, direct and adaptive Poisson solver for complex two-dimensional geometries based on potential theory and fast multipole acceleration. More precisely, the solver relies on the standard decomposition of the solution as the sum of a volume integral to account for the source distribution and a layer potential to enforce the desired boundary condition. The volume integral is computed by applying the FMM on a square box that encloses the domain of interest. For the sake of efficiency and convergence acceleration, we first extend the source distribution (the right-hand side in the Poisson equation) to the enclosing box as a C0 function using a fast, boundary integral-based method. We demonstrate on multiply connected domains with irregular boundaries that this continuous extension leads to high accuracy without excessive adaptive refinement near the boundary and, as a result, to an extremely efficient "black box" fast solver.
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
Volumetric fast multipole method for modeling Schroedinger's equation
International Nuclear Information System (INIS)
Zhao, Zhiqin; Kovvali, Narayan; Lin, Wenbin; Ahn, Chang-Hoi; Couchman, Luise; Carin, Lawrence
2007-01-01
A volume integral equation method is presented for solving Schroedinger's equation for three-dimensional quantum structures. The method is applicable to problems with arbitrary geometry and potential distribution, with unknowns required only in the part of the computational domain for which the potential is different from the background. Two different Green's functions are investigated based on different choices of the background medium. It is demonstrated that one of these choices is particularly advantageous in that it significantly reduces the storage and computational complexity. Solving the volume integral equation directly involves O(N 2 ) complexity. In this paper, the volume integral equation is solved efficiently via a multi-level fast multipole method (MLFMM) implementation, requiring O(N log N) memory and computational cost. We demonstrate the effectiveness of this method for rectangular and spherical quantum wells, and the quantum harmonic oscillator, and present preliminary results of interest for multi-atom quantum phenomena
Parallel fast multipole boundary element method applied to computational homogenization
Ptaszny, Jacek
2018-01-01
In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.
Asynchronous Execution of the Fast Multipole Method Using Charm++
AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David
2014-01-01
Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...
Scalable fast multipole methods for vortex element methods
Hu, Qi
2012-11-01
We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.
Data-driven execution of fast multipole methods
Ltaief, Hatem
2013-09-17
Fast multipole methods (FMMs) have O (N) complexity, are compute bound, and require very little synchronization, which makes them a favorable algorithm on next-generation supercomputers. Their most common application is to accelerate N-body problems, but they can also be used to solve boundary integral equations. When the particle distribution is irregular and the tree structure is adaptive, load balancing becomes a non-trivial question. A common strategy for load balancing FMMs is to use the work load from the previous step as weights to statically repartition the next step. The authors discuss in the paper another approach based on data-driven execution to efficiently tackle this challenging load balancing problem. The core idea consists of breaking the most time-consuming stages of the FMMs into smaller tasks. The algorithm can then be represented as a directed acyclic graph where nodes represent tasks and edges represent dependencies among them. The execution of the algorithm is performed by asynchronously scheduling the tasks using the queueing and runtime for kernels runtime environment, in a way such that data dependencies are not violated for numerical correctness purposes. This asynchronous scheduling results in an out-of-order execution. The performance results of the data-driven FMM execution outperform the previous strategy and show linear speedup on a quad-socket quad-core Intel Xeon system.Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
A task parallel implementation of fast multipole methods
Taura, Kenjiro
2012-11-01
This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM, experiences have almost exclusively been limited to formulation based on flat homogeneous parallel loops. FMM in fact contains operations that cannot be readily expressed in such conventional but restrictive models. We show that task parallelism, or parallel recursions in particular, allows us to parallelize all operations of FMM naturally and scalably. Moreover it allows us to parallelize a \\'\\'mutual interaction\\'\\' for force/potential evaluation, which is roughly twice as efficient as a more conventional, unidirectional force/potential evaluation. The net result is an open source FMM that is clearly among the fastest single node implementations, including those on GPUs; with a million particles on a 32 cores Sandy Bridge 2.20GHz node, it completes a single time step including tree construction and force/potential evaluation in 65 milliseconds. The study clearly showcases both programmability and performance benefits of flexible parallel constructs over more monolithic parallel loops. © 2012 IEEE.
Multilevel Fast Multipole Method for Higher Order Discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....
Improved Multilevel Fast Multipole Method for Higher-Order discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion...... being that going above 2nd order is not worthwhile. In this paper, we challenge this conclusion, providing results that demonstrate the potential performance gains with Higher-Order MLFMM and showing some modifications to the traditional MLFMM that can benefit both Higher-Order and standard...
Chen, Zejun; Xiao, Hong
2012-11-01
Fast multipole boundary element methods (FMBEMs) are developed based on the couple of fast multipole algorithm and generalized minimal residual algorithm. The FMBEMs improve the efficiency of conventional BEMs, accelerate the computing, enlarge the solving scale, and it is applied in various engineering fields. The paper tried to do a brief review for the FMBEMs, and focus on the description of basic principles and applications in rolling engineering. The basic principles and main frameworks of two typical methods of FMBEMs (sphere harmonic function multipole BEM and Taylor series multipole BEM) are briefly described, and then the key numerical iterative and preconditioning techniques suitable for the FMBEMs are introduced. The typical numerical examples are presented, including the elasticity problems, the elastic contact problems and the elastoplasticity problems, etc. The validity and effectiveness of FMBEMs are effectively illustrated by engineering analysis examples. The numerical results suggest that the FMBEMs are suitable for the analysis and solution of large scale rolling engineering problems. The implementation process of numerical analysis can provide useful reference for the applications in other engineering fields.
A new Fast Multipole formulation for the elastodynamic half-space Green's tensor
Chaillat, Stéphanie; Bonnet, Marc
2014-02-01
In this article, a version of the frequency-domain elastodynamic Fast Multipole-Boundary Element Method (FM-BEM) for semi-infinite media, based on the half-space Green's tensor (and hence avoiding any discretization of the planar traction-free surface), is presented. The half-space Green's tensor is often used (in non-multipole form until now) for computing elastic wave propagation in the context of soil-structure interaction, with applications to seismology or civil engineering. However, unlike the full-space Green's tensor, the elastodynamic half-space Green's tensor cannot be expressed using derivatives of the Helmholtz fundamental solution. As a result, multipole expansions of that tensor cannot be obtained directly from known expansions, and are instead derived here by means of a partial Fourier transform with respect to the spatial coordinates parallel to the free surface. The obtained formulation critically requires an efficient quadrature for the Fourier integral, whose integrand is both singular and oscillatory. Under these conditions, classical Gaussian quadratures would perform poorly, fail or require a large number of points. Instead, a version custom-tailored for the present needs of a methodology proposed by Rokhlin and coauthors, which generates generalized Gaussian quadrature rules for specific types of integrals, has been implemented. The accuracy and efficiency of the proposed formulation is demonstrated through numerical experiments on single-layer elastodynamic potentials involving up to about N=6×105 degrees of freedom. In particular, a complexity significantly lower than that of the non-multipole version is shown to be achieved.
Fast multipole preconditioners for sparse matrices arising from elliptic equations
Ibeid, Huda
2017-11-09
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
Directory of Open Access Journals (Sweden)
A. Schroeder
2012-09-01
Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.
Adaptive grouping for the higher-order multilevel fast multipole method
DEFF Research Database (Denmark)
Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter
2014-01-01
An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...
Cardiac magnetic source imaging based on current multipole model
International Nuclear Information System (INIS)
Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping
2011-01-01
It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared. (general)
Li, ShanDe; Gao, GuiBing; Huang, QiBai; Liu, WeiQi; Chen, Jun
2011-08-01
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to overcome non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.
Ergul, Ozgur
2014-01-01
The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examplesCovers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objectsDiscusses applications including scattering from airborne targets, scattering from red
Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.
2018-05-01
Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.
Energy Technology Data Exchange (ETDEWEB)
Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: paul.tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2015-03-14
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai
2010-12-01
FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been
Periodic boundary conditions and the error-controlled fast multipole method
Energy Technology Data Exchange (ETDEWEB)
Kabadshow, Ivo
2012-08-22
The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.
International Nuclear Information System (INIS)
Zhang Wen; Haas, Stephan
2009-01-01
An implementation of the fast multiple method (FMM) is performed for magnetic systems with long-ranged dipolar interactions. Expansion in spherical harmonics of the original FMM is replaced by expansion of polynomials in Cartesian coordinates, which is considerably simpler. Under open boundary conditions, an expression for multipole moments of point dipoles in a cell is derived. These make the program appropriate for nanomagnetic simulations, including magnetic nanoparticles and ferrofluids. The performance is optimized in terms of cell size and parameter set (expansion order and opening angle) and the trade off between computing time and accuracy is quantitatively studied. A rule of thumb is proposed to decide the appropriate average number of dipoles in the smallest cells, and an optimal choice of parameter set is suggested. Finally, the superiority of Cartesian coordinate FMM is demonstrated by comparison to spherical harmonics FMM and FFT.
Kim, Bongkeun; Song, Xueyu
2011-01-01
The osmotic second virial coefficients B2 are directly related to the solubility of protein molecules in electrolyte solutions and can be useful to narrow down the search parameter space of protein crystallization conditions. Using a residue level model of protein-protein interaction in electrolyte solutions B2 of bovine pancreatic trypsin inhibitor and lysozyme in various solution conditions such as salt concentration, pH and temperature are calculated using an extended fast multipole method in combination with the boundary element formulation. Overall, the calculated B2 are well correlated with the experimental observations for various solution conditions. In combination with our previous work on the binding affinity calculations it is reasonable to expect that our residue level model can be used as a reliable model to describe protein-protein interaction in solutions.
Combining the multilevel fast multipole method with the uniform geometrical theory of diffraction
Directory of Open Access Journals (Sweden)
A. Tzoulis
2005-01-01
Full Text Available The presence of arbitrarily shaped and electrically large objects in the same environment leads to hybridization of the Method of Moments (MoM with the Uniform Geometrical Theory of Diffraction (UTD. The computation and memory complexity of the MoM solution is improved with the Multilevel Fast Multipole Method (MLFMM. By expanding the k-space integrals in spherical harmonics, further considerable amount of memory can be saved without compromising accuracy and numerical speed. However, until now MoM-UTD hybrid methods are restricted to conventional MoM formulations only with Electric Field Integral Equation (EFIE. In this contribution, a MLFMM-UTD hybridization for Combined Field Integral Equation (CFIE is proposed and applied within a hybrid Finite Element - Boundary Integral (FEBI technique. The MLFMM-UTD hybridization is performed at the translation procedure on the various levels of the MLFMM, using a far-field approximation of the corresponding translation operator. The formulation of this new hybrid technique is presented, as well as numerical results.
Petascale molecular dynamics simulation using the fast multipole method on K computer
Ohno, Yousuke
2014-10-01
In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.
Ergül, Özgür
2011-11-01
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.
Ibeid, Huda
2016-03-04
Exascale systems are predicted to have approximately 1 billion cores, assuming gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. The fast multipole method (FMM) was originally developed for accelerating N-body problems in astrophysics and molecular dynamics but has recently been extended to a wider range of problems. Its high arithmetic intensity combined with its linear complexity and asynchronous communication patterns make it a promising algorithm for exascale systems. In this paper, we discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on internode communication. We focus on the communication part only; the efficiency of the computational kernels are beyond the scope of the present study. We develop a performance model that considers the communication patterns of the FMM and observe a good match between our model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization of internode communication in FMM that validates the model against actual measurements of communication time. The ultimate communication model is predictive in an absolute sense; however, on complex systems, this objective is often out of reach or of a difficulty out of proportion to its benefit when there exists a simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The current model provides such guidance.
A multipole acceptability criterion for electronic structure theory
International Nuclear Information System (INIS)
Schwegler, E.; Challacombe, M.; Head-Gordon, M.
1998-01-01
Accurate and computationally inexpensive estimates of multipole expansion errors are crucial to the success of several fast electronic structure methods. In this paper, a new nonempirical multipole acceptability criterion is described that is directly applicable to expansions of high order moments. Several model calculations typical of electronic structure theory are presented to demonstrate its performance. For cases involving small translation distances, accuracies are increased by up to five orders of magnitude over an empirical criterion. The new multipole acceptance criterion is on average within an order of magnitude of the exact expansion error. Use of the multipole acceptance criterion in hierarchical multipole based methods as well as in traditional electronic structure methods is discussed. copyright 1998 American Institute of Physics
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Quevedo, L.; Hansra, B.; Morra, G.; Butterworth, N.; Müller, R. D.
2013-04-01
Geodynamic models describe the thermo-mechanical evolution of rheologically intricate structures spanning different length scales, yet many of their most relevant dynamic features can be studied in terms of low Reynolds number multiphase creep flow of isoviscous and isopycnic structures. We use the BEM-E arth code to study the interaction of the lithosphere and mantle within the solid earth system in this approximation. BEM-E arth overcomes the limitations of traditional FD/FEM for this problem by considering only the dynamics of Boundary Integral Elements at fluid interfaces, and employing a parallel multipole solver accelerated with a hashed octtree. As an application example, we self-consistently model the processes controlling the subduction of an oblique mid-ocean ridge in a global 3D spherical setting in a variety of cases, and find a critical angle characterising the transition between an extensional strain regime related to tectonic plate necking and a compressive regime related to Earth curvature effects.
Rezaeian, P.; Ataenia, V.; Shafiei, S.
2017-12-01
In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.
Shieh, Bernard; Sabra, Karim; Degertekin, F. Levent
2016-01-01
A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix which captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully-populated boundary element matrix equation using standard techniques requires computation time and memory usage which scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multi-level fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green’s function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver’s capabilities by simulating a 32-element 7 MHz 1-D CMUT phased array with 2880 membranes. The array is simulated using 233,280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15,210 nodes, the FMA solver performed 10-times faster and used 32-times less memory than a standard solver based on LU decomposition We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about 7 nodes over the width of the membrane to observe convergence of the solution–even below the first membrane resonance frequency–due to the influence of higher-order membrane modes. PMID:27824572
AbdulJabbar, Mustafa Abdulmajeed
2017-07-31
Manycore optimizations are essential for achieving performance worthy of anticipated exascale systems. Utilization of manycore chips is inevitable to attain the desired floating point performance of these energy-austere systems. In this work, we revisit ExaFMM, the open source Fast Multiple Method (FMM) library, in light of highly tuned shared-memory parallelization and detailed performance analysis on the new highly parallel Intel manycore architecture, Knights Landing (KNL). We assess scalability and performance gain using task-based parallelism of the FMM tree traversal. We also provide an in-depth analysis of the most computationally intensive part of the traversal kernel (i.e., the particle-to-particle (P2P) kernel), by comparing its performance across KNL and Broadwell architectures. We quantify different configurations that exploit the on-chip 512-bit vector units within different task-based threading paradigms. MPI communication-reducing and NUMA-aware approaches for the FMM’s global tree data exchange are examined with different cluster modes of KNL. By applying several algorithm- and architecture-aware optimizations for FMM, we show that the N-Body kernel on 256 threads of KNL achieves on average 2.8× speedup compared to the non-vectorized version, whereas on 56 threads of Broadwell, it achieves on average 2.9× speedup. In addition, the tree traversal kernel on KNL scales monotonically up to 256 threads with task-based programming models. The MPI-based communication-reducing algorithms show expected improvements of the data locality across the KNL on-chip network.
El-Shenawee, Magda
2004-01-01
This paper presents an intensive numerical study of the resonance scattering of malignant breast cancer tumors. The three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain induced electric and magnetic currents on breast and tumor surfaces. The results show that the nonspherical malignant tumor can be characterized, based on its spectra, regardless of orientation, incident polarization, or incident or scattered directions. The spectra of the tumor depend solely upon its physical characteristics (i.e., shape and electrical properties); however, their locations are not functions of the depth of the tumor beneath the breast surface. This paper can be a guide in the selection of the frequency range at which the tumor resonates to produce the maximum signature at the receiver.
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui
2017-12-31
In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.
The generalized multipole technique for light scattering recent developments
Eremin, Yuri
2018-01-01
This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes ...
Tensor spherical harmonics and tensor multipoles. II. Minkowski space
International Nuclear Information System (INIS)
Daumens, M.; Minnaert, P.
1976-01-01
The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation
Maxwell's Multipole Vectors and the CMB
Weeks, Jeffrey R.
2004-01-01
The recently re-discovered multipole vector approach to understanding the harmonic decomposition of the cosmic microwave background traces its roots to Maxwell's Treatise on Electricity and Magnetism. Taking Maxwell's directional derivative approach as a starting point, the present article develops a fast algorithm for computing multipole vectors, with an exposition that is both simpler and better motivated than in the author's previous work. Tests show the resulting algorithm, coded up as a ...
Smooth Teeth: Why Multipoles Are Perfect Gears
Schönke, Johannes
2015-12-01
A type of gear is proposed based on the interaction of individual multipoles. The underlying principle relies on previously unknown continuous degenerate ground states for pairs of interacting multipoles which are free to rotate around specific axes. These special rotation axes, in turn, form a one-parameter family of possible configurations. This allows for the construction of magnetic bevel gears with any desired inclination angle between the in- and output axes. Further, the design of gear systems with more than two multipoles is possible and facilitates tailored applications. Ultimately, an analogy between multipoles and mechanical gears is revealed. In contrast to the mechanical case, the multipole "teeth" mesh smoothly. As an illustrative application, the example of a quadrupole-dipole interaction is then used to construct a 1 ∶2 gear ratio.
Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang
2017-12-01
Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.
International Nuclear Information System (INIS)
Lim, T.
2011-01-01
To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [fr
Atomic forces for geometry-dependent point multipole and gaussian multipole models.
Elking, Dennis M; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G
2010-11-30
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In this study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives partial derivative D(m'm)(l)/partial derivative Omega. The force equations can be applied to electrostatic models based on atomic point multipoles or gaussian multipole charge density. Hydrogen-bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. 2010 Wiley Periodicals, Inc.
Lakshminarasimhulu, Pasupulati; Madura, Jeffry D.
2002-04-01
A domain decomposition algorithm for molecular dynamics simulation of atomic and molecular systems with arbitrary shape and non-periodic boundary conditions is described. The molecular dynamics program uses cell multipole method for efficient calculation of long range electrostatic interactions and a multiple time step method to facilitate bigger time steps. The system is enclosed in a cube and the cube is divided into a hierarchy of cells. The deepest level cells are assigned to processors such that each processor has contiguous cells and static load balancing is achieved by redistributing the cells so that each processor has approximately same number of atoms. The resulting domains have irregular shape and may have more than 26 neighbors. Atoms constituting bond angles and torsion angles may straddle more than two processors. An efficient strategy is devised for initial assignment and subsequent reassignment of such multiple-atom potentials to processors. At each step, computation is overlapped with communication greatly reducing the effect of communication overhead on parallel performance. The algorithm is tested on a spherical cluster of water molecules, a hexasaccharide and an enzyme both solvated by a spherical cluster of water molecules. In each case a spherical boundary containing oxygen atoms with only repulsive interactions is used to prevent evaporation of water molecules. The algorithm shows excellent parallel efficiency even for small number of cells/atoms per processor.
El-Shenawee, Magda
2003-01-01
An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.
Yücel, Abdulkadir C.
2013-07-01
Reliable and effective wireless communication and tracking systems in mine environments are key to ensure miners\\' productivity and safety during routine operations and catastrophic events. The design of such systems greatly benefits from simulation tools capable of analyzing electromagnetic (EM) wave propagation in long mine tunnels and large mine galleries. Existing simulation tools for analyzing EM wave propagation in such environments employ modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), and full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of miners and their equipments, as well as wall roughness (especially when the latter is comparable to the wavelength). Full-wave methods do not suffer from such restrictions but require prohibitively large computational resources. To partially alleviate this computational burden, a 2D integral equation-based domain decomposition technique has recently been proposed (Bakir et. al., in Proc. IEEE Int. Symp. APS, 1-2, 8-14 July 2012). © 2013 IEEE.
Statistical multipole formulations for shielding problems
Directory of Open Access Journals (Sweden)
K. Körber
2012-09-01
Full Text Available A multipole-based method is presented for modelling an electromagnetic field with small statistical variations inside an arbitrary enclosure. The accurate computation of the statistics of the field components from the statistical moments of the multipole amplitudes is demonstrated for two- and three-dimensional examples. To obtain the statistics of quantities which depend non-linearly on the field components, higher-order statistical moments of the latter are required.
Jalali, T.
2015-07-01
In this paper, we present dielectric elliptical shapes modelling with respect to a highly confined power distribution in the resulting nanojet, which has been parameterized according to the beam waist and its beam divergence. The method is based on spherical bessel function as a basis function, which is adapted to standard multiple multipole method. This method can handle elliptically shaped particles due to the change of size and refractive indices, which have been studied under plane wave illumination in two and three dimensional multiple multipole method. Because of its fast and good convergence, the results obtained from simulation are highly accurate and reliable. The simulation time is less than minute for two and three dimension. Therefore, the proposed method is found to be computationally efficient, fast and accurate.
Simulation of Monopole and Multipole Seismoelectric Logging
Directory of Open Access Journals (Sweden)
Zhiwen Cui
2011-01-01
Full Text Available In a fluid-saturated porous formation, acoustics and electromagnetic waves are coupled based on Pride seismoelectric theory. An exact treatment of the nonaxisymmetric seismoelectric field excited by acoustic multipole sources is presented. The frequency wavenumber domain representations of the acoustic field and associated seismoelectric field due to acoustic multipole sources are formulated. The full waveforms of acoustic waves and electric and magnetic fields in the time domain propagation in borehole are simulated by using discrete wave number integration, and frequency versus axial-wave number responses are presented and analyzed.
Latina, A
2012-01-01
The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...
Energy Technology Data Exchange (ETDEWEB)
Lim, T.
2011-04-28
To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [French] Pour simuler
International Nuclear Information System (INIS)
Kolomietz, V.M.; Plujko, V.A.
1994-01-01
Damping of nuclear collective vibration is studied within the framework of the Vlasov-Landau equation including retardation (memory) effects in the collision integral. The expressions for the nuclear viscosity and the width of the giant multipole resonances in a heated nucleus are obtained by taking into account quadrupole dynamic distortion of the Fermi surface. These expressions allow for a transition between the regimes of rare and frequent two-body collisions. An interpolation formula for the width is proposed in which allowance for all multipolarities of the distortion of the Fermi sphere is made. The width of the giant dipole resonance as a function of excitation energy is calculated using this formula for the Sn nuclei region. The results for the width variation with temperature are in a qualitative agreement with the experimental data. They show a smoother behavior with increasing temperature compared to that of the zero sound model
Multipole Analysis of Circular Cylindircal Magnetic Systems
Energy Technology Data Exchange (ETDEWEB)
Selvaggi, Jerry P. [Rensselaer Polytechnic Inst., Troy, NY (United States)
2005-12-01
This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (Vo) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo
2015-11-20
This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.
Directory of Open Access Journals (Sweden)
Jewon Lee
2015-11-01
Full Text Available This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.
Atom-partitioned multipole expansions for electrostatic potential boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)
2017-01-01
Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.
Neutron scattering by Dirac multipoles
Lovesey, S. W.; Khalyavin, D. D.
2017-06-01
Scattering by magnetic charge formed by Dirac multipoles that are magnetic and polar is examined in the context of materials with properties that challenge conventional concepts. An order parameter composed of Dirac quadrupoles has been revealed in the pseudo-gap phase of ceramic, high-T c superconductors on the basis of Kerr effect and magnetic neutron Bragg diffraction measurements. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic superconductor Hg1201 is illustrated, together with selection rules for excitations that will feature in neutron inelastic scattering, and RIXS experiments. We report magnetic scattering amplitudes for diffraction by polar multipoles that have universal value, because they are not specific to ceramic superconductors. To illustrate this attribute, we consider neutron Bragg diffraction from a magnetically ordered iridate (Sr2IrO4) and discuss shortcomings in published interpretations of diffraction data.
Neutron scattering by Dirac multipoles
International Nuclear Information System (INIS)
Lovesey, S W; Khalyavin, D D
2017-01-01
Scattering by magnetic charge formed by Dirac multipoles that are magnetic and polar is examined in the context of materials with properties that challenge conventional concepts. An order parameter composed of Dirac quadrupoles has been revealed in the pseudo-gap phase of ceramic, high- T c superconductors on the basis of Kerr effect and magnetic neutron Bragg diffraction measurements. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic superconductor Hg1201 is illustrated, together with selection rules for excitations that will feature in neutron inelastic scattering, and RIXS experiments. We report magnetic scattering amplitudes for diffraction by polar multipoles that have universal value, because they are not specific to ceramic superconductors. To illustrate this attribute, we consider neutron Bragg diffraction from a magnetically ordered iridate (Sr 2 IrO 4 ) and discuss shortcomings in published interpretations of diffraction data. (paper)
Neutron scattering by Dirac multipoles
Lovesey, S. W.; Khalyavin, D. D.
2016-01-01
Ordered magnetic charge created by Dirac multipoles that are magnetic and polar is examined. It has previously been revealed in the pseudo-gap phase of high-Tc materials by use of the Kerr effect and magnetic neutron Bragg diffraction. There are several forms of the polar operator for magnetic neutron scattering built from spin and electric dipole operators of unpaired electrons. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic supercondu...
Electromagnetic multipole fields of neutron stars
Roberts, W. J.
1979-01-01
A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.
Electron density distribution in Si and Ge using multipole, maximum ...
Indian Academy of Sciences (India)
Collin's [19] formalism is based on the entropy expression S, given by. S = −. ∑ ρ (r) ln ρ (r) τ (r). ,. (4) .... were collected using X'PERT PRO (Philips, The Netherlands) X-ray diffractometer. The wavelength used for .... described by Dawson [36] and Stewart [37], the multipole deformation functions allowed for the tetrahedral ...
Fast mutual-information-based contrast enhancement
Cao, Gang; Yu, Lifang; Tian, Huawei; Huang, Xianglin; Wang, Yongbin
2017-07-01
Recently, T. Celik proposed an effective image contrast enhancement (CE) method based on spatial mutual information and PageRank (SMIRANK). According to the state-of-the-art evaluation criteria, it achieves the best visual enhancement quality among existing global CE methods. However, SMIRANK runs much slower than the other counterparts, such as histogram equalization (HE) and adaptive gamma correction. Low computational complexity is also required for good CE algorithms. In this paper, we novelly propose a fast SMIRANK algorithm, called FastSMIRANK. It integrates both spatial and gray-level downsampling into the generation of pixel value mapping function. Moreover, the computation of rank vectors is speeded up by replacing PageRank with a simple yet efficient row-based operation of mutual information matrix. Extensive experimental results show that the proposed FastSMIRANK could accelerate the processing speed of SMIRANK by about 20 times, and is even faster than HE. Comparable enhancement quality is preserved simultaneously.
Dipole-sheet multipole magnets for accelerators
International Nuclear Information System (INIS)
Walstrom, P.L.
1993-01-01
The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly
Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes
Geerits, Tim W.; Kranz, Burkhard
2017-04-01
In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.
On the multipole moments of charge distributions
International Nuclear Information System (INIS)
Khare, P.L.
1977-01-01
There are two different standard methods for showing the equivalence of a charge distribution in a small volume tau surrounding a point O, to the superposition of a monopole, a dipole, a quadrupole and poles of higher moments at the point O: (a) to show that the electrostatic potential due to the charge distribution at an outside point is the same as due to these superposed multipoles (including a monopole). (b) to show that the energy of interaction of an external field with the charge distribution is the same as with the superposed equivalent monopole and multipoles. Neither of these methods gives a physical picture of the equivalence of a charge distribution to the superposition of different multipoles. An attempt is made to interpret in physical terms the emergence of the multipoles of different order, that are equivalent to a charge distribution and to show that the magnitudes of the moments of these multipoles are in agreement with the results of both the approaches (a) and (b). This physical interpretation also helps to understand, in a simple manner, some of the wellknown properties of the multipole moments of atoms and nuclei. (K.B.)
Harmonic Decomposition of Orbit Data for Multipole Analysis
Yang Ming Jen
2005-01-01
The unprecedented position resolution provided by the newly commissioned Recycer BPM system is opening up a new chapter of beam based multipole analysis at Fermilab. The closed orbit data, taken with circulating beam and averaged over many consecutive turns, has been shown to have the resolution of a few microns. The result of polynomial fit to BPM position data, as a function of dipole kick sizes, is used to separate orbit data into first, second, and third order. Combining both the in-plane and cross-plane orbit data it is possible to determine the multipole content within each half cell. This paper presents the algorithm behind the procedure, the data collected from the Fermilab Recycler Ring, and the final analysis result.
Fast Pedestrian Recognition Based on Multisensor Fusion
Directory of Open Access Journals (Sweden)
Hongyu Hu
2012-01-01
Full Text Available A fast pedestrian recognition algorithm based on multisensor fusion is presented in this paper. Firstly, potential pedestrian locations are estimated by laser radar scanning in the world coordinates, and then their corresponding candidate regions in the image are located by camera calibration and the perspective mapping model. For avoiding time consuming in the training and recognition process caused by large numbers of feature vector dimensions, region of interest-based integral histograms of oriented gradients (ROI-IHOG feature extraction method is proposed later. A support vector machine (SVM classifier is trained by a novel pedestrian sample dataset which adapt to the urban road environment for online recognition. Finally, we test the validity of the proposed approach with several video sequences from realistic urban road scenarios. Reliable and timewise performances are shown based on our multisensor fusing method.
Suppressing CMB low multipoles with ISW effect
Das, Santanu; Souradeep, Tarun
2014-02-01
Recent results of Planck data reveal that the power [1,2] in the low multipoles of the CMB angular power spectrum, approximately up to l = 30, is significantly lower than the theoretically predicted in the best fit ΛCDM model. There are different known physical effects that can affect the power at low multipoles, such as features in the primordial power spectrum (PPS) in some models of inflation and ISW effect. In this paper we investigate the possibility of invoking the Integrated Sachs-Wolfe (ISW) effect to explain the power deficit at low multipoles. The ISW effect that originates from the late time expansion history of the universe is rich in possibilities given the limited understanding of the origin of dark energy (DE). It is a common understanding that the ISW effect adds to the power at the low multipoles of the CMB angular power spectrum. In this paper we carry out an analytic study to show that there are some expansion histories in which the ISW effect, instead of adding power, provides negative contribution to the power at low multipoles. Guided by the analytic study, we present examples of the features required in the late time expansion history of the universe that could explain the power deficiency through the ISW effect. We also show that an ISW origin of power deficiency is consistent, at present, with other cosmological observations that probe the expansion history such as distance modulus, matter power spectrum and the evolution of cluster number count. We also show that the ISW effect may be distinguished from power deficit originating from features in the PPS using the measurements of the CMB polarization spectrum at low multipoles expected from Planck. We conclude that the power at low multipoles of the CMB anisotropy could well be closely linked to Dark Energy puzzle in cosmology and this observation could be actually pointing to richer phenomenology of DE beyond the cosmological constant Λ.
Rovibrational matrix elements of the multipole moments
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results
Lee, Seokcheon
2018-02-01
Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.
Self energy QED: Multipole spontaneous emission
International Nuclear Information System (INIS)
Salamin, Y.I.
1990-08-01
Within the context of Barut's self-field approach, we write the exact expression of the spontaneous atomic decay rate (Phys. Rev. A37, 2284 (1988)), in the long wavelength approximation, in terms of electric- and magnetic-like multipole contributions which are related to the matrix elements of the transition charge and current distributions of the relativistic electron. A number of features of these expressions are discussed and their generalization to interacting composite systems is also pointed out. (author). 8 refs
Isotopic dependence of giant multipole resonances
International Nuclear Information System (INIS)
Bar Touv, J.; Moalem, A.; Shlomo, S.
1980-01-01
A procedure is presented which allows the application of linear response theory and the random phase approximation to an open shell. The procedure is applied to Ca isotopes. The general features of giant multipole resonances are found to vary smoothly with the mass. The resonances exhibit more structure in the open lfsub(7/2) shell nuclei. While the energy-weighted dipole sum is practically constant in all isotopes, the isoscalar quadrupole and octupole energy weighted sums increase continuously by approx. 30% from 40 Ca to 48 Ca. (orig.)
Photon decay of giant multipole resonances
Energy Technology Data Exchange (ETDEWEB)
Bertrand, F.E.; Beene, J.R.
1990-01-01
A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provided for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a tag'' provides a means to observe weakly excited resonances that cannot be observed in the shingles spectra. 26 refs., 16 figs., 1 tab.
Benalcazar, Wladimir A.; Bernevig, B. Andrei; Hughes, Taylor L.
2017-12-01
We extend the theory of dipole moments in crystalline insulators to higher multipole moments. As first formulated in Benalcazar et al. [Science 357, 61 (2017), 10.1126/science.aah6442], we show that bulk quadrupole and octupole moments can be realized in crystalline insulators. In this paper, we expand in great detail the theory presented previously [Benalcazar et al., Science 357, 61 (2017), 10.1126/science.aah6442] and extend it to cover associated topological pumping phenomena, and a class of three-dimensional (3D) insulator with chiral hinge states. We start by deriving the boundary properties of continuous classical dielectrics hosting only bulk dipole, quadrupole, or octupole moments. In quantum mechanical crystalline insulators, these higher multipole bulk moments manifest themselves by the presence of boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic theory of classical continuous dielectrics. In the presence of certain symmetries, these moments are quantized, and their boundary signatures are fractionalized. These multipole moments then correspond to new symmetry-protected topological phases. The topological structure of these phases is described by "nested" Wilson loops, which we define. These Wilson loops reflect the bulk-boundary correspondence in a way that makes evident a hierarchical classification of the multipole moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole pumping, and a varying octupole generates quadrupole pumping. For nontrivial adiabatic cycles, the transport of these moments is quantized. An analysis of these interconnected phenomena leads to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized modes in 3D. We provide the minimal models for the quantized multipole moments, the nontrivial pumping processes, and the hinge Chern insulator, and describe the topological invariants that protect them.
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal. Keywords. Multipole moments; linear polarizability; solid hydrogen, matrix elements. PACS Nos 33.15.Kr; 33.70.-w; 34.20.Gj. 1. Introduction. The rovibrational matrix elements of the multipole moments and polarizability of.
Multipole stack for the 4 rings of the PS Booster
CERN PhotoLab
1976-01-01
The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.
International Nuclear Information System (INIS)
Loussaief, Abdelkader
2007-01-01
In this work we extend the use of multipole moments expansion to the case of inner radiation fields. A series expansion of the photon flux was established. The main advantage of this approach is that it offers the opportunity to treat both inner and external radiation field cases. We determined the expression of the inner multipole moments in both spherical harmonics and in cartesian coordinates. As an application we applied the analytical model to a radiation facility used for small target irradiation. Theoretical, experimental and simulation studies were performed, in air and in a product, and good agreement was reached.Conventional dose distribution study for gamma irradiation facility involves the use of isodose maps. The establishment of these maps requires the measurement of the absorbed dose in many points, which makes the task expensive experimentally and very long by simulation. However, a lack of points of measurement can distort the dose distribution cartography. To overcome these problems, we present in this paper a mathematical method to describe the dose distribution in air. This method is based on the multipole expansion in spherical harmonics of the photon flux emitted by the gamma source. The determination of the multipole coefficients of this development allows the modeling of the radiation field around the gamma source. (Author)
Multipole charge conservation and implications on electromagnetic radiation
Seraj, Ali
2017-06-01
It is shown that conserved charges associated with a specific subclass of gauge symmetries of Maxwell electrodynamics are proportional to the well known electric mul-tipole moments. The symmetries are residual gauge transformations surviving the Lorenz gauge, with nontrivial conserved charge at spatial infinity. These "Multipole charges" receive contributions both from the charged matter and electromagnetic fields. The former is nothing but the electric multipole moment of the source. In a stationary configuration, there is a novel equipartition relation between the two contributions. The multipole charge, while conserved, can freely interpolate between the source and the electromagnetic field, and therefore can be propagated with the radiation. Using the multipole charge conservation, we obtain infinite number of constraints over the radiation produced by the dynamics of charged matter.
Multipole Stack for the 800 MeV PS Booster
1975-01-01
The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.
DEFF Research Database (Denmark)
Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.
2012-01-01
ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...
International Nuclear Information System (INIS)
Pollock, D.; Kim, K.; Gunst, R.; Schucany, W.
1993-05-01
Linear estimation of cold magnetic field quality based on warm multipole measurements is being considered as a quality control method for SSC production magnet acceptance. To investigate prediction uncertainties associated with such an approach, axial-scan (Z-scan) magnetic measurements from SSC Prototype Collider Dipole Magnets (CDM's) have been studied. This paper presents a preliminary evaluation of the explanatory ability of warm measurement multipole variation on the prediction of cold magnet multipoles. Two linear estimation methods are presented: least-squares regression, which uses the assumption of fixed independent variable (xi) observations, and the measurement error model, which includes measurement error in the xi's. The influence of warm multipole measurement errors on predicted cold magnet multipole averages is considered. MSD QA is studying warm/cold correlation to answer several magnet quality control questions. How well do warm measurements predict cold (2kA) multipoles? Does sampling error significantly influence estimates of the linear coefficients (slope, intercept and residual standard error)? Is estimation error for the predicted cold magnet average small compared to typical variation along the Z-Axis? What fraction of the multipole RMS tolerance is accounted for by individual magnet prediction uncertainty?
Macroscopic description of isoscalar giant multipole resonances
International Nuclear Information System (INIS)
Nix, J.R.; Sierk, A.J.
1980-01-01
On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb
A fast dynamic mode in rare earth based glasses
Energy Technology Data Exchange (ETDEWEB)
Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ngai, K. L. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)
2016-05-28
Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β′-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β′-relaxation is about 12RT{sub g} and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.
Checking the Polarity of Superconducting Multipole LHC Magnets
Buzio, M; Brun, G; Fievez, G; Galbraith, P; García-Pérez, J; López, R; Masi, A; Russenschuck, Stephan; Smirnov, N; Tikhov, A
2006-01-01
This paper describes the design and operation of the âﾜPolarity Checkerâ, a scanning probe designed to check multipole field order, type and polarity of superconducting LHC magnets. First we introduce the measurement method, based on the harmonic analysis of the radial field component picked up by a rotating Hall sensor at different current levels. Then we describe the hardware and the software of the system, which features automatic powering, data acquisition and treatment, discussing the achieved sensitivity and performance. Finally we provide a summary of the test results on the first 505 cryoassemblies, showing how the system was usefully employed to detect some potentially harmful connection errors.
Nathavitharana, R R; Daru, P; Barrera, A E; Mostofa Kamal, S M; Islam, S; Ul-Alam, M; Sultana, R; Rahman, M; Hossain, Md S; Lederer, P; Hurwitz, S; Chakraborty, K; Kak, N; Tierney, D B; Nardell, E
2017-09-01
National Institute of Diseases of the Chest and Hospital, Dhaka; Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka; and Chittagong Chest Disease Hospital, Chittagong, Bangladesh. To present operational data and discuss the challenges of implementing FAST (Find cases Actively, Separate safely and Treat effectively) as a tuberculosis (TB) transmission control strategy. FAST was implemented sequentially at three hospitals. Using Xpert® MTB/RIF, 733/6028 (12.2%, 95%CI 11.4-13.0) patients were diagnosed with unsuspected TB. Patients with a history of TB who were admitted with other lung diseases had more than twice the odds of being diagnosed with unsuspected TB as those with no history of TB (OR 2.6, 95%CI 2.2-3.0, P stakeholder engagement and laboratory capacity are important for sustainability and scalability.
Nuclear photonics at ultra-high counting rates and higher multipole excitations
International Nuclear Information System (INIS)
Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhäuser, R.; Günther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.
2012-01-01
Next-generation γ beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10 13 γ/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (∼120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a γ pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10 18 γ/s, thus introducing major challenges in view of pile-up. Novel γ optics will be applied to monochromatize the γ beam to ultimately ΔE/E∼10 −6 . Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding γ detectors, e.g. based on advanced scintillator technology (e.g. LaBr 3 (Ce)) allow for measurements with count rates as high as 10 6 -10 7 γ/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr 3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.
Poloidal ohmic heating in a multipole
International Nuclear Information System (INIS)
Holly, D.J.; Prager, S.C.; Sprott, J.C.
1982-07-01
The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentally in Tokapole II, operating the machine as a toroidal octupole. The plasma resistivity ranges from Spitzer to about 1500 times Spitzer resistivity, as predicted by mirror-enhanced resistivity theory. This allows large powers (approx. 2 MW) to be coupled to the plasma at modest current levels. However, the confinement time is reduced by the heating, apparently due to a combination of the input power location (near the walls of the vacuum tank) and fluctuation-enhanced transport. Current-driven drift instabilities and resistive MHD instabilities appear to be the most likely causes for the fluctuations
Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.
Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole
2015-07-14
Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.
The Role of Fast Carrier Dynamics in SOA Based Devices
DEFF Research Database (Denmark)
Mørk, Jesper; Berg, Tommy Winther; Nielsen, Mads Lønstrup
2004-01-01
We describe the characteristics of all-optical switching schemes based on semiconductor optical amplifiers (SOAs), with particular emphasis on the role of the fast carrier dynamics. The SOA response to a single short pulse as well as to a data-modulated pulse train is investigated...... and the properties of schemes relying on cross-gain as well as cross-phase modulation are discussed. The possible benefits of using SOAs with quantum dot active regions are theoretically analyzed. The bandfilling characteristics and the presence of fast capture processes may allow to reach bitrates in excess of 100...
The Role of Fast Carrier Dynamics in SOA Based Devices
DEFF Research Database (Denmark)
Mørk, Jesper; Berg, Tommy Winther; Nielsen, Mads Lønstrup
2004-01-01
and the properties of schemes relying on cross-gain as well as cross-phase modulation are discussed. The possible benefits of using SOAs with quantum dot active regions are theoretically analyzed. The bandfilling characteristics and the presence of fast capture processes may allow to reach bitrates in excess of 100......We describe the characteristics of all-optical switching schemes based on semiconductor optical amplifiers (SOAs), with particular emphasis on the role of the fast carrier dynamics. The SOA response to a single short pulse as well as to a data-modulated pulse train is investigated...
Development of imaging energy analyzer using multipole Wien filter
Niimi, H.; Kato, M.; Tsutsumi, T.; Kawasaki, T.; Matsudaira, H.; Suzuki, S.; Chun, W.-J.; Kitajima, Y.; Kudo, M.; Asakura, K.
2005-02-01
We discussed a new design of a Wien filter energy analyzer for an energy-filtered X-ray photoemission electron microscopy system. We have demonstrated that the second-order aberration and the third-order aperture aberration can be corrected by the multipole Wien filter by adjusting multipole components of electric and magnetic fields up to octupole components. The three-dimensional charge simulation method indicated that 12 electrodes and magnetic poles can effectively reproduce these ideal electric and magnetic fields.
Development of imaging energy analyzer using multipole Wien filter
Energy Technology Data Exchange (ETDEWEB)
Niimi, H. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan)]. E-mail: hironobu@cat.hokudai.ac.jp; Kato, M. [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tsutsumi, T. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan); Kawasaki, T. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan); Matsudaira, H. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan); Suzuki, S. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan); Chun, W.-J. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (Japan); Kitajima, Y. [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Kudo, M. [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Asakura, K. [Catalysis Research Center, Hokkaido University, 21-10 Kita, Kita-ku, Sapporo 001-0021 (Japan)
2005-02-28
We discussed a new design of a Wien filter energy analyzer for an energy-filtered X-ray photoemission electron microscopy system. We have demonstrated that the second-order aberration and the third-order aperture aberration can be corrected by the multipole Wien filter by adjusting multipole components of electric and magnetic fields up to octupole components. The three-dimensional charge simulation method indicated that 12 electrodes and magnetic poles can effectively reproduce these ideal electric and magnetic fields.
ITER fast plant system controller prototype based on ATCA platform
Energy Technology Data Exchange (ETDEWEB)
Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Batista, A.; Neto, A.; Santos, B.; Duarte, A.; Valcarcel, D.; Alves, D.; Correia, M.; Rodrigues, A.P.; Carvalho, P.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Vega, J.; Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)
2012-12-15
The ITER fast plan system controllers (FPSC) are based on embedded technologies. The FPSCs [1] will be devoted to data acquisition tasks (sampling rates >1 kSPS) and control purposes in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers and interface to actuators, sensors and high performance networks. This contribution presents an FPSC prototype, specialized for data acquisition, based on the ATCA (Advanced Telecommunications Computing Architecture) standard. This prototyping activity contributes to the ITER Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. For the prototype, IPFN has developed a new family of ATCA modules targeting ITER requirements. This family of modules comprises an AMC (Advanced Mezzanine Card) carrier/data hub/timing hub, compliant with the upcoming ATCA extensions for Physics, and a multi-channel galvanically isolated PnP digitizer, designed for serviceability. The design and test of a peer-to-peer communications layer for the implementation of a reflective memory over PCI Express and the design and test of an IEEE-1588 transport layer over an high performance serial link were also performed. In this contribution, a complete description of the solution is presented as well as the integration of the controller into the standard CODAC environment. The most relevant test results will be addressed, focusing in the benefits and limitations of the applied technologies.
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
Directory of Open Access Journals (Sweden)
Y. He
2008-05-01
Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
Electrical studies on silver based fast ion conducting glassy materials
International Nuclear Information System (INIS)
Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.
2014-01-01
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries
Multirobot FastSLAM Algorithm Based on Landmark Consistency Correction
Directory of Open Access Journals (Sweden)
Shi-Ming Chen
2014-01-01
Full Text Available Considering the influence of uncertain map information on multirobot SLAM problem, a multirobot FastSLAM algorithm based on landmark consistency correction is proposed. Firstly, electromagnetism-like mechanism is introduced to the resampling procedure in single-robot FastSLAM, where we assume that each sampling particle is looked at as a charged electron and attraction-repulsion mechanism in electromagnetism field is used to simulate interactive force between the particles to improve the distribution of particles. Secondly, when multiple robots observe the same landmarks, every robot is regarded as one node and Kalman-Consensus Filter is proposed to update landmark information, which further improves the accuracy of localization and mapping. Finally, the simulation results show that the algorithm is suitable and effective.
Fast humidity sensors based on CeO2 nanowires
International Nuclear Information System (INIS)
Fu, X Q; Wang, C; Yu, H C; Wang, Y G; Wang, T H
2007-01-01
Fast humidity sensors are reported that are based on CeO 2 nanowires synthesized by a hydrothermal method. Both the response and recovery time are about 3 s, and are independent of the humidity. The sensitivity increases gradually as the humidity increases, and is up to 85 at 97% RH. The resistance decreases exponentially with increasing humidity, implying ion-type conductivity as the humidity sensing mechanism. A model based on the morphology and surface energy of the nanowires is given to explain these results further. Our experimental results indicate a pathway to improving the performance of humidity sensors
Multipole analysis of redshift-space distortions around cosmic voids
International Nuclear Information System (INIS)
Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie
2017-01-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.
Multipole analysis of redshift-space distortions around cosmic voids
Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen
2017-07-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15
Advanced multipoles for accelerator magnets theoretical analysis and their measurement
Schnizer, Pierre
2017-01-01
This monograph presents research on the transversal beam dynamics of accelerators and evaluates and describes the respective magnetic field homogeneity. The widely used cylindrical circular multipoles have disadvantages for elliptical apertures or curved trajectories, and the book also introduces new types of advanced multipole magnets, detailing their application, as well as the numerical data and measurements obtained. The research presented here provides more precise descriptions of the field and better estimates of the beam dynamics. Moreover, the effects of field inhomogeneity can be estimated with higher precision than before. These findings are further elaborated to demonstrate their usefulness for real magnets and accelerator set ups, showing their advantages over cylindrical circular multipoles. The research findings are complemented with data obtained from the new superconducting beam guiding magnet models (SIS100) for the FAIR (Facility for Antiproton and Ion Research) project. Lastly, the book...
An electromagnetic multipole expansion beyond the long-wavelength approximation
Alaee, Rasoul; Rockstuhl, Carsten; Fernandez-Corbaton, I.
2018-01-01
The multipole expansion is a key tool in the study of light-matter interactions. All the information about the radiation of and coupling to electromagnetic fields of a given charge-density distribution is condensed into few numbers: The multipole moments of the source. These numbers are frequently computed with expressions obtained after the long-wavelength approximation. Here, we derive exact expressions for the multipole moments of dynamic sources that resemble in their simplicity their approximate counterparts. We validate our new expressions against analytical results for a spherical source, and then use them to calculate the induced moments for some selected sources with a non-trivial shape. The comparison of the results to those obtained with approximate expressions shows a considerable disagreement even for sources of subwavelength size. Our expressions are relevant for any scientific area dealing with the interaction between the electromagnetic field and material systems.
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Fast Waves at the Base of the Cochlea.
Directory of Open Access Journals (Sweden)
Alberto Recio-Spinoso
Full Text Available Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy's results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy's theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves.
Novel multipole Wien filter as three-dimensional spin manipulator
Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.
2014-04-01
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Novel multipole Wien filter as three-dimensional spin manipulator
Energy Technology Data Exchange (ETDEWEB)
Yasue, T., E-mail: yasue@isc.osakac.ac.jp; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)
2014-04-15
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Energy-independent multipole analysis of single-pion photoproduction from protons
Energy Technology Data Exchange (ETDEWEB)
Get' man, V.A.; Sanin, V.M.; Telegin, Y.N.; Shalatskii, S.V.
1983-08-01
For the first time photoproduction multipole amplitudes are evaluated unambiguously on the basis of new experimental data on pion photoproduction from protons and the latest ..pi..N scattering phase shifts. The multipole amplitudes obtained are compared with the results of previous multipole analyses and dispersion-relation predictions.
Energy-independent multipole analysis of single-pion photoproduction from protons
International Nuclear Information System (INIS)
Get'man, V.A.; Sanin, V.M.; Telegin, Y.N.; Shalatskii, S.V.
1983-01-01
For the first time photoproduction multipole amplitudes are evaluated unambiguously on the basis of new experimental data on pion photoproduction from protons and the latest πN scattering phase shifts. The multipole amplitudes obtained are compared with the results of previous multipole analyses and dispersion-relation predictions
GPU-Monte Carlo based fast IMRT plan optimization
Directory of Open Access Journals (Sweden)
Yongbao Li
2014-03-01
Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z
Digital image correlation based on a fast convolution strategy
Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong
2017-10-01
In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.
Parameter tuning for the NFFT based fast Ewald summation
Directory of Open Access Journals (Sweden)
Franziska Nestler
2016-07-01
Full Text Available The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditionsis possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT. In this paper we consider the particle-particle NFFT (P$^2$NFFT approach, which is based on the fast Fourier transform for nonequispaced data (NFFT and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P$^3$M algorithm. The publicly available P$^2$NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.
Parameter tuning for the NFFT based fast Ewald summation
Nestler, Franziska
2016-07-01
The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT). In this paper we consider the particle-particle NFFT (P^2NFFT) approach, which is based on the fast Fourier transform for nonequispaced data (NFFT) and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P^3M) algorithm. The publicly available P^2NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.
Flexibly imposing periodicity in kernel independent FMM: A multipole-to-local operator approach
Yan, Wen; Shelley, Michael
2018-02-01
An important but missing component in the application of the kernel independent fast multipole method (KIFMM) is the capability for flexibly and efficiently imposing singly, doubly, and triply periodic boundary conditions. In most popular packages such periodicities are imposed with the hierarchical repetition of periodic boxes, which may give an incorrect answer due to the conditional convergence of some kernel sums. Here we present an efficient method to properly impose periodic boundary conditions using a near-far splitting scheme. The near-field contribution is directly calculated with the KIFMM method, while the far-field contribution is calculated with a multipole-to-local (M2L) operator which is independent of the source and target point distribution. The M2L operator is constructed with the far-field portion of the kernel function to generate the far-field contribution with the downward equivalent source points in KIFMM. This method guarantees the sum of the near-field & far-field converge pointwise to results satisfying periodicity and compatibility conditions. The computational cost of the far-field calculation observes the same O (N) complexity as FMM and is designed to be small by reusing the data computed by KIFMM for the near-field. The far-field calculations require no additional control parameters, and observes the same theoretical error bound as KIFMM. We present accuracy and timing test results for the Laplace kernel in singly periodic domains and the Stokes velocity kernel in doubly and triply periodic domains.
Reducing preoperative fasting time: A trend based on evidence
de Aguilar-Nascimento, José Eduardo; Dock-Nascimento, Diana Borges
2010-01-01
Preoperative fasting is mandatory before anesthesia to reduce the risk of aspiration. However, the prescribed 6-8 h of fasting is usually prolonged to 12-16 h for various reasons. Prolonged fasting triggers a metabolic response that precipitates gluconeogenesis and increases the organic response to trauma. Various randomized trials and meta-analyses have consistently shown that is safe to reduce the preoperative fasting time with a carbohydrate-rich drink up to 2 h before surgery. Benefits re...
Fast LCMV-based Methods for Fundamental Frequency Estimation
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Glentis, George-Othon; Christensen, Mads Græsbøll
2013-01-01
peaks and require matrix inversions for each point in the search grid. In this paper, we therefore consider fast implementations of LCMV-based fundamental frequency estimators, exploiting the estimators' inherently low displacement rank of the used Toeplitz-like data covariance matrices, using...... with several orders of magnitude, but, as we show, further computational savings can be obtained by the adoption of an approximative IAA-based data covariance matrix estimator, reminiscent of the recently proposed Quasi-Newton IAA technique. Furthermore, it is shown how the considered pitch estimators can...... as such either the classic time domain averaging covariance matrix estimator, or, if aiming for an increased spectral resolution, the covariance matrix resulting from the application of the recent iterative adaptive approach (IAA). The proposed exact implementations reduce the required computational complexity...
A random-permutations-based approach to fast read alignment.
Lederman, Roy
2013-01-01
Read alignment is a computational bottleneck in some sequencing projects. Most of the existing software packages for read alignment are based on two algorithmic approaches: prefix-trees and hash-tables. We propose a new approach to read alignment using random permutations of strings. We present a prototype implementation and experiments performed with simulated and real reads of human DNA. Our experiments indicate that this permutations-based prototype is several times faster than comparable programs for fast read alignment and that it aligns more reads correctly. This approach may lead to improved speed, sensitivity, and accuracy in read alignment. The algorithm can also be used for specialized alignment applications and it can be extended to other related problems, such as assembly.More information: http://alignment.commons.yale.edu.
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Fast and accurate face recognition based on image compression
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Model Predictive Control-Based Fast Charging for Vehicular Batteries
Directory of Open Access Journals (Sweden)
Zhibin Song
2011-08-01
Full Text Available Battery fast charging is one of the most significant and difficult techniques affecting the commercialization of electric vehicles (EVs. In this paper, we propose a fast charge framework based on model predictive control, with the aim of simultaneously reducing the charge duration, which represents the out-of-service time of vehicles, and the increase in temperature, which represents safety and energy efficiency during the charge process. The RC model is employed to predict the future State of Charge (SOC. A single mode lumped-parameter thermal model and a neural network trained by real experimental data are also applied to predict the future temperature in simulations and experiments respectively. A genetic algorithm is then applied to find the best charge sequence under a specified fitness function, which consists of two objectives: minimizing the charging duration and minimizing the increase in temperature. Both simulation and experiment demonstrate that the Pareto front of the proposed method dominates that of the most popular constant current constant voltage (CCCV charge method.
Concept of multipole magnetic field rotation in ECRIS
Indian Academy of Sciences (India)
The conventional type of magnetic well is formed by superposition of two types of magnetic ﬁeld, axial bumpy ﬁeld and radial multipole ﬁeld. It is used to contain plasma that consists of neutrals, ions and electrons. These particles are in constant motion in the well and energetic electrons create plasma by violent collisions ...
Electron density distribution in Si and Ge using multipole, maximum ...
Indian Academy of Sciences (India)
The local, average and electronic structure of the semiconducting materials Si and Ge has been studied using multipole, maximum entropy method (MEM) and pair distribution function (PDF) analyses, using X-ray powder data. The covalent nature of bonding and the interaction between the atoms are clearly revealed by the ...
Multipole interactions of charged particles with the electromagnetic field
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...
Concept of multipole magnetic field rotation in ECRIS
Indian Academy of Sciences (India)
The conﬁned electrons are constantly heated by ECR technique in the presence of magnetic ﬁeld. In this paper it has been shown theoretically that how the electron motion is inﬂuenced in terms of heating, containment and azimuthal uniformity of plasma, by the axial rotation of the multipole magnetic ﬁeld [1,2]. Afterwards ...
The Multipole Plasma Trap-PIC Modeling Results
Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina
2017-10-01
A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.
Strain and stress of the ASDEX multipole magnetic coils
International Nuclear Information System (INIS)
Jandl, O.; Pillsticker, M.
1978-01-01
A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de
Fast Radioactive Nuclide Recognition Method Study Based on Pattern Recognition
Directory of Open Access Journals (Sweden)
Yonggang Huo
2014-01-01
Full Text Available Based on pattern recognition method, applied the nuclear radiation digital measurement and analysis system platform, through synthetically making use of the radioactive nuclide’s ray information, selected radiation characteristic information of the radioactive nuclide, established the characteristic arrays database of radioactive nuclides, the recognition method is designed and applied to the identification of radionuclide radiation while using middle or low-resolution detector in this paper. Verified by experiments, when the count value of the traditional low-resolution spectrometer system is not reach single full energy peak’s statistical lower limit value, the three kinds of mixed radioactive nuclides’ true discrimination rate reached more than 90 % in the digital measurement and analysis system using fast radionuclide recognition method. The results show that this method is obviously superior to the traditional methods, and effectively improve the rapid identification ability to radioactive nuclide.
International Nuclear Information System (INIS)
Oztekin, E.
2010-01-01
In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.
ITER Fast Plant System Controller prototype based on PXIe platform
Energy Technology Data Exchange (ETDEWEB)
Ruiz, M., E-mail: mariano.ruiz@upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J.; Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D.; Lopez, J.M.; Arcas, G. de; Barrera, E.; Nieto, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Goncalves, B.; Sousa, J.; Carvalho, B. [Associacao EURATOM/IST, Lisbon (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)
2012-12-15
Highlights: Black-Right-Pointing-Pointer Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Efficient data acquisition and data movement using EPICS. Black-Right-Pointing-Pointer Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.
Reducing preoperative fasting time: A trend based on evidence.
de Aguilar-Nascimento, José Eduardo; Dock-Nascimento, Diana Borges
2010-03-27
Preoperative fasting is mandatory before anesthesia to reduce the risk of aspiration. However, the prescribed 6-8 h of fasting is usually prolonged to 12-16 h for various reasons. Prolonged fasting triggers a metabolic response that precipitates gluconeogenesis and increases the organic response to trauma. Various randomized trials and meta-analyses have consistently shown that is safe to reduce the preoperative fasting time with a carbohydrate-rich drink up to 2 h before surgery. Benefits related to this shorter preoperative fasting include the reduction of postoperative gastrointestinal discomfort and insulin resistance. New formulas containing amino acids such as glutamine and other peptides are being studied and are promising candidates to be used to reduce preoperative fasting time.
United polarizable multipole water model for molecular mechanics simulation
Energy Technology Data Exchange (ETDEWEB)
Qi, Rui; Wang, Qiantao; Ren, Pengyu, E-mail: pren@mail.utexas.edu [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Wang, Lee-Ping; Pande, Vijay S. [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2015-07-07
We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.
Fast neutron fields imaging with a CCD-based luminescent detector
Mikerov, V
1999-01-01
The paper considers some questions concerned with the development of an imaging system based on a CCD-detector for visualising fast neutron fields. From those the most important are: development of fast neutron screens, detector resistance to irradiation fields, and feasibility of fast neutron radiography and tomography at various neutron sources.
Fast Optical Beamforming Architectures for Satellite-Based Applications
Directory of Open Access Journals (Sweden)
B. Vidal
2012-01-01
Full Text Available Photonic technology offers an alternative implementation for the control of phased array antennas providing large time bandwidth products and low weight, flexible feeding networks. Measurements of an optical beamforming network for phased array antennas with fast beam steering operation for space scenarios are presented. Experimental results demonstrate fast beam steering between 4 and 8 GHz without beam squint.
Center of Mass-Based Adaptive Fast Block Motion Estimation
Directory of Open Access Journals (Sweden)
Yeh Kuo-Liang
2007-01-01
Full Text Available This work presents an efficient adaptive algorithm based on center of mass (CEM for fast block motion estimation. Binary transform, subsampling, and horizontal/vertical projection techniques are also proposed. As the conventional CEM calculation is computationally intensive, binary transform and subsampling approaches are proposed to simplify CEM calculation; the binary transform center of mass (BITCEM is then derived. The BITCEM motion types are classified by percentage of (0,0 BITCEM motion vectors. Adaptive search patterns are allocated according to the BITCEM moving direction and the BITCEM motion type. Moreover, the BITCEM motion vector is utilized as the initial search point for near-still or slow BITCEM motion types. To support the variable block sizes, the horizontal/vertical projections of a binary transformed macroblock are utilized to determine whether the block requires segmentation. Experimental results indicate that the proposed algorithm is better than the five conventional algorithms, that is, three-step search (TSS, new three-step search (N3SS, four three-step search (4SS, block-based gradient decent search (BBGDS, and diamond search (DS, in terms of speed or picture quality for eight benchmark sequences.
Fast single image dehazing based on image fusion
Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian
2015-01-01
Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.
He, Ting; Xu, Xiaobin; Ni, Bing; Wang, Haiqing; Long, Yong; Hu, Wenping; Wang, Xun
2017-12-14
Metal-organic frameworks based on zirconium or hafnium possess tantalizing commercial prospects due to their high stability but require a long reaction time to form crystals. The fast synthesis of uniform Zr-, Hf-MOF nanocrystals at scale is of key importance in the potential commercial application of MOFs. In this work, we have developed a versatile strategy through controlling the hydrolysis and nucleation of metal salts in the presence of acetic acid and water; up to 24 grams of UiO-66-NH 2 nanocrystals with a uniform octahedron could be synthesized within 15 minutes using a one step method. The current synthetic strategy could be extended to other Zr-, Hf-MOF nanocrystals [UiO-66-Fast, UiO-66-(OH) 2 -Fast, UiO-66-2,6-NDC-Fast, UiO-67-Fast, BUT-12-Fast, PCN-222-Ni-Fast, PCN-222-Co-Fast, Hf-UiO-66-Fast, Hf-UiO-66-NH 2 -Fast, Hf-UiO-66-(OH) 2 -Fast, Hf-UiO-66-2,6-NDC-Fast and Hf-BUT-12-Fast]. Significantly, when noble metal nanoparticles (NPs) are introduced into MOF precursors, NPs encapsulated in MOFs with excellent dispersion have also been obtained and show outstanding performance in catalysis. This facile procedure is expected to pave the way to expand the commercial applications of MOFs.
Fast CEUS image segmentation based on self organizing maps
Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine
2014-03-01
Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.
Fast rail corrugation detection based on texture filtering
Xiao, Jie; Lu, Kaixia
2018-02-01
The condition detection of rails in high-speed railway is one of the important means to ensure the safety of railway transportation. In order to replace the traditional manual inspection, save manpower and material resources, and improve the detection speed and accuracy, it is of great significance to develop a machine vision system for locating and identifying defects on rails automatically. Rail defects exhibit different properties and are divided into various categories related to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail, construction conditions, and speed and/or frequency of trains using the rail. Rail corrugation is a particular kind of defects that produce an undulatory deformation on the rail heads. In high speed train, the corrugation induces harmful vibrations on wheels and its components and reduces the lifetime of rails. This type of defects should be detected to avoid rail fractures. In this paper, a novel method for fast rail corrugation detection based on texture filtering was proposed.
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
Design and optimization of multipole lens and Wien filter systems
Energy Technology Data Exchange (ETDEWEB)
Liu Haoning, E-mail: haoning@mebs.co.uk [Munro' s Electron Beam Software Ltd., 14 Cornwall Gardens, London SW7 4AN (United Kingdom); Wang Liping; Rouse, John; Munro, Eric [Munro' s Electron Beam Software Ltd., 14 Cornwall Gardens, London SW7 4AN (United Kingdom)
2011-07-21
The differential algebra (DA) method has been employed to compute the optical properties and aberrations up to the fifth order of multipole systems containing electrostatic and magnetic round, quadrupole, hexapole and octopole lenses, and Wien filters. A new software package has been developed, which computes the geometrical and chromatic aberrations up to the fifth order by using a single DA ray trace. It also has an optimization module where a weighted set of aberrations can be minimized by the automatic adjustment of a set of user-defined system variables. In this paper, we present our new method for designing and optimizing multipole systems including Wien filters, and illustrate its application with three relevant examples.
Design and optimization of multipole lens and Wien filter systems
Liu, Haoning; Wang, Liping; Rouse, John; Munro, Eric
2011-07-01
The differential algebra (DA) method has been employed to compute the optical properties and aberrations up to the fifth order of multipole systems containing electrostatic and magnetic round, quadrupole, hexapole and octopole lenses, and Wien filters. A new software package has been developed, which computes the geometrical and chromatic aberrations up to the fifth order by using a single DA ray trace. It also has an optimization module where a weighted set of aberrations can be minimized by the automatic adjustment of a set of user-defined system variables. In this paper, we present our new method for designing and optimizing multipole systems including Wien filters, and illustrate its application with three relevant examples.
Form factors and radiation widths of the giant multipole resonances
International Nuclear Information System (INIS)
Denisov, V.Yu.
1990-01-01
Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data
Fast GC for Space Applications Based on PIES Technology Project
National Aeronautics and Space Administration — Development of a novel analytical instrument which combines the advantages of fast GC and a detector capable of identifying species is proposed. Experiments in the...
Optimisation of resolution in accelerator-based fast neutron radiography
Rahmanian, H; Watterson, J I W
2002-01-01
In fast neutron radiography, imaging geometry, neutron scattering, the fast neutron scintillator and the position-sensitive detector all influence feature contrast, resolution and the signal-to-noise ratio in the image. The effect of imaging geometry can be explored by using a ray-tracing method. This requires following the path of neutrons through the imaging field, which includes the sample of interest. A relationship between imaging geometry and feature detectability can be developed. Monte Carlo methods can be used to explore the effect of neutron scattering on the results obtained with the ray-tracing technique. Fast neutrons are detected indirectly via neutron-nucleon scattering reactions. Using hydrogen-rich scintillators and relying on the recoil protons to ionise the scintillator material is the most sensitive technique available. The efficiency, geometry and composition of these scintillators influence the detectability of features in fast neutron radiography. These scintillator properties have a di...
Proof of a multipole conjecture due to Geroch
International Nuclear Information System (INIS)
Beig, R.; Simon, W.
1980-01-01
A result, first conjectured by Geroch, is proved to the extent, that the multipole moments of a static space-time characterize this space-time uniquely. As an offshoot of the proof one obtains an essentially coordinate-free algorithm for explicitly writing down a geometry in terms of it's moments in a purely algebraic manner. This algorithm seems suited for symbolic manipulation on a computer. (orig.)
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
Extension of the Multipole Approach to Random Metamaterials
Directory of Open Access Journals (Sweden)
A. Chipouline
2012-01-01
Full Text Available Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained analytical results are compared with the known experimental ones.
Electroexcitation of giant multipole resonances in 208Pb
International Nuclear Information System (INIS)
Sasao, M.; Torizuka, Y.
1977-01-01
Electroexcitation of the nuclear continuum for 208 Pb at excitation energies up to 100 MeV has been measured at momentum transfers in the range from 0.45 to 1.2 fm -1 . Unfolding of the radiation tail was performed using a tail function which takes into account the multiple-photon emission effect. The spectra at these momentum transfers deviate significantly from the prediction of the Fermi-gas model but are consistent with the sum of the multipole strengths of the random-phase approximation; the excess cross section on the low excitation energy side indicates the excitation of multipole resonances. A series of 208 Pb spectra at low momentum transfers was expanded into E1, E2 (E0), E3, and higher multipole components using the q dependence of the Tassie model for isoscalar modes and the Goldhaber-Teller or Steinwedel-Jensen model for isovector modes. The giant dipole resonance thus obtained is consistent with that from photoreactions. Isoscalar and isovector giant quadrupole resonances are seen, respectively, at 11 and 22.5 MeV and an octupole resonance at 16 MeV. A monopole resonance is suggested at 13.5 MeV. The reduced 2 > 2 , B (E1), B (E2), and B (E3) consume most of the corresponding energy weighted sum rule if the q dependences of the Tassie and Goldhaber-Teller models are assumed. The results with these models are consistent with the random-phase approximation
Sensitivity Analysis of a process based erosion model using FAST
Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin
2015-04-01
deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes, respectively. The sensitivity analysis was performed based on virtual hillslopes similar to those in the Weiherbach catchment. We applied the FAST-method (Fourier Amplitude Sensitivity Test), which provides a global sensitivity analysis with comparably few model runs. We varied model parameters in predefined and, for the Weiherbach catchment, physically meaningful parameter ranges. Those parameters included rainfall intensity, surface roughness, hillslope geometry, land use, erosion resistance, and soil hydraulic parameters. The results of this study allow guiding further modelling efforts in the Weiherbach catchment with respect to data collection and model modification.
Factors Affecting the Consumption of Fast Foods Among Women Based on the Social Cognitive Theory
Nooshin Beiranvandpour; Akram Karimi-Shahanjarini; Forouzan Rezapur-Shahkolai; Abbas Moghimbeigi
2014-01-01
Introduction: Fast-food consumption among Iranian families appears to be increasing probably due to urbanization, popularization of western-style diets and increased women's labor force participation. Few theory-based investigations have assessed the determinants of fast food consumption. Therefore, the aim of this study was to determine the predictors of fast food consumption, based on the social cognitive theory (SCT) among women referred to health centers in Hamadan, West of Iran. Mate...
International Nuclear Information System (INIS)
Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.
1999-01-01
The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator
Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals
Hayami, Satoru; Kusunose, Hiroaki
2018-03-01
We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.
Völlinger, C
2000-01-01
This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...
An artificial neural network based fast radiative transfer model for ...
Indian Academy of Sciences (India)
kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating the multispectral ... faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In the present study, a fast ... ward model is then coupled with an optimization tool to accomplish the ...
Directory of Open Access Journals (Sweden)
Guillermo Sanchez-Diaz
2012-11-01
Full Text Available In this paper, we introduce a fast implementation of the CT EXT algorithm for testor property identification, that is based on an accumulative binary tuple. The fast implementation of the CT EXT algorithm (one of the fastest algorithms reported, is designed to generate all the typical testors from a training matrix, requiring a reduced number of operations. Experimental results using this fast implementation and the comparison with other state-of-the-art algorithms that generate typical testors are presented.
Directory of Open Access Journals (Sweden)
Lu Wang
2016-12-01
Full Text Available The stability of a fiber optic gyroscope (FOG in measurement while drilling (MWD could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples, the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.
Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu
2016-12-07
The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.
Multipole plasmon excitations of C{sub 60} dimers
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2014-07-14
We study the multipole plasmon mode frequencies of a pair of C{sub 60} molecules by means of the linearized hydrodynamic theory for electronic excitations on the each C{sub 60} surface. We apply the two-center spherical coordinate system for mathematical convenience and find an explicit form of the surface plasmon energies. Numerical result shows when approaching the two C{sub 60} molecules, the coupling between the bare plasmon modes leads to the appearance of additional modes having energies that are different from those of the isolated C{sub 60} molecules.
Error bounds in MEG (Magnetoencephalography) multipole localization
Energy Technology Data Exchange (ETDEWEB)
Jerbi, K. (Karim); Mosher, J. C. (John C.); Baillet, S. (Sylvain); Leahy, R. M. (Richard M.)
2001-01-01
Magnetoencephalography (MEG) is a non-invasive method that enables the measurement of the magnetic field produced by neural current sources within the human brain. Unfortunately, MEG source estimation is a severely ill-posed inverse problem. The two major approaches used to tackle this problem are 'imaging' and 'model-based' methods. The first class of methods relies on a tessellation of the cortex, assigning an elemental current source to each area element and solving the linear inverse problem. Accurate tessellations lead to a highly underdetermined problem, and regularized linear methods lead to very smooth current distributions. An alternative approach widely used is a parametric representation of the neural source. Such model-based methods include the classic equivalent current dipole (ECD) and its multiple current dipole extension [1]. The definition of such models has been based on the assumption that the underlying sources are focal and small in number. An alternative approach reviewed in [4], [5] is to extend the parametric source representations within the model-based framework to allow for distributed sources. The multipolar expansion of the magnetic field about the centroid of a distributed source readily offers an elegant parametric model, which collapses to a dipole model in the limiting case and includes higher order terms in the case of a spatially extended source. While multipolar expansions have been applied to magnetocardiography (MCG) source modeling [2], their use in MEG has been restricted to simplified models [7]. The physiological interpretation of these higher-order components in non-intuitive, therefore limiting their application in this community (cf. [8]). In this study we investigate both the applicability of dipolar and multipolar models to cortical patches, and the accuracy with which we can locate these sources. We use a combination of Monte Carlo analyses and Cramer-Rao lower bounds (CRLBs), paralleling the work
Neutron diffraction study of multipole order in light rare-earth ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 71; Issue 4. Neutron diffraction study of multipole order in light rare-earth hexaborides. J-M Mignat J ... Multipole interactions are known to play a central role in the unconventional properties of light rare-earth hexaborides and especially of CeB6. Substituting Pr at the ...
The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels
DEFF Research Database (Denmark)
Howell, J.; Nielsson, O.; Horsewell, Andy
1981-01-01
It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...
Corrections and comments on the multipole moments of axisymmetric electrovacuum spacetimes
Energy Technology Data Exchange (ETDEWEB)
Sotiriou, Thomas P; Apostolatos, Theocharis A [Section of Astrophysics, Astronomy, and Mechanics Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15783, Athens (Greece)
2004-12-21
Following the method of Hoenselaers and Perjes, we present a new corrected and dimensionally consistent set of multipole gravitational and electromagnetic moments for stationary axisymmetric spacetimes. Furthermore, we use our results to compute the multipole moments, both gravitational and electromagnetic, of a Kerr-Newman black hole.
International Nuclear Information System (INIS)
Safronova, U. I.; Safronova, A. S.
2011-01-01
Wavelengths, transition rates, and line strengths are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited [Cd]4f 13 5p 6 nl, [Cd]4f 14 5p 5 nl configurations and the ground [Cd]4f 14 5p 6 state in Er-like W 6+ ion ([Cd]=[Kr]4d 10 5s 2 ). In particular, the relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in this hole-particle system. This method is based on the relativistic many-body perturbation theory that agrees with multiconfiguration Dirac-Fock (MCDF) calculations in lowest order, and includes all second-order correlation corrections and corrections from negative-energy states. The calculations start from a [Cd]4f 14 5p 6 Dirac-Fock (DF) potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the multipole matrix elements needed for calculations of other atomic properties such as line strengths and transition rates. In addition, core multipole polarizability is evaluated in random-phase and DF approximations. The comparison with available data is demonstrated.
A fast image reconstruction technique based on ART
International Nuclear Information System (INIS)
Zhang Shunli; Zhang Dinghua; Wang Kai; Huang Kuidong; Li Weibin
2007-01-01
Algebraic Reconstruction Technique (ART) is an iterative method for image reconstruction. Improving its reconstruction speed has been one of the important researching aspects of ART. For the simplified weight coefficients reconstruction model of ART, a fast grid traverse algorithm is proposed, which can determine the grid index by simple operations such as addition, subtraction and comparison. Since the weight coefficients are calculated at real time during iteration, large amount of storage is saved and the reconstruction speed is greatly increased. Experimental results show that the new algorithm is very effective and the reconstruction speed is improved about 10 times compared with the traditional algorithm. (authors)
Vision-based fast navigation of micro aerial vehicles
Loianno, Giuseppe; Kumar, Vijay
2016-05-01
We address the key challenges for autonomous fast flight for Micro Aerial Vehicles (MAVs) in 3-D, cluttered environments. For complete autonomy, the system must identify the vehicle's state at high rates, using either absolute or relative asynchronous on-board sensor measurements, use these state estimates for feedback control, and plan trajectories to the destination. State estimation requires information from different sensors to be fused, exploiting information from different, possible asynchronous sensors at different rates. In this work, we present techniques in the area of planning, control and visual-inertial state estimation for fast navigation of MAVs. We demonstrate how to solve on-board, on a small computational unit, the pose estimation, control and planning problems for MAVs, using a minimal sensor suite for autonomous navigation composed of a single camera and IMU. Additionally, we show that a consumer electronic device such as a smartphone can alternatively be employed for both sensing and computation. Experimental results validate the proposed techniques. Any consumer, provided with a smartphone, can autonomously drive a quadrotor platform at high speed, without GPS, and concurrently build 3-D maps, using a suitably designed app.
A Multipole Expansion Method for Analyzing Lightning Field Changes
Koshak, William J.; Krider, E. Philip; Murphy, Martin J.
1998-01-01
Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q-model) or a point dipole (the P-model). The Q-model has 4 unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P-model has 6 unknown parameters and describes many intracloud (IC) discharges. In this paper, we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a 3-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer simulated sources and on natural lightning at the NASA Kennedy Space Center and USAF Eastern Range.
Tunisian gamma source load planning using multipole moment method
International Nuclear Information System (INIS)
Loussaief, Abdelkader; Mannai, Kais; Trabelsi, Adel
2005-01-01
Many methods, especially Monte Carlo simulation technique and Point Kernel method are idely used for radiation profile studies. However, these methods are either time consuming or fairly accurate when dealing with extended gamma sources particularly for optimization studies. Furthermore, while the buildup factor and the attenuation effects were well investigated in the literature, little work was done about the systematic influence of the source extension. In this work we focus on the effect of the source geometry using the generalized Laplace's expansion. We express the bare gamma photon flux rate in terms of the standard Cartesian multipole moments. Using the properties of these moments we establish a close relationship between the radiation profile and the geometrical features of the source. As applications we propose to use the multipole expansion method to investigate the radiation profile isotropy of the source. A detailed study of the arrangement of the unit pencil sources of the tunisian irradiation facility is performed. Using this method, millions of possible configurations for various load plans investigated, in few minutes and even multisteps scenarios were considered. As a result, the current configuration of the source was found to be not optimized. Furthermore, using these analytical method it was possible to optimize the activity of each new unit source
Acoustic scattering by multiple elliptical cylinders using collocation multipole method
International Nuclear Information System (INIS)
Lee, Wei-Ming
2012-01-01
This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.
Electromagnetic multipole fields in a finite, spherically symmetric region
International Nuclear Information System (INIS)
Steiger, A.D.
1980-01-01
The electromagnetic eigenfields for the region bounded by two concentric spheres are discussed and compared with the corresponding eigenfields of a spherical cavity. These characteristic fields are the solenoidal and irrotational multiple solutions of the vector Helmholtz equation that satisfy the source-free boundary conditions. They constitute a complete set for the expansion of an arbitrary, square-integrable electromagnetic field, which may be generated by surface and volume sources. The frequencies of the solenoidal and irrotational eigenfields for the angular region are analyzed as functions of the radius ratio, α=r 1 /r 2 (r 1 2 =constant), of the two concentric spheres. The results are illustrated by graphs and tables. Two relations obtained by applying the implicit function theorem to the transcendental eigenfrequency equations are also derived by calculating the work performed against the radiation pressure as the electromagnetic field is compressed adiabatically. The multipoles. Two formulas for the reduction of vector products of multipole fields to sums of vector spherical harmonics are derived
International Nuclear Information System (INIS)
Kjellander, Roland; Ramirez, Rosa
2008-01-01
An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes
A Fast DOA Estimation Algorithm Based on Polarization MUSIC
Directory of Open Access Journals (Sweden)
R. Guo
2015-04-01
Full Text Available A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC.
Implementation of Fast Emulator-based Code Calibration.
Energy Technology Data Exchange (ETDEWEB)
Bowman, Nathaniel; Denman, Matthew R
2016-08-01
Calibration is the process of using experimental data to gain more precise knowledge of sim- ulator inputs. This process commonly involves the use of Markov-chain Monte Carlo, which requires running a simulator thousands of times. If we can create a faster program, called an emulator, that mimics the outputs of the simulator for an input range of interest, then we can speed up the process enough to make it feasible for expensive simulators. To this end, we implement a Gaussian-process emulator capable of reproducing the behavior of various long- running simulators to within acceptable tolerance. This fast emulator can be used in place of a simulator to run Markov-chain Monte Carlo in order to calibrate simulation parameters to ex- perimental data. As a demonstration, this emulator is used to calibrate the inputs of an actual simulator against two sodium-fire experiments.
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Fast infectious diseases diagnostics based on microfluidic biochip system
Directory of Open Access Journals (Sweden)
Qin Huang
2017-03-01
Full Text Available Molecular diagnostics is one of the most important tools currently in use for clinical pathogen detection due to its high sensitivity, specificity, and low consume of sample and reagent is keyword to low cost molecular diagnostics. In this paper, a sensitive DNA isothermal amplification method for fast clinical infectious diseases diagnostics at aM concentrations of DNA was developed using a polycarbonate (PC microfluidic chip. A portable confocal optical fluorescence detector was specifically developed for the microfluidic chip that was capable of highly sensitive real-time detection of amplified products for sequence-specific molecular identification near the optical diffraction limit with low background. The molecular diagnostics of Listeria monocytogenes with nucleic acid extracted from stool samples was performed at a minimum DNA template concentration of 3.65aM, and a detection limit of less than five copies of genomic DNA. Contrast to the general polymerase chain reaction (PCR at eppendorf (EP tube, the detection time in our developed method was reduced from 1.5h to 45min for multi-target parallel detection, the consume of sample and reagent was dropped from 25μL to 1.45μL. This novel microfluidic chip system and method can be used to develop a micro total analysis system as a clinically relevant pathogen molecular diagnostics method via the amplification of targets, with potential applications in biotechnology, medicine, and clinical molecular diagnostics.
A fast, physically based method for mixing computations
Meunier, Patrice; Villermaux, Emmanuel
2008-11-01
We introduce a new numerical method for the study of diffusing scalar filaments in a 2D advection field. The position of the advected filament is computed kinematically, and the associated convection-diffusion problem is solved using the computed local stretching rate, assuming that the diffusing filament thickness is smaller than its local radius of curvature. This assumption reduces the numerical problem to the computation of a single variable along the filament, thus making the method extremely fast and applicable to any Peclet number. This method is then used for the mixing of a scalar in the chaotic regime of a Sine Flow, for which we relate the global quantities (spectra, concentration PDF) to the distributed stretching of the convoluted filament. The numerical results indicate that the PDF of the filament elongation is log-normal, a signature of random multiplicative processes. This property leads to exact analytical predictions for the spectrum of the field and for the PDF of the scalar concentration, in good agreement with the numerical results. These are thought to be generic of the chaotic mixing of scalars in the Batchelor regime.
Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots
Energy Technology Data Exchange (ETDEWEB)
Herzog, Bastian, E-mail: BHerzog@physik.tu-berlin.de; Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
2015-11-16
Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.
On fast iterative mapping algorithms for stripe based coarse-grained reconfigurable architectures
Mehta, Gayatri; Patel, Krunalkumar; Pollard, Nancy S.
2015-01-01
Reconfigurable devices have potential for great flexibility/efficiency, but mapping algorithms onto these architectures is a long-standing challenge. This paper addresses this challenge for stripe based coarse-grained reconfigurable architectures (CGRAs) by drawing on insights from graph drawing. We adapt fast, iterative algorithms from hierarchical graph drawing to the problem of mapping to stripe based architectures. We find that global sifting is 98 times as fast as simulated annealing and produces very compact designs with 17% less area on average, at a cost of 5% greater wire length. Interleaving iterations of Sugiyama and global sifting is 40 times as fast as simulated annealing and achieves somewhat more compact designs with 1.8% less area on average, at a cost of only 1% greater wire length. These solutions can enable fast design space exploration, rapid performance testing, and flexible programming of CGRAs "in the field."
Magnetic x-ray measurements using the elliptical multipole wiggler
Energy Technology Data Exchange (ETDEWEB)
Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.
1999-10-26
The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K{sub y} and K{sub x}. They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar.
Planar Multipol-Resonance-Probe: A Spectral Kinetic Approach
Friedrichs, Michael; Gong, Junbo; Brinkmann, Ralf Peter; Oberrath, Jens; Wilczek, Sebastian
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP (pMRP). Introducing the spectral kinetic formalism leads to a reduced simulation-circle compared to particle-in-cell simulations. The model of the pMRP is implemented and first simulation results are presented.
On some orthogonality properties of Maxwell's multipole vectors
International Nuclear Information System (INIS)
Gramada, Apostol
2007-01-01
We determine the location of the expansion points with respect to which the two Maxwell's multipole vectors of the quadrupole moment and the dipole vector of a distribution of charge form an orthogonal trihedron. We find that with respect to these 'orthogonality centres' both the dipole and the quadrupole moments are each characterized by a single real parameter. We further show that the orthogonality centres coincide with the stationary points of the magnitude of the quadrupole moment and, therefore, they can be seen as an extension of the concept of centre of the dipole moment of a neutral system introduced previously in the literature. The nature of the stationary points then provides the means for the classification of a distribution of charge in two different categories
Point sources and multipoles in inverse scattering theory
Potthast, Roland
2001-01-01
Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...
Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials
Morozov, I
2017-01-01
We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.
Giant resonance of electrical multipole from droplet model
International Nuclear Information System (INIS)
Tauhata, L.
1984-01-01
The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt
Analytical study of the conjecture rule for the combination of multipole effects in LHC
Guignard, Gilbert
1997-01-01
This paper summarizes the analytical investigation done on the conjecture law found by tracking for the effect on the dynamic aperture of the combination of two multipoles of various order. A one-dimensional model leading to an integrable system has been used to find closed formulae for the dynamic aperture associated with a fully distributed multipole. The combination has then been studied and the resulting expression compared with the assumed conjecture law. For integrated multipoles small with respect to the focusing strength, the conjecture appears to hold, though with an exponent different from the one expected by crude reasoning.
Modified multipole structure for electron cyclotron resonance ion sources
Energy Technology Data Exchange (ETDEWEB)
Suominen, P.
2006-07-01
Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)
Modified multipole structure for electron cyclotron resonance ion sources
International Nuclear Information System (INIS)
Suominen, P.
2006-01-01
Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)
Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department
2015-01-01
We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.
Time-driven Activity-based Cost of Fast-Track Total Hip and Knee Arthroplasty
DEFF Research Database (Denmark)
Andreasen, Signe E; Holm, Henriette B; Jørgensen, Mira
2017-01-01
BACKGROUND: Fast-track total hip and knee arthroplasty (THA and TKA) has been shown to reduce the perioperative convalescence resulting in less postoperative morbidity, earlier fulfillment of functional milestones, and shorter hospital stay. As organizational optimization is also part of the fast......-track methodology, the result could be a more cost-effective pathway altogether. As THA and TKA are potentially costly procedures and the numbers are increasing in an economical limited environment, the aim of this study is to present baseline detailed economical calculations of fast-track THA and TKA and compare...... this between 2 departments with different logistical set-ups. METHODS: Prospective data collection was analyzed using the time-driven activity-based costing method (TDABC) on time consumed by different staff members involved in patient treatment in the perioperative period of fast-track THA and TKA in 2 Danish...
Factors Affecting the Consumption of Fast Foods Among Women Based on the Social Cognitive Theory
Directory of Open Access Journals (Sweden)
Nooshin Beiranvandpour
2014-06-01
Full Text Available Introduction: Fast-food consumption among Iranian families appears to be increasing probably due to urbanization, popularization of western-style diets and increased women's labor force participation. Few theory-based investigations have assessed the determinants of fast food consumption. Therefore, the aim of this study was to determine the predictors of fast food consumption, based on the social cognitive theory (SCT among women referred to health centers in Hamadan, West of Iran. Materials and Methods: This cross-sectional study was conducted using structured self-administered questionnaires on 384 women referred to 10 health centers in Hamadan city, Western of Iran. Health center was considered as a sampling unit and systematic random sampling method was applied to select health centers. Participants filled a questionnaire containing SCT constructs, an eight-item food frequency questionnaire, and demographic characteristics. Data was analyzed by independent T-test, one-way ANOVA, and multiple linear regression using SPSS-16. Results: The model could explain 21% of the variance in frequency of fast food consumption. Outcome expectations (p=0.04 and availability (p< 0.001 were the significant predictors. The career status of women was the only related demographic characteristic (p< 0.001. Conclusion: Interventions aimed to change outcome expectations and introducing nutritious alternatives to fast food could be promising to decrease the rate of fast-food consumption.
Fast Content-Based Packet Handling for Intrusion Detection
National Research Council Canada - National Science Library
Fisk, Mike
2001-01-01
... use of Royer-Moore currently used in the popular intrusion detection platform Snort. We then measure the actual performance of several search algorithms on actual packet traces and rulesets. Our results provide lessons on the structuring of content-based handlers.
Nguyen, Leonard T; Buse, Joshua D; Baskin, Leland; Sadrzadeh, S M Hossein; Naugler, Christopher
2017-12-01
Serum iron is an important clinical test to help identify cases of iron deficiency or overload. Fluctuations caused by diurnal variation and diet are thought to influence test results, which may affect clinical patient management. We examined the impact of these preanalytical factors on iron concentrations in a large community-based cohort. Serum iron concentration, blood collection time, fasting duration, patient age and sex were obtained for community-based clinical testing from the Laboratory Information Service at Calgary Laboratory Services for the period of January 2011 to December 2015. A total of 276,307 individual test results were obtained. Iron levels were relatively high over a long period from 8:00 to 15:00. Mean concentrations were highest at blood collection times of 11:00 for adult men and 12:00 for adult women and children, however iron levels peaked as late as 15:00 in teenagers. With regard to fasting, iron levels required approximately 5h post-prandial time to return to a baseline, except for children and teenage females where no significant variation was seen until after 11h fasting. After 10h fasting, iron concentrations in all patient groups gradually increased to higher levels compared to earlier fasting times. Serum iron concentrations remain reasonably stable during most daytime hours for testing purposes. In adults, blood collection after 5 to 9h fasting provides a representative estimate of a patient's iron levels. For patients who have fasted overnight, i.e. ≥12h fasting, clinicians should be aware that iron concentrations may be elevated beyond otherwise usual levels. Copyright © 2017. Published by Elsevier Inc.
Fast Reduction Method in Dominance-Based Information Systems
Li, Yan; Zhou, Qinghua; Wen, Yongchuan
2018-01-01
In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.
Fast Scene Based Nonuniformity Correction with Minimal Temporal Latency
2006-09-01
period of time. For example, the “Zenith camera” referenced in Elkins et al. can process 16 frames at a speed of 100 million frames per second (Mfps...derived to use whole shifts in - 42 - order to optimize for speed . The error introduced by uncertainty in the shifts is highly dependant on the...Sons, Inc. 1985. 3. Hayat, Majeed M; Ratliff, Bradley M; Tyo , J. Scott; Agi, Kamil. “Generalized Algebraic Scene-based Nonuniformity Correction
Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid
Cury , Claire; Glaunès , Joan Alexis; Chupin , Marie; Colliot , Olivier
2014-01-01
International audience; A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to the population. The Large Deformation Diffeomorphic Metric Mapping framework is widely used for shape analysis of anatomical structures, but computing a template with such framework is computationally expensive. In this paper w...
Fast Multi-Symbol Based Iterative Detectors for UWB Communications
Directory of Open Access Journals (Sweden)
Lottici Vincenzo
2010-01-01
Full Text Available Ultra-wideband (UWB impulse radios have shown great potential in wireless local area networks for localization, coexistence with other services, and low probability of interception and detection. However, low transmission power and high multipath effect make the detection of UWB signals challenging. Recently, multi-symbol based detection has caught attention for UWB communications because it provides good performance and does not require explicit channel estimation. Most of the existing multi-symbol based methods incur a higher computational cost than can be afforded in the envisioned UWB systems. In this paper, we propose an iterative multi-symbol based method that has low complexity and provides near optimal performance. Our method uses only one initial symbol to start and applies a decision directed approach to iteratively update a filter template and information symbols. Simulations show that our method converges in only a few iterations (less than 5, and that when the number of symbols increases, the performance of our method approaches that of the ideal Rake receiver.
Fast dictionary-based reconstruction for diffusion spectrum imaging.
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar
2013-11-01
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
Fast rule-based bioactivity prediction using associative classification mining
Directory of Open Access Journals (Sweden)
Yu Pulan
2012-11-01
Full Text Available Abstract Relating chemical features to bioactivities is critical in molecular design and is used extensively in the lead discovery and optimization process. A variety of techniques from statistics, data mining and machine learning have been applied to this process. In this study, we utilize a collection of methods, called associative classification mining (ACM, which are popular in the data mining community, but so far have not been applied widely in cheminformatics. More specifically, classification based on predictive association rules (CPAR, classification based on multiple association rules (CMAR and classification based on association rules (CBA are employed on three datasets using various descriptor sets. Experimental evaluations on anti-tuberculosis (antiTB, mutagenicity and hERG (the human Ether-a-go-go-Related Gene blocker datasets show that these three methods are computationally scalable and appropriate for high speed mining. Additionally, they provide comparable accuracy and efficiency to the commonly used Bayesian and support vector machines (SVM methods, and produce highly interpretable models.
Anti-de-Sitter regular electric multipoles: towards Einstein-Maxwell-AdS solitons
Herdeiro, Carlos; Radu, Eugen
2015-01-01
We discuss electrostatics in Anti-de-Sitter ($AdS$) spacetime, in global coordinates. We observe that the multipolar expansion has two crucial differences to that in Minkowski spacetime. First, there are everywhere regular solutions, with finite energy, for every multipole moment except for the monopole. Second, all multipole moments decay with the same inverse power of the areal radius, $1/r$, as spatial infinity is approached. The first observation suggests there may be regular, self-gravit...
Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch
International Nuclear Information System (INIS)
Herberthson, Magnus
2009-01-01
In this paper we give sufficient conditions on a sequence of multipole moments for a static spacetime to exist with precisely these moments. The proof is constructive in the sense that a metric having prescribed multipole moments up to a given order can be calculated. Since these sufficient conditions agree with already known necessary conditions, this completes the proof of a long standing conjecture due to Geroch.
Fast perceptual image hash based on cascade algorithm
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
A fast image encryption system based on chaotic maps with finite precision representation
International Nuclear Information System (INIS)
Kwok, H.S.; Tang, Wallace K.S.
2007-01-01
In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes
International Nuclear Information System (INIS)
Green, M.A.
1990-01-01
Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)
An Improved FastSLAM System Based on Distributed Structure for Autonomous Robot Navigation
Directory of Open Access Journals (Sweden)
Fu-jun Pei
2014-01-01
Full Text Available Fast simultaneous localization and mapping (FastSLAM is an efficient algorithm for autonomous navigation of mobile vehicle. However, FastSLAM must reconfigure the entire vehicle state equation when the feature points change, which causes an exponential growth in quantities of computation and difficulties in isolating potential faults. In order to overcome these limitations, an improved FastSLAM, based on the distributed structure, is developed in this paper. There are two state estimation parts designed in this improved FastSLAM. Firstly, a distributed unscented particle filter is used to avoid reconfiguring the entire system equation in the vehicle state estimation part. Secondly, in the landmarks estimation part, the observation model is designed as a linear one to update the landmarks states by using the linear observation errors. Then, the convergence of the proposed and improved FastSLAM algorithm is given in the sense of mean square. Finally, the simulation results show that the proposed distributed algorithm could reduce the computational complexity with high accuracy and high fault-tolerance performance.
Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal
International Nuclear Information System (INIS)
Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya
2008-01-01
The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC
Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu
2008-06-07
The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.
Cr-39 fast neutron dosemeter based on A (n, α) converter
International Nuclear Information System (INIS)
Widayati, S.; Budiantari, T.
1998-01-01
The aim of this experiment is to obtained the response of Cr-39 as fast neutron dosemeter based on an (n, α) converter. Cr-39 was irradiated to AmBe fast neutron flux from 0.10 mSv to 2.5 mSv. Cr-39 processed by chemical etching with NaOH 20 % at temperature of 60 oC in six hours. The results of experiment showed that the response of Cr-39 based on an (n, α) converter is 6 times bigger than the response of Cr-39 without (n, α) converter. (author)
Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng
2018-03-01
Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.
Fast L1-based sparse representation of EEG for motor imagery signal classification.
Younghak Shin; Heung-No Lee; Balasingham, Ilangko
2016-08-01
Improvement of classification performance is one of the key challenges in electroencephalogram (EEG) based motor imagery brain-computer interface (BCI). Recently, sparse representation based classification (SRC) method has been shown to provide satisfactory classification accuracy in motor imagery classification. In this paper, we aim to evaluate the performance of the SRC method in terms of not only its classification accuracy but also of its computation time. For this purpose, we investigate the performance of recently developed fast L1 minimization methods for their use in SRC, such as homotopy and fast iterative soft-thresholding algorithm (FISTA). From experimental analysis, we note that the SRC method with the fast L1 minimization algorithms is shown to provide robust classification performance, compared to support vector machine (SVM), both in time and accuracy.
A Very Fast and Angular Momentum Conserving Tree Code
Energy Technology Data Exchange (ETDEWEB)
Marcello, Dominic C., E-mail: dmarce504@gmail.com [Department of Physics and Astronomy, and Center for Computation and Technology Louisiana State University, Baton Rouge, LA 70803 (United States)
2017-09-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
A Very Fast and Angular Momentum Conserving Tree Code
International Nuclear Information System (INIS)
Marcello, Dominic C.
2017-01-01
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
Electron inelastic scattering by compound nuclei and giant multipole resonances
International Nuclear Information System (INIS)
Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.
1980-01-01
Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru
Collisionless spectral-kinetic Simulation of the Multipole Resonance Probe
Dobrygin, Wladislaw; Szeremley, Daniel; Schilling, Christian; Oberrath, Jens; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf Peter
2012-10-01
Plasma resonance spectroscopy is a well established plasma diagnostic method realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development, which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In the simulation the potential is separeted in an inner and a vacuum potential. The inner potential is influenced by the charged partilces and is calculated by a specialized Poisson solver. The vacuum potential fulfills Laplace's equetion and consists of the applied voltage of the probe as boundary condition. Both potentials are expanded in spherical harmonics. For a practical particle pusher implementation, the expansion must be appropriately truncated. Compared to a PIC simulation a grid is unnecessary to calculate the force on the particles. This work purpose is a collisionless kinetic simulation, which can be used to investigate kinetic effects on the resonance behavior of the MRP.[4pt] [1] M. Lapke et al., Appl. Phys. Lett. 93, 2008, 051502.
Internal conversion coefficients of high multipole transitions: Experiment and theories
International Nuclear Information System (INIS)
Gerl, J.; Vijay Sai, K.; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.
2008-01-01
A compilation of the available experimental internal conversion coefficients (ICCs), α T , α K , α L , and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 ≤ Z ≤ 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%Δ) have been calculated for each of the above theories and the averages (%Δ-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.
Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W
2015-07-23
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.
Wind turbine integrated multipole permanent magnet generator (PMG)
Energy Technology Data Exchange (ETDEWEB)
Vilsboell, N.; Pinegin, A.; Goussarov, D.
1996-01-01
Designed permanent magnet generator (PMG - 20 kW) possesses a number of advantages: it makes possible to replace gearbox, the generator and possibly the hub of the wind turbine by combining wind rotor with external rotor of the generator; use of rare earth magnets Nd-Fe-B allows to reduce mass and dimensions of the generator; use of the PMG for wind turbines increases the reliability of the construction during the life time, comparing to the conventional design (gearbox, asynchronous generator). The test of the PMG -20 kW informs that design method, developed for calculation of multipole permanent magnet generators is correct in general and meets engineering requirements. The calculation uncertainty of the magnetic system and output characteristics does not exceed 2-3%. The test shows, that the maximum efficiency of the PGM - 20 kW with full load can be achieved as high as 90-91.5% and excels the efficiency of the traditional system `generator-gearbox` by 4-5.5%. Designing permanent magnet generator, it is recommended to take into account voltage stabilization (capacitance). Efficiency is expected to be higher, mass and production cost of the generator can be reduced by 25-30%. The frequency converter shall be used not only for control of rotational speed, but also to obtain sinusoidal capacitive current on the generator side. For PMG - 20 kW the angle between voltage and current should be within the range 0-23%. (au)
Fast neutron mutants database and web displays at SoyBase
SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...
A study of far-infrared Michelson interferometry based on fast plasma scanning
International Nuclear Information System (INIS)
Bartlett, D.V.; Hewitt, G.L.; Robinson, L.C.; Tait, G.D.
1976-02-01
Fast far-infrared multiplex spectroscopy based on a plasma-scanned Michelson interferometer is studied. Our experiments show that the interferometer has sub-millisecond time response and high spectral resolving power. In addition to a description of the experimental performance of the interferometer, we develop and discuss two different methods of interferogram inversion. (author)
Fast-performance simulation for Gossip-based Wireless Sensor Networks
Blagojević, M.; Geilen, M.; Basten, A.A.; Nabi, M.; Hendriks, T.
2014-01-01
Gossip-based Wireless Sensor Networks (GWSNs) are complex systems of inherently random nature. Planning and designing GWSNs requires a fast and adequately accurate mechanism to estimate system performance. As a first contribution, we propose a performance analysis technique that simulates the
A fast, continuous enzyme-based pretreatment process concept for cotton containing textiles
Lenting, H.B.M.; Warmoeskerken, Marinus
2004-01-01
A fast integrated enzyme-based pretreatment process concept for cotton containing textiles has been developed for operation in the continuous mode. The total processing time for the desizing and scouring operation is 3–10 minutes for fabrics with a weight of 120–300 g/m2. Essential elements in the
Stilbene crystalline powder in polymer base as a new fast neutron detector
International Nuclear Information System (INIS)
Budakovsky, S.V.; Galunov, N.Z.; Grinyov, B.V.; Karavaeva, N.L.; Kyung Kim, Jong; Kim, Yong-Kyun; Pogorelova, N.V.; Tarasenko, O.A.
2007-01-01
A new organic scintillation material consisting of stilbene grains in a polymer glue base is presented. The crystalline grains of stilbene are obtained by mechanical grinding of stilbene single crystals. The resulting composite scintillators have been studied as detectors for fast neutrons
Ni-Based Catalysts for the Hydrotreatment of Fast Pyrolysis Oil
Ardiyanti, A. R.; Bykova, M. V.; Khromova, S. A.; Yin, W.; Venderbosch, R. H.; Yakovlev, V. A.; Heeres, Hero
Catalytic hydrotreatment is an attractive technology to convert fast pyrolysis oil to stabilized oil products for co processing in conventional crude oil refinery units. We report here the use of novel bimetallic NiCu- and NiPd-based (Picula) catalysts characterized by a high Ni content (29-58 wt %)
Fasting time and vitamin B12 levels in a community-based population.
Orton, Dennis J; Naugler, Christopher; Sadrzadeh, S M Hossein
2016-07-01
Vitamin B12, also known as cobalamin (Cbl), is an essential vitamin that manifests with numerous severe but non-specific symptoms in cases of deficiency. Assessing Cbl status often requires fasting, although this requirement is not standard between institutions. This study evaluated the impact of fasting on Cbl levels in a large community-based cohort in an effort to promote standardization of Cbl testing between sites. Laboratory data for Cbl, fasting time, patient age and sex were obtained from laboratory information service from Calgary Laboratory Services (CLS) for the period of April 2011 to June 2015. CLS is the sole supplier of laboratory services in the Southern Alberta region in Canada (population, approximately 1.4 million). To investigate potential sex-specific effects of fasting on Cbl levels, males and females were analyzed separately using linear regression models. A total of 346,957 individual patient results (196,849 females, 146,085 males) were obtained. The mean plasma Cbl level was 386.5 (±195.6) pmol/L and 412.0 (±220.8) pmol/L for males and females, respectively. Linear regression analysis showed fasting had no significant association with Cbl levels in females; however a statistically significant decrease of 0.9pmol/L/hour fasting (pfasting has the potential to contribute to higher rates of Cbl deficiency in men. Together, these data suggest fasting should be excluded as a requirement for evaluating plasma Cbl. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Yukawa Masahiro
2006-01-01
Full Text Available In stereophonic acoustic echo cancellation (SAEC problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length. The proposed schemes are based on pairwise optimal weight realization (POWER technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE.
Econometric modelling of certain nuclear power systems based on thermal and fast breeder reactors
International Nuclear Information System (INIS)
Pavelescu, M.; Pioaru, C.; Ursu, I.
1988-01-01
Certain known economic analysis models for a LMFBR fast breeder and CANDU thermal solitary reactors are presented, based on the concepts of discounting and levelization. These models are subsequently utilized as a basis for establishing an original model for the econometric analysis of certain thermal reactor systems or/and fast breeder reactors. Case studies are subsequently conducted with the systems: 1-CANDU, 2-LMFBR, 3-CANDU + LMFBR which enables us to draw certain interesting conclusions for a long range nuclear power policy. (author)
Real-time digital signal recovery for a multi-pole low-pass transfer function system
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Characteristics of a stable arc based on FAST and MIRACLE observations
Directory of Open Access Journals (Sweden)
P. Janhunen
2000-02-01
Full Text Available A stable evening sector arc is studied using observations from the FAST satellite at 1250 km altitude and the MIRACLE ground-based network, which contains all-sky cameras, coherent radars (STARE, and magnetometers. Both FAST and STARE observe a northward electric field region of about 200 km width and a field magnitude of about 50 mV/m southward of the arc, which is a typical signature for an evening-sector arc. The field-aligned current determined from FAST electron and magnetometer data are in rather good agreement within the arcs. Outside the arcs, the electron data misses the current carriers of the downward FAC probably because it is mainly carried by electrons of smaller energy than the instrument threshold. Studying the westward propagation speed of small undulations associated with the arc using the all-sky cameras gives a velocity of about 2 km/s. This speed is higher than the background ionospheric plasma speed (about 1 km/s, but it agrees rather well with the idea originally proposed by Davis that the undulations reflect an E × B motion in the acceleration region. The ground magnetograms indicate that the main current flows slightly south of the arc. Computing the ionospheric conductivity from FAST electron data and using the ground magnetograms to estimate the current yields an ionospheric electric field pattern, in rather good agreement with FAST results.Key words: Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions - Magnetospheric physics (auroral phenomena
Infrared video based gas leak detection method using modified FAST features
Wang, Min; Hong, Hanyu; Huang, Likun
2018-03-01
In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.
Automatic Graphic Logo Detection via Fast Region-based Convolutional Networks
Oliveira, Gonçalo; Frazão, Xavier; Pimentel, André; Ribeiro, Bernardete
2016-01-01
Brand recognition is a very challenging topic with many useful applications in localization recognition, advertisement and marketing. In this paper we present an automatic graphic logo detection system that robustly handles unconstrained imaging conditions. Our approach is based on Fast Region-based Convolutional Networks (FRCN) proposed by Ross Girshick, which have shown state-of-the-art performance in several generic object recognition tasks (PASCAL Visual Object Classes challenges). In par...
Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.
1978-01-01
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.
A fast Na+/Ca2+-based action potential in a marine diatom.
Directory of Open Access Journals (Sweden)
Alison R Taylor
Full Text Available BACKGROUND: Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and
a Detailed Proof of the Fundamental Theorem of STF Multipole Expansion in Linearized Gravity
Zschocke, Sven
2014-10-01
The linearized field equations of general relativity in harmonic coordinates are given by an inhomogeneous wave equation. In the region exterior to the matter field, the retarded solution of this wave equation can be expanded in terms of 10 Cartesian symmetric and tracefree (STF) multipoles in post-Minkowskian approximation. For such a multipole decomposition only three and rather weak assumptions are required: (1) No-incoming-radiation condition. (2) The matter source is spatially compact. (3) A spherical expansion for the metric outside the matter source is possible. During the last decades, the STF multipole expansion has been established as a powerful tool in several fields of gravitational physics: celestial mechanics, theory of gravitational waves and in the theory of light propagation and astrometry. But despite its formidable importance, an explicit proof of the fundamental theorem of STF multipole expansion has not been presented so far, while only some parts of it are distributed into several publications. In a technical but more didactical form, an explicit and detailed mathematical proof of each individual step of this important theorem of STF multipole expansion is represented.
An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.
Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B
2017-01-01
An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.
Lead-based Fast Reactor Development Plan and R&D Status in China
International Nuclear Information System (INIS)
Wu Yican
2013-01-01
• Lead-based fast reactors have good potential for waste transmutation, fuel breeding and energy production, which has been selected by CAS as the advanced reactor development emphasis with the support of ADS program and MFE program. Sharing of technologies R&D is possible among GIF/ADS/Fusion. • The concepts and test strategy of series China lead-based fast reactors (CLEAR) have been developed. The preliminary engineering design and safety analysis of CLEAR-I are underway. • Technology R&D on CLEAR with series lead alloy loops and accelerator-based neutron generator have been constructed or under construction. • CLEAR series reactor design and construction have big challenges, widely international cooperation on reactor design and technology R&D is welcome
Elongation cutoff technique armed with quantum fast multipole method for linear scaling.
Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko
2009-11-30
A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.
Productive Large Scale Personal Computing: Fast Multipole Methods on GPU/CPU Systems, Phase I
National Aeronautics and Space Administration — To be used naturally in design optimization, parametric study and achieve quick total time-to-solution, simulation must naturally and personally be available to the...
Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation
Yokota, Rio
2018-01-03
There has been a large increase in the amount of work on hierarchical low-rank approximation methods, where the interest is shared by multiple communities that previously did not intersect. This objective of this article is two-fold; to provide a thorough review of the recent advancements in this field from both analytical and algebraic perspectives, and to present a comparative benchmark of two highly optimized implementations of contrasting methods for some simple yet representative test cases. The first half of this paper has the form of a survey paper, to achieve the former objective. We categorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.
Productive Large Scale Personal Computing: Fast Multipole Methods on GPU/CPU Systems Project
National Aeronautics and Space Administration — To be used naturally in design optimization, parametric study and achieve quick total time-to-solution, simulation must naturally and personally be available to the...
Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay
2018-03-01
In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).
Ma, R; Castellanos, D C; Bachman, J
2016-07-01
China is in the midst of the nutrition transition with increasing rates of obesity and dietary changes. One contributor is the increase in fast food chains within the country. The purpose of this study was to develop a theory-based instrument that explores influencing factors of fast food consumption in adolescents residing in Beijing, China. Cross-sectional study. Value expectancy and theory of planned behaviour were utilised to explore influencing factors of fast food consumption in the target population. There were 201 Chinese adolescents between the ages of 12 and 18. Cronbach's alpha correlation coefficients were used to examine internal reliability of the theory-based questionnaire. Bivariate correlations and a MANOVA were utilised to determine the relationship between theory-based constructs, body mass index (BMI)-for-age and fast food intake frequency as well as to determine differences in theory-based scores among fast food consumption frequency groupings. The theory-based questionnaire showed good reliability. Furthermore, there was a significant difference in the theory-based subcategory scores between fast food frequency groups. A significant positive correlation was observed between times per week fast food was consumed and each theory-based subscale score. Using BMI-for-age of 176 participants, 81% were normal weight and 19% were considered overweight or obese. Results showed consumption of fast food to be on average 1.50 ± 1.33 per week. The relationship between BMI-for-age and times per week fast food was consumed was not significant. As the nutrition transition continues and fast food chains expand, it is important to explore factors effecting fast food consumption in China. Interventions targeting influencing factors can be developed to encourage healthy dietary choice in the midst of this transition. Copyright © 2016. Published by Elsevier Ltd.
WinTRAX: A raytracing software package for the design of multipole focusing systems
Grime, G. W.
2013-07-01
The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Energy Technology Data Exchange (ETDEWEB)
Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Directory of Open Access Journals (Sweden)
Shouyi Yin
2015-01-01
Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Flywheel-Based Fast Charging Station - FFCS for Electric Vehicles and Public Transportation
Gabbar, Hossam A.; Othman, Ahmed M.
2017-08-01
This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”
Arc cells to minimise the effects of the systematic multipoles in LHC
Verdier, A
1998-01-01
In LHC the main contribution to the dynamic aperture is presently (September 1998) that of the ``systematic multipole component per octant''. These components originate from the existence of several fabrication lines which can have different systematic manufacturing errors. It was decided at the Montreux workshop (list of participants in reference [1] that the dipoles belonging to a given octant come from a single given fabrication line. It is shown in this note that, for this kind of perturbation, a certain choice of the phase advances per cell allows a cancellation of most of the non-linear resonances to first order in multipole strengths, whatever the multipole index. This is the meaning of the word ``minimise'' in the title of the note. The efficiency of the method is established by means of a simple tracking test.
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
NetCDF based data archiving system applied to ITER Fast Plant System Control prototype
International Nuclear Information System (INIS)
Castro, R.; Vega, J.; Ruiz, M.; De Arcas, G.; Barrera, E.; López, J.M.; Sanz, D.; Gonçalves, B.; Santos, B.; Utzel, N.; Makijarvi, P.
2012-01-01
Highlights: ► Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. ► Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. ► EPICS control based solution. ► Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the
FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Lu Si; Jie Yu; Shasha Li; Jun Ma; Lei Luo; Qingbo Wu; Yongqi Ma; Zhengji Liu
2017-01-01
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rul...
NetCDF based data archiving system applied to ITER Fast Plant System Control prototype
Energy Technology Data Exchange (ETDEWEB)
Castro, R., E-mail: rodrigo.castro@visite.es [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Ruiz, M.; De Arcas, G.; Barrera, E.; Lopez, J.M.; Sanz, D. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, UPM, Madrid (Spain); Goncalves, B.; Santos, B. [Associacao EURATOM/IST, IPFN - Laboratorio Associado, IST, Lisboa (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, St. Paul lez Durance Cedex (France)
2012-12-15
Highlights: Black-Right-Pointing-Pointer Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. Black-Right-Pointing-Pointer EPICS control based solution. Black-Right-Pointing-Pointer Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution
Settling Payments Fast and Private: Efficient Decentralized Routing for Path-Based Transactions
Roos, Stefanie; Moreno-Sanchez, Pedro; Kate, Aniket; Goldberg, Ian
2017-01-01
Path-based transaction (PBT) networks, which settle payments from one user to another via a path of intermediaries, are a growing area of research. They overcome the scalability and privacy issues in cryptocurrencies like Bitcoin and Ethereum by replacing expensive and slow on-chain blockchain operations with inexpensive and fast off-chain transfers. In the form of credit networks such as Ripple and Stellar, they also enable low-price real-time gross settlements across different currencies. F...
Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition
Directory of Open Access Journals (Sweden)
Chunfu Wu
2015-01-01
Full Text Available For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters.
Directory of Open Access Journals (Sweden)
A F M Saifuddin Saif
Full Text Available Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA. Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2015-01-01
Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.
Fast and accurate grid representations for atom-based docking with partner flexibility.
de Vries, Sjoerd J; Zacharias, Martin
2017-06-30
Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early
International Nuclear Information System (INIS)
Green, M.A.
1990-04-01
Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs
Effects of Crab Cavities' Multipole Content in an Electron-Ion Collider
Energy Technology Data Exchange (ETDEWEB)
Satogata, Todd J. [Jefferson Lab., Newport News, VA (United States); Morozov, Vasiliy [Jefferson Lab., Newport News, VA (United States); Delayen, Jean R. [Old Dominion Univ., Norfolk, VA (United States); Jefferson Lab., Newport News, VA (United States); Castillo, Alejandro [Old Dominion Univ., Norfolk, VA (United States)
2015-09-01
The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity’s field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities’ fields were identified, and some criteria for their future study were proposed.
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Towards Large-Scale Fast Reprogrammable SOA-Based Photonic Integrated Switch Circuits
Directory of Open Access Journals (Sweden)
Ripalta Stabile
2017-09-01
Full Text Available Due to the exponentially increasing connectivity and bandwidth demand from the Internet, the most advanced examples of medium-scale fast reconfigurable photonic integrated switch circuits are offered by research carried out for data- and computer-communication applications, where network flexibility at a high speed and high connectivity are provided to suit network demand. Recently we have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip for high connectivity. In this paper, the current status of fast reconfigurable medium-scale indium phosphide (InP integrated photonic switch matrices based on the use of semiconductor optical amplifier (SOA gates is reviewed, focusing on broadband and cross-connecting monolithic implementations, granting a connectivity of up to sixteen input ports, sixteen output ports, and sixty-four channels, respectively. The opportunities for increasing connectivity, enabling nanosecond order reconfigurability, and introducing distributed optical power monitoring at the physical layer are highlighted. Complementary architecture based on resonant switching elements on the same material platform are also discussed for power efficient switching. Performance projections related to the physical layer are presented and strategies for improvements are discussed in view of opening a route towards large-scale power efficient fast reprogrammable photonic integrated switching circuits.
Fast software-oriented hash function based on data-dependent lookup operations
Directory of Open Access Journals (Sweden)
Moldovyan N.A.
2003-04-01
Full Text Available The paper considers a method of the construction of the iterated hash function on the bases of the data-dependent lookup operations used previously in the design of the fast software suitable ciphers. To transform encryption function into a block one-way function we use the data-dependent initial condition at each transformation cycle of the round function except the first cycle. The variable initial conditions has been also used to strengthen chaining while constructing the iterated hash function. While fixing initial condition the round function can be transformed into a block cipher suitable to perform fast disk encryption. The size of the input data block of the round function and of the block cipher is parameterized defining their suitability for different practical applications.
Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-01-01
As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.
A Fast and Robust Ellipse-Detection Method Based on Sorted Merging
Directory of Open Access Journals (Sweden)
Gangyi Wang
2014-01-01
Full Text Available A fast and robust ellipse-detection method based on sorted merging is proposed in this paper. This method first represents the edge bitmap approximately with a set of line segments and then gradually merges the line segments into elliptical arcs and ellipses. To achieve high accuracy, a sorted merging strategy is proposed: the merging degrees of line segments/elliptical arcs are estimated, and line segments/elliptical arcs are merged in descending order of the merging degrees, which significantly improves the merging accuracy. During the merging process, multiple properties of ellipses are utilized to filter line segment/elliptical arc pairs, making the method very efficient. In addition, an ellipse-fitting method is proposed that restricts the maximum ratio of the semimajor axis and the semiminor axis, further improving the merging accuracy. Experimental results indicate that the proposed method is robust to outliers, noise, and partial occlusion and is fast enough for real-time applications.
Status of SACRD: a data base for fast reactor safety computer codes
International Nuclear Information System (INIS)
Greene, N.M.; Flanagan, G.F.; Alter, H.
1982-01-01
In 1975 work was initiated to provide a central computerized data collection of evaluated data for use in fast reactor safety computer codes. This data base is called SACRD and is intended to encompass handbook and other nonproblem-dependent data related to LMFBR's, especially at extreme conditions where little or no experimental data are available. Version 1 of the data base was released in the latter part of 1978 and remained the standard version until Version 81, which was released in October 1981
Development of sputter ion pump based SG leak detection system for Fast Breeder Test Reactor
International Nuclear Information System (INIS)
Babu, B.; Sureshkumar, K.V.; Srinivasan, G.
2013-01-01
Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Development of Robust method of using sputter ion pump based system. ► Modifications for improving reliability and availability. ► On line injection of hydrogen in sodium during reactor operation. ► Triplication of the SG leak detection system. - Abstract: The Fast Breeder Test Reactor (FBTR) is a 40 MWt, loop type sodium cooled fast reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam as a fore-runner to the second stage of Indian nuclear power programme. The reactor design is based on the French reactor Rapsodie with several modifications which include the provision of a steam-water circuit and turbo-generator. FBTR uses sodium as the coolant in the main heat transport medium to transfer heat from the reactor core to the feed water in the tertiary loop for producing superheated steam, which drives the turbo-generator. Sodium and water flow in shell and tube side respectively, separated by thin-walls of the ferritic steel tubes of the once-through steam generator (SG). Material defects in these tubes can lead to leakage of water into sodium, resulting in sodium water reactions leading to undesirable consequences. Early detection of water or steam leaks into sodium in the steam generator units of liquid metal fast breeder reactors (LMFBR) is an important requirement from safety and economic considerations. The SG leak in FBTR is detected by Sputter Ion Pump (SIP) based Steam Generator Leak Detection (SGLD) system and Thermal Conductivity Detector (TCD) based Hydrogen in Argon Detection (HAD) system. Many modifications were carried out in the SGLD system for the reactor operation to improve the reliability and availability. This paper details the development and the acquired experience of SIP based SGLD system instrumentation for real time hydrogen detection in sodium for FBTR.
BFL: a node and edge betweenness based fast layout algorithm for large scale networks
Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru
2009-01-01
Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673
Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang
2017-07-01
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.
Accelerated materials design of fast oxygen ionic conductors based on first principles calculations
He, Xingfeng; Mo, Yifei
Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.
Newman, Ian R.; Gibb, Maia; Thompson, Valerie A.
2017-01-01
It is commonly assumed that belief-based reasoning is fast and automatic, whereas rule-based reasoning is slower and more effortful. Dual-Process theories of reasoning rely on this speed-asymmetry explanation to account for a number of reasoning phenomena, such as base-rate neglect and belief-bias. The goal of the current study was to test this…
Is the idea of a fast block to polyspermy based on artifact?
Dale, Brian
2014-08-01
This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Niimi, Hironobu; Chun, Wang-Jae; Suzuki, Shushi; Asakura, Kiyotaka; Kato, Makoto
2007-01-01
The aberration of a multipole Wien filter for energy-filtered x-ray photoemission electron microscopy was analyzed and the optimized Fourier components of the electric and magnetic fields for the third-order aperture aberration corrections were obtained. It was found that the third-order aperture aberration correction requires 12 electrodes and magnetic poles. ©2007 American Institute of Physics
Niimi, Hironobu; Chun, Wang-Jae; Suzuki, Shushi; Asakura, Kiyotaka; Kato, Makoto
2007-06-01
The aberration of a multipole Wien filter for energy-filtered x-ray photoemission electron microscopy was analyzed and the optimized Fourier components of the electric and magnetic fields for the third-order aperture aberration corrections were obtained. It was found that the third-order aperture aberration correction requires 12 electrodes and magnetic poles.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
International Nuclear Information System (INIS)
Kharchenko, V.F.
2015-01-01
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities
Michels, M.A.J.; Suttorp, L.G.
1972-01-01
The inductive contribution to the retarded interatomic potential energy of two atoms in degenerate ground states is calculated up to all multipole orders on the basis of quantum electrodynamics. The result, which is found to have nonretarded character, is written in such a way as to show the
Michels, M.A.J.; Suttorp, L.G.
1973-01-01
The inductive and dispersive retarded interaction energies of two ground- state hydrogen atoms described by Dirac theory are derived up to all multipole orders. The results are obtained by evaluation of Feynman diagrams and with the help of dispersion-relation methods. the nonrelativistic and
Electron self-energy calculation using a general multi-pole approximation
Soininen, J A; Shirley, E L
2003-01-01
We present a method for calculating the inverse of the dielectric matrix in a solid using a band Lanczos algorithm. The method produces a multi-pole approximation for the inverse dielectric matrix with an arbitrary number of poles. We discuss how this approximation can be used to calculate the screened Coulomb interaction needed for electron self-energy calculations in solids.
International Nuclear Information System (INIS)
Suen, W.M.
1985-01-01
This dissertation contains two works: one on the behavior of dynamical electromagnetic fields in the stationary spacetime generated by a black hole, and the other on the structure of a general stationary vacuum spacetime itself. The study of electromagnetic field is carried out in terms of the membrane formalism for black holes; and it is part of a series of papers with the aim of developing that formalism into a complete, self consistent description of electromagnetic and gravitational fields in a black hole background. Various model problems are presented as aids in understanding the interactions of electromagnetic fields with a black hole, and special attention is paid to the concept of the stretched horizon which is vital for the membrane formalism. The second work develops a multipole moment formalism for a general stationary system in general relativity. The multipole moments are defined in terms of a general formal series solution of the stationary Einstein equation, in analogy to multipole moments in the Newtonian theory of gravity. A model calculation applying the formalism too a black hole interacting with an external multipole field shows that the interaction can be understood in terms of elastic moduli of the black-hole horizon
The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy
DEFF Research Database (Denmark)
Kiewidt, Lars; Karamehmedovic, Mirza
2018-01-01
In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...
Michels, M.A.J.; Suttorp, L.G.
1972-01-01
The long-range asymptotic expression for the multipole expansion of the retarded interatomic dispersion energy is shown to consist of contributions from electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions, all varying as the inverse seventh power of the interatomic
Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)
Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.
2011-01-01
Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2
A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY
Directory of Open Access Journals (Sweden)
Hussein Atoui
2011-05-01
Full Text Available A method is presented for fast interpolation between medical images. The method is intended for both slice and projective interpolation. It allows offline interpolation between neighboring slices in tomographic data. Spatial correspondence between adjacent images is established using a block matching algorithm. Interpolation of image intensities is then carried out by morphing between the images. The morphing-based method is compared to standard linear interpolation, block-matching-based interpolation and registrationbased interpolation in 3D tomographic data sets. Results show that the proposed method scored similar performance in comparison to registration-based interpolation, and significantly outperforms both linear and block-matching-based interpolation. This method is applied in the context of conformal radiotherapy for online projective interpolation between Digitally Reconstructed Radiographs (DRRs.
Fast GPU-based spot extraction for energy-dispersive X-ray Laue diffraction
International Nuclear Information System (INIS)
Alghabi, F.; Schipper, U.; Kolb, A.; Send, S.; Abboud, A.; Pashniak, N.; Pietsch, U.
2014-01-01
This paper describes a novel method for fast online analysis of X-ray Laue spots taken by means of an energy-dispersive X-ray 2D detector. Current pnCCD detectors typically operate at some 100 Hz (up to a maximum of 400 Hz) and have a resolution of 384 × 384 pixels, future devices head for even higher pixel counts and frame rates. The proposed online data analysis is based on a computer utilizing multiple Graphics Processing Units (GPUs), which allow for fast and parallel data processing. Our multi-GPU based algorithm is compliant with the rules of stream-based data processing, for which GPUs are optimized. The paper's main contribution is therefore an alternative algorithm for the determination of spot positions and energies over the full sequence of pnCCD data frames. Furthermore, an improved background suppression algorithm is presented.The resulting system is able to process data at the maximum acquisition rate of 400 Hz. We present a detailed analysis of the spot positions and energies deduced from a prior (single-core) CPU-based and the novel GPU-based data processing, showing that the parallel computed results using the GPU implementation are at least of the same quality as prior CPU-based results. Furthermore, the GPU-based algorithm is able to speed up the data processing by a factor of 7 (in comparison to single-core CPU-based algorithm) which effectively makes the detector system more suitable for online data processing
A symplectic Poisson solver based on Fast Fourier Transformation. The first trial
Energy Technology Data Exchange (ETDEWEB)
Vorobiev, L.G. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Teoreticheskoj i Ehksperimental`noj Fiziki; Hirata, Kohji
1995-11-01
A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author).
A symplectic Poisson solver based on Fast Fourier Transformation. The first trial
International Nuclear Information System (INIS)
Vorobiev, L.G.; Hirata, Kohji.
1995-11-01
A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)
Core physics design calculation of mini-type fast reactor based on Monte Carlo method
International Nuclear Information System (INIS)
He Keyu; Han Weishi
2007-01-01
An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)
A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform
Directory of Open Access Journals (Sweden)
Srinivas Koppu
2017-01-01
Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.
Implementation and Performance of FPGA based track fitting for the Atlas Fast TracKer
Zou, Rui; The ATLAS collaboration
2018-01-01
The Fast TracKer (FTK) within the ATLAS trigger system provides global track reconstruction for all events passing the ATLAS Level 1 trigger by dividing the detector into parallel processing pipelines that implement pattern matching in custom integrated circuits and data routing, reduction, and parameter extraction in FPGAs. In this presentation we will describe the implementation of a critical component of the system which does partial track fitting using a method based on a principal component analysis at a rate of greater than 1 fit per 10 ps, system-wide, to reduce the output of the pattern matching. Firmware design, timing performance and preliminary results will be discussed.
Fast neural-net based fake track rejection in the LHCb reconstruction
De Cian, Michel; Seyfert, Paul; Stahl, Sascha
2017-01-01
A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, retains more than 99 % of well reconstructed tracks while reducing the number of fake tracks by 60 %. It is fast enough to fit into the CPU time budget of the software trigger farm and thus reduces the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment in Run II of the LHC.
A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic
Kronemeijer, Auke J.
2012-02-20
Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Fast Algorithm for Maximum Likelihood-based Fundamental Frequency Estimation
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom
2015-01-01
including a maximum likelihood (ML) approach. Unfortunately, the ML estimator has a very high computational complexity, and the more inaccurate, but faster correlation-based estimators are therefore often used instead. In this paper, we propose a fast algorithm for the evaluation of the ML cost function...... for complex-valued data over all frequencies on a Fourier grid and up to a maximum model order. The proposed algorithm significantly reduces the computational complexity to a level not far from the complexity of the popular harmonic summation method which is an approximate ML estimator....
Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme
International Nuclear Information System (INIS)
Brenner, Renald; Bravo-Castillero, Julián
2010-01-01
The effective response and the local fields within periodic magneto-electric multiferroic composites are investigated by means of a numerical scheme based on fast Fourier transforms. This computational framework relies on the iterative resolution of coupled series expansions for the magnetic, electric and strain fields. By using an augmented Lagrangian formulation, a simple and robust procedure which makes use of the uncoupled Green operators for the elastic, electrostatics and magnetostatics problems is proposed. Its accuracy is assessed in the cases of laminated and fibrous two-phase composites for which analytical solutions exist
A fast point-cloud computing method based on spatial symmetry of Fresnel field
Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui
2017-10-01
Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
DEFF Research Database (Denmark)
Chen, Yaohui; Öhman, Filip; Xue, Weiqi
2008-01-01
We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....
Fast Compressed Sensing MRI Based on Complex Double-Density Dual-Tree Discrete Wavelet Transform
Directory of Open Access Journals (Sweden)
Shanshan Chen
2017-01-01
Full Text Available Compressed sensing (CS has been applied to accelerate magnetic resonance imaging (MRI for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT with fast iterative shrinkage/soft thresholding algorithm (FISTA to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR, larger signal-to-noise ratio (SNR, better structural similarity index (SSIM, and lower relative error.
Fast determination of plasma parameters through function parametrization
International Nuclear Information System (INIS)
Braams, B.J.; Jilge, W.; Lackner, K.
1985-09-01
The method of function parametrization, developed by H. Wind for fast data evaluation in high energy physics, is demonstrated in the context of controlled fusion research. This method relies on a statistical analysis of a large data base of simulated experiments in order to obtain a functional representation for intrinsic physical parameters of a system in terms of the values of the measurements. Rapid determination of characteristic equilibrium parameters of a tokamak discharge is shown to be a particularly indicated application. The method is employed on the ASDEX experiment to determine the following parameters of the plasma: position of the magnetic axis, geometric center, and current center; minor radius, elongation, and area of the plasma column; a normalized safety factor at the plasma boundary; the Shafranov parameter βsub(p)+lsub(i)/2; the flux difference between the plasma boundary and an external reference value; the position of the lower and upper saddle points, and the intersections of the separatrix with the four divertor plates. The relevant measurements consist of three differential poloidal flux measurements, four poloidal field measurements, the current through the multipole shaping coils, and the total plasma current. Function parametrization supplies a very accurate interpretation of these data, which is now used for online data analysis, and is also sufficiently fast to be suitable for real-time control of the plasma. (orig.)
Kijowski, Jerzy; Podleś, Piotr
2009-06-01
A method of solving Maxwell equations in a vicinity of a multipole particle (moving along an arbitrary trajectory) is proposed. The method is based on a geometric construction of a novel trajectory-adapted coordinate system, which simplifies considerably the equations. The solution is given in terms of a series, where a new family of special functions arises in a natural way. Singular behaviour of the field near to the particle may be analyzed this way up to an arbitrary order. Application to the self-interaction problems in classical electrodynamics is discussed.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected
International Nuclear Information System (INIS)
Weisbin, C.R.; Marable, J.H.; Collins, P.J.; Cowan, C.L.; Peelle, R.W.; Salvatores, M.
1979-06-01
The present work proposes a specific plan of cross section library adjustment for fast reactor core physics analysis using information from fast reactor and dosimetry integral experiments and from differential data evaluations. This detailed exposition of the proposed approach is intended mainly to elicit review and criticism from scientists and engineers in the research, development, and design fields. This major attempt to develop useful adjusted libraries is based on the established benchmark integral data, accurate and well documented analysis techniques, sensitivities, and quantified uncertainties for nuclear data, integral experiment measurements, and calculational methodology. The adjustments to be obtained using these specifications are intended to produce an overall improvement in the least-squares sense in the quality of the data libraries, so that calculations of other similar systems using the adjusted data base with any credible method will produce results without much data-related bias. The adjustments obtained should provide specific recommendations to the data evaluation program to be weighed in the light of newer measurements, and also a vehicle for observing how the evaluation process is converging. This report specifies the calculational methodology to be used, the integral experiments to be employed initially, and the methods and integral experiment biases and uncertainties to be used. The sources of sensitivity coefficients, as well as the cross sections to be adjusted, are detailed. The formulae for sensitivity coefficients for fission spectral parameters are developed. A mathematical formulation of the least-square adjustment problem is given including biases and uncertainties in methods
GPU-based ultra-fast dose calculation using a finite size pencil beam model
Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.
2009-10-01
Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.
The use of gas based energy conversion cycles for sodium fast reactors
International Nuclear Information System (INIS)
Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.
2008-01-01
In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)
Hardware-based tracking at trigger level for ATLAS: The Fast Tracker (FTK) Project
Gramling, Johanna; The ATLAS collaboration
2015-01-01
Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer (FTK) is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level 1 trigger (at a maximum rate of 100 kHz) the FTK receives data from the 80 million channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware-based track reconstruction, using associative memory (AM) that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. Narrow roads permit a fast track fitting but need many patterns stored in the AM to ensure ...
Hardware-based Tracking at Trigger Level for ATLAS: The Fast TracKer (FTK) Project
Gramling, Johanna; The ATLAS collaboration
2015-01-01
Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer (FTK) is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level 1 trigger (at a maximum rate of 100 kHz) the FTK receives data from the 80 million channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware- based track reconstruction, using associative memory (AM) that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. Narrow roads permit a fast track fitting but need many patterns stored in the AM to ensure...
Fast DCNN based on FWT, intelligent dropout and layer skipping for image retrieval.
ElAdel, Asma; Zaied, Mourad; Amar, Chokri Ben
2017-11-01
Deep Convolutional Neural Network (DCNN) can be marked as a powerful tool for object and image classification and retrieval. However, the training stage of such networks is highly consuming in terms of storage space and time. Also, the optimization is still a challenging subject. In this paper, we propose a fast DCNN based on Fast Wavelet Transform (FWT), intelligent dropout and layer skipping. The proposed approach led to improve the image retrieval accuracy as well as the searching time. This was possible thanks to three key advantages: First, the rapid way to compute the features using FWT. Second, the proposed intelligent dropout method is based on whether or not a unit is efficiently and not randomly selected. Third, it is possible to classify the image using efficient units of earlier layer(s) and skipping all the subsequent hidden layers directly to the output layer. Our experiments were performed on CIFAR-10 and MNIST datasets and the obtained results are very promising. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Yang, Wei; Yang, Yuanhong; Yang, Mingwei
2014-01-01
We propose a fast digital envelope detector (DED) based on the generalized harmonic wavelet transform to improve the performance of coherent heterodyne Brillouin optical time domain reflectometry. The proposed DED can obtain undistorted envelopes due to the zero phase-shift ideal bandpass filter (BPF) characteristics of the generalized harmonic wavelet (GHW). Its envelope average ability benefits from the passband designing flexibility of the GHW, and its demodulation speed can be accelerated by using a fast algorithm that only analyses signals of interest within the passband of the GHW with reduced computational complexity. The feasibility and advantage of the proposed DED are verified by simulations and experiments. With an optimized bandwidth, Brillouin frequency shift accuracy improvements of 19.4% and 11.14%, as well as envelope demodulation speed increases of 39.1% and 24.9%, are experimentally attained by the proposed DED over Hilbert transform (HT) and Morlet wavelet transform (MWT) based DEDs, respectively. Spatial resolution by the proposed DED is undegraded, which is identical to the undegraded value by HT-DED with an allpass filter characteristic and better than the degraded value by MWT-DED with a Gaussian BPF characteristic. (paper)
Development of a fast piezo-based frequency tuner for superconducting CH cavities
International Nuclear Information System (INIS)
Amberg, Michael
2015-01-01
In this thesis, a fast piezo-based frequency tuner for current and prospective superconducting (sc) CH-cavities has been developed. The novel tuning concept differs fundamentally from conventional tuning systems for superconducting cavities. So called dynamic bellow tuners are welded into the resonator to act against slow and fast frequency variations during operation. Because of their adjustable length it is possible to specifically influence the capacitance and therefore the resonance frequency of the cavity. To change the length of the dynamic bellow tuners the frequency tuner drive, which consists of a slow tuning device controlled by a stepper motor and a fast piezo-based tuning system, is mounted to the helium vessel of the cavity. To validate the whole tuning concept a frequency tuner drive prototype was built in the workshop of the Institute for Applied Physics (IAP) of Frankfurt University. First successful room temperature measurements show that the developed frequency tuning system is an excellent and promising candidate to fulfill the requirements of slow and fast frequency tuning of sc CH-cavities during operation. Furthermore, several coupled structural and electromagnetic simulations of the sc 325 MHz CH-cavity as well as the sc 217 MHz CH-cavity have been performed with the simulation softwares ANSYS Workbench and CST MicroWave Studio, respectively. With these simulations it was possible to reduce the required frequency range and thus the mechanical stroke of the dynamic bellow tuners on the one hand, and on the other hand the mechanical stability of the particular CH-cavity was investigated to avoid plastic deformations due to limiting external effects. To verify the accuracy of the coupled simulations the structural mechanical behaviour and the resulting frequency variations of the sc CH-cavities dependent on the external influences were measured at room temperature as well as at cryogenic temperatures around 4.2 K. The measurement results of both
Fast Convolution Module (Fast Convolution Module)
National Research Council Canada - National Science Library
Bierens, L
1997-01-01
This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
A fast position encoding system for a delay line based gas filled area detector
Epstein, A.; Boulin, C.
1998-08-01
Delay line based readout electronics for X-ray area detectors used to carry out kinetic measurements with synchrotron radiation is used mostly because of its relative simplicity and low cost. The key element in the system is a fast multichannel real-time encoding time to digital converter (TDC). For fast time-resolved applications the detector is a 200/spl times/200 mm multi-wire gas filled chamber, coupled to two delay lines of about 250 ns to encode the position of the X-ray photon interaction in the X and Y cathode planes. The anode plane of the detector delivers a fast prompt signal which is characteristic of the arrival time of the event. Our method of measurement consists of the simultaneous capture of five time components. These are a time stamp of the anode signal and the relative time for the two pairs of cathode signals collected at the end of the delay lines. These cathode signals arrive at times that are directly proportional to the X and Y co-ordinates of the event. Our electronics is designed around the commercially available LRS 4208 CAMAC time measurement unit. This unit is modified in a way to allow the direct connection of a daughter board which consists of two Logic Cell Arrays (LCA) and some external synchronization and control logic. The first LCA collects the values of the real-time digital interpolators (I ns resolution) and the first level of real-time counters (8 ns resolution) coming from the LRS 4208. Furthermore, it adds another level of real-time counters and is responsible for the computation of the X and Y locations, as well as the rejection of double or incomplete events.
A fast position encoding system for a delay line based gas filled area detector
International Nuclear Information System (INIS)
Epstein, A.; Boulin, C.
1998-01-01
Delay line based readout electronics for X-ray area detectors used to carry out kinetic measurements with synchrotron radiation is used mostly because of its relative simplicity and low cost. The key element in the system is a fast multichannel real-time encoding time to digital converter (TDC). For fast time-resolved applications the detector is a 200 x 200 mm multi-wire gas filled chamber, coupled to two delay lines of about 250 ns to encode the position of the X-ray photon interaction in the X and Y cathode planes. The anode plane of the detector delivers a fast prompt signal which is characteristic of the arrival time of the event. The method of measurement consists of the simultaneous capture of five time components. These are a time stamp of the anode signal and the relative time for the two pairs of cathode signals collected at the end of the delay lines. These cathode signals arrive at times that are directly proportional to the X and Y coordinates of the event. The electronics is designed around the commercially available LRS 4208 CAMAC time measurement unit. This unit is modified in a way to allow the direct connection of a daughter board which consists of two Logic Cell Arrays (LCA) and some external synchronization and control logic. The first LCA collects the values of the real-time digital interpolators (1 ns resolution) and the first level of real-time counters (8 ns resolution) coming from the LRS 4208. Furthermore, it adds another level of real-time counters and is responsible for the computation of the X and Y locations, as well as the rejection of double or incomplete events
Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels
Energy Technology Data Exchange (ETDEWEB)
Meng, Liang [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Meng, Pinjia, E-mail: mengpinjia@163.com [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Zhang, Qingqing; Wang, Yanji [Department of Forensic Science, People' s Public Security University of China, Beijing (China)
2013-04-10
Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the
Targeting postprandial blood sugar over fasting blood sugar: A clinic based comparative study.
Herath, H M M; Weerarathna, T P; Fonseka, C L; Vidanagamage, A S
Recent studies indicate that modulation of post prandial blood sugar (PPBS) plays an important role in the long term glycemic control. Measurement of PPBS is more convenient for patients attending outpatient clinics than fasting blood sugar (FBS) as the former needs only two hours of fasting from the last meal. To assess the value of PPBS monitoring in optimization of long term glycemic control among diabetic patients attending an outpatient clinic. A total of 240 patients with type 2 diabetes (T2DM) attending an out-patient medical clinic were randomized to either PPBS or FBS monitoring. Those who selected to PPBS-group underwent blood sugar measurement 2-h after last meal on the day of their clinic visits and those in the FBS group underwent blood sugar measurement after fasting overnight (8-10h) in the morning of their clinic visits. Treating team was asked to optimize the anti-diabetic medications based on the available PPBS or FBS results. All patients were followed up monthly for six months. Glycemic control was assessed with glycosylated hemoglobin (HbA1c) at baseline and six months later. Baseline characteristics of the two arms including age, gender, and duration of T2DM were not significantly different. Mean HbA1c (SD) of FBS and PPBS arms at baseline were 7.20 (0.45), and 7.33 (0.43) and were not significantly different (P=0.115). During the study period, HbA1c dropped by 0.20 in FBS arm compared to 0.25 drop in PPBS arm (p=0.59). Incidence of hypoglycemia was similar in FBS (2.42%) and PPBS arms (2.70%). Monitoring of PPBS is a safe and effective alternative to FBS to optimize glycemic control in managing patients with T2DM attending outpatient clinics. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber
Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.
2008-05-01
The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.
Treviño, Roberto P.; Yin, Zenong; Hernandez, Arthur; Hale, Daniel E.; Garcia, Oralia A.; Mobley, Connie
2005-01-01
Objective To evaluate the impact of a school-based diabetes mellitus prevention program on low-income fourth-grade Mexican American children. Design A randomized controlled trial with 13 intervention and 14 control schools. Setting Elementary schools in inner-city neighborhoods in San Antonio, Tex. Participants Eighty percent of participants were Mexican American and 94% were from economically disadvantaged households. Baseline and follow-up measures were collected from 1419 (713 intervention and 706 control) and 1221 (619 intervention and 602 control) fourth-grade children, respectively. Intervention The Bienestar Health Program consists of a health class and physical education curriculum, a family program, a school cafeteria program, and an after-school health club. The objectives are to decrease dietary saturated fat intake, increase dietary fiber intake, and increase physical activity. Main Outcome Measures The primary end point was fasting capillary glucose level, and the secondary end points were percentage of body fat, physical fitness level, dietary fiber intake, and dietary saturated fat intake. Fasting capillary glucose level, bioelectric impedance, modified Harvard step test, three 24-hour dietary recalls, weight, and height were collected at baseline and 8 months later. Results Children in the intervention arm attended an average of 32 Bienestar sessions. Mean fasting capillary glucose levels decreased in intervention schools and increased in control schools after adjusting for covariates (−2.24 mg/dL [0.12 mmol/L]; 95% confidence interval, −6.53 to 2.05 [−0.36 to 0.11 mmol/L]; P = .03). Fitness scores (P = .04) and dietary fiber intake (P = .009) significantly increased in intervention children and decreased in control children. Percentage of body fat (P = .56) and dietary saturated fat intake (P = .52) did not differ significantly between intervention and control children. Conclusion This intervention showed some positive results, but additional
A fast and low-power microelectromechanical system-based non-volatile memory device.
Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E B; Park, Yung Woo
2011-01-01
Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices.
Fast image mosaic algorithm based on the improved Harris-SIFT algorithm
Jiang, Zetao; Liu, Min
2015-08-01
This paper proposes a fast image mosaic algorithm based on the improved Harris-SIFT algorithm, according to such problems as more memory consumption, greater redundancy quantity of feature points, slower operation speed, and so on, resulting from using the SIFT algorithm in the image matching stage of the image mosaic process. Firstly in the matching stage of the algorithm, the corner point is extracted by using the multi-scale Harris, feature descriptor is constructed by the 88-dimensional vector based on the SIFT feature, the coarse matching is carried out by the nearest neighbor matching method, and then the precise matching point pair and image transformation matrix are obtained by the RANSAC method. The seamless mosaic can be achieved by using the weighted average image fusion. The experimental results show that this algorithm can not only achieve precise seamless mosaic but also improve operation efficiency, compared with the traditional algorithm.
A knowledge based on-line diagnostic system for the fast breeder reactor KNKII
International Nuclear Information System (INIS)
Eggert, H.; Scherer, K.P.; Stiller, P.
1989-01-01
In the nuclear research center at Karlsruhe, a diagnostic expert system is developed to supervise a fast breeder process (KNKII). The problem is to detect critical phases in the beginning state before fault propagation. The expert system itself is integrated in a computer network (realized by a local area network), where different computers are involved as special detection systems (for example acoustic noise, temperature noise, covergas monitoring and so on), which produce partial diagnoses, based on intelligent signal processing techniques like pattern recognition. Additional to the detection systems a process computer is integrated as well as a test computer, which simulates hypothetical and real fault data. On the logical top level the expert system manages the partial diagnoses of the detection systems with the operating data of the process computer and to produce a final diagnosis including the explanation part for operator support. The knowledge base is developed by typical Artificial Intelligence tools. Both fact based and rule based knowledge representations are stored in form of flavors and predications. The inference engine operates on a rule based approach. Specific detail knowledge, based on experience about any years, is available to influence the decision process by increasing or decreasing of the generated hypotheses. In a meta knowledge base, a rule master triggers the special domain experts and contributes the tasks to the specific rule complexes. Such a system management guarantees a problem solving strategy, which operates event triggered and situation specific in a local inference domain. (author). 3 refs, 6 figs, 2 tabs
Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping
2017-12-01
Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.
Newman, Ian R; Gibb, Maia; Thompson, Valerie A
2017-07-01
It is commonly assumed that belief-based reasoning is fast and automatic, whereas rule-based reasoning is slower and more effortful. Dual-Process theories of reasoning rely on this speed-asymmetry explanation to account for a number of reasoning phenomena, such as base-rate neglect and belief-bias. The goal of the current study was to test this hypothesis about the relative speed of belief-based and rule-based processes. Participants solved base-rate problems (Experiment 1) and conditional inferences (Experiment 2) under a challenging deadline; they then gave a second response in free time. We found that fast responses were informed by rules of probability and logical validity, and that slow responses incorporated belief-based information. Implications for Dual-Process theories and future research options for dissociating Type I and Type II processes are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology
Zagozdzinska, Agnieszka Anna
2016-01-01
The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...
International Nuclear Information System (INIS)
Kadrmas, Dan J.; Karimi, Seemeen S.; Frey, Eric C.; Tsui, Benjamin M.W.
1998-01-01
Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99m Tc tracer, and also using experimentally acquired data with 201 Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64x64x24 image reconstruction). (author)
Directory of Open Access Journals (Sweden)
Xiaochen Zhang
2017-01-01
Full Text Available To diagnose rotating machinery fault for imbalanced data, a method based on fast clustering algorithm (FCA and support vector machine (SVM was proposed. Combined with variational mode decomposition (VMD and principal component analysis (PCA, sensitive features of the rotating machinery fault were obtained and constituted the imbalanced fault sample set. Next, a fast clustering algorithm was adopted to reduce the number of the majority data from the imbalanced fault sample set. Consequently, the balanced fault sample set consisted of the clustered data and the minority data from the imbalanced fault sample set. After that, SVM was trained with the balanced fault sample set and tested with the imbalanced fault sample set so the fault diagnosis model of the rotating machinery could be obtained. Finally, the gearbox fault data set and the rolling bearing fault data set were adopted to test the fault diagnosis model. The experimental results showed that the fault diagnosis model could effectively diagnose the rotating machinery fault for imbalanced data.
A fast continuous magnetic field measurement system based on digital signal processors
International Nuclear Information System (INIS)
Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.
2005-01-01
In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements
Watterson, Peter A
Improvement in real-time electrocardiogram (ECG) interpretation is still needed, especially for QT estimation. This paper proposes a fast algorithm for ECG feature recognition, based on locating turning points in the waveform gradient. The algorithm places the fiducial point at the maximal value of a probabilistic decision function, assessing line intervals of best fit before and after the point and the point location relative to R-wave peaks already found. Fiducial points were successfully located for the 30 heartbeats annotated by a cardiologist of all 10 normal sinus rhythm records from the PhysioNet QT Database. For a given subject, the algorithm's QT estimation had superior repeatability, with intrasubject QT standard deviation just 5.42ms, 60% lower than the cardiologist's 13.57ms. Initial tests suggest immunity to noise of standard deviation up to about 9% of the signal, depending on noise type. The proposed algorithm is fast to calculate and noise-tolerant, and has shown improved repeatability in its QT estimation compared to a cardiologist. Copyright © 2017 Elsevier Inc. All rights reserved.
A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.
Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil
2013-11-21
We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie
2016-08-01
Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm
International Nuclear Information System (INIS)
Zhu, Zhiwei; Zhou, Xiaoqin; Liu, Qiang; Zhao, Shaoxin
2011-01-01
The flexure-based mechanism is a promising realization of fast tool servo (FTS), and the optimum determination of flexure hinge parameters is one of the most important elements in the FTS design. This paper presents a multi-objective optimization approach to optimizing the dimension and position parameters of the flexure-based mechanism, which is based on the improved differential evolution algorithm embedding chaos and nonlinear simulated anneal algorithm. The results of optimum design show that the proposed algorithm has excellent performance and a well-balanced compromise is made between two conflicting objectives, the stroke and natural frequency of the FTS mechanism. The validation tests based on finite element analysis (FEA) show good agreement with the results obtained by using the proposed theoretical algorithm of this paper. Finally, a series of experimental tests are conducted to validate the design process and assess the performance of the FTS mechanism. The designed FTS reaches up to a stroke of 10.25 μm with at least 2 kHz bandwidth. Both of the FEA and experimental results demonstrate that the parameters of the flexure-based mechanism determined by the proposed approaches can achieve the specified performance and the proposed approach is suitable for the optimum design of FTS mechanism and of excellent performances
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Directory of Open Access Journals (Sweden)
Amineh Amini
2014-01-01
Full Text Available Data streams are continuously generated over time from Internet of Things (IoT devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model
International Nuclear Information System (INIS)
Goncharova, N.G.; Zhivopistsev, F.A.
1977-01-01
Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
Platonic topology and CMB fluctuations: homotopy, anisotropy and multipole selection rules
International Nuclear Information System (INIS)
Kramer, Peter
2010-01-01
The cosmic microwave background (CMB) originates from an early stage in the history of the universe. Observations show low-multipole contributions of CMB fluctuations. A possible explanation is given by a non-trivial topology of the universe and has motivated the search for topological selection rules. Harmonic analysis on a topological manifold must provide basis sets for all functions compatible with a given topology and so is needed to model the CMB fluctuations. We analyze the fundamental groups of Platonic tetrahedral, cubic and octahedral manifolds using deck transformations. From them we construct the appropriate harmonic analysis and boundary conditions. We provide the algebraic means for modeling the multipole expansion of incoming CMB radiation. From the assumption of randomness, we derive selection rules, depending on the point symmetry of the manifold.
From geodesics of the multipole solutions to the perturbed Kepler problem
International Nuclear Information System (INIS)
Hernandez-Pastora, J. L.; Ospino, J.
2010-01-01
A static and axisymmetric solution of the Einstein vacuum equations with a finite number of relativistic multipole moments (RMM) is written in multipole symmetry adapted (MSA) coordinates up to certain order of approximation, and the structure of its metric components is explicitly shown. From the equation of equatorial geodesics, we obtain the Binet equation for the orbits and it allows us to determine the gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the RMM of the source starting from the monopole (Schwarzschild correction). In particular, the perihelion precession of the orbit is calculated in terms of the quadrupole and 2 4 -pole moments. Since the MSA coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift.
Advanced Photon Source insertion device field quality and multipole error specification
International Nuclear Information System (INIS)
Chae, Yong-Chul; Decker, G.
1995-01-01
The Advanced Photon Source (APS) storage ring is a 7-GeV light source with forty straight sections. Intense x-ray beams will be delivered by insertion devices installed in these straight sections. Installation of insertion devices in the APS storage ring produces several effects which can degrade overall performance. Rigid ring performance requirements exist which can be used to set limits on insertion device field quality, i.e. the first- and second-field integrals of the transverse magnetic field. Individual multipole error specifications can be determined by considering the lifetime of the beam. For nominal operation of the APS storage ring, the vertical aperture corresponding to a 10-hour lifetime is approximately 3.35 mm, which limits the level of multipole error. We find that the skew-octupole error has the most significant effect on the reduction of the aperture; the reasons are discussed in this paper
Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua
2017-06-01
Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.
Fast image restoration method based on coded exposure and vibration detection
He, Lirong; Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2015-10-01
Fast image restoration method is proposed for vibration image deblurring based on coded exposure and vibration detection. The criterion of the code sequence selection is discussed in detail, and several factors are considered to search for the optimal coded exposure sequence. The blurred vibration image is obtained by the coded exposure technique. Meanwhile, the vibration track information of the camera is detected by a fiber-optic gyroscope. The point spread function (PSF) is estimated using a statistical method with the selected code sequence and vibration track information. Finally, the blurred image is quickly restored with the estimated PSF through a direct inverse filtering method. Simulation experiments are conducted to test the performance of the approach with different vibration forms. A real imaging system is constructed to verify the effectiveness of the proposed algorithm. Experimental results show that the presented algorithm could yield better subjective experiences and superior objective evaluation values.
Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network
Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe
In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.
Tunable fast and slow light based on ring resonators and Mach-Zehnder interferometer
Zhang, Yundong; Su, Huaiyin; Wu, Yongfeng; Li, Hui; Ma, Kai; Yuan, Ping
2017-02-01
We theoretically demonstrate the transmittion spectra and dispersion characteristics based on the electromagnetically induced transparency like effect in the nested fiber double-ring resonator with the transfer matrix theory; the system which are connected by three directional couplers consists of two inner rings, one outer ring and one straight waveguide. The simulation results show that the tunable group delay can be realized by changing the coupling coefficients. In the NDRR coupled Mach-Zehnder interferometer system, we obtained fast light and slow light simultaneously. By adjusting appropriate parameters, we can archive flat band group delay curve that has a profound application in optical interferometer, optical buffer, optical filter, optical modulator, dynamic or static optical sensing field.
NEW METHOD FOR FAST IMAGE EDGE DETECTION BASED ON SUBBAND DECOMPOSITION
Directory of Open Access Journals (Sweden)
Chong-Yang Hao
2011-05-01
Full Text Available A new method of detection the edges of an image is presented in this article. The method uses a kind of twodimensional subband spectrum analysis (2D-SSA filter that is based on subband decomposition, and it is very convenient to get the edge frequency spectrum of an image after certain preprocessing. Comparing with spatial methods, the method is less sensitive to noise. It is also superior to the conventional frequency methods. In conventional frequency methods, the bandwidth and central frequency of filter are fixed, and it needs to transform the whole image into frequency domain. While in this method, the bandwidth and central frequency can be adjusted flexibly, and it only uses a few pixels to implement FFT. So this method is a fast way to extract the edges of an image. The simulation results show its efficiency.
Development of small, fast reactor core designs using lead-based coolant
International Nuclear Information System (INIS)
Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.
1999-01-01
A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator
Directory of Open Access Journals (Sweden)
Alexander Hošovský
2012-07-01
Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.
Fast Wideband Solutions Obtained Using Model Based Parameter Estimation with Method of Moments
Directory of Open Access Journals (Sweden)
F. Kaburcuk
2017-10-01
Full Text Available Integration of the Model Based Parameter Estimation (MBPE technique into Method of Moments (MOM provides fast solutions over a wide frequency band to solve radiation and scattering problems. The MBPE technique uses the Padé rational function to approximate solutions over a wide frequency band from a solution at a fixed frequency. In this paper, the MBPE technique with MOM is applied to a thin-wire antenna. The solutions obtained by repeated simulations of MOM agree very well with the solutions obtained by MBPE technique in a single simulation. Therefore, MBPE technique according to MOM provides a remarkable saving in the computation time. Computed results show that solutions at a wider frequency band of interest are achieved in a single simulation.
Low-dose and fast grating-based x-ray phase-contrast imaging
Wali, Faiz; Wang, Shenghao; Han, Huajie; Gao, Kun; Wu, Zhao; Zhu, Peiping; Tian, Yangchao
2017-09-01
X-ray phase-contrast imaging has experienced rapid development over the last few decades, and, in this technology, the phase modulation strategy of phase stepping (PS) is used most widely to measure the sample's phase signal. However, because of its discontinuous nature, PS has the defects of worse mechanical stability and high exposure dose, which greatly hinder its wide use in dynamic phase measurement and potential clinical applications. We demonstrate preliminary research on the use of integrating-bucket (IB) phase modulation method to retrieve the phase information in grating-based x-ray phase-contrast imaging. Experimental results show that our proposed method can be well employed to extract the differential phase-contrast image, compared with the commonly used PS strategy, the advantage of the IB phase modulation technique is that fast measurement and low dose are promising.
Sha, Xiaopeng; Wang, Pu; Shan, Peng; Li, Huiguang; Li, Zhiquan
2017-10-01
For the microvision system, a new autofocus evaluation function based on the Robert function is proposed by increasing the threshold value. Compared with the traditional evaluation function, the new focus function reduces the local extreme value and increases the steepness of the focusing curve. According to the characteristics of the focusing evaluation function, the focus curve can be divided into two stages: the gentle area and the steep area. In the gentle area, there will be set a large step-length to realize the fast search. In the steep area, the data will be fitted by Gauss method, and on the basis of the fitting results, the motor of microvision system was directly driven to achieve the focal plane and this method has been improved in real-time and accuracy. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Xiaoyang Zhao
2018-04-01
Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration
Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering
Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng
2015-10-01
A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity
Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes.
Auer, Alexander; Strauss, Maximilian T; Schlichthaerle, Thomas; Jungmann, Ralf
2017-10-11
DNA point accumulation in nanoscale topography (DNA-PAINT) enables super-resolution microscopy by harnessing the predictable, transient hybridization between short dye-labeled "imager" and complementary target-bound "docking" strands. DNA-PAINT microscopy allows sub-5 nm spatial resolution, spectrally unlimited multiplexing, and quantitative image analysis. However, these abilities come at the cost of nonfluorogenic imager strands, also emitting fluorescence when not bound to their docking strands. This has thus far prevented rapid image acquisition with DNA-PAINT, as the blinking rate of probes is limited by an upper-bound of imager strand concentrations, which in turn is dictated by the necessity to facilitate the detection of single-molecule binding events over the background of unbound, freely diffusing probes. To overcome this limitation and enable fast, background-free DNA-PAINT microscopy, we here introduce FRET-based imaging probes, alleviating the concentration-limit of imager strands and speeding up image acquisition by several orders of magnitude. We assay two approaches for FRET-based DNA-PAINT (or FRET-PAINT) using either fixed or transient acceptor dyes in combination with transiently binding donor-labeled DNA strands and achieve high-quality super-resolution imaging on DNA origami structures in a few tens of seconds. Finally, we also demonstrate the applicability of FRET-PAINT in a cellular environment by performing super-resolution imaging of microtubules in under 30 s. FRET-PAINT combines the advantages of conventional DNA-PAINT with fast image acquisition times, facilitating the potential study of dynamic processes.
Neutron diffraction study of multipole order in light rare-earth ...
Indian Academy of Sciences (India)
discussed in connection with recent non-resonant X-ray results by Tanaka et al. Keywords. Multipole; quadrupole; CeB6; neutron diffraction. PACS Nos 61.05.fm; 75.25.+z; 75.30.Kz. 1. Introduction. Orbital degrees of freedom are known to play a central role in the physics of tran- sition metal oxides. Well-known examples ...
Precise measurements of magnetic field parameters of the multipoles for the SLS storage ring
Antohin, E I; Demenev, V V; Golubenko, O B; Korchuganov, V N; Mikhailov, S F; Ogurtsov, A B; Rivkin, L; Semenov, E P; Steshov, A G; Vollenweider, C; Zichy, J A
2001-01-01
The quadrupoles and sextupoles for the Swiss Light Source, a 2.4 GeV electron storage ring, had severe requirements on the manufacturing tolerances and the alignment of their magnetic axis. The 306 multipoles were manufactured, and magnetically measured at BINP and after delivery also at Paul Scherrer Institute. In this paper, the Rotating Coil Systems for precise magnetic measurements is described, and for the series magnets the main results of the magnetic measurements are also presented.
Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization
Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao
2016-11-01
In the charge-coupled device (CCD)-based tracking control system of fast steering mirrors (FSMs), high control bandwidth is the most effective method to enhance closed-loop performance, which, however, usually suffers a great deal from time delay induced by a low CCD sampling rate. Moreover, mechanical resonances also limit high control bandwidth. Therefore, a tentative approach to implementing a CCD-based tracking control system for an FSM with inertial sensor-based cascade feedback is proposed, which is made up of acceleration feedback, velocity feedback, and position feedback. Accelerometers and gyroscopes are all the inertial sensors, sensing vibrations induced by platforms, in turn, which can contribute to disturbance supersession. In theory, the acceleration open-loop frequency response of the FSM includes a quadratic differential, and it is very difficult to compensate a quadratic differential with a double-integral algorithm. A lag controller is used to solve this problem and accomplish acceleration closed-loop control. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop, and the position loop. Extensive experimental results show that the improved control mode can effectively enhance the error attenuation performance of the line of sight (LOS) for the CCD-based tracking control system.
A fast button surface defects detection method based on convolutional neural network
Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran
2018-01-01
Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.
PRIMAL: Fast and accurate pedigree-based imputation from sequence data in a founder population.
Directory of Open Access Journals (Sweden)
Oren E Livne
2015-03-01
Full Text Available Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm, a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs, from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost.
Multipole moments of water molecules in clusters and ice Ih from first principles calculations
International Nuclear Information System (INIS)
Batista, E.R.; Xantheas, S.S.; Jonsson, H.
1999-01-01
We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics
From Mie to Fresnel through effective medium approximation with multipole contributions
International Nuclear Information System (INIS)
Malasi, Abhinav; Kalyanaraman, Ramki; Garcia, Hernando
2014-01-01
The Mie theory gives the exact solution to scattering from spherical particles while the Fresnel theory provides the solution to optical behavior of multilayer thin film structures. Often, the bridge between the two theories to explain the behavior of materials such as nanoparticles in a host dielectric matrix, is done by effective medium approximation (EMA) models which exclusively rely on the dipolar response of the scattering objects. Here, we present a way to capture multipole effects using EMA. The effective complex dielectric function of the composite is derived using the Clausius–Mossotti relation and the multipole coefficients of the approximate Mie theory. The optical density (OD) of the dielectric slab is then calculated using the Fresnel approach. We have applied the resulting equation to predict the particle size dependent dipole and quadrupole behavior for spherical Ag nanoparticles embedded in glass matrix. This dielectric function contains the relevant properties of EMA and at the same time predicts the multipole contributions present in the single particle Mie model. (papers)
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2015-02-01
Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.
Robust and fast license plate detection based on the fusion of color and edge feature
Cai, De; Shi, Zhonghan; Liu, Jin; Hu, Chuanping; Mei, Lin; Qi, Li
2014-11-01
Extracting a license plate is an important stage in automatic vehicle identification. The degradation of images and the computation intense make this task difficult. In this paper, a robust and fast license plate detection based on the fusion of color and edge feature is proposed. Based on the dichromatic reflection model, two new color ratios computed from the RGB color model are introduced and proved to be two color invariants. The global color feature extracted by the new color invariants improves the method's robustness. The local Sobel edge feature guarantees the method's accuracy. In the experiment, the detection performance is good. The detection results show that this paper's method is robust to the illumination, object geometry and the disturbance around the license plates. The method can also detect license plates when the color of the car body is the same as the color of the plates. The processing time for image size of 1000x1000 by pixels is nearly 0.2s. Based on the comparison, the performance of the new ratios is comparable to the common used HSI color model.
Directory of Open Access Journals (Sweden)
P. Fischer
2018-04-01
Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC
Directory of Open Access Journals (Sweden)
Obianuju Ndili
2009-01-01
Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.
A FAST AND SIMPLE METHOD OF BUILDING DETECTION FROM LIDAR DATA BASED ON SCAN LINE ANALYSIS
Directory of Open Access Journals (Sweden)
X. Hu
2013-05-01
Full Text Available One of the major problems in processing LiDAR (Light Detection And Ranging data is its huge data volume which causes very high computational load when dealing with large areas with high point density. A fast and simple algorithm based on scan line analysis is proposed for automatic detection of building points from LiDAR data. At first, ground/non-ground classification is performed to filter out the ground points. Douglas–Peucker algorithm is then used to segment the scan line into segment objects based on height variation. These objects are preliminarily classified into buildings and vegetation based on local analysis using simple rules. At last, the region growing method is used to improve the quality of the extraction. The test data provided by the ISPRS test project on urban object extraction, containing a lot of buildings with complex roof structures, various sizes, and different heights, is used to test the algorithm. The experimental results show that the proposed algorithm can extract building regions effectively.
a Fast and Simple Method of Building Detection from LIDAR Data Based on Scan Line Analysis
Hu, X.; Ye, L.
2013-05-01
One of the major problems in processing LiDAR (Light Detection And Ranging) data is its huge data volume which causes very high computational load when dealing with large areas with high point density. A fast and simple algorithm based on scan line analysis is proposed for automatic detection of building points from LiDAR data. At first, ground/non-ground classification is performed to filter out the ground points. Douglas-Peucker algorithm is then used to segment the scan line into segment objects based on height variation. These objects are preliminarily classified into buildings and vegetation based on local analysis using simple rules. At last, the region growing method is used to improve the quality of the extraction. The test data provided by the ISPRS test project on urban object extraction, containing a lot of buildings with complex roof structures, various sizes, and different heights, is used to test the algorithm. The experimental results show that the proposed algorithm can extract building regions effectively.
A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.
Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua
2016-05-01
Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fast block matching algorithm based on the winner-update strategy.
Chen, Y S; Hung, Y P; Fuh, C S
2001-01-01
Block matching is a widely used method for stereo vision, visual tracking, and video compression. Many fast algorithms for block matching have been proposed in the past, but most of them do not guarantee that the match found is the globally optimal match in a search range. This paper presents a new fast algorithm based on the winner-update strategy which utilizes an ascending lower bound list of the matching error to determine the temporary winner. Two lower bound lists derived by using partial distance and by using Minkowski's inequality are described. The basic idea of the winner-update strategy is to avoid, at each search position, the costly computation of the matching error when there exists a lower bound larger than the global minimum matching error. The proposed algorithm can significantly speed up the computation of the block matching because: 1) computational cost of the lower bound we use is less than that of the matching error itself; 2) an element in the ascending lower bound list will be calculated only when its preceding element has already been smaller than the minimum matching error computed so far; 3) for many search positions, only the first several lower bounds in the list need to be calculated. Our experiments have shown that, when applying to motion vector estimation for several widely-used test videos, 92% to 98% of operations can be saved while still guaranteeing the global optimality. Moreover, the proposed algorithm can be easily modified either to meet the limited time requirement or to provide an ordered list of best candidate matches. Our source codes of the proposed algorithm are available at http://smart.iis.sinica.edu.tw/html/winup.html.
Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.
Fleischer, Heidi; Thurow, Kerstin
2013-03-01
A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings.
Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy
International Nuclear Information System (INIS)
Chen Wenjing; Gemmel, Alexander; Rietzel, Eike
2013-01-01
We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)
Fast subcellular localization by cascaded fusion of signal-based and homology-based methods
Directory of Open Access Journals (Sweden)
Wang Wei
2011-10-01
Full Text Available Abstract Background The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. Results This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA. Conclusions Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.
Directory of Open Access Journals (Sweden)
Jun He
2012-03-01
Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.
Portland cement based fast-setting concrete demonstration, district 07, Los Angeles County
2001-09-01
The California Department of Transportation currently uses fast-setting concrete to accommodate short working windows. The current special provision for fast-setting concrete requires that the concrete reach a flexural strength of 2.8 MPa (400 psi) b...
Monolithic InP-based fast optical switch module for optical networks of the future
DEFF Research Database (Denmark)
Xi, Chen; Regan, James; Durrant, Tim
2015-01-01
We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....
Fast methods for long-range interactions in complex systems. Lecture notes
Energy Technology Data Exchange (ETDEWEB)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)
2011-10-13
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Fast methods for long-range interactions in complex systems. Lecture notes
International Nuclear Information System (INIS)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas
2011-01-01
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Fast neutron counting in a mobile, trailer-based search platform
Directory of Open Access Journals (Sweden)
Hayward Jason P.
2017-01-01
Full Text Available Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection
Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan
2018-03-01
X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400 × 400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.
A Leukocyte image fast scanning based on max–min distance clustering
Directory of Open Access Journals (Sweden)
Yapin Wang
2016-11-01
Full Text Available A leukocyte image fast scanning method based on max-min distance clustering is proposed. Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood, there will not be any leukocyte in lager quantity of the captured images if we directly scan the blood smear along an ordinary zigzag scanning routine with high power (100x objective. Due to the larger field of view of low power (10x objective, the captured low power blood smear images can be used to locate leukocytes. All of the located positions make up a specific routine, if we scan the blood smear along this routine with high power objective, there will be definitely leukocytes in almost all of the captured images. Considering the number of captured images is still large and some leukocytes may be redundantly captured twice or more, a leukocyte clustering method based on max–min distance clustering is developed to reduce the total number of captured images as well as the number of redundantly captured leukocytes. This method can improve the scanning efficiency obviously. The experimental results show that the proposed method can shorten scanning time from 8.0–14.0min to 2.5–4.0min while extracting 110 nonredundant individual high power leukocyte images.
GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy
Men, Chunhua; Jia, Xun; Jiang, Steve B.
2010-08-01
Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on the graphics processing unit (GPU) based on our previous work on the CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called the column generation approach to deal with its extremely large dimensionality on the GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5 × 5 mm2 beamlet size and 2.5 × 2.5 × 2.5 mm3 voxel size were tested to evaluate our algorithm on the GPU. It takes only 0.7-3.8 s for our implementation to generate high-quality treatment plans on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART.
Readjoiner: a fast and memory efficient string graph-based sequence assembler
Directory of Open Access Journals (Sweden)
Gonnella Giorgio
2012-05-01
Full Text Available Abstract Background Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads. Results Here we present efficient methods for the construction of a string graph from a set of sequencing reads. Our approach employs suffix sorting and scanning methods to compute suffix-prefix matches. Transitive edges are recognized and eliminated early in the process and the graph is efficiently constructed including irreducible edges only. Conclusions Our suffix-prefix match determination and string graph construction algorithms have been implemented in the software package Readjoiner. Comparison with existing string graph-based assemblers shows that Readjoiner is faster and more space efficient. Readjoiner is available at http://www.zbh.uni-hamburg.de/readjoiner.
Fast neutron counting in a mobile, trailer-based search platform
Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.
2017-12-01
Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
A Fairness-Based Access Control Scheme to Optimize IPTV Fast Channel Changing
Directory of Open Access Journals (Sweden)
Junyu Lai
2014-01-01
Full Text Available IPTV services are typically featured with a longer channel changing delay compared to the conventional TV systems. The major contributor to this lies in the time spent on intraframe (I-frame acquisition during channel changing. Currently, most widely adopted fast channel changing (FCC methods rely on promptly transmitting to the client (conducting the channel changing a retained I-frame of the targeted channel as a separate unicasting stream. However, this I-frame acceleration mechanism has an inherent scalability problem due to the explosions of channel changing requests during commercial breaks. In this paper, we propose a fairness-based admission control (FAC scheme for the original I-frame acceleration mechanism to enhance its scalability by decreasing the bandwidth demands. Based on the channel changing history of every client, the FAC scheme can intelligently decide whether or not to conduct the I-frame acceleration for each channel change request. Comprehensive simulation experiments demonstrate the potential of our proposed FAC scheme to effectively optimize the scalability of the I-frame acceleration mechanism, particularly in commercial breaks. Meanwhile, the FAC scheme only slightly increases the average channel changing delay by temporarily disabling FCC (i.e., I-frame acceleration for the clients who are addicted to frequent channel zapping.
Hardware-based Tracking at Trigger Level for ATLAS the Fast TracKer (FTK) Project
INSPIRE-00245767
2015-01-01
Physics collisions at 13 TeV are expected at the LHC with an average of 40-50 proton-proton collisions per bunch crossing under nominal conditions. Tracking at trigger level is an essential tool to control the rate in high-pileup conditions while maintaining a good efficiency for relevant physics processes. The Fast TracKer is an integral part of the trigger upgrade for the ATLAS detector. For every event passing the Level-1 trigger (at a maximum rate of 100 kHz) the FTK receives data from all the channels of the silicon detectors, providing tracking information to the High Level Trigger in order to ensure a selection robust against pile-up. The FTK performs a hardware-based track reconstruction, using associative memory that is based on the use of a custom chip, designed to perform pattern matching at very high speed. It finds track candidates at low resolution (roads) that seed a full-resolution track fitting done by FPGAs. An overview of the FTK system with focus on the pattern matching procedure will be p...
a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation
Hu, J.; Lu, L.; Xu, J.; Zhang, J.
2017-09-01
For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.
A fast estimation of shock wave pressure based on trend identification
Yao, Zhenjian; Wang, Zhongyu; Wang, Chenchen; Lv, Jing
2018-04-01
In this paper, a fast method based on trend identification is proposed to accurately estimate the shock wave pressure in a dynamic measurement. Firstly, the collected output signal of the pressure sensor is reconstructed by discrete cosine transform (DCT) to reduce the computational complexity for the subsequent steps. Secondly, the empirical mode decomposition (EMD) is applied to decompose the reconstructed signal into several components with different frequency-bands, and the last few low-frequency components are chosen to recover the trend of the reconstructed signal. In the meantime, the optimal component number is determined based on the correlation coefficient and the normalized Euclidean distance between the trend and the reconstructed signal. Thirdly, with the areas under the gradient curve of the trend signal, the stable interval that produces the minimum can be easily identified. As a result, the stable value of the output signal is achieved in this interval. Finally, the shock wave pressure can be estimated according to the stable value of the output signal and the sensitivity of the sensor in the dynamic measurement. A series of shock wave pressure measurements are carried out with a shock tube system to validate the performance of this method. The experimental results show that the proposed method works well in shock wave pressure estimation. Furthermore, comparative experiments also demonstrate the superiority of the proposed method over the existing approaches in both estimation accuracy and computational efficiency.
A FAST SEGMENTATION ALGORITHM FOR C-V MODEL BASED ON EXPONENTIAL IMAGE SEQUENCE GENERATION
Directory of Open Access Journals (Sweden)
J. Hu
2017-09-01
Full Text Available For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1 the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2 the initial value of SDF (Signal Distance Function and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3 the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.
Fast Food Consumption Behaviors in High-School Students based on the Theory of Planned Behavior (TPB
Directory of Open Access Journals (Sweden)
Kamal Mirkarimi
2016-07-01
Full Text Available Background: Studies report inappropriate snack and junk food consumption patterns in children and young adults in Iran. The current survey was aimed to explore fast food consumption behaviors in high-school students based on the Theory of Planned Behavior. Materials and Methods: A cross-sectional study was done among 500 high-school students. Samples were selected based on cluster sampling method at first and simple random at second. Data were collected using a researcher-made questionnaire. To analyze, SPSS-16 and tests, including t-test, Chi-square, correlation coefficient and multiple regressions were used. Results: The monthly frequency of fast food consumption was 4.01. The TPB explained fast food use behaviors with R2 of 0.6, effectively. Results also represented that frequency of fast food consumption was meaningfully in line with behavioral intention (β = 0.60, P < 0.05 and subjective norms (β = 0.17, P < 0.05. Conclusion: It seems likely beneficial to consider important subjective norms (especially friends that may strongly effect on high-school student intention to use fast food. Also students perceived behavioral control must be increased.
International Nuclear Information System (INIS)
Ambrosi, R. M.; Watterson, J. I. W.
1999-01-01
Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability
SU-E-T-806: Very Fast GPU-Based IMPT Dose Computation
International Nuclear Information System (INIS)
Sullivan, A; Brand, M
2015-01-01
Purpose: Designing particle therapy treatment plans is a dosimetrist-in-the-loop optimization wherein the conflicting constraints of achieving a desired tumor dose distribution must be balanced against the need to minimize the dose to nearby OARs. IMPT introduces an additional, inner, numerical optimization step in which the dosimetrist’s current set of constraints are used to determine the weighting of beam spots. Very fast dose calculations are needed to enable the dosimetrist to perform many iterations of the outer optimization in a commercially reasonable time. Methods: We have developed a GPU-based convolution-type dose computation algorithm that more accurately handles heterogeneities than earlier algorithms by redistributing energy from dose computed in a water volume. The depth dependence of the beam size is handled by pre-processing Bragg curves using a weighted superposition of Gaussian bases. Additionally, scattering, the orientation of treatment ports, and the non-parallel propagation of beams are handled by large, but sparse, energy-redistribution matrices that implement affine transforms. Results: We tested our algorithm using a brain tumor dataset with 1 mm voxels and a single treatment port from the patient’s anterior through the sinuses. The resulting dose volume is 100 × 100 × 230 mm with 66,200 beam spots on a 3 × 3 × 2 mm grid. The dose computation takes <1 msec on a GeForce GTX Titan GPU with the Gamma passing rate for 2mm/2% criterion of 99.1% compared to dose calculated by an alternative dose algorithm based on pencil beams. We will present comparisons to Monte Carlo dose calculations. Conclusion: Our high-speed dose computation method enables the IMPT spot weights to be optimized in <1 second, resulting in a nearly instantaneous response to user changes to dose constraints. This permits the creation of higher quality plans by allowing the dosimetrist to evaluate more alternatives in a short period of time
Application of fast fourier transform method to evaluate the accuracy of sbloca data base
International Nuclear Information System (INIS)
D'Auria, F.; Galassi, G.M.; Leonardi, M.; Galetti, M.R.
1997-01-01
The purpose of this paper is to perform the quantitative accuracy evaluation of a small break LOCA data base and then evaluate the accuracy of RELAP5/MOD2 code i.e. of the ensemble constituted by the code itself, the user, the nodalization and the selected code options, in predicting this kind of transient. In order to achieve this objective, qualitative accuracy evaluation results from several tests performed in 4 facilities (LOBI, SPES, BETHSY and LSTF) are used. The quantitative evaluation is achieved adopting a method developed at University of Pisa, which has capabilities in quantifying the errors in code predictions with respect to the measured experimental signal, using the Fast Fourier Transform; this allows an integral representation of code discrepancies in the frequency domain. The RELAP5/MOD2 code has been extensively used at the University of Pisa and the nodalizations of the 4 facilities have been qualified through the application to several experiments performed in the same facilities. (author)
Directory of Open Access Journals (Sweden)
Andy T. Woods
2013-09-01
Full Text Available According to a popular family of hypotheses, crossmodal matches between distinct features hold because they correspond to the same polarity on several conceptual dimensions (such as active–passive, good–bad, etc. that can be identified using the semantic differential technique. The main problem here resides in turning this hypothesis into testable empirical predictions. In the present study, we outline a series of plausible consequences of the hypothesis and test a variety of well-established and previously untested crossmodal correspondences by means of a novel internet-based testing methodology. The results highlight that the semantic hypothesis cannot easily explain differences in the prevalence of crossmodal associations built on the same semantic pattern (fast lemons, slow prunes, sour boulders, heavy red; furthermore, the semantic hypothesis only minimally predicts what happens when the semantic dimensions and polarities that are supposed to drive such crossmodal associations are made more salient (e.g., by adding emotional cues that ought to make the good/bad dimension more salient; finally, the semantic hypothesis does not explain why reliable matches are no longer observed once intramodal dimensions with congruent connotations are presented (e.g., visually presented shapes and colour do not appear to correspond.
Fast EEMD Based AM-Correntropy Matrix and Its Application on Roller Bearing Fault Diagnosis
Directory of Open Access Journals (Sweden)
Yunxiao Fu
2016-06-01
Full Text Available Roller bearing plays a significant role in industrial sectors. To improve the ability of roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller bearing fault characteristic: the Amplitude Modulation (AM based correntropy extracted from the Intrinsic Mode Functions (IMFs, which are decomposed by Fast Ensemble Empirical mode decomposition (FEEMD and employ Least Square Support Vector Machine (LSSVM to implement intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM as the fault feature matrix is calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore, depending on LSSVM, the fault identification results of the roller bearing are obtained. Through the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM generates more stable and higher diagnosis accuracy than conventional fault features such as energy moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis robustness than conventional fault features under cross-mixed roller bearing operating conditions. The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating conditions, and as such, it possesses potential prospects for a broad application of uses.
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors
Directory of Open Access Journals (Sweden)
Jonghoon Seo
2016-03-01
Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.
DEFF Research Database (Denmark)
Xue, Weiqi; Sales, Salvador; Capmany, Jose
2009-01-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combin...
Energy Technology Data Exchange (ETDEWEB)
Nieto, J., E-mail: jnieto@sec.upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Arcas, G. de; Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Lopez, J.M.; Barrera, E. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Utzel, N.; Makijarvi, P.; Zabeo, L. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)
2012-12-15
Highlights: Black-Right-Pointing-Pointer Implementation of fast plant system controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer GPU-based real time high performance computing service. Black-Right-Pointing-Pointer Performance evaluation with respect to other solutions based in multi-core processors. - Abstract: EURATOM/CIEMAT and the Technical University of Madrid UPM are involved in the development of a FPSC (fast plant system control) prototype for ITER based on PXIe form factor. The FPSC architecture includes a GPU-based real time high performance computing service which has been integrated under EPICS (experimental physics and industrial control system). In this work we present the design of this service and its performance evaluation with respect to other solutions based in multi-core processors. Plasma pre-processing algorithms, illustrative of the type of tasks that could be required for both control and diagnostics, are used during the performance evaluation.
3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation
Chen, Z.; Meng, X.; Guo, L.; Liu, G.
2011-12-01
In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and
Evaluation and application of a fast module in a PLC based interlock and control system
Energy Technology Data Exchange (ETDEWEB)
Zaera-Sanz, M [Department of Physics, Mathematics and Computer Science, Higher School of Technical Sciences CEU, Universidad Cardenal Herrera, Valencia (Spain)], E-mail: manzaesan@yahoo.es
2009-08-15
The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of {mu}seconds. Siemens has introduced a 'so called' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.
Fast GC for Space Applications Based on PIES Technology, Phase II
National Aeronautics and Space Administration — This SBIR Phase II project is aimed at the development of an analytical instrument which combines the advantages of fast gas chromatography (GC) and a detector that...
Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreira, Paula D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ghate, Aditya S [Stanford University
2018-01-04
FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral and vertical directions under different atmospheric and turbine operating conditions.
Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA
Energy Technology Data Exchange (ETDEWEB)
Doubrawa Moreira, Paula [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ghate, Aditya [Stanford University
2018-01-12
FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral and vertical directions under different atmospheric and turbine operating conditions.
Fast-food Consumption among College Students Based on Cost and Thermal Analysis
Mu Rui-Hui
2015-01-01
The starting point of this study was to assess college students to spend money and calories in fast food consumption within the university campus. Undergraduate Students (18 years old-24) to facilitate sample (N = 152), participated in the university in the use of researchers developed a way of life and collecting food frequency questionnaire, dietary intake measurements from seven Behavior Survey health practices survey data on the local fast-food chain. A strong positive correlation between...
Modeling the Performance of Fast Mulipole Method on HPC platforms
Ibeid, Huda
2012-04-06
The current trend in high performance computing is pushing towards exascale computing. To achieve this exascale performance, future systems will have between 100 million and 1 billion cores assuming gigahertz cores. Currently, there are many efforts studying the hardware and software bottlenecks for building an exascale system. It is important to understand and meet these bottlenecks in order to attain 10 PFLOPS performance. On applications side, there is an urgent need to model application performance and to understand what changes need to be made to ensure continued scalability at this scale. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle based methods. Nowadays, FMM is more than an N-body solver, recent trends in HPC have been to use FMMs in unconventional application areas. FMM is likely to be a main player in exascale due to its hierarchical nature and the techniques used to access the data via a tree structure which allow many operations to happen simultaneously at each level of the hierarchy. In this thesis , we discuss the challenges for FMM on current parallel computers and future exasclae architecture. Furthermore, we develop a novel performance model for FMM. Our ultimate aim of this thesis is to ensure the scalability of FMM on the future exascale machines.
Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar
2013-01-01
Objective. This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). Results. The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Conclusion. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students. PMID:23936635
An Elastic Charging Service Fee-Based Load Guiding Strategy for Fast Charging Stations
Directory of Open Access Journals (Sweden)
Shu Su
2017-05-01
Full Text Available Compared with the traditional slow charging loads, random integration of large scale fast charging loads will exert more serious impacts on the security of power network operation. Besides, to maximize social benefits, effective scheduling strategies guiding fast charging behaviors should be formulated rather than simply increasing infrastructure construction investments on the power grid. This paper first analyzes the charging users’ various responses to an elastic charging service fee, and introduces the index of charging balance degree to a target region by considering the influence of fast charging loads on the power grid. Then, a multi-objective optimization model of the fast charging service fee is constructed, whose service fee can be further optimized by employing a fuzzy programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging loads can be maintained simultaneously by reasonably guiding electric vehicles (EVs to different fast charging stations. The simulation results demonstrate the effectiveness of the proposed dynamic charging service pricing and the corresponding fast charging load guidance strategy.
Directory of Open Access Journals (Sweden)
Gholamreza Sharifirad
2013-01-01
Full Text Available Objective. This study was conducted to identify some factors (beliefs and norms which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC, and the additional variables past behavior, actual behavior control (ABC. Results. The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (, and subjective norms as the weakest (, determinant. Concurrently, intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Conclusion. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students.
A GPU-based solution for fast calculation of the betweenness centrality in large weighted networks
Directory of Open Access Journals (Sweden)
Rui Fan
2017-12-01
Full Text Available Betweenness, a widely employed centrality measure in network science, is a decent proxy for investigating network loads and rankings. However, its extremely high computational cost greatly hinders its applicability in large networks. Although several parallel algorithms have been presented to reduce its calculation cost for unweighted networks, a fast solution for weighted networks, which are commonly encountered in many realistic applications, is still lacking. In this study, we develop an efficient parallel GPU-based approach to boost the calculation of the betweenness centrality (BC for large weighted networks. We parallelize the traditional Dijkstra algorithm by selecting more than one frontier vertex each time and then inspecting the frontier vertices simultaneously. By combining the parallel SSSP algorithm with the parallel BC framework, our GPU-based betweenness algorithm achieves much better performance than its CPU counterparts. Moreover, to further improve performance, we integrate the work-efficient strategy, and to address the load-imbalance problem, we introduce a warp-centric technique, which assigns many threads rather than one to a single frontier vertex. Experiments on both realistic and synthetic networks demonstrate the efficiency of our solution, which achieves 2.9× to 8.44× speedups over the parallel CPU implementation. Our algorithm is open-source and free to the community; it is publicly available through https://dx.doi.org/10.6084/m9.figshare.4542405. Considering the pervasive deployment and declining price of GPUs in personal computers and servers, our solution will offer unprecedented opportunities for exploring betweenness-related problems and will motivate follow-up efforts in network science.
Software development methodology for computer based I&C systems of prototype fast breeder reactor
International Nuclear Information System (INIS)
Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.
2015-01-01
Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored
An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions
Woody, Michael S.; Capitanio, Marco; Ostap, E. Michael; Goldman, Yale E.
2017-08-01
We assembled an ultra-fast infrared optical trapping system to detect mechanical events that occur less than a millisecond after a ligand binds to its filamentous substrate, such as myosin undergoing its 5 - 10 nm working stroke after actin binding. The instrument is based on the concept of Capitanio et al.1, in which a polymer bead-actin-bead dumbbell is held in two force-clamped optical traps. A force applied by the traps causes the filament to move at a constant velocity as hydrodynamic drag balances the applied load. When the ligand binds, the filament motion stops within 100 μs as the total force from the optical traps is transferred to the attachment. Subsequent translations signal active motions, such as the magnitude and timing of the motor's working stroke. In our instrument, the beads defining the dumbbell are held in independent force clamps utilizing a field-programmable gate array (FPGA) to update the trap beam positions at 250 kHz. We found that in our setup, acousto-optical deflectors (AODs) steering the beams were unsuitable for this purpose due to a slightly non-linear response in the beam intensity and deflection angle vs. the AOD ultra-sound wavelength, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artefactual 20 nm jumps in position. This type of AOD non-linearity has been reported to be absent in electro-optical deflectors (EODs)2. We demonstrate that replacement of the AODs with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-plane interferometry, and the dual high-speed FPGA-based feedback loops, we smoothly and precisely apply constant loads to study the dynamics of interactions between biological molecules such as actin and myosin.
A fast color image enhancement algorithm based on Max Intensity Channel
Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui
2014-03-01
In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.
Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.
Chen, Jun Xiang; Pan, Kuan Lun; Yu, Sheng Jen; Yen, Shaw Yi; Chang, Moo Been
2017-09-01
In this study, the concept of fast SCR for NO reduction with NH 3 as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO 2 possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO 2 and 10% wt. Mn-Ce-Cu/TiO 2 . Mn-Ce-Ni/TiO 2 of 10% wt. achieves 100% NO x conversion at 150 °C, while 10% wt. Mn-Ce/TiO 2 and 10% wt. Mn-Ce-Cu/TiO 2 need to be operated at a temperature above 200 °C for 100% NO x conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO 2 is significantly reduced as H 2 O (g) and SO 2 are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NO x conversion and N 2 selectivity. The results indicate that 100% NO x conversion can be achieved with two-stage system at 100 °C, while N 2 selectivity reaches 80%. Importantly, NO x conversion achieved with two-stage system could maintain >95% in the presence of C 2 H 4 , CO, SO 2 , and H 2 O (g) , indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NO x emission at a low temperature (≤200 °C) and has good potential for industrial application.
HypE: an algorithm for fast hypervolume-based many-objective optimization.
Bader, Johannes; Zitzler, Eckart
2011-01-01
In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolume--so far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.
Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models
Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.
2017-12-01
While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API
Point charges optimally placed to represent the multipole expansion of charge distributions.
Directory of Open Access Journals (Sweden)
Ramu Anandakrishnan
Full Text Available We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom, is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å is half that of the point multipole expansion up to the octupole
Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion
Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.
2017-01-01
This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of
Energy Technology Data Exchange (ETDEWEB)
Greene, N.M.; Forsberg, V.M.; Raiford, G.B.; Arwood, J.W.; Flanagan, G.F.
1979-01-01
SACRD is a data base of material properties and other handbook data needed in computer codes used for fast reactor safety studies. This document lists the contents of Version 1 and also serves as a glossary of terminology used in the data base. Data are available in the thermodynamics, heat transfer, fluid mechanics, structural mechanics, aerosol transport, meteorology, neutronics and dosimetry areas. Tabular, graphical and parameterized data are provided in many cases.
Kamal Mirkarimi; Morteza Mansourian; Mohammad Javad Kabir; Rahman Berdi Ozouni- Davaji; Maryam Eri; Seyed Ghadir Hosseini; Mostafa Qorbani; Omid Safari; Babak Rastgari Mehr; Mehdi Noroozi; Abdurrahman Charkazi; Hossein Shahnazi
2016-01-01
Background: Studies report inappropriate snack and junk food consumption patterns in children and young adults in Iran. The current survey was aimed to explore fast food consumption behaviors in high-school students based on the Theory of Planned Behavior. Materials and Methods: A cross-sectional study was done among 500 high-school students. Samples were selected based on cluster sampling method at first and simple random at second. Data were collected using a researcher-made questionnaire. ...
Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications
Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H. -M.
2012-01-01
The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has ...
Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities
Energy Technology Data Exchange (ETDEWEB)
Hopper, Christopher S. [ODU, JLAB; Deitrick, Kirsten E. [ODU, JLAB; Delayen, Jean R. [ODU, JLAB
2013-12-01
Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.
Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations.
Taylor, J M; Love, G D
2009-02-01
Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are derived. These results allow Mie scattering calculations to be carried out considerably faster than existing methods, something that is of particular interest for time evolution simulations where large numbers of scattering calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previously published expression requiring the evaluation of an integral. An analogous expression containing a single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam, valid from the paraxial limit all the way to arbitrarily high numerical apertures.
Multipole expansion of acoustical Bessel beams with arbitrary order and location.
Gong, Zhixiong; Marston, Philip L; Li, Wei; Chai, Yingbin
2017-06-01
An exact solution of expansion coefficients for a T-matrix method interacting with acoustic scattering of arbitrary order Bessel beams from an obstacle of arbitrary location is derived analytically. Because of the failure of the addition theorem for spherical harmonics for expansion coefficients of helicoidal Bessel beams, an addition theorem for cylindrical Bessel functions is introduced. Meanwhile, an analytical expression for the integral of products including Bessel and associated Legendre functions is applied to eliminate the integration over the polar angle. Note that this multipole expansion may also benefit other scattering methods and expansions of incident waves, for instance, partial-wave series solutions.
Enhancing monochromatic multipole emission by a subwavelength enclosure of degenerate Mie resonances
Zhao, Jiajun
2017-07-06
Sound emission is inefficient at low frequencies as limited by source size. This letter presents enhancing emission of monochromatic monopole and multipole sources by enclosing the source with a subwavelength circular enclosure filled of an anisotropic material of a low radial sound speed. The anisotropy is associated with an infinite tangential density along the azimuth. Numerical simulations show that emission gain is produced at frequencies surrounding degenerate Mie resonant frequencies of the enclosure, and meanwhile the radiation directivity pattern is well preserved. The degeneracy is theoretically analyzed. A realization of the material is suggested by using a space-coiling structure.
Dual Killing-Yano symmetry and multipole moments in electromagnetism and mechanics of continua
Baleanu, Dumitru; Dubovik, V. M.; Misicu, S.
1998-01-01
In this work we introduce the Killing-Yano symmetry on the phase space and we investigate the symplectic structure on the space of Killing-Yano tensors. We perform the detailed analyze of the $n$-dimensional flat space and the Riemaniann manifolds with constant scalar curvature. We investigate the form of some multipole tensors, which arise in the expansion of a system of charges and currents, in terms of second-order Killing-Yano tensors in the phase space of classical mechanics. We find som...
Stability properties of a toroidal z-pinch in an external magnetic multipole field
International Nuclear Information System (INIS)
Eriksson, H.G.
1987-01-01
MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)
Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond
DEFF Research Database (Denmark)
Svendsen, H.; Overgaard, J.; Busselez, R.
2010-01-01
encountered in single-crystal studies of small-unit-cell inorganic structures can be overcome with synchrotron powder diffraction. It is shown that the standard Hansen-Coppens multipole model is not flexible enough to fit the static theoretical structure factors, whereas fitting of thermally smeared structure...... parameter. This directly exposes a correlation between electron density and thermal parameters even for a light atom such as carbon, and it also underlines that in organic systems proper deconvolution of thermal motion is important for obtaining correct static electron densities....
Multipole lenses with implicit poles and with harmonic distribution of current density in a coil
International Nuclear Information System (INIS)
Skachkov, V.S.
1984-01-01
General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed
Magnetic design and measurement of nonlinear multipole magnets for the APT beam expander system
International Nuclear Information System (INIS)
Barlow, D.B.; Shafer, R.E.; Martinez, R.P.; Walstrom, P.L.; Kahn, S.; Jain, A.; Wanderer, P.
1997-01-01
Two prototype nonlinear multipole magnets have been designed for use in the 800-MeV beam test of the APT beam-expansion concept at LANSCE. The iron-dominated magnets each consist of three independent coils, two for producing a predominantly octupole field with a tunable duodecapole component, and one for canceling the residual quadrupole field. Two such magnets, one for shaping each transverse plane, are required to produce a rectangular, uniform beam current density distribution with sharp edges on the APT target. This report will describe the magnetic design of these magnets, along with field measurements, and a comparison to the magnetic design
Symmetry aspects of multipole moments in electromagnetism and mechanics of continua
International Nuclear Information System (INIS)
Baleanu, D.; Dubovik, V.M.; Misiku, S.
1998-01-01
We investigate the form of some multipole tensors, which arise in the expansion of a system of charges and currents, in terms of second-order Killing-Yano tensors in the phase space of classical mechanics. We related some of these tensors to the generators of dynamical symmetries like the angular momentum, the mass-inertia tensor, the conformal operator and the momentum conjugate Runge-Lenz vector. In this way we associate a geometrical meaning to such physical observables of the continua
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2015-11-01
We have carried out the first high-fidelity Navier-Stokes simulation of a complete thermoacoustic engine with piezoelectric energy extraction. The standing-wave thermoacoustic piezoelectric (TAP) engine model comprises a 51 cm long cylindrical resonator, containing a thermoacoustic stack on one end and capped by a PZT-5A piezoelectric diaphragm on the other end, tuned to the frequency of the thermoacoustically-amplified mode (388 Hz). A multi-pole broadband time-domain impedance model has been adopted to accurately simulate the measured electromechanical properties of the piezoelectric diaphragm. Simulations are first carried out from quasi-quiescent conditions to a limit cycle, with varying temperature gradients and stack configurations. Stack geometry and boundary layers are fully resolved. Acoustic energy extraction is then activated, achieving a new limit cycle at lower pressure amplitudes. The scaling of the modeled electrical power output and attainable thermal-to-electric energy conversion efficiencies are discussed. Limitations of extending a quasi-one-dimensional linear approximation based on Rott's theory to a (low amplitude) limit cycle are discussed, as well as nonlinear effects such as thermoacoustic energy transport and viscous dissipation.
DEFF Research Database (Denmark)
Svendsen, Annette; Lammich, Lutz; Vad Andersen, John Erik
2013-01-01
The possibility of injecting ions from an initially fast moving beam into a multipole radio-frequency (RF) ion trap without the use of buffer gas is described. The chosen trap geometry gives rise to an oscillating electric field along the direction of the incoming ions, and through an analytical...
Tokamak configuration analysis with the method of toroidal multipoles
International Nuclear Information System (INIS)
Micozzi, P.; Alladio, F.; Crisanti, F.; Marinucci, M.; Tanga, A.
1989-01-01
In the study of tokamak machines able to sustain plasmas of thermonuclear interest (JIT, IGNITOR, NET, CIT, ET), there is a strong quest for engineering optimization of the circuital components close to the plasma. We have developed a semianalytical axisymmetric MHD equilibrium code based on the technique of the poloidal ψ flux function expansion in toroidal harmonic series. This code is able to optimize the necessary currents in the poloidal circuits in order to sustain a plasma of fixed shape (also x-point configuration), toroidal current and poloidal β. (author) 4 refs., 4 figs
Family-Joining: A Fast Distance-Based Method for Constructing Generally Labeled Trees.
Kalaghatgi, Prabhav; Pfeifer, Nico; Lengauer, Thomas
2016-10-01
The widely used model for evolutionary relationships is a bifurcating tree with all taxa/observations placed at the leaves. This is not appropriate if the taxa have been densely sampled across evolutionary time and may be in a direct ancestral relationship, or if there is not enough information to fully resolve all the branching points in the evolutionary tree. In this article, we present a fast distance-based agglomeration method called family-joining (FJ) for constructing so-called generally labeled trees in which taxa may be placed at internal vertices and the tree may contain polytomies. FJ constructs such trees on the basis of pairwise distances and a distance threshold. We tested three methods for threshold selection, FJ-AIC, FJ-BIC, and FJ-CV, which minimize Akaike information criterion, Bayesian information criterion, and cross-validation error, respectively. When compared with related methods on simulated data, FJ-BIC was among the best at reconstructing the correct tree across a wide range of simulation scenarios. FJ-BIC was applied to HIV sequences sampled from individuals involved in a known transmission chain. The FJ-BIC tree was found to be compatible with almost all transmission events. On average, internal branches in the FJ-BIC tree have higher bootstrap support than branches in the leaf-labeled bifurcating tree constructed using RAxML. 36% and 25% of the internal branches in the FJ-BIC tree and RAxML tree, respectively, have bootstrap support greater than 70%. To the best of our knowledge the method presented here is the first attempt at modeling evolutionary relationships using generally labeled trees. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network.
Directory of Open Access Journals (Sweden)
Yan-Ming Lai
Full Text Available Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN based on tickets. Unfortunately, Li et al.'s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.'s protocol includes the use of high-quality tamper-proof devices (TPDs, and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client's privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay.
Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control
Energy Technology Data Exchange (ETDEWEB)
Acharya, Naresh [General Electric Company, Fairfield, CT (United States); Baone, Chaitanya [General Electric Company, Fairfield, CT (United States); Veda, Santosh [General Electric Company, Fairfield, CT (United States); Dai, Jing [General Electric Company, Fairfield, CT (United States); Chaudhuri, Nilanjan [General Electric Company, Fairfield, CT (United States); Leonardi, Bruno [General Electric Company, Fairfield, CT (United States); Sanches-Gasca, Juan [General Electric Company, Fairfield, CT (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wu, Di [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jin, Shuangshuang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Yousu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-12-31
Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed
A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network.
Lai, Yan-Ming; Cheng, Pu-Jen; Lee, Cheng-Chi; Ku, Chia-Yi
2016-01-01
Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.'s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.'s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client's privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay.
Effect of Ramadan fasting on diabetes mellitus: a population-based study in Qatar.
Bener, Abdulbari; Yousafzai, Mohammad T
2014-08-01
Over one billion Muslims fast worldwide during the month of Ramadan. Fasting during Ramadan is a radical change in lifestyle for the period of a lunar month, and it might affect the biochemical parameters among diabetic patients. This study aimed to investigate the effect of Ramadan fasting on the blood levels of glucose, glycated hemoglobin (HbA1c), and lipid profile among diabetic patients observing fast during the Ramadan. An observational study recruiting 1301 Muslim diabetic patients above 18 years age was conducted in diabetic outpatient clinic of Hamad General Hospital, Hamad Medical Corporation, and Primary Health Care Center, Qatar, from July 2012 to September 2013. Data on sociodemographic characteristics (age, sex, nationality, marital status, education level, and occupation) and lifestyle habits (smoking and physical activity), blood pressures, and anthropometric measurements were obtained by a face-to-face interview and measurement using a structured questionnaire. Blood samples were collected for testing glucose, glycosylated hemoglobin (HbA1C), lipid profile, urea, and creatinine (by the licensed research assistants). Slightly less than half of the participants were overweight (BMI: 25-29.9). Significantly higher proportion of female participants were obese as compared with male participants (PRamadan as compared with before Ramadan (Pfasting during Ramadan is significantly associated with decrease in blood lipid profile, blood pressures, glucose, and HbA1C level among diabetic patients. Muslim diabetic patients after the consultation of their primary physician can fast during the month of Ramadan and it might be beneficial for their health.
Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar
2013-01-01
This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students.
A fast 4D IMRT/VMAT planning method based on segment aperture morphing.
Klawikowski, Slade; Tai, An; Ates, Ozgur; Ahunbay, Ergun; Li, X Allen
2018-04-01
Four-dimensional volumetric modulated arc therapy (4D VMAT) and four-dimensional intensity-modulated radiotherapy (4D IMRT) are developing radiation therapy treatment strategies designed to maximize dose conformality, minimize normal tissue dose, and deliver the treatment as efficiently as possible. The patient's entire breathing cycle is captured through 4D imaging modalities and then separated into individual breathing phases for planning purposes. Optimizing multiphase VMAT and IMRT plans is computationally demanding and currently impractical for clinical application. The purpose of this study is to assess a new planning process decreasing the upfront computational time required to optimize multiphased treatment plans while maintaining good plan quality. Optimized VMAT and IMRT plans were created on the end-of-exhale (EOE) breathing phase of 10-phase 4D CT scans with planning tumor volume (PTV)-based targets. These single-phase optimized plans are analogous to single-phase gated treatment plans. The simulated tracked plans were created by deformably registering EOE contours to the remaining breathing phases, recalculating the optimized EOE plan onto the other individual phases and realigning the MLC's relative positions to the PTV border in each of the individual breathing phases using a segment aperture morphing (SAM) algorithm. Doses for each of the 10 phases were calculated with the treatment planning system and deformably transferred back onto the EOE phase and averaged with equal weighting simulating the actual delivered dose a patient would potentially receive in a tracked treatment plan. Plan DVH quality for the 10-phase 4D SAM plans were comparable with the individual EOE optimized treatment plans for the PTV structures as well as the organ at risk structures. SAM-based algorithms out performed simpler isocenter-shifted only approaches. SAM-based 4D planning greatly reduced plan computation time vs individually optimizing all 10 phases. In addition
Multi-Pole HTS Generators for Direct Drive Wind Turbines
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen
In this presentation the feasibility of installing a 5MW direct drive superconducting generator for an offshore wind turbine is presented. The reference turbine is a geared 5MW wind turbine that has been installed offshore and has been documented extensively by the National Renewable Energy...... on two different types of coated conductor. In the specific design the allowable current density was 300A/mm^2 for tape 1 and 70A/mm^2 for tape 2. The design is analytical, based on magnetic circuit analysis, which is validated by finite element modelling. The conclusion is that the either price...... or the performance of the coated conductor has to improve significantly (by a factor of 10 or more) in order for HTS generators to become feasible in direct drive offshore wind turbines. This price/performance improvement is not unrealistic in the coming decade. Additionally the reliability of such machines...
LMFBR core design codes based on experimental fast reactor 'JOYO' experiences
International Nuclear Information System (INIS)
Kumaoka, Yoshio; Aoki, Katsutada; Kawashima, Masatoshi.
1982-01-01
In order to design the core for a 1,000-MWe-class fast breeder reactor, many kinds of computer codes as design tools are needed for analyzing the multicore components, mechanical behavior, nuclear performance and the thermal hydraulic performance of the core, and for designing the fuel. To meet these needs, Toshiba has endeavored for many years to develop highly reliable computer codes for core design, some of which are described in this article, and to continue their improvement by verifying them with actual fast reactor operation data. Above all, a series of nuclear design codes named COSMOS was successfully applied to the core design of the Japanese experimental fast breeder reactor ''JOYO'', and the excellent agreement between designed values and actual measured data has concluded that Toshiba's nuclear design codes are very useful for application to future large core design. (author)
Identification of fast-steering mirror based on chicken swarm optimization algorithm
Ren, Wei; Deng, Chao; Zhang, Chao; Mao, Yao
2017-06-01
According to the transfer function identification method of fast steering mirror exists problems which estimate the initial value is complicated in the process of using, put forward using chicken swarm algorithm to simplify the identification operation, reducing the workload of identification. chicken swarm algorithm is a meta heuristic intelligent population algorithm, which shows global convergence is efficient in the identification experiment, and the convergence speed is fast. The convergence precision is also high. Especially there are many parameters are needed to identificate in the transfer function without considering the parameters estimation problem. Therefore, compared with the traditional identification methods, the proposed approach is more convenient, and greatly achieves the intelligent design of fast steering mirror control system in enginerring application, shorten time of controller designed.
Kuznetsov, G. N.; Stepanov, A. N.
2017-11-01
We obtain, and compare with exact solutions, the approximate analytic relations that determine, for increasing distance, irregularities of attenuation in the regular sound pressure components and orthogonal projections of the oscillation velocity vectors of low-frequency signals formed in a waveguide by various multipoles. We show that the mentioned field characteristics essentially depend on the type of multipole, the distance between the source and receivers, and the specific features of the received scalar or vector field components. It is established that the approximating dependences agree well with the exact laws of attenuation in the field and, despite the variety of dependences, they are divided into three compact groups with uniform characteristics.
Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.
2018-02-01
Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.
Directory of Open Access Journals (Sweden)
Michał Fularz
2015-10-01
Full Text Available Image feature detection and matching is a fundamental operation in image processing. As the detected and matched features are used as input data for high-level computer vision algorithms, the matching accuracy directly influences the quality of the results of the whole computer vision system. Moreover, as the algorithms are frequently used as a part of a real-time processing pipeline, the speed at which the input image data are handled is also a concern. The paper proposes an embedded system architecture for feature detection and matching. The architecture implements the FAST feature detector and the BRIEF feature descriptor and is capable of establishing key point correspondences in the input image data stream coming from either an external sensor or memory at a speed of hundreds of frames per second, so that it can cope with most demanding applications. Moreover, the proposed design is highly flexible and configurable, and facilitates the trade-off between the processing speed and programmable logic resource utilization. All the designed hardware blocks are designed to use standard, widely adopted hardware interfaces based on the AMBA AXI4 interface protocol and are connected using an underlying direct memory access (DMA architecture, enabling bottleneck-free inter-component data transfers.
Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake
Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin
2018-02-01
This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m‑2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W‑1.
Sihvola, Ari
2005-03-01
`Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! `It canÂ't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the `old
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
Energy Technology Data Exchange (ETDEWEB)
Sihvola, Ari [Helsinki University of Technology (Finland)
2005-03-11
'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin{exclamation_point} 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where
A multipole-expanded effective field theory for vortex ring-sound interactions
Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto
2018-02-01
The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.
Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications
International Nuclear Information System (INIS)
Sihvola, Ari
2005-01-01
'Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! 'It can't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the 'old
Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons
International Nuclear Information System (INIS)
Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.
2001-01-01
Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac
Fast-track IPP based on LM6000 gas turbines brings quick power to Ecuador
Energy Technology Data Exchange (ETDEWEB)
Pinder, Ron [GE Marine and Industrial Engines, Evendale, OH (United States); Garcia, Ernesto [Stewart and Stevenson International Inc., Coral Gables, FL (United States)
1996-11-01
With the country suffering from severe power shortages, the Ecuadorian government began a process of power sector liberalization, allowing private fast-track IPPs to construct much needed capacity. One of these crucial projects, the Electroquil power plant in Guayaquil, began operation in May this year. (author)
Syropoulos, Mike
The primary objective of the Federally Assisted Staff Training (FAST) programs for the 1970-71 academic year was to improve the classroom learning environment in participating Title I schools by expanding the ability of teachers to direct their own improvement by using techniques such as interaction analysis, micro-teaching, and student feedback.…
DEFF Research Database (Denmark)
Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John
2015-01-01
A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...
A UV LED-based fast-pulsed photoelectron source for time-of-flight studies
Czech Academy of Sciences Publication Activity Database
Valerius, K.; Beck, M.; Arlinghaus, H.; Bonn, J.; Hannen, V.M.; Hein, H.; Ostrick, B.; Streubel, S.; Weinheimer, C.; Zbořil, Miroslav
2009-01-01
Roč. 11, - (2009), 063018/1-063018/16 ISSN 1367-2630 R&D Projects: GA MŠk LA318 Institutional research plan: CEZ:AV0Z10480505 Keywords : fast-pulsed * high-resolution * time-of-flight Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.312, year: 2009
Progress report on a fast, particle-identifying trigger based on ring-imaging Cherenkov techniques
International Nuclear Information System (INIS)
Carroll, J.; Igo, G.; Jacobs, P.; Matis, H.; Naudet, C.; Schroeder, L.S.; Seidl, P.A.; Hallman, T.J.
1990-01-01
Experiments which require a large sample of relatively rare events need an efficient (low dead time) trigger that does more than select central collisions. The authors propose to develop a trigger that will permit sophisticated multi-particle identification on a time scale appropriate for the interaction rates expected at RHIC. The visible component of the ring-image produced by an appropriate Cherenkov-radiator-mirror combination is focused onto an array of fast photo-detectors. The output of the photo-array is coupled to a fast pattern recognition system that will identify events containing particles of specified types and angular configurations. As a parallel effort, they propose to develop a spectrum-splitting mirror that will permit the ring-image from a single radiator to be used both in this trigger (the visible component of the image) and in a TMAE containing gas detector (the UV component). The gas detector will provide higher resolution information on particle ID and direction with a delay of a few microseconds. This technique will enable nearly optimal use of the information contained in the Cherenkov spectrum. The authors report progress on the three goals set forth in the proposal: 1. the development of a fast photo-array; 2. the development of a spectrum splitting mirror; and 3. the development and simulation of fast parallel algorithms for ring finding
Fast and frugal trees: translating population-based pharmacogenomics to medication prioritization
Rooij, T. van; Roederer, M.; Wareham, H.T.; Rooij, I.J.E.I. van; McLeod, H.L.; Marsh, S.
2015-01-01
Aim: Fast and frugal decision trees (FFTs) can simplify clinical decision making by providing a heuristic approach to contextual guidance. We wanted to use FFTs for pharmacogenomic knowledge translation at point-of-care. Materials & Methods: The Pharmacogenomics for Every Nation Initiative (PGENI),
Fast and Robust CD and DGD Estimation Based on Data-Aided Channel Estimation
DEFF Research Database (Denmark)
Pittalà, Fabio; Hauske, Fabian N.; Ye, Yabin
2011-01-01
In this paper data-aided (DA) frequency domain (FD) channel estimation in a 2×2 multi-input-multi-output (MIMO) system is investigated. Using orthogonal training sequences, fast and robust CD and DGD estimation is demonstrated for a 112 Gbit/s PDM-QPSK system over a wide range of combined linear...
Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station
DEFF Research Database (Denmark)
Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos
2014-01-01
Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs...
A Fast Mixed-Precision Strategy for Iterative Gpu-Based Solution of the Laplace Equation
DEFF Research Database (Denmark)
Our work is concerned with the development of a generic high-performance library for scientific computing. The library is targeted for assembling flexible-order finite-difference solvers for PDEs. Our goal is to enable fast solution of large PDE systems, fully exploiting the massively parallel ar...
A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation
DEFF Research Database (Denmark)
Our work is concerned with the development of a generic high-performance library for scientific computing. The library is targeted for assembling flexible-order finite-difference solvers for PDEs. Our goal is to enable fast solution of large PDE systems, fully exploiting the massively parallel ar...
Yang, Yanfu; Xiang, Qian; Zhang, Qun; Zhou, Zhongqing; Jiang, Wen; He, Qianwen; Yao, Yong
2017-09-01
We propose a joint estimation scheme for fast, accurate, and robust frequency offset (FO) estimation along with phase estimation based on modified adaptive Kalman filter (MAKF). The scheme consists of three key modules: extend Kalman filter (EKF), lock detector, and FO cycle slip recovery. The EKF module estimates time-varying phase induced by both FO and laser phase noise. The lock detector module makes decision between acquisition mode and tracking mode and consequently sets the EKF tuning parameter in an adaptive manner. The third module can detect possible cycle slip in the case of large FO and make proper correction. Based on the simulation and experimental results, the proposed MAKF has shown excellent estimation performance featuring high accuracy, fast convergence, as well as the capability of cycle slip recovery.
Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR
Directory of Open Access Journals (Sweden)
E. Dammers
2017-07-01
Full Text Available Presented here is the validation of the CrIS (Cross-track Infrared Sounder fast physical NH3 retrieval (CFPR column and profile measurements using ground-based Fourier transform infrared (FTIR observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218 with very little bias (a slope of 1.02. Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 1016 molecules cm−2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0–5 % with a standard deviation of 25–50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0 × 1016 molecules cm−2 where there are a large number of observations at or near the CrIS noise level (detection limit the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ∼ 850 hPa (∼ 1.5 km. At this level the median absolute difference is 0.87 (std = ±0.08 ppb, corresponding to a median relative difference of 39 % (std = ±2 %. Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate
Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K
2014-08-23
Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain
Miyake, Teruki; Kumagi, Teru; Furukawa, Shinya; Hirooka, Masashi; Kawasaki, Keitarou; Koizumi, Mitsuhito; Todo, Yasuhiko; Yamamoto, Shin; Abe, Masanori; Kitai, Kohichiro; Matsuura, Bunzo; Hiasa, Yoichi
2014-01-01
Background It is not clear whether elevated uric acid is a risk factor for the onset of impaired fasting glucose after stratifying by baseline fasting plasma glucose levels. We conducted a community-based retrospective longitudinal cohort study to clarify the relationship between uric acid levels and the onset of impaired fasting glucose, according to baseline fasting plasma glucose levels. Methods We enrolled 6,403 persons (3,194 men and 3,209 women), each of whom was 18–80 years old and had >2 annual check-ups during 2003–2010. After excluding persons who had fasting plasma glucose levels ≥6.11 mM and/or were currently taking anti-diabetic agents, the remaining 5,924 subjects were classified into quartiles according to baseline fasting plasma glucose levels. The onset of impaired fasting glucose was defined as fasting plasma glucose ≥6.11 mM during the observation period. Results In the quartile groups, 0.9%, 2.1%, 3.4%, and 20.2% of the men developed impaired fasting glucose, respectively, and 0.1%, 0.3%, 0.5%, and 5.6% of the women developed impaired fasting glucose, respectively (P trend fasting glucose in men with highest-quartile fasting plasma glucose levels (adjusted hazard ratio, 1.003; 95% confidence interval, 1.0001–1.005, P = 0.041). Conclusions Among men with high fasting plasma glucose, hyperuricemia may be independently associated with an elevated risk of developing impaired fasting glucose. PMID:25237894
A novel multi-aperture based sun sensor based on a fast multi-point MEANSHIFT (FMMS) algorithm.
You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei
2011-01-01
With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels.
A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS Algorithm
Directory of Open Access Journals (Sweden)
Gao-Fei Zhang
2011-03-01
Full Text Available With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS mask with 36 apertures and an active pixels sensor (APS CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels.
Secure Route Structures for Parallel Mobile Agents Based Systems Using Fast Binary Dispatch
Directory of Open Access Journals (Sweden)
Yan Wang
2005-01-01
Full Text Available In a distributed environment, where a large number of computers are connected together to enable the large-scale sharing of data and computing resources, agents, especially mobile agents, are the tools for autonomously completing tasks on behalf of their owners. For applications of large-scale mobile agents, security and efficiency are of great concern. In this paper, we present a fast binary dispatch model and corresponding secure route structures for mobile agents dispatched in parallel to protect the dispatch routes of agents while ensuring the dispatch efficiency. The fast binary dispatch model is simple but efficient with a dispatch complexity of O(log2n. The secure route structures adopt the combination of public-key encryption and digital signature schemes and expose minimal route information to hosts. The nested structure can help detect attacks as early as possible. We evaluated the various models both analytically and empirically.
Ground-based complex for detection and investigation of fast optical transients in wide field
Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto
2008-07-01
To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.
Fast all-optical flip-flop based on a single distributed feedback laser diode.
Huybrechts, Koen; Morthier, Geert; Baets, Roel
2008-07-21
Since there is an increasing demand for fast networks and switches, the electronic data processing imposes a severe bottleneck and all-optical processing techniques will be required in the future. All-optical flip-flops are one of the key components because they can act as temporary memory elements. Several designs have already been demonstrated but they are often relatively slow or complex to fabricate. We demonstrate experimentally fast flip-flop operation in a single DFB laser diode which is one of the standard elements in today's telecommunication industry. Injecting continuous wave light in the laser diode, a bistability is obtained due to the spatial hole burning effect. We can switch between the two states by using pulses with energies below 200 fJ resulting in flip-flop operation with switching times below 75 ps and repetition rates of up to 2 GHz.
A Fast Classification Method of Faults in Power Electronic Circuits Based on Support Vector Machines
Cui Jiang; Shi Ge; Gong Chunying
2017-01-01
Fault detection and location are important and front-end tasks in assuring the reliability of power electronic circuits. In essence, both tasks can be considered as the classification problem. This paper presents a fast fault classification method for power electronic circuits by using the support vector machine (SVM) as a classifier and the wavelet transform as a feature extraction technique. Using one-against-rest SVM and one-against-one SVM are two general approaches to fault classificatio...
A fast position sensitive photodetector based on a CsI reflective photocathode
International Nuclear Information System (INIS)
Arnold, R.; Christophel, E.; Guyonnet, J.L.
1991-01-01
A fast detector was built for UV photon detection that depends on a CsI sensitized pad cathode. The rapidity of the detector is compared with that of a more classical chamber filled with photosensitive gases such as TEA or TMAE. Estimates of the quantum yield of the photocathode at 160 and 200 nm are given. The performances obtained make it a good photodetector candidate to be operated at high luminosity accelerators. (author) 7 refs., 19 figs
Swarm: robust and fast clustering method for amplicon-based studies
Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah
2014-01-01
Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units. PMID:25276506
Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar
2013-01-01
Objective. This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including at...
License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature
Wang, Ran; Xia, Yuanchun; Wang, Guoyou; Tian, Jiangmin
2015-09-01
Within intelligent transportation systems, fast and robust license plate localization (LPL) in complex scenes is still a challenging task. Real-world scenes introduce complexities such as variation in license plate size and orientation, uneven illumination, background clutter, and nonplate objects. These complexities lead to poor performance using traditional LPL features, such as color, edge, and texture. Recently, state-of-the-art performance in LPL has been achieved by applying the scale invariant feature transform (SIFT) descriptor to LPL for visual matching. However, for applications that require fast processing, such as mobile phones, SIFT does not meet the efficiency requirement due to its relatively slow computational speed. To address this problem, a new approach for LPL, which uses the oriented FAST and rotated BRIEF (ORB) feature detector, is proposed. The feature extraction in ORB is much more efficient than in SIFT and is invariant to scale and grayscale as well as rotation changes, and hence is able to provide superior performance for LPL. The potential regions of a license plate are detected by considering spatial and color information simultaneously, which is different from previous approaches. The experimental results on a challenging dataset demonstrate the effectiveness and efficiency of the proposed method.
Human upright posture control models based on multisensory inputs; in fast and slow dynamics.
Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun; Yozu, Arito; Haga, Nobuhiko
2016-03-01
Posture control to maintain an upright stance is one of the most important and basic requirements in the daily life of humans. The sensory inputs involved in posture control include visual and vestibular inputs, as well as proprioceptive and tactile somatosensory inputs. These multisensory inputs are integrated to represent the body state (body schema); this is then utilized in the brain to generate the motion. Changes in the multisensory inputs result in postural alterations (fast dynamics), as well as long-term alterations in multisensory integration and posture control itself (slow dynamics). In this review, we discuss the fast and slow dynamics, with a focus on multisensory integration including an introduction of our study to investigate "internal force control" with multisensory integration-evoked posture alteration. We found that the study of the slow dynamics is lagging compared to that of fast dynamics, such that our understanding of long-term alterations is insufficient to reveal the underlying mechanisms and to propose suitable models. Additional studies investigating slow dynamics are required to expand our knowledge of this area, which would support the physical training and rehabilitation of elderly and impaired persons. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei
2017-06-01
In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.
Stamatakis, Alexandros P; Ludwig, Thomas; Meier, Harald; Wolf, Marty J
2002-01-01
Heuristics for the NP-complete problem of calculating the optimal phylogenetic tree for a set of aligned rRNA sequences based on the maximum likelihood method are computationally expensive. In most existing algorithms the tree evaluation and branch length optimization functions, calculating the likelihood value for each tree topology examined in the search space, account for the greatest part of overall computation time. This paper introduces AxML, a program derived from fastDNAml, incorporating a fast topology evaluation function. The algorithmic optimizations introduced, represent a general approach for accelerating this function and are applicable to both sequential and parallel phylogeny programs, irrespective of their search space strategy. Therefore, their integration into three existing phylogeny programs rendered encouraging results. Experimental results on conventional processor architectures show a global run time improvement of 35% up to 47% for the various test sets and program versions we used.
Zandi, Nadia; Afarideh, Hossein; Aboudzadeh, Mohammad Reza; Rajabifar, Saeed
2018-02-01
The aim of this work is to increase the magnitude of the fast neutron flux inside the flux trap where radionuclides are produced. For this purpose, three new designs of the flux trap are proposed and the obtained fast and thermal neutron fluxes compared with each other. The first and second proposed designs were a sealed cube contained air and D 2 O, respectively. The results of calculated production yield all indicated the superiority of the latter by a factor of 55% in comparison to the first proposed design. The third proposed design was based on changing the surrounding of the sealed cube by locating two fuel plates near that. In this case, the production yield increased up to 70%. Copyright © 2017. Published by Elsevier Ltd.
Li, Mian-Shiuan; Chen, Mei-Juan; Tai, Kuang-Han; Sue, Kuen-Liang
2013-12-01
This article proposes a fast mode decision algorithm based on the correlation of the just-noticeable-difference (JND) and the rate distortion cost (RD cost) to reduce the computational complexity of H.264/AVC. First, the relationship between the average RD cost and the number of JND pixels is established by Gaussian distributions. Thus, the RD cost of the Inter 16 × 16 mode is compared with the predicted thresholds from these models for fast mode selection. In addition, we use the image content, the residual data, and JND visual model for horizontal/vertical detection, and then utilize the result to predict the partition in a macroblock. From the experimental results, a greater time saving can be achieved while the proposed algorithm also maintains performance and quality effectively.
Mechling, Linda C.; Pridgen, Leslie S.; Cronin, Beth A.
2005-01-01
Computer-based video instruction (CBVI) was used to teach verbal responses to questions presented by cashiers and purchasing skills in fast food restaurants. A multiple probe design across participants was used to evaluate the effectiveness of CBVI. Instruction occurred through simulations of three fast food restaurants on the computer using video…
Xu, Daguang; Huang, Yong; Kang, Jin U
2014-06-16
We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).
DEFF Research Database (Denmark)
Xue, Weiqi; Chen, Yaohui; Öhman, Filip
2009-01-01
We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...
The fast piezo-based frequency tuner for sc CH-cavities
Energy Technology Data Exchange (ETDEWEB)
Amberg, Michael [Helmholtz-Institut Mainz (HIM), Mainz (Germany); IAP University of Frankfurt, Frankfurt am Main (Germany); Aulenbacher, Kurt; Barth, Winfried [Helmholtz-Institut Mainz (HIM), Mainz (Germany); Busch, Marco; Dziuba, Florian; Podlech, Holger; Ratzinger, Ulrich [IAP University of Frankfurt, Frankfurt am Main (Germany)
2014-07-01
Superconducting (sc) structures have to fulfill strict mechanical requirements to assure a stable operation of a cavity. Even small mechanical disturbances caused by effects like microphonic noise, pressure fluctuations of the liquid helium bath or Lorentz force detuning can change the resonance frequency of the cavity in the range of several hundred kHz. To control the slow and fast frequency variations during operation a compact frequency tuner prototype equipped with a stepper motor and a piezo actuator has been developed at the Institute for Applied Physics (IAP) of Frankfurt University. The tuner design and the results of first mechanical tests at room temperature of the first prototype are presented.
Fast method of NMR imaging based on trains of spin echoes
International Nuclear Information System (INIS)
Hennel, F.
1993-01-01
A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs
Efficient and Fast Implementation of Embedded Time-of-Flight Ranging System Based on FPGAs
DEFF Research Database (Denmark)
Zhou, Weiguo; Lyu, Congyi; Jiang, Xin
2017-01-01
Time-of-flight cameras perceive depth information about the surrounding environment with an amplitude-modulated near-infrared light source. The distance between the sensor and objects is calculated through measuring the time the light needs to travel. To be used in fast and embedded applications...... results shown that the platform can acquire ranging images at the maximum frame rate of 131fps with a fine measurement precision (appropriately 5.1mm range error at 1.2m distance with the proper integration time). Low resource utilization and power consumption of the proposed system make it very suitable...... for embedded applications....
Study of 3D visualization of fast active reflector based on openGL and EPICS
International Nuclear Information System (INIS)
Luo Mingcheng; Wu Wenqing; Liu Jiajing; Tang Pengyi; Wang Jian
2014-01-01
Active Reflector is the one of the innovations of Five hundred meter Aperture Spherical Telescope (FAST). Its performance will influence the performance of whole telescope and for display all status of ARS in real time, the EPICS (Experimental Physics and Industrial Control System) is used to develop the control system of ARS and virtual 3D technology-OpenGL is used to visualize the status. For the real-time performance of EPICS, the status visualization is also display in real time for users to improve the efficiency of telescope observing. (authors)
Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station
Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos; Guerrero, Josep M.
2014-01-01
Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs have power ratings of up to 100 kW, they may expose the utility mains to intolerable stresses in the near future scenario where there will be a large number of public FCS spread across the network. Thi...
Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction
Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg
2018-03-01
Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .
Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained
Gourrier, S.; Mircea, A.; Simondet, F.
1980-01-01
The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.
Grinter, Roger; Jones, Garth A
2018-02-01
The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.
Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board
International Nuclear Information System (INIS)
Chiu, K.-C.; Chen, C.-S.
2007-01-01
A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper
Directory of Open Access Journals (Sweden)
Abdul Salam Soomro
2011-04-01
Full Text Available The innovation of this research is the development of new model called fast moving landslide risk analysis model by modifying one of the previous prominent landslide risk algorithms focusing on the fast moving type of the landslides (such as mudslides, mud flows, block slide, rock fall and topple based on the qualitative approach using Heuristic method in GIS (Geographical Information Systems. The different event controlling parameters and criteria were used for fast moving landslide predictive risk model. The pair wise comparison method was used in which the parameters of landslide hazard and vulnerability were compared by their assigned weights. The drawback of the used approach was justified by the standard value of consistency ratio, which proved the assigned weight of the parameters as reasonable and consistent. The model was validated by using the occurred landslides inventory data and correlation coefficient test, which showed the positive relationship between the landslide risk predicted regions and the occurred landslides locations. The various landslide events occurred on 8th October, 2005 were accumulated as landslide inventory by the interpretation of satellite imagery. The validation of the model was justified by using one of the statistical two paired, \\"t\\" test, and the amount of the predicted risk in the different regions. It is believed that this modified model will prove beneficial to the decision makers in future.
Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker
Directory of Open Access Journals (Sweden)
Jakubek J.
2012-10-01
Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.