WorldWideScience

Sample records for based enhanced oil

  1. Enhanced oil recovery projects data base

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  2. Enhanced dielectric breakdown performance of anatase and rutile titania based nano-oils

    OpenAIRE

    Katiyar, Ajay; Dhar, Purbarun; Maganti, Lakshmi Sirisha; Das, Sarit K.

    2015-01-01

    Nano oils synthesized by dispersing dielectric nanostructures counter common intuition as such nano oils possess substantially higher positive dielectric breakdown voltage with reduced streamer velocities than the base oils. Nano oils comprising stable and dilute homogeneous dispersions of two forms of titanium (IV) oxide (TiO2) nanoparticles (Anatase and Rutile) have been experimentally examined and observed to exhibit highly enhanced dielectric breakdown strength compared to conventional tr...

  3. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  4. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  5. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  6. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems

    Science.gov (United States)

    Hendraningrat, Luky; Torsæter, Ole

    2015-02-01

    This paper presents systematic studies of hydrophilic metal oxide nanoparticles (NPs) dispersed in brine intended to reveal their potential to enhance oil recovery (EOR) in various rock wettability systems. The stability in suspension (nanofluid) of the NPs has been identified as a key factor related to their use as an EOR agent. Experimental techniques have been developed for nanofluid stability using three coupled methods: direct visual observation, surface conductivity and particle size measurements. The use of a dispersant has been investigated and has been shown to successfully improve metal oxide nanofluid stability as a function of its concentration. The dispersant alters the nanofluid properties, i.e. surface conductivity, pH and particle size distribution. A two-phase coreflood experiment was conducted by injecting the stable nanofluids as a tertiary process (nano-EOR) through core plugs with various wettabilities ranging from water-wet to oil-wet. The combination of metal oxide nanofluid and dispersant improved the oil recovery to a greater extent than either silica-based nanofluid or dispersant alone in all wettability systems. The contact angle, interfacial tension (IFT) and effluent were also measured. It was observed that metal oxide-based nanofluids altered the quartz plates to become more water-wet, and the results are consistent with those of the coreflood experiment. The particle adsorption during the transport process was identified from effluent analysis. The presence of NPs and dispersant reduced the IFT, but its reduction is sufficient to yield significant additional oil recovery. Hence, wettability alteration plays a dominant role in the oil displacement mechanism using nano-EOR.

  7. MEOR (microbial enhanced oil recovery) data base and evaluation of reservoir characteristics for MEOR projects

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1989-09-01

    One aspect of NIPER's microbial enhanced oil recovery (MEOR) research program has been focused on obtaining all available information regarding the use of microorganisms in enhanced oil recovery field projects. The data have been evaluated in order to construct a data base of MEOR field projects. The data base has been used in this report to present a list of revised reservoir screening criteria for MEOR field processes. This list is by no means complete; however, until more information is available from ongoing field tests, it represents the best available data to date. The data base has been studied in this report in order to determine any significant reports from MEOR field projects where the microbial treatment was unsuccessful. Such information could indicate limitations of MEOR processes. The types of reservoir information sought from these projects that could be limitations of microorganisms include reservoir permeability, salinity, temperature, and high concentrations of minerals in the rock such as selenium, arsenic, or mercury. Unfortunately, most of the MEOR field projects to date have not reported this type of information; thus we still cannot assess field limitations until more projects report these data. 7 refs., 1 fig., 7 tabs.

  8. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  9. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  10. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  11. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  12. Novel approaches to microbial enhancement of oil recovery.

    Science.gov (United States)

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  14. Oil based mud discharges

    International Nuclear Information System (INIS)

    Tiesma, R.

    1996-01-01

    The intensive use of oil based muds by the offshore oil and gas industry during the 1980s has caused considerable contamination around drilling sites. A recent investigation on the Norwegian continental shelf indicates that the situation is much worse than previously thought. This material suggests that oil pollution of this kind could be damaging the North Sea's endangered fish stocks, including cod, haddock and plaice. The amount of oil discharged in the UK sector is many times higher than in the other sectors, suggesting that the problem there may be even more serious. The amount discharged in the Dutch and Norwegian sectors are comparable. (author)

  15. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  16. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    Science.gov (United States)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  17. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... behavior inside the reservoir can be manipulated by the injection of surfactants and co-surfactants, creating advantageous conditions in order to mobilize trapped oil. Correctly designed surfactant systems together with the crude oil can create microemulsions at the interface between crude oil and water......, thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...

  18. Nanostructured systems for enhanced oil recovery

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  19. Oil-based paint poisoning

    Science.gov (United States)

    Paint - oil-based - poisoning ... Hydrocarbons are the primary poisonous ingredient in oil paints. Some oil paints have heavy metals such as lead, mercury, cobalt, and barium added as pigment. These heavy metals can cause additional ...

  20. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    In this project, a generic model has been set up to include the two main mechanisms in the microbial enhanced oil recovery (MEOR) process; reduction of the interfacial tension (IFT) due to surfactant production, and microscopic fluid diversion as a part of the overall fluid diversion mechanism due...... is reduced. Therefore, the transfer part of the surfactant to oil phase is equivalent to its “disappearance”. The oil phase captures the surfactant, but it may as well be adsorbed to the pore walls in the oil phase. We have looked into three methods how to translate the IFT reduction into changes......, the curve levels off. Partitioning of surfactant between the oil and water phase is a novel effect in the context of microbial enhanced oil recovery. The partitioning coefficient determines the time lag before the surfactant effect can be seen. The surfactant partitioning does not change final recovery...

  1. Market enhancement of shale oil: The native products extraction technology

    Energy Technology Data Exchange (ETDEWEB)

    Bunger, J.W. (Bunger (James W.) and Associates, Inc., Salt Lake City, UT (United States)); DuBow, J.B. (Utah Univ., Salt Lake City, UT (United States))

    1991-10-01

    The overall objective of this work was to assess the feasibility of enhancing shale oil commercialization through SO/NPX technology. Specific objectives were: (1) To determine the properties and characteristics of fractions isolable from shale oil utilizing separation sequences which are based on thermodynamic considerations; (2) To identify product streams of market value for promising technology development; (3)To conduct technology development studies leading to a shale oil extraction and processing sequence which promises economic enhancement of shale oil commercialization; (4) To develop an analytical methodology and model for obtaining engineering design data required for process development; (5) To estimate the economics of SO/NPX including the potential for enhancing the profitability of a commercial-scale shale oil MIS retort.

  2. Viability of Biopolymers for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Sveistrup, Marte; van Mastrigt, Frank; Norrman, Jens; Picchioni, Francesco; Paso, Kristofer

    2016-01-01

    Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate

  3. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  4. KEROGEN OIL VALUE ENHANCEMENT RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger, Ph.D.; Christopher P. Russell, Ph.D.; Donald E. Cogswell, M.S.

    2002-05-22

    Three general categories of products from the Estonia Kukersite kerogen oil were defined: pure compounds, broad range concentrates, and sweet refinery feedstock. Product development and market research center on these three categories. Further attempts were made to identify and test chemical approaches for producing lower alkyl resorcinols (what the market requires) from higher alkyl resorcinols. The approaches and process conditions tested have not yet produced satisfactory results. Progress was made to interest industry in the phenolic products producible. A sample of oil from the Galoter retort was received from Estonia and characterization of this sample was initiated. The sample was batch extracted and results of yields and selectivity are reported.

  5. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...... to the irreversible adsorption. The adsorption capacity of carbonate material was found to be much higher compared to sandstone. Various methods (forexample, change of ionic strength and pH of the enzyme solution and displacing fluid) were applied in order to desorb attached protein molecules, but no desorption...

  6. Seismic stimulation for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

    2008-07-22

    The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

  7. Study of the enhanced oil recovery with surfactant based systems; Estudo de recuperacao avancada de petroleo por sistemas a base de tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Neto, Valdir Cotrim; Paulino, Luisa Cimatti; Acyoly, Alessandra; Santos, Enio Rafael M.; Dantas Neto, Afonso Avelino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, it must be used enhanced recovery methods. One of these technologies is the injection of surfactant solutions, where exists a chemical interaction between the injected fluid and the reservoir's fluid. With this in mind, this work was developed with two main objectives: to study of parameters that influence the surfactant behavior in solution, namely the critical micelle concentration (CMC), the surface and interface tensions between fluids and the evaluation of oil recovery with these solutions. After the Botucatu sandstone (Brazil) porosity study, the plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The solutions were studied in enhanced recovery step, when the plug samples could already be compared to a mature field. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater. (author)

  8. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  9. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability.

    Science.gov (United States)

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

  10. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  11. Tax incentives and enhanced oil recovery techniques

    International Nuclear Information System (INIS)

    Stathis, J.S.

    1991-05-01

    Tax expenditures-reductions in income tax liability resulting from a special tax provision-are often used to achieve economic and social objectives. The arguments for petroleum production tax incentives usually encompass some combination of enhancing energy security, rewarding risk, or generating additional investment in new technologies. Generally, however, some portion of any tax expenditure is spend on activities that would have occurred anyway. This paper is a review of tax incentives for petroleum production found two to be of questionable merit. Others, including tax preferences for enhanced oil recovery methods, which offered the potential for better returns on the tax dollar. Increased use of enhanced oil recovery techniques could lead to additional environmental costs, however, and these need to be factored into any cost-benefit calculation

  12. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  13. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.

    Science.gov (United States)

    Awang, Mariyamni; Seng, Goh Meng

    2008-01-01

    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.

  14. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  15. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  16. Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory

    Directory of Open Access Journals (Sweden)

    Mikhail Turbakov

    2015-10-01

    Full Text Available Most of the current Russian oil production comes from mature fields. The application of enhanced oil recovery methods on oil fields increases recovery efficiency. This article presents an analysis of the increased field development efficiency methods of the Volga-Ural oil and gas region, which allows the full and efficient development of last-stage fields with unconventional reserves and production stabilization. The selection of the optimum method for a given field is a complex procedure consisting of many stages, from collecting data about the field, through more advanced data interpretation, to working out a detailed proposal for the most efficient extraction method. In this article the instantaneous and average annual growth above wells average was taken as a performance criterion for enhanced oil recovery methods. Based on the performed analysis, it follows that candidate wells for enhanced oil recovery method use must meet the I group parameters (high values of the remaining recoverable reserves and improved reservoir properties, low water cut, obtained oil rate increase. In order to assess the possible increase in production rate after enhanced oil recovery methods hydrodynamic modeling of radial drilling, acid treatment and water-alternated-gas injection for two oil fields of the Volga-Ural oil and gas region were performed.

  17. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  18. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-01-01

    Full Text Available The application of enhanced oil recovery (EOR in offshore oil fields has received significant attention due to the potentially enormous amount of recoverable oil. However, EOR application offshore is in its very early stage due to conditions that are more complex than onshore oil fields, owing to the unique parameters present offshore. Therefore, successful EOR applications in offshore oil fields require different screening criteria than those for conventional onshore applications. A comprehensive database for onshore applications of EOR processes together with a limited offshore EOR application database are analyzed in this paper, and the important parameters for successful offshore application are incorporated into the new EOR screening criteria. In this paper, screening criteria to determine acceptable EOR processes for offshore fields, including hydrocarbon gas miscible, CO2 miscible, and polymer processes, are presented. Suggested screening criteria for these EOR processes comprise quantitative boundaries and qualitative considerations. Quantitative screening criteria are predominantly based on quantifiable data, such as oil and reservoir properties. Qualitative screening considerations mainly focus on the operational issues present offshore, including platform space constraints, limited disposal options, injectant availability, and flow assurance matters (including hydrate formation and difficulties in emulsion separation.

  19. Environmental regulations handbook for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  20. Environmental regulations handbook for enhanced oil recovery

    International Nuclear Information System (INIS)

    Madden, M.P.; Blatchford, R.P.; Spears, R.B.

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them

  1. Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-01-01

    Full Text Available Application of chemical flooding in petroleum reservoirs turns into hot topic of the recent researches. Development strategies of the aforementioned technique are more robust and precise when we consider both economical points of view (net present value, NPV and technical points of view (recovery factor, RF. In current study many attempts have been made to propose predictive model for estimation of efficiency of chemical flooding in oil reservoirs. To gain this end, a couple of swarm intelligence and artificial neural network (ANN is employed. Also, lucrative and high precise chemical flooding data banks reported in previous attentions are utilized to test and validate proposed intelligent model. According to the mean square error (MSE, correlation coefficient, and average absolute relative deviation, the suggested swarm approach has acceptable reliability, integrity and robustness. Thus, the proposed intelligent model can be considered as an alternative model to predict the efficiency of chemical flooding in oil reservoir when the required experimental data are not available or accessible.

  2. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  3. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Science.gov (United States)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  4. Immiscible foam for enhancing oil recovery

    NARCIS (Netherlands)

    Simjoo, M.

    2012-01-01

    Growing worldwide oil demand increased the need of new and efficient oil recovery methods. Gas injection in oil reservoirs is deemed one of the most widely used methods to increase oil recovery. However, the full potential of gas injection is often not realized due to poor vertical and areal sweep

  5. Mannich base oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Horodysky, A.G.; Gemmill, R.M.

    1988-11-29

    This patent describes a method for reducing the coefficient of friction of a liquid lubricating oil which comprises adding to such an oil a coefficient of friction-reducing amount of the product resulting from reacting an aldehyde; at least one amine selected from the group consisting of primary amines containing from 8 to 18 carbon atoms and polyalkylenopolyamines of the formula NHX(R/sup 4/NH)/sub n/R/sup 2/ wherein R/sup 2/ and X are selected from the group consisting of hydrogen, a hydrocarbyl group and a hydroxyhydrocarbyl group, either containing 6 to 18 carbon atoms, R/sup 4/ is an alkylene group containing 1 to 5 carbon atoms and n is 1 to 10; and, at least one alkyl-substituted phenol wherein the alkyl is branched, contains from 16 to 40 carbon atoms and is derived from a 1-olefin oligomer containing from 8 to 12 carbon atoms, the reaction being carried out from about 60/sup 0/C to about 130/sup 0/C using the reactants in a respective molar ratio of about 1.0-2.0:1.0-2.0:1.0.

  6. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  7. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Andrew Lowe

    2005-10-15

    Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

  8. Enzymes for Enhanced Oil Recovery (EOR)

    OpenAIRE

    Nasiri, Hamidreza

    2011-01-01

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR me...

  9. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    Purpose: To prepare transdermal films of ketorolac tromethamine (KT) and study the effect of turpentine oil as a penetration enhancer for the drug. Methods: Transdermal films of KT were prepared with Carbopol-934 and ethyl cellulose, with turpentine oil as the penetration enhancer, using solvent evaporation method.

  10. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  11. Viscous fingering and channeling in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  12. Solar technology application to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

    1979-12-01

    One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

  13. Coloured oil droplets enhance colour discrimination.

    OpenAIRE

    Vorobyev, Misha

    2003-01-01

    The eyes of most diurnal reptiles and birds contain coloured retinal filters-oil droplets. Although these filters are widespread, their adaptive advantage remains uncertain. To understand why coloured oil droplets appeared and were retained during evolution, I consider both the benefits and the costs of light filtering in the retina. Oil droplets decrease cone quantum catch and reduce the overlap in sensitivity between spectrally adjacent cones. The reduction of spectral overlap increases the...

  14. Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Kamal

    2017-01-01

    Full Text Available Chemically enhanced oil recovery methods are utilized to increase the oil recovery by improving the mobility ratio, altering the wettability, and/or lowering the interfacial tension between water and oil. Surfactants and polymers have been used for this purpose for the last few decades. Recently, nanoparticles have attracted the attention due to their unique properties. A large number of nanoparticles have been investigated for enhanced oil recovery applications either alone or in combination with surfactants and/or polymers. This review discusses the various types of nanoparticles that have been utilized in enhanced oil recovery. The review highlights the impact of nanoparticles on wettability alteration, interfacial tension, and rheology. The review also covers the factors affecting the oil recovery using nanoparticles and current challenges in field implementation.

  15. Enhanced oil recovery by CO{sub 2} injection

    Energy Technology Data Exchange (ETDEWEB)

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  16. Microbial enhanced oil recovery research. Final report, Annex 5

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  17. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...

  18. Enhancement of Crude Oil Polluted Soil by Applying Single and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study aimed at enhancing the remediationof crude oil polluted soil of the Niger Delta using cow dung and hydrogen peroxide in either single or combined forms. 5 kg of soil each was polluted with 200 ml of crude oil representing 4% w/v. Five amendment treatments labelledA- E were done in order of A ...

  19. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Full Text Available Background: Previously, we (HM found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO., or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1. Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of health oriented diet. Oxidized oils may eventually cause DNA cleavages, modification of proteins, RNA, and lipids, as well as cellular damage, or promote inflammation and carcinogenesis at later time [5-9]. These commercial oils of low antioxidant activity may be improved by adding functionally effective antioxidative components, by using dried vegetable-waste such as tomato-juice-waste-residues and wine-ferment-waste-residues. Their antioxiative components will be transferred into the functionally poor grade edible oils, and consequently, one can improve the quality of such functionally poor oils and thereby contributing human health [2,8,9]. The purpose of this paper is to report a practical procedure to fortify functionally low grade conventional edible oils to functionally enriched edible oils using dried vegetable-waste residues such as tomato juice waste, and wine-ferment-residues, or other vegetable-waste residues. Methods: (1 Preparation and measurements of lycopene and carotenoid enriched oils. To 5.0g or 1.0g of the dried residue of tomato juice waste, 100ml of commercial rape seed (canola oil was added respectively. Each mixture was incubated at room temperature in dark for several weeks. Amount of lycopene and carotenoids extracted into the oil was monitored by increase of absorption (400-550nm and fluorescence at 470nm of carotenoid. Grape-juice ferment (wine waste was similarly prepared after hot air drying, and immersed in canola oil. (2

  20. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  1. TOGA: A TOUGH code for modeling three-phase, multi-component, and non-isothermal processes involved in CO2-based Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2016-10-10

    TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO2, multicomponent oil, and related gas components for applications including CO2-enhanced oil recovery (CO2-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas + oil + aqueous) and the partitioning of non-aqueous components (e.g., CO2, CH4, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H2O) component between the gas and oil phases. All components (e.g., CO2, H2O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and

  2. Carbon-based tribofilms from lubricating oils.

    Science.gov (United States)

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-08-04

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.

  3. Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

    1979-12-01

    Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

  4. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    Science.gov (United States)

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  5. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  6. New technologies of enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Paweł Wojnarowski

    2006-10-01

    Full Text Available It is known from the literature that up to 27 % of oil in oilfields can be produced using primary and hydration methods. The efficiency of production can be increased by employing more advanced methods, i.e. EOR. The Polish Oil and Gas Company iwork with Polish oilfields, where currently primary methods are applied, but the Polish experiences with EOR date back to the years 1932-1987. In view of high oil prices, reconsidering EOR as a production method is economically justifiable. Therefore, it is purposeful to implement new pilot technologies, aimed at implementing new technologies, understanding accompanying phenomena, and calibrating of simulation models, including economical models for an optimal control of the oilfield exploitation. World’s new exploitation methods worked out in the last few years and suggestions for their implementation in Polish conditions are presented in the paper

  7. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander

    2010-01-01

    Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is requir...

  8. Carbon dioxide enhanced oil recovery performance according to the literature

    Science.gov (United States)

    Olea, Ricardo A.

    2017-07-17

    IntroductionThe need to increase the efficiency of oil recovery and environmental concerns are bringing to prominence the use of carbon dioxide (CO2) as a tertiary recovery agent. Assessment of the impact of flooding with CO2 all eligible reservoirs in the United States not yet undergoing enhanced oil recovery (EOR) requires making the best possible use of the experience gained in 40 years of applications. Review of the publicly available literature has located relevant CO2-EOR information for 53 units (fields, reservoirs, pilot areas) in the United States and 17 abroad.As the world simultaneously faces an increasing concentration of CO2 in the atmosphere and a higher demand for fossil fuels, the CO2-EOR process continues to gain popularity for its efficiency as a tertiary recovery agent and for the potential for having some CO2 trapped in the subsurface as an unintended consequence of the enhanced production (Advanced Resources International and Melzer Consulting, 2009). More extensive application of CO2-EOR worldwide, however, is not making it significantly easier to predict the exact outcome of the CO2 flooding in new reservoirs. The standard approach to examine and manage risks is to analyze the intended target by conducting laboratory work, running simulation models, and, finally, gaining field experience with a pilot test. This approach, though, is not always possible. For example, assessment of the potential of CO2-EOR at the national level in a vast country such as the United States requires making forecasts based on information already available.Although many studies are proprietary, the published literature has provided reviews of CO2-EOR projects. Yet, there is always interest in updating reports and analyzing the information under new perspectives. Brock and Bryan (1989) described results obtained during the earlier days of CO2-EOR from 1972 to 1987. Most of the recovery predictions, however, were based on intended injections of 30 percent the size of

  9. How Specific Microbial Communities Benefit the Oil Industry: Microbial-Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Rudyk, Svetlana; Søgaard, Erik

    Microbial-enhanced oil recovery (MEOR) involves injecting into the oil-saturated layer microbes and/nutrients to create the in situ production of metabolic products or nutrients to stimulate indigenous microbes. The purposes of MEOR are to increase oil production, decrease the water cut and prolong the productive life of the oilfield. The most probable targets of MEOR are reservoirs that have reached the limits of oil production by injection of water to displace oil (Donaldson and Obeida, 1991). MEOR is the cheapest approach of oil recovery after water flooding. MEOR investigations have been conducted all over the world and resulted in many successful field applications in the USA, UK, China, Russia, Malaysia, Germany, Romania, Poland and others.

  10. Enhancing blood donor skin disinfection using natural oils.

    Science.gov (United States)

    Alabdullatif, Meshari; Boujezza, Imen; Mekni, Mohamed; Taha, Mariam; Kumaran, Dilini; Yi, Qi-Long; Landoulsi, Ahmed; Ramirez-Arcos, Sandra

    2017-12-01

    Effective donor skin disinfection is essential in preventing bacterial contamination of blood components with skin flora bacteria like Staphylococcus epidermidis. Cell aggregates of S. epidermidis (biofilms) are found on the skin and are resistant to the commonly used donor skin disinfectants chlorhexidine-gluconate and isopropyl alcohol. It has been demonstrated that essential oils synergistically enhance the antibacterial activity of chlorhexidine-gluconate. The objective of this study was to test plant-extracted essential oils in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol for their ability to eliminate S. epidermidis biofilms. The composition of oils extracted from Artemisia herba-alba, Lavandula multifida, Origanum marjoram, Rosmarinus officinalis, and Thymus capitatus was analyzed using gas chromatography-mass spectrometry. A rabbit model was used to assess skin irritation caused by the oils. In addition, the anti-biofilm activity of the oils used alone or in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol was tested against S. epidermidis biofilms. Essential oil concentrations 10%, 20%, and 30% were chosen for anti-biofilm assays, because skin irritation was observed at concentrations greater than 30%. All oils except for O. marjoram had anti-biofilm activity at these three concentrations. L. multifida synergistically enhanced the anti-biofilm activity of chlorhexidine-gluconate and resulted in the highest anti-biofilm activity observed when combined with chlorhexidine-gluconate plus isopropyl alcohol. Gas chromatography-mass spectrometry revealed that the main component contributing to the activity of L. multifida oil was a natural terpene alcohol called linalool. The anti-biofilm activity of chlorhexidine-gluconate plus isopropyl alcohol can be greatly enhanced by L. multifida oil or linalool. Therefore, these components could potentially be used to improve blood

  11. Catalytic Hydroisomerization Upgrading of Vegetable Oil-Based Insulating Oil

    Directory of Open Access Journals (Sweden)

    Dieu-Phuong Phan

    2018-03-01

    Full Text Available Due to its high biodegradability, high dielectric strength, and good thermal stability, vegetable oil is under consideration as an alternative transformer fluid for power system equipment, replacing traditional petroleum-based insulating oils. Its main drawbacks are its poor low-temperature properties arising from the crystallization of its long-chain normal paraffins, and its lower oxidative stability arising from its higher concentration of unsaturated fatty acids. Hydroisomerization/isomerization over bifunctional catalysts is considered to be an efficient pathway to upgrade vegetable oil-based insulating oil; this converts saturated/unsaturated long-chain fatty acids to branched isomers. The efficiency of this process depends crucially on the behavior of the catalyst system. This paper extensively reviews recent results on the influence that the metal phase and acidity, the effects of pore channels, and the balance between metal and acid sites have upon the activity and selectivity of catalytic hydroisomerization.

  12. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  13. CO2 flooding strategy to enhance heavy oil recovery

    Directory of Open Access Journals (Sweden)

    Tuo Huang

    2017-03-01

    For the numerical simulations study, the same oil relative permeability curve was applied to match the experimental results to all tests. Different gas relative permeability curves were obtained when the production pressure schemes are different. A much lower gas relative permeability curve and a higher critical gas saturation were achieved in the best pressure control scheme case compared to other cases. The lower gas relative permeability curve indicates that foamy oil was formed in the pressure depletion processes. Through this study, it is suggested that the pressure control scheme can be optimized in order to maximize the CO2 injection performance for enhanced heavy oil recovery.

  14. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  15. A study of energy consumption in turning process using lubrication of nanoparticles enhanced coconut oil (NECO)

    Science.gov (United States)

    Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.

    2017-10-01

    Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.

  16. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  17. The Research of New Environment-Friendly Oil-based Drilling Fluid Base Oil

    Science.gov (United States)

    Sui, Dianjie; Sun, Yuxue; Zhao, Jingyuan; Zhao, Fulei; Zhu, Xiuyu; Xu, Jianjun

    2018-01-01

    In this paper, the heavy hydrocarbon of Daqing is used, and the desulfurization and de-aromatization experiments and refining process are carried out, A base oil suitable for oil-based drilling fluid was developed, and the performance of base oil was evaluated, we can know the aromatics content of oil base is low, less toxic, less pollution and it can meet the requirement of environmental protection.

  18. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  19. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  20. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  1. Microemulsion-based delivery of triamcinolone acetonide to posterior segment of eye using chitosan and butter oil as permeation enhancer: an in vitro and in vivo investigation.

    Science.gov (United States)

    Raval, Nidhi; Khunt, Dignesh; Misra, Manju

    2018-01-01

    The aim of the study was to formulate a microemulsion (ME) using chitosan (CH) and the butter oil (BO) as a permeation enhancer for targeting drug to the posterior segment of the eye, via topical route. Triamcinolone acetonide (TA) was selected as the model drug since it undergoes extensive first-pass metabolism, leading to poor oral bioavailability of 23%. For optimisation of BO concentration, different ratios of TA:BO were prepared by simple physical mixing in the ratio of 1:9 to 9:1 and diffusion study was performed. MEs containing TA, TA:BO and TA CH ME were formulated by water titration method. Globule sizes of TA ME, TA:BO ME and TA CH ME were found to be 66.06 ± 0.32 nm, 78.52 ± 1.50 nm and 97.30 ± 2.50 nm, respectively. In ex vivo diffusion studies using goats eye, TA:BO ME (31.33 ± 0.46 and 33.98 ± 0.23) and TA CH ME (24.10 ± 0.41 and 27.00 ± 0.18) showed higher percentage of drug diffusion in comparison to TA ME (13.29 ± 0.41and 15.56 ± 0.34) and TA solution (8.20 ± 1.04 and 10.39 ± 0.22) in presence and in absence of vitreous humour. Fluorescence intensity of coumarin-6 (as a marker) loaded ME with BO and CH was found to be higher, confirming their role in altering membrane permeability and facilitating coumarin-6 diffusion to the posterior chamber. Overall, it was concluded that BO enhances the bioavailability of TA across the retina, thereby proving its potential as permeation enhancer in facilitating drug delivery to the posterior segment of the eye.

  2. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  3. Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan

    2012-01-01

    Conventional recovery techniques enable recovery of 10-50% of the oil in an oil eld. Advances in smart well technology and enhanced oil recovery techniques enable signicant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate...

  4. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media.

    Science.gov (United States)

    Zhang, Hua; Ramakrishnan, T S; Nikolov, Alex; Wasan, Darsh

    2018-02-01

    Nanofluids for improved oil recovery has been demonstrated through laboratory corefloods. Despite numerous experimental studies, little is known about the efficacy of nanofluids in fractured systems. Here, we present studies of nanofluid injection in fractured porous media (both water-wet and oil-wet) formed by sintering borosilicate glass-beads around a dissolvable substrate. The fracture inside the porous medium is characterized and visualized using a high resolution X-ray microtomography. Based on a simple displacement theory, the nanofluid injection is conducted at a rate where structural disjoining pressure driven oil recovery is operational. An additional 23.8% oil was displaced using nanofluid after brine injection with an overall recovery efficiency of 90.4% provided the matrix was in its native wettability state. But only 6% additional oil was displaced by nanofluid following brine injection when the bead-pack was rendered oil-wet. Nanofluids appear to be a good candidate for enhanced oil recovery (EOR) in fractured water-wet to weakly water-wet media but not necessarily for strongly oil-wet systems. Our laboratory studies enable us to understand limitations of nanofluids for improving oil recovery in fractured media. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  6. High-order simulation of foam enhanced oil recovery

    NARCIS (Netherlands)

    Van der Meer, J.M.; Van Odyck, D.E.A.; Wirnsberger, P.; Jansen, J.D.

    2014-01-01

    If secondary hydrocarbon recovery methods fail because of the occurrence of gravity override or viscous fingering one can turn to an enhanced oil recovery method like the injection of foam. The generation of foam can be described by a set of partial differential equations with strongly nonlinear

  7. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  8. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  9. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  10. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review

    International Nuclear Information System (INIS)

    Banat, I.M.

    1995-01-01

    Surfactants are widely used for various purposes in industry, but for many years were mainly chemically synthesized. It has only been in the past few decades that biological surface-active compounds (biosurfactants) have been described. Biosurfactants are gaining prominence and have already taken over for a number of important industrial uses, due to their advantages of biodegradability, production on renewable resources and functionality under extreme conditions; particularly those pertaining during tertiary crude-oil recovery. Conflicting reports exist concerning their efficacy and the economics of both their production and application. The limited successes and applications for biosurfactants production, recovery, use in oil pollution control, oil storage tank clean-up and enhanced oil-recovery are reviewed from the technical point of view. (author)

  11. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  12. Magnetorheological fluid based on thixotropic PTFE-oil organogel

    Science.gov (United States)

    Zhang, Hansong; Yan, Hua; Hu, Zhide; Yang, Jianjian; Niu, Fanghao

    2018-04-01

    Polytetrafluoroethylene (PTFE) micropowders were employed in this work to fabricate PTFE-oil organogel, then carbonyl iron particles were dispersed in this thixotropic organogel to prepare magnetorheological fluids without any other additives. By performing a comparative investigation of MRFs' performances, enhanced magnetorheological response, suspension stability and tribological performance were obtained contrast to pure silicon oil based MRFs. The experimental results revealed a changeable viscosity of organogel, considerable increases in thixotropy also can be observed with the increase of PTFE content. Sedimentation tests demonstrated a much better suspension stability of MRFs based on organogel, suggesting that the internal network microstructures formed by hydrogen bonds between PTFE microparticles and oil molecular chains are likely to impose the gaps among magnetic particles thus hinder the particle aggregation and sedimentation. Moreover, a critical PTFE volume fraction about 4.7 vol% was recognized in this study, lower content organogels tended to display enhanced yield stresses contrast to pure silicon oil based MRFs while high content organogels showed slightly lower ones. It may suggest a compromise between nonmagnetic particle adsorption and the reinforcement effect of network microstructures. The adsorption is likely to decrease the saturation magnetization of carbonyl iron particles and to hinder the formation of field-induced chains, however, the reinforcement effect tends to strengthen these magnetic chains. Besides, the tribological tests confirmed the lubricant effects of PTFE-oil organogel by acquiring rather sharp decreases in friction coefficients of organogel based MRFs especially in the presence of magnetic field.

  13. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Essays on carbon policy and enhanced oil recovery

    Science.gov (United States)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  15. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  16. On the use of sodium lignosulphonate for enhanced oil recovery

    Science.gov (United States)

    Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.

    2017-05-01

    There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.

  17. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    Energy Technology Data Exchange (ETDEWEB)

    none

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  18. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  19. Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James; Smith, Steven; Kurz, Bethany; Hawthorne, Steven; Jin, Lu; Bosshart, Nicholas; Torres, Jose; Nyberg, Carolyn; Heebink, Loreal; Hurley, John

    2018-03-09

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand the nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO2 and oil mobility within tight oil formation samples, 2) the determination of CO2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples

  20. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  2. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  3. Application of nanotechnology for enhancing oil recovery – A review

    Directory of Open Access Journals (Sweden)

    Chegenizadeh Negin

    2016-12-01

    Full Text Available Nanotechnology has attracted a great attention in enhancing oil recovery (EOR due to the cost-effective and environmental friendly manner. The size of nanoparticles for EOR usually is in a range of 1–100 nm, which may slightly differ from various international organisations. Nanoparticles exhibit significantly different properties compared to the same fine or bulk molecules because of much higher concentration of atoms at their surface as a result of ultra-small size. In particular, one of the most useful and fascinating properties of these particles is to creating a massive diffusion driving force due to the large surface area, especially at high temperatures. Previous studies have shown that nanoparticles can enhance oil recovery by shifting reservoir wettability towards more water-wet and reducing interfacial tension, yet this area is still open for discussion. It is worth noting that the potential of nanoparticles to reduce the oil viscosity, increase the mobility ratio, and to alter the reservoir permeability has not been investigated to date. Depending on the operational conditions of the EOR process, some nanoparticles perform more effectively than others, thus leading to different levels of enhanced recovery. In this study, we aim to provide a summary on each of the popular and available nanoparticles in the market and list their optimum operational conditions. We classified nanoparticles into the three categories of metal oxide, organic and inorganic particles in this article.

  4. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  5. Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory

    OpenAIRE

    Turbakov, Mikhail; Shcherbakov, Аleksandr

    2015-01-01

    Most of the current Russian oil production comes from mature fields. The application of enhanced oil recovery methods on oil fields increases recovery efficiency. This article presents an analysis of the increased field development efficiency methods of the Volga-Ural oil and gas region, which allows the full and efficient development of last-stage fields with unconventional reserves and production stabilization. The selection of the optimum method for a given field is a complex procedure con...

  6. [Association between chemical composition of essential oil with penetration enhancement effect and drug properties of traditional Chinese medicine].

    Science.gov (United States)

    Jiang, Qiu-Dong; Yang, Wen-Guo; Cai, Hao; Ma, Min; Zhang, Hui; Liu, Pei; Chen, Jun; Duan, Jin-Ao

    2016-07-01

    The results of previous studies showed potential correlations between the penetration enhancement effect of essential oils and the drug properties of traditional Chinese medicine based on the data mining method. As chemical composition is the material basis of drug properties of traditional Chinese medicine, this article further analyzed the correlation between the chemical composition of essential oils and the drug properties. Firstly, essential oils were extracted by steam distillation, and then physicochemical parameters of essential oils, such as relative density and refractive index, were measured. The chemical components of 20 essential oils were analyzed by GC-MS, and divided into 12 categories according to skeleton features and functional groups. Finally, Logistic regression analysis was applied to reveal the correlations. The results proved that five flavors, four tastes and channel tropisms showed the correlation with chemical composition of essential oils (Pdrug properties of traditional Chinese medicine and the chemical composition of essential oils. Copyright© by the Chinese Pharmaceutical Association.

  7. Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments.

    Science.gov (United States)

    Liu, Peng; Li, Ying; Xu, Jin; Zhu, Xueyuan

    2017-10-14

    Oil spills generate a large cost in environmental and economic terms. Their identification plays an important role in oil-spill response. We propose an oil spill detection method with improved adaptive enhancement on X-band marine radar systems. The radar images used in this paper were acquired on 21 July 2010, from the teaching-training ship "YUKUN" of the Dalian Maritime University. According to the shape characteristic of co-channel interference, two convolutional filters are used to detect the location of the interference, followed by a mean filter to erase the interference. Small objects, such as bright speckles, are taken as a mask in the radar image and improved by the Fields-of-Experts model. The region marked by strong reflected signals from the sea's surface is selected to identify oil spills. The selected region is subject to improved adaptive enhancement designed based on features of radar images. With the proposed adaptive enhancement technique, calculated oil spill detection is comparable to visual interpretation in accuracy.

  8. Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2017-10-01

    Full Text Available Oil spills generate a large cost in environmental and economic terms. Their identification plays an important role in oil-spill response. We propose an oil spill detection method with improved adaptive enhancement on X-band marine radar systems. The radar images used in this paper were acquired on 21 July 2010, from the teaching-training ship “YUKUN” of the Dalian Maritime University. According to the shape characteristic of co-channel interference, two convolutional filters are used to detect the location of the interference, followed by a mean filter to erase the interference. Small objects, such as bright speckles, are taken as a mask in the radar image and improved by the Fields-of-Experts model. The region marked by strong reflected signals from the sea’s surface is selected to identify oil spills. The selected region is subject to improved adaptive enhancement designed based on features of radar images. With the proposed adaptive enhancement technique, calculated oil spill detection is comparable to visual interpretation in accuracy.

  9. Miscible gas enhanced oil recovery method using oil-brine compatible pre-formed foam

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.

    1988-08-16

    A method is described of enhancing recovery of petroleum from an oil bearing formation during injection of a non-condensible gas having at least partial miscibility in the oil which comprises at least periodically injecting a preformed foam composition formed of alpha olefin sulfonate (AOS) and brine or water, into the oil bearing formation, the pre-formed foam being a mixture of the gas, brine or water and an effective foam forming amount of an AOS, the AOS having from 8 to 24 carbon atoms, the number of carbon atoms being selected in accordance with the salt content of brine in the formation so that at higher salt concentrations the AOS has on average less than about 12 carbon atoms and at lower salt concentrations the AOS has on average at least about 12 carbon atoms.

  10. Enhanced Oil Recovery by Horizontal Waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scott Robinowitz; Dwight Dauben; June Schmeling

    2005-09-05

    -term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Another project is exploring biological systems. In particular, we are investigating the possibility of developing a photovoltaic cell, based on a catalyst (bacteriorhodopsin) which converts light to electrical ion flow across the cell membrane of a particular bacteria.

  11. Hydrophobically associated polymers for wettability alteration and enhanced oil recovery – Article review

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil and other petroleum products are crucial to the global economy today due to increasing energy demand approximately (∼1.5% per year and significant oil remaining after primary and secondary oil recovery (∼45–55% of original oil in place, OOIP, which accelerates the development of enhanced oil recovery (EOR technologies to maximize the recovered oil amount by non-conventional methods as polymer flooding. This review discusses enhanced oil recovery methods specially polymer flooding techniques and their effects on rock wettability alteration.

  12. Nanofluid enhancement of mineral oil and thermal properties instrument design

    Science.gov (United States)

    Wilborn, Eli

    There are two purposes of this research, to design and build a heat transfer cell that could accurately calculate heat transport coefficients of various fluids and to determine if the increased heat transfer capabilities of nanofluids can be applied to cooling transformers by using the heat transfer cell to measure the enhancement. The design and construction of a heat transfer cell that could accurately calculate heat transport coefficients of various fluids was successful. A heat transfer cell was built and tested on several fluids to confirm the accuracy of the design and the experiments. Three fluids were successfully tested overall for their thermal conductivity values, and one fluid was tested for its convection coefficients in the heat transfer cells. Values for the thermal conductivity and the convection coefficients were obtained during this experiment that agreed with commonly accepted values for the testing fluids. The average value for the thermal conductivities for mineral oil of the first design in the ¼" diameter cell is 0.15W/ m2c', and agrees well with the commonly accepted values of mineral oils. The value commonly accepted value of thermal conductivity for mineral oil is 0.14W/m2c' at 25°C, the first heat transfer cell yielded a thermal conductivity value of approximately 0.16W/m2 c' at roughly 25C. The heat transfer cell was also used to calculated convection coefficients of mineral oil, and values were obtained within the limits for natural convection according to Incropera, contributing more to the validity of the results from this heat transfer cell. A second heat transfer cell was designed to determine the thermal conductivities of more thermally sensitive fluids, offering a wider range of materials that can be tested. The second design places the thermocouples directly at their assumed position of the wire and the wall temperatures for calculation purposes, yielding more accurate results and can therefore more accurately calculate the

  13. Computer based training for oil spill management

    International Nuclear Information System (INIS)

    Goodman, R.

    1993-01-01

    Large oil spills are infrequent occurrences, which poses a particular problem for training oil spill response staff and for maintaining a high level of response readiness. Conventional training methods involve table-top simulations to develop tactical and strategic response skills and boom-deployment exercises to maintain operational readiness. Both forms of training are quite effective, but they are very time-consuming to organize, are expensive to conduct, and tend to become repetitious. To provide a variety of response experiences, a computer-based system of oil spill response training has been developed which can supplement a table-top training program. Using a graphic interface, a realistic and challenging computerized oil spill response simulation has been produced. Integral to the system is a program editing tool which allows the teacher to develop a custom training exercise for the area of interest to the student. 1 ref

  14. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Science.gov (United States)

    2010-04-01

    ... refine the crude oil produced from the project. The refinery is not used directly in the project and is... by primary or secondary methods are not qualified enhanced oil recovery costs. Except as provided in... used in connection with the recovery of oil by primary or secondary methods are not qualified enhanced...

  15. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  16. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  17. Environmental regulations handbook for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  18. Polymer Grafted Nanoparticle-based Oil Dispersants

    Science.gov (United States)

    Kim, Daehak; Krishnamoorti, Ramanan

    2015-03-01

    Particle-based oil dispersants mainly composed of inorganic nanoparticles such as silica nanoparticles are considered as environmentally friendly oil dispersants due to their biocompatibility and relatively low toxicity. The oil-water interfacial tension is reduced when nanoparticles segregate to the oil-water interface and this segregation is improved by grafting interfacially active polymer brushes. In this study, surfactant-like amphiphilic block copolymers were grafted from silica nanoparticles using an atom transfer radical polymerization (ATRP) method in order to increase their interfacial activity. We have studied the interfacial activity of such hybrid nanoparticles using pendant drop interfacial tension measurements, and their structure using small angle X-ray scattering. Amphiphilic copolymer grafted nanoparticles significantly reduced oil-water interfacial tension compared to the interfacial tension reduction induced by homopolymer grafted nanoparticles or the corresponding free ungrafted copolymer. Moreover, hard and stable oil-water emulsions were formed by applying the block copolymer grafted nanoparticles due to the formation of interparticle network structures, which were observed by cryo-scanning electron microscopy (SEM) and small angle neutron scattering (SANS)

  19. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  20. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  1. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  2. Enhancement of oleic acid in butter oil by high oleic fraction of moringa oleifera oil

    International Nuclear Information System (INIS)

    Nadeem, M.; Ullah, R.

    2016-01-01

    Oleic acid in butter oil (BO) was enhanced by a high oleic acid fraction (HOF) of Moringa oleifera oil (MOO). HOF was blended with BO at four different concentrations i.e. 5%, 10 percent, 15% and 20% (HOF-5, HOF-10, HOF-15 and HOF-20, respectively), compared with a control (BO). The oleic acid in HOF increased from 71.55 percent to 80.25%. DPPH free radical scavenging activity and total flavonoid content of HOF was 76.88% and 34.52 mg/100 g. Supplementation of butter oil with 20% HOF, decreased the cholesterol from 224 to 177 mg/100 g. Peroxide value of three months stored HOF-20 was 1.18 (meqO/sub 2/ kg) as compared to control, 3.15 (meqO/sub 2/kg). Induction period of HOF-20 was 4.07 h greater than control. These results evidenced that oleic acid in butter oil can be substantially increased by HOF of MOO. (author)

  3. Production, Characterization and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    Directory of Open Access Journals (Sweden)

    Sanket J. Joshi

    2016-11-01

    Full Text Available The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses or date molasses, as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33+0.57mN m-1 and 2.47+0.32mN m-1 respectively within 72h, at 40 C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67°+1.6° to 19.54°+0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor. The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial enhanced oil recovery processes.

  4. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  5. Muscle enhancement using intramuscular injections of oil in bodybuilding

    DEFF Research Database (Denmark)

    Schäfer, Ch. N.; Hvolris, Jørgen Jesper; Karlsmark, Tonny

    2012-01-01

    BACKGROUND: Self-administered intramuscular injection of site enhancement oil (SEO) is a cosmetic and performance-enhancing procedure used to reshape muscles in the bodybuilder subculture, but its consequences and complications are only sporadically described. Methods: A systematic search...... in MEDLINE and EMBASE databases during the spring of 2009 and 2010. Internet searches were performed, and bodybuilder pharmacopoeias were consulted to describe SEO use and the clinical complications known. Results: One review and seven case reports were identified. Eight case reports describe oleomas caused...... by repeated intramuscular injections of anabolic steroids. Conclusions: SEOs cause sclerosing lipogranulomatosis and its progression may lead to lifelong complications. Thorough radiologic evaluation is important to plan surgical revisions in active phases. Also antibiotics, steroids, and compression therapy...

  6. Development of karanja oil based offset printing ink in comparison with linseed oil.

    Science.gov (United States)

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  7. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    Science.gov (United States)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  8. Self-Nanoemulsifying Drug Delivery Systems Based on Melon Oil ...

    African Journals Online (AJOL)

    Method: Melon oil and cow fat were extracted by standard methods and used in the formulation of SNEDDS based on either melon oil alone, or its admixture with cow fat by utilizing varying ratios of oil(s), surfactants and co-surfactants, with or without carbosil, a glidant. The formulations were encapsulated in hard gelatin ...

  9. HFRR investigation of biobased and petroleum based oils

    Science.gov (United States)

    Biobased oils come in a wide range of chemical structures as do petroleum based oils. In addition, a distinct structural difference exists between these two broad categories of oils. Previous work has shown that, in spite of the structural differences, these two categories of oils display similar pr...

  10. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  11. Effect of base oil polarity on micro and nano friction behaviour of base oil +ZDDP solutions

    OpenAIRE

    Tomala, Agnieszka; Naveira Suarez, Aldara; Gebeshuber, Ilse-Christine; Pasaribu, Rihard

    2009-01-01

    Ball-on-disc tribo tests and atomic force microscopy (AFM) were used to analyze the effect of base oil polarity on the friction behaviour of steel-steel contacts lubricated with base oil + zinc dialkyldithiophosphate (ZDDP) solutions. Understanding the lubrication properties of the first chemisorbed layer of additives on work pieces yields important information for the optimization of lubrication in various solutions, in particular with regard to the type of additive and amount needed.To char...

  12. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).

    Science.gov (United States)

    Conlon, Lauren E; King, Ryan D; Moran, Nancy E; Erdman, John W

    2012-08-29

    Evidence suggests that monounsaturated and polyunsaturated fats facilitate greater absorption of carotenoids than saturated fats. However, the comparison of consuming a polyunsaturated fat source versus a saturated fat source on tomato carotenoid bioaccumulation has not been examined. The goal of this study was to determine the influence of coconut oil and safflower oil on tomato carotenoid tissue accumulation in Mongolian gerbils ( Meriones unguiculatus ) fed a 20% fat diet. Coconut oil feeding increased carotenoid concentrations among many compartments including total carotenoids in the serum (p = 0.0003), adrenal glandular phytoene (p = 0.04), hepatic phytofluene (p = 0.0001), testicular all-trans-lycopene (p = 0.01), and cis-lycopene (p = 0.006) in the prostate-seminal vesicle complex compared to safflower oil. Safflower oil-fed gerbils had greater splenic lycopene concentrations (p = 0.006) compared to coconut oil-fed gerbils. Coconut oil feeding increased serum cholesterol (p = 0.0001) and decreased hepatic cholesterol (p = 0.0003) compared to safflower oil. In summary, coconut oil enhanced tissue uptake of tomato carotenoids to a greater degree than safflower oil. These results may have been due to the large proportion of medium-chain fatty acids in coconut oil, which might have caused a shift in cholesterol flux to favor extrahepatic carotenoid tissue deposition.

  13. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Rida Tajau; Mohd Hilmi Mahmood; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2006-01-01

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  14. Isotretinoin Oil-Based Capsule Formulation Optimization

    Directory of Open Access Journals (Sweden)

    Pi-Ju Tsai

    2013-01-01

    Full Text Available The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X1, hydrogenated coconut oil (X2, and soybean oil (X3. The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM. Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X1X2, X1X3, and X2X3 showed more potential influence than that of the main factors (X1, X2, and X3. An optimal predicted formulation with Y10 min, Y30 min, Y60 min, and Y90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X1, X2, and X3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile.

  15. Analysis of filtration properties of locally sourced base oil for the ...

    African Journals Online (AJOL)

    This study examines the use of locally sourced oil like, groundnut oil, melon oil, vegetable oil, soya oil and palm oil as substitute for diesel oil in formulating oil base drilling fluids relative to filtration properties. The filtrate volumes of each of the oils were obtained for filtration control analysis. With increasing potash and ...

  16. Enhanced Oil Production by the Tropical Marine Diatom Thalassiosira Sp. Cultivated in Outdoor Photobioreactors.

    Science.gov (United States)

    Kusumaningtyas, Pintaka; Nurbaiti, Santi; Suantika, Gede; Amran, Muhammad Bachri; Nurachman, Zeily

    2017-08-01

    Microalgae-derived oils have potential as a biofuel feedstock. To produce microalgal oils at a large scale, large amounts of nutrients and energy are needed to grow the algae. In this study, we evaluated three types of agricultural fertilizer (AF)-based culture media (AF1, AF2, and AF3) based on a previously published enriched seawater (ES) medium to produce biomass and oils from Thalassiosira sp. Under laboratory conditions, the highest cell productivity of Thalassiosira sp. was obtained with the AF3 medium. Thalassiosira sp. cultured in the AF3 medium produced 10.4 ± 0.9 mg L -1  day -1 oils, which is significantly higher than the 5.8 ± 0.7 mg L -1  day -1 produced in the ES medium. The higher production was due to the presence of nitrate and trace elements, both of which played roles in enhancing biomass and oil content, respectively. During cell growth, resting spores appeared inside the cells and were a marker to harvest the cells. Because of the abundant availability of sunlight in the tropics during the year, the oil production of Thalassiosira sp. in the AF3 medium was scaled up using outdoor photobioreactors under different weather conditions (rainy and dry seasons). Thalassiosira sp. produced more unsaturated fatty acids during the rainy season and produced more saturated fatty acids during the dry season. This study also demonstrated that it was possible to culture Thalassiosira sp. under outdoor conditions using a low-cost agricultural fertilizer-based culture medium (AF3 medium) to produce biodiesel feedstock with an annual production of 8.1 ± 0.4 t ha -1 during the dry season and of 23.9 ± 6.8 t ha -1 during the rainy season.

  17. Oil spill monitoring via microwave tomography enhanced GPR surveys

    Science.gov (United States)

    Catapano, Ilaria; Affinito, Antonio; Bertolla, Luciana; Porsani, Jorge Luís; Soldovieri, Francesco

    2014-09-01

    Oil spill detection and monitoring deserve huge attention in environmental protection as well as for timely planning maintenance actions, with the final aim to mitigate soil pollution. In this frame, the requirement for detailed subsurface diagnostics, while performing non-invasive surveys, motivates the use of ground penetrating radar (GPR) systems and their continuous development in order to improve the achievable performance. Moving in this direction, this paper aims at investigating the reconstruction capabilities of a full 3D microwave tomography approach as a tool for pollution characterization and imaging. The microwave tomography approach exploits a Born Approximation based model of the electromagnetic scattering phenomenon and is capable of accounting for the vectorial nature of the wave-material interaction. The reconstruction capabilities are assessed against experimental data referred to oil spill in dry and water saturated sand soils, gathered in laboratory controlled conditions at the Department of Geophysics of the University of São Paulo, Brazil. The provided results state that the full 3D microwave tomography approach is able to gain accurate images of the surveyed scenarios allowing to acquire information on the oil diffusion process in both the considered soils.

  18. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  19. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    is introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration......In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario...

  20. Microfluidic Study of Foams Flow for Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Quennouz N.

    2014-05-01

    Full Text Available In this paper, we report an experimental study of foam flow in different channel geometries using microfluidic devices in the framework of Enhanced Oil Recovery (EOR. Two different processes of foam formation are studied. The first corresponds to co-injection of gas and water through a cross junction which gives rise to a monodisperse foam. The second one corresponds to the fragmentation of large bubbles by a porous media, a foam formation process simulating multiphase flows in rocks. The foam formation is completely controlled and characterized varying both the water and gas pressure applied. We also use a microdevice with two permeabilities that permits to highlight the diversion of the continuous phase in the low permeability channels. The observations are important for a better understanding of the implied phenomena in EOR as well as to determine pertinent data to feed flow simulators.

  1. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study*

    Science.gov (United States)

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-01-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logK o/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineoleoil. The mechanisms of permeation enhancement suggested that these enhancers promoted the skin permeation of drugs mainly by affecting SC lipids. These results indicated that Z. bungeanum oil exhibited better performance in enhancing the skin permeation of active components in TCM preparations. PMID:25367787

  2. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study.

    Science.gov (United States)

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-11-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineoleoil. The mechanisms of permeation enhancement suggested that these enhancers promoted the skin permeation of drugs mainly by affecting SC lipids. These results indicated that Z. bungeanum oil exhibited better performance in enhancing the skin permeation of active components in TCM preparations.

  3. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    Microbial Enhanced Oil Recovery (MEOR) is a process where microorganisms are used for tertiary recovery of oil. Some bacteria can facilitate the mobilization of oil through the production of amphiphilic compounds called biosurfactants that reduce the interfacial tension (IFT) between immiscible phases. Additionally, most bacteria have an inclination to colonize surfaces and form biofilm, which can change a reservoir's wetting properties or clog preferential flow paths. Herein, we aim to understand changes in wettability during MEOR under mixed wettability conditions within silicon etched micromodels and to identify the type of oil field (i.e. based on wettability) in which MEOR is likely to be most profitable. To quantify porous media wettability, macro-scale indexes (obtained with techniques such as the Carter or Amott methods) are used regularly. However, these measurements lack the capability for characterization of changes in wettability during MEOR treatment, and only provide macro-scale information. In an effort to understand micro-scale temporal and spatial changes in wettability we measure interfacial curvature from stereo microscope images using level set methods. Curvature, from the perspective of the oil phase, is positive for a concave interface (i.e. water-wet surface) and negative for a convex interface (i.e. oil-wet surface). Thus, shifts in the radius of curvature distribution (i.e. from positive to negative or conversely) are indicative of wettability changes. Both curvature distributions using level-set methods and the Carter method are used to characterize wettability before and after microbial treatment. In preliminary studies aimed at understanding wettability changes due to microbial surface interactions by Bacillus mojavensis JF-2, oil droplets were placed on glass slides suspended in growth media and the resulting contact angle was measured over time. Results showed that a water-wet surface will become more water wet as JF-2 accumulated in

  4. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 2. Oil

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 2 contains papers from the following sessions: residual oil determination; thermal methods; heavy oil-tar sands; technology transfer; and carbon dioxide flooding. Individual papers were processed.

  5. Vegetable oil based emulsions in milk

    Directory of Open Access Journals (Sweden)

    Veronika Mikulcová

    2014-07-01

    Full Text Available Milk and dairy products represent an important part of functional food in the market. Based on their positive health and nutritional benefits, they have gained popularity and their consumption as well as production is on the rise in the last few decades. As a result of this trend, milk-based products are being used for the delivery of bioactive food ingredients. This study is devoted to the formulation of stable emulsions containing grape seed oil dispersed with several emulsifiers (Tween 80, monocaprylin, and lecithin in milk. Photon correlation spectroscopy was used to evaluate the characteristics of the emulsions in terms of mean droplet size, droplet size distribution and polydispersity index. Emulsions were prepared using 2% and 5% w/w grape seed oil, and 3%, 5%, or 8% w/w emulsifier, and these were homogenized at two different rates of 1050 and 13400 rpm. Parameters influencing emulsion particle size and particle size distribution were identified, which included emulsifier type, its HLB value, oil type (virgin, refined, homogenization rate and the fat content in the milk. Homogenization at 13400 rpm for 10 min. produced fine emulsions with small mean particle sizes and monomodal distribution of droplets. Regarding emulsifier type, the smallest droplet sizes were obtained with formulations containing Tween 80 (250-315 nm, whereas lecithin primarily accounted for the monomodal particle size distributions.

  6. Multiscale based adaptive contrast enhancement

    Science.gov (United States)

    Abir, Muhammad; Islam, Fahima; Wachs, Daniel; Lee, Hyoung

    2013-02-01

    A contrast enhancement algorithm is developed for enhancing the contrast of x-ray images. The algorithm is based on Laplacian pyramid image processing technique. The image is decomposed into three frequency sub-bands- low, medium, and high. Each sub-band contains different frequency information of the image. The detail structure of the image lies on the high frequency sub-band and the overall structure lies on the low frequency sub-band. Apparently it is difficult to extract detail structure from the high frequency sub-bands. Enhancement of the detail structures is necessary in order to find out the calcifications on the mammograms, cracks on any object such as fuel plate, etc. In our proposed method contrast enhancement is achieved from high and medium frequency sub-band images by decomposing the image based on multi-scale Laplacian pyramid and enhancing contrast by suitable image processing. Standard Deviation-based Modified Adaptive contrast enhancement (SDMACE) technique is applied to enhance the low-contrast information on the sub-bands without overshooting noise. An alpha-trimmed mean filter is used in SDMACE for sharpness enhancement. After modifying all sub-band images, the final image is derived from reconstruction of the sub-band images from lower resolution level to upper resolution level including the residual image. To demonstrate the effectiveness of the algorithm an x-ray of a fuel plate and two mammograms are analyzed. Subjective evaluation is performed to evaluate the effectiveness of the algorithm. The proposed algorithm is compared with the well-known contrast limited adaptive histogram equalization (CLAHE) algorithm. Experimental results prove that the proposed algorithm offers improved contrast of the x-ray images.

  7. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    Science.gov (United States)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  8. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2015-10-01

    Full Text Available The present study was conducted to evaluate and compare five essential oils (EOs as penetration enhancers (PEs to improve the transdermal drug delivery (TDD of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil >> Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05. The contents of calcium ion and nitric oxide (NO were also significantly changed after the addition of Chuanxiong oil (p < 0.05. In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.

  9. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  10. Site Selection and Resource Allocation of Oil Spill Emergency Base for Offshore Oil Facilities

    Science.gov (United States)

    Li, Yunbin; Liu, Jingxian; Wei, Lei; Wu, Weihuang

    2018-02-01

    Based on the analysis of the historical data about oil spill accidents in the Bohai Sea, this paper discretizes oil spilled source into a limited number of spill points. According to the probability of oil spill risk, the demand for salvage forces at each oil spill point is evaluated. Aiming at the specific location of the rescue base around the Bohai Sea, a cost-benefit analysis is conducted to determine the total cost of disasters for each rescue base. Based on the relationship between the oil spill point and the rescue site, a multi-objective optimization location model for the oil spill rescue base in the Bohai Sea region is established. And the genetic algorithm is used to solve the optimization problem, and determine the emergency rescue base optimization program and emergency resources allocation ratio.

  11. Preparation and properties of copper-oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Wenjie

    2011-01-01

    Full Text Available Abstract In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  12. Miscibility Development Computation in Enhanced Oil Recovery by Flare Gas Flooding

    Directory of Open Access Journals (Sweden)

    Tjokorde Walmiki Samadhi

    2012-11-01

    Full Text Available The use of flare gas as injection gas in miscible gas flooding enhanced oil recovery (MGF-EOR presents a potential synergy between oil production improvement and greenhouse gases emission mitigation. This work is a preliminary evaluation of the feasibility of miscible flare gas injection based on phase behavior computations of a model oil (43%n-C5H12 : 57%n-C16H34 and a model flare gas (91%CH4 : 9%C2H6. The computations employed the multiple mixing-cell model with Peng-Robinson and PC-SAFT equations of state, and compared the minimum miscibility pressure (MMP value in the cases of flare gas injection and CO2 injection. For CO2 injection, both equations of state produced MMP values close to the measured value of 10.55 MPa. Flare gas injection MMP values were predicted to be 3.6-4.5 times those of CO2 injection. This very high MMP implies high gas compression costs, and may compromise the integrity of the reservoir. Subsequent studies shall explore the gas-oil miscibility behavior of mixtures of flare gas with intermediate hydrocarbon gases and CO2, in order to identify a suitable approach for rendering flare gas feasible as an injection gas in MGF-EOR.

  13. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells.

    Science.gov (United States)

    Arezoumand, Khatereh Saei; Alizadeh, Effat; Esmaeillou, Mohammad; Ghasemi, Maryam; Alipour, Shahriar; Pilehvar-Soltanahmadi, Younes; Zarghami, Nosratollah

    2018-03-01

    In recent decades, mesenchymal stem cells originated from adipose tissue (adipose-derived stem cells, ASCs) have gained increased attention for production of cell-based therapeutics. Emu oil as a natural compound showed antioxidant effects in previous studies. The goal of this study was to investigate the effect of crude emu oil on the proliferation, cell cycle progression, stemness genes expression, and in vitro wound healing potential of ASCs. An emulsion of emu oil was prepared using egg lecithin and butylated hydroxytoluene to improve bioavailability and solubility of emu oil in the expansion medium. The ASCs were treated using a series of emu oil concentrations in emulsion form, diluted in expansion medium (0.03-3 mg/ml). The emu oil-free emulsion was used as control treatment. The results revealed that emu oil (1.25 mg/ml) in emulsion form significantly (p oil caused upregulation of stemness marker genes (Sox2, Oct4, Nanog, and Nestin) (p oil treatments showed an increase in the population of ASCs in S-phase of the cell cycle. Besides, an accelerated in vitro scratch wound healing was observed in emu oil-treated ASCs. Emu oil enhanced proliferation, colony formation, stemness genes expression, and in vitro wound healing of ASCs. These findings suggest that emu oil treatment could maintain the stemness of ex vivo cultivated ASCs and enhance their regenerative potential.

  14. Cytotoxicity and enhancement activity of essential oil from Zanthoxylum bungeanum Maxim. as a natural transdermal penetration enhancer*

    Science.gov (United States)

    Lan, Yi; Wu, Qing; Mao, Ying-qiu; Wang, Qiong; An, Jing; Chen, Yan-yan; Wang, Wen-ping; Zhao, Bo-chen; Liu, Na; Zhang, Ye-wen

    2014-01-01

    The aim of this present study is to investigate the effect of Zanthoxylum bungeanum oil (essential oil from Z. bungeanum Maxim.) on cytotoxicity and the transdermal permeation of 5-fluorouracil and indomethacin. The cytotoxicity of Z. bungeanum oil on dermal fibroblasts and epidermal keratinocytes was studied using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The rat skin was employed to determine the percutaneous penetration enhancement effect of Z. bungeanum oil on hydrophilic and lipophilic model drugs, i.e., 5-fluorouracil and indomethacin. The secondary structure changes of the rat stratum corneum (SC) were determined using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and saturated solubilities and SC/vehicle partition coefficients of two model drugs with and without Z. bungeanum oil were also measured to understand its related mechanisms of action. It was found that the half maximal inhibitory concentration (IC50) values of Z. bungeanum oil were significantly lower in HaCaT and CCC-ESF-1 cell lines compared to the well-established and standard penetration enhancer Azone. The Z. bungeanum oil at various concentrations effectively facilitated the percutaneous penetration of two model drugs across the rat skin. In addition, the mechanisms of permeation enhancement by Z. bungeanum oil could be explained with saturated solubility, SC/vehicle partition coefficient, and secondary structure changes of SC. PMID:24510708

  15. Oil production enhancement through a standardized brine treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  16. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation.

    Science.gov (United States)

    Chen, Hui-Jiuan; Hang, Tian; Yang, Chengduan; Liu, Guishi; Lin, Di-An; Wu, Jiangming; Pan, Shuolin; Yang, Bo-Ru; Tao, Jun; Xie, Xi

    2018-01-25

    In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.

  17. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Thomas, R.D.

    1991-01-01

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  18. Drilling fluid base oil biodegradation potential of a soil ...

    African Journals Online (AJOL)

    Staphylococcus sp. isolated from oil-contaminated soil was grown in 1% drilling fluid base oil, HDF- 2000, as a sole source of carbon and energy. The organism has strong affinity for the substrate, growing at the rate of 0.16 h-1. It uses adherence and emulsification as mechanisms for oil uptake. In a nutrient-rich marine ...

  19. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  20. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  1. Characterization of Terminalia catappa linn oil, Linn oil-based ...

    African Journals Online (AJOL)

    This need for using fuels with appropriate physico-chemical properties, the reason for other researchers to effectively tap in to potential use of Terminalia Catappa Linn oil and the great awareness worldwide to the need to replace fossil fuels with renewable fuels calls for investigation of local sources of such renewable fuels ...

  2. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  3. Transdermal absorption enhancing effect of the essential oil of Rosmarinus officinalis on percutaneous absorption of Na diclofenac from topical gel.

    Science.gov (United States)

    Akbari, Jafar; Saeedi, Majid; Farzin, Davood; Morteza-Semnani, Katayoun; Esmaili, Zahra

    2015-01-01

    Rosemary essential oil has been used topically for several purposes (analgesic, anti acne, and anti-inflammatory) in Iranian traditional medicine. This investigation aimed to study the effect of essential oil of Rosmarinus officinalis L. (Lamiaceae) on the transdermal absorption of Na diclofenac from topical gel. Diclofenac sodium topical gel was prepared with HPMC K4M and Carbopol 934P as a gelling agent, and several vehicles. The most stable gel was chosen and enhancing effects of the essential oil with different concentrations (0.1, 0.5, and 1.0% w/w) on the permeation of diclofenac were evaluated. The anti-nociceptive effect of preparations was evaluated based on the formalin and tail flick tests in mice. The major constituents of the essential oil were 1,8-cineol (15.96%), α-pinene (13.38%), camphor (7.87%), bornyl acetate (6.54%), verbenone (5.82%), borneol (5.23%), camphene (4.96%), and (E)-caryophyllene (3.8%). Topical diclofenac containing 0.5% essential oil showed more analgesic effect after 25, 30, and 35 min (p < 0.001) than the reference drug in the tail flick test. The analgesic effect of preparation containing 1% essential oil was more than reference gel after 15 min (p < 0.05). This difference was observed after 20, 25, 30, 35, and 40 min (p < 0.001) too. Rosemary essential oil 1% promoted analgesic effect of drug in comparison with diclofenac gel in the formalin early phase (p < 0.05). The enhancing effect of rosemary was observed in 0.5 and 1% concentration (p < 0.05 and p < 0.001, respectively) in the late phase. This study proved the enhancing effect of 0.5 and 1% of rosemary essential oil on diclofenac percutaneous absorption.

  4. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  5. An innovative treatment method for an aqueous waste from the enhanced oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Alimahmoodi, M.; Mulligan, C.N. [Concordia Univ., Montreal, PQ (Canada)

    2009-07-01

    Carbon dioxide (CO{sub 2}) injection is an enhanced oil recovery (EOR) method that reduces the viscosity of oil. It is used in combination with large volumes of water that is injected under pressure into the crude oil zone to increase oil production. A large stream of waste water is generated which is contaminated primarily with dissolved CO{sub 2} and dissolved petroleum hydrocarbons. CO{sub 2} is a significant greenhouse gas and the main cause of global warming. The presence of petroleum hydrocarbons (TPH) in the wastewater can contaminate ground and surface waters with dissolved hydrocarbons that can affect the human central nervous system, blood, immune system, lungs, skin, and eyes. Application of chemical or physiochemical treatment processes for aqueous waste streams containing dissolved gases such as CO{sub 2} has many operational or technical complications such as complexity of the process, application of complex chemicals such as patented solvents, and practical limitations of the methods. The key purpose of this study was to develop a new biological method based on the anaerobic approach to remove CO{sub 2} and TPH as the main contaminants of the aqueous waste stream resulting from crude oil extraction processes. The paper presented the materials and methods, with particular reference to the inoculum; basic elements and nutrients; materials used as electron donors; analytical methods; and experimental approach. It was concluded that the anaerobic approach could be applied efficiently for the treatment of the waste stream from an EOR process containing CO{sub 2} and TPH. 25 refs., 4 tabs., 5 figs.

  6. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  7. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  8. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    Science.gov (United States)

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  9. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  10. Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil

    Science.gov (United States)

    2006-05-01

    are lauric , palmitic, stearic, oleic and linoleic. However, different oils contain different proportions of these fatty acids (Table 2.2). The...Designs ................................ 8 Table 2.1 Common Saturated and Unsaturated Fatty Acids ...13 Table 2.2 Percent Fatty Acid Compositions for Major Edible Oils ................................................. 14 Table 2.3

  11. Micro-Organisms In Enhanced Oil Recovery | Osunde | Ife Journal of ...

    African Journals Online (AJOL)

    The extent of bacterial involvement in petroleum genesis has been a subject of debate even while evidence indicates that million years of heat and pressure changed the remains of microscopic plants and animals into oil and natural gas. Microbial-enhanced oil recovery (MEOR) involves processes where microorganisms ...

  12. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    Science.gov (United States)

    Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The LEAFY COTYLEDON1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes i...

  13. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Sakyi-Dawson, O.; Kuyper, T.W.

    2012-01-01

    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to

  14. Enhanced bioavailability of EPA from emulsified fish oil preparations versus capsular triacylglycerol

    Science.gov (United States)

    Pre-emulsified fish oil supplements, an alternative to capsular triacylglycerol, may enhance the uptake of LCn3 fatty acids it contains. A randomized, Latin-square crossover design was used to compare the effects of four fish oil supplement preparations on phospholipid (PLFA) and chylomicron fatty ...

  15. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  16. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  17. Castor Oil Based Polyurethanes: Synthesis and Characterization

    Science.gov (United States)

    Macalino, AD; Salen, VA; Reyes, LQ

    2017-09-01

    In this study, polyurethanes based on castor oil and 1,6-hexamethylene diisocyanate (HMDI) were synthesized with varying weight ratio of the castor oil and HMDI. The formation of urethane linkages was verified through the use of a fourier transform infrared spectroscopy (FTIR). The hydrophilicity of the films was evaluated through the use of a contact angle meter and it was found that the contact angle of all the films were below 90 degrees which confirms their hydrophilicity. The thermal stability of the PU films were studies through the use of a thermal gravimetric analyzer and found that all of the polyurethane films exhibited two weight loss events at elevated temperatures wherein the first weight loss event was observed to occur at 285°C to 384°C while the second weight loss event was observed at around 521°C to 551°C. The hardness, elastic modulus, and tensile elongation of the PU films were determined by using a universal testing machine (UTM) where it was found out that the hardness and the elastic modulus of the film is directly proportional with HMDI loading while the tensile elongation is inversely proportional to it. Lastly, it was known through the swelling studies of the PU films that it does not swell, this is due to the presence of unreacted triglycerides in the material, which prevents water from permeating to the films.

  18. Triacylglycerol "hand-shape profile" of Argan oil. Rapid and simple UHPLC-PDA-ESI-TOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products.

    Science.gov (United States)

    Pagliuca, Giordana; Bozzi, Carlotta; Gallo, Francesca Romana; Multari, Giuseppina; Palazzino, Giovanna; Porrà, Rita; Panusa, Alessia

    2018-02-20

    The marketing of new argan-based products is greatly increased in the last few years and consequently, it has enhanced the number of control analysis aimed at detecting counterfeit products claiming argan oil as a major ingredient. Argan oil is produced in Morocco and it is quite expensive. Two simple methods for the rapid screening of pure oil and argan-oil based products, focused on the analysis of the triacylglycerol profile, have been developed. A three-minute-run by UHPLC-PDA allows the identification of a pure argan oil, while the same run with the MS detector allows also the analysis of products containing the oil down to 0.03%. On the other hand, by HPTLC the simultaneous analysis of twenty samples, containing argan oil down to 0.5%, can be carried out in a forty-five-minute run. The triglyceride profile of the most common vegetable fats such as almond, coconut, linseed, wheat germ, sunflower, peanut, olive, soybean, rapeseed, hemp oils as well as shea butter used either in cosmetics or commonly added for the counterfeiting of argan oil, has been also investigated. Over sixty products with different formulations and use have been successfully analyzed and argan oil in the 2.4-0.06% concentration range has been quantified. The methods are suitable either for a rapid screening or for quantifying argan oil in different formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  20. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    Science.gov (United States)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  1. Technical and economic framework for market enhancement of shale oil

    International Nuclear Information System (INIS)

    Bunger, J.W.; Devineni, A.V.

    1992-01-01

    By now it is apparent that production of syncrude from shale oil will not be economically viable as long as there is a stable and reasonably-priced supply of petroleum. The costs and financial risks of producing syncrude from oil shale, in the face of price constraints imposed by petroleum markets, are too high to warrant private investment. A possible solution is to develop commodity and specialty products from shale oil which command a high market value. In this fashion, the economics are partially uncoupled from petroleum and an opportunity for a greater price/cost differential is provided

  2. Microbial enhanced separation of oil from a petroleum refinery sludge.

    Science.gov (United States)

    Joseph, P J; Joseph, Ammini

    2009-01-15

    Petroleum refineries around the world have adopted different technological options to manage the solid wastes generated during the refining process and stocking of crude oil. These include physical, chemical and biological treatment methods. In this investigation bacterial mediated oil separation is effected. Two strains of Bacillus were isolated from petroleum-contaminated soils, and inoculated into slurry of sludge, and sludge-sand combinations. The bacteria could effect the separation of oil so as to form a floating scum within 48h with an efficiency of 97% at < or =5% level of sludge in the sludge-sand mixture. The activity was traced to the production of biosurfactants by bacteria.

  3. Nigella sativa Oil Enhances the Spatial Working Memory Performance of Rats on a Radial Arm Maze

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Azali Sahak

    2013-01-01

    Full Text Available Nigella sativa, an established historical and religion-based remedy for a wide range of health problems, is a herbal medicine known to have antioxidant and neuroprotective effects. This present study investigated the effect of Nigella sativa oil (NSO administration on the spatial memory performance (SMP of male adult rats using eight-arm radial arm maze (RAM. Twelve Sprague Dawley rats (7–9 weeks old were force-fed daily with 6.0 μL/100 g body weight of Nigella sativa oil (NSO group; n=6 or 0.1 mL/100 g body weight of corn oil (control (CO group; n=6 for a period of 20 consecutive weeks. For each weekly evaluation of SMP, one day food-deprived rats were tested by allowing each of them 3 minutes to explore the RAM for food as their rewards. Similar to the control group, the SMP of the treated group was not hindered, as indicated by the establishment of the reference and working memory components of the spatial memory. The results demonstrated that lesser mean numbers of error were observed for the NSO-treated group in both parameters as compared to the CO-treated group. NSO could therefore enhance the learning and memory abilities of the rats; there was a significant decrease in the overall mean number of working memory error (WME in the NSO-treated group.

  4. Nigella sativa Oil Enhances the Spatial Working Memory Performance of Rats on a Radial Arm Maze.

    Science.gov (United States)

    Sahak, Mohamad Khairul Azali; Mohamed, Abdul Majid; Hashim, Noor Hashida; Hasan Adli, Durriyyah Sharifah

    2013-01-01

    Nigella sativa, an established historical and religion-based remedy for a wide range of health problems, is a herbal medicine known to have antioxidant and neuroprotective effects. This present study investigated the effect of Nigella sativa oil (NSO) administration on the spatial memory performance (SMP) of male adult rats using eight-arm radial arm maze (RAM). Twelve Sprague Dawley rats (7-9 weeks old) were force-fed daily with 6.0  μ L/100 g body weight of Nigella sativa oil (NSO group; n = 6) or 0.1 mL/100 g body weight of corn oil (control) (CO group; n = 6) for a period of 20 consecutive weeks. For each weekly evaluation of SMP, one day food-deprived rats were tested by allowing each of them 3 minutes to explore the RAM for food as their rewards. Similar to the control group, the SMP of the treated group was not hindered, as indicated by the establishment of the reference and working memory components of the spatial memory. The results demonstrated that lesser mean numbers of error were observed for the NSO-treated group in both parameters as compared to the CO-treated group. NSO could therefore enhance the learning and memory abilities of the rats; there was a significant decrease in the overall mean number of working memory error (WME) in the NSO-treated group.

  5. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  6. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  7. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  8. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    Science.gov (United States)

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  9. Brine-resistant sulfonate surfactants for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stournas, S.

    1983-01-01

    One of the most severe limitations of surfactant waterflooding is the instability of the commonly employed surfactants in the usual ionic environments of oil reservoirs. A specific modification to the usual structure of sulfonate surfactants not only makes them immune to high concentrations of monovalent and divalent cations, but also enables them to act as stabilizer of the common surfactants and to displace tertiary oil in brines of high salinity and divalent ion content.

  10. Synthesis and characterization of castor oil-based polyurethane for ...

    Indian Academy of Sciences (India)

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4 ...

  11. Synthesis and characterization of castor oil-based polyurethane

    Indian Academy of Sciences (India)

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4 ...

  12. Synthesis and characterization of castor oil-based polyurethane for ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with.

  13. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  14. Nutrient-enhanced bioremediation of oil-contaminated shoreline

    International Nuclear Information System (INIS)

    Glaser, J.A.

    1991-01-01

    On March 24, 1989, the collision of the supertanker Exxon Valdez with a submerged reef in Prince William Sound AK, released 41.6 million L (11 million gal) of Prudhoe Bay crude oil. The oil spread with time to contaminate an estimated 565 km (350 miles) of shoreline. The degradation of oil components by biological mechanisms has been intensively studied during the last 20 years. The general outline of biodegradation pathways for aliphatic and aromatic hydrocarbons has been formulated and continues to be developed in greater detail. Consequently, the microbial decomposition of oil in aquatic environments is well understood to include descriptions of biodegradation kinetics; temperature effects for biodegradation can be described by an Arrhenius relationship. Even cold-water environments have been shown to support the biodegradation of oil components. This paper reports that a panel of experts was assembled to assist the U.S. Environmental Protection Agency (EPA) in determining the best treatment strategy to accelerate the natural biodegradation process in Prince William Sound

  15. Knowledge Based Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Amir; Blomgren, Atle

    2011-07-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gas related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, RandD and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.(au)

  16. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  17. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  18. Sesame oil enhances endogenous antioxidants in ischemic myocardium of rat

    Directory of Open Access Journals (Sweden)

    T. S. Mohamed Saleem

    2012-06-01

    Full Text Available The present study was designed to evaluate the potency of antioxidant activity of sesame oil in-vitro model of myocardial ischemic reperfusion injury of rat. Sesame oil was administered orally to Wistar albino rats (180-200 g in two different doses (n=6, by gastric gavage at a dose of 5 mL/kg b.w. (S1 and 10 mL/kg b.w (S2 daily for thirty days. Control and sesame oil treated rat hearts were subjected to invitro global ischemic reperfusion injury (5 min perfusion, 9 min noflow and 12 min reperfusion. A significant rise in TBARS and decrease of GSH, catalase, LDH, CK and AST occurred in the hearts subjected to in-vitro myocardial ischemic reperfusion injury indicate the myocardial damage through oxidative stress. In sesame oil treated rats there was a significant decrease in TBARS and significant increase in endogenous antioxidants and myocardial marker enzymes in all the groups. In 10 mL/kg treatment group, a significant rise in the levels of GSH, SOD and catalase were observed with marker enzymes, and it shows better recovery profile than the other groups subjected to in-vitro ischemic reperfusion injury. In histological studies, control rats which subjected to IR injury show extensive myocardial damage and all the treatment groups, shows preserved myocardium. The effect of sesame oil was compared with reference compound captopril. The present study demonstrates that the sesame oil treated by the dose 10 mL/kg augments endogenous antioxidant compounds of the rat heart and also prevents the myocardium from in-vitro model of myocardial ischemic reperfusion injury

  19. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Abdulkadir E. Elshafie

    2015-11-01

    Full Text Available Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery was studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v and, corn oil (10%v/v added separately or concurrently. The samples were collected at 24h interval up to 120h and checked for growth (OD660, and biosurfactant production (Surface tension and Interfacial tension. The medium with both glucose and corn oil gave better biosurfactant production and reduced both surface tension and interfacial tension to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24 with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil. The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids. The potential of sophorolipids in enhancing oil recovery was tested using core-flooding experiments, under reservoir conditions, where additional 27.27% of residual oil (Sor was recovered. This confirmed the potential of sophorolipids for applications in microbial enhanced oil recovery.

  20. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  1. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2011-01-01

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on

  2. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  3. Performance of the mineral blended ester oil-based drilling fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A.R.; Kamis, A.; Foo, K.S. [University Teknologi (Malaysia)

    2001-06-01

    A study was conducted in which the properties of ester oil-based drilling fluid systems were examined using a blended mixture of ester and synthetic mineral oil. Biodegradable invert emulsion ester-based fluids are preferred over mineral oil-based drilling fluids for environmental reasons, but they tend to cause alkaline hydrolysis resulting in solidification of the drilling fluid systems. The drilling fluid examined here consisted of Malaysian palm oil ester derivatives (methyl laureate ester or isopropyl laureate ester) blended with commercially available synthetic mineral oil. This mineral oil was added to reduce the problem of alkaline hydrolysis. This mixture, however, was found to be unstable and could not solve the problem at high temperature. The isopropyl laureate and mineral oil blended system was more stable towards the hydrolysis process up to 250 degrees F. In order to enhance the performance of an invert emulsion drilling fluid system, it was recommended that brine water content of the fluid system be lowered. 3 refs., 2 figs.

  4. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  5. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Science.gov (United States)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  6. Comblike Polyacrylamides as Flooding Agent in Enhanced Oil Recovery

    NARCIS (Netherlands)

    Wever, Diego A. Z.; Picchioni, Francesco; Broekhuis, Antonius A.

    2013-01-01

    The oil recovery from core material and a specifically designed flow cell using novel branched (comblike) polyacrylamides (PAM) has been investigated. The injectivity characteristics of the different branched PAMs were evaluated by filtration tests and core-flow experiments. The number of arms of

  7. Enhancement of recovery of residual oil using a biosurfactant slug ...

    African Journals Online (AJOL)

    A laboratory investigation of the mobilization and displacement of residual oil in a sand-pack using biosurfactant slug was conducted. The biosurfactant employed was extracted from a culture of Pseudomonas sp. grown on kerosine- supplemented mineral salts medium. Characterization of the biosurfactant extract revealed ...

  8. Nitrogen fixing bacteria enhanced bioremediation of a crude oil ...

    African Journals Online (AJOL)

    The highest percentage loss of crude oil (84%) was recorded in cells, which contained seeds of Phaseolus vulgaris (White beans) and 5g slurry of Bacillus polymyxa. Cells in which 5g slurry of Anacystis (Chroococcus) sp., 5g slurries each of Azotobacter sp., Bacillus polymyxa and Anacystis (Chroococcus) sp. were applied, ...

  9. Conference focuses on microbial enhancement of oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, E.C.; Clark, J.B.

    1982-12-20

    The conference proceedings described research developments on MEOR that have occurred during the last 2-3 years, and these are focused in the conclusions that follow: 1. The biopolymer from Xanthamonas campestris is used extensively by the petroleum industry in drilling mud preparations. 2. A biosurfactant product from Acinetobacter calcoaceticus RAG 1 can be prepared in commercial quantities and is proposed for emulsification of crude oils which may be important for cleaning of tanks and pipelines. 3. An extracellular polysaccharide prepared from aerobic fermentation of crude oil has been developed in China and is proposed as a waterflood additive. 4. Salt-tolerant bacteria of the genus Clostridium have been isolated and shown to produce relatively large amounts of carbon dioxide and low molecular weight organic solvents in 6-7% salt solutions. 5. Methods were developed to induce stimulation of indigenous anaerobic bacteria in oil fields for production of methane and other gases. 6. Living cells have been found to be strongly adsorbed on sandstone which restricts the injection of nonspore-forming bacteria unless carrier solutions are developed that inhibit cell adsorption. 7. Laboratory experiments indicate that some bacteria can be injected into high permeability zones to increase the sweep efficiency of a waterflood. 8. Mixed bacteria cultures (Gramnegative, facultative rods) have been isolated that produce large amounts of gas and are designated for possible repressurization of oil fields in Canada. 9. A mixed culture has been developed which produces a biosurfactant when fermented aerobically with crude oil that causes a decrease of the phase viscosity of 95% and produces a non-wetting (on glass of steel) emulsion. 10. The biosurfactant produced by Corynebacterium lepus has been demonstrated to be effective for the release of bitumen from tar sands.

  10. Whey protein-based films incorporated with oregano essential oil

    Directory of Open Access Journals (Sweden)

    Sandra Prestes Lessa Fernandes Oliveira

    Full Text Available Abstract This study aimed to prepare whey protein-based films incorporated with oregano essential oil at different concentrations, and evaluate their properties and antimicrobial activity. Films were more flexible with increasing the concentration of oregano oil and water vapor permeability was higher in the films with oregano oil. Increasing the concentration of essential oil decreased the water solubility. The solubility of control film and film with 1.5% oregano oil was 20.2 and 14.0%, respectively. The addition of 1% of oregano oil improved the resistance of the films. The tensile strength for the control film was 66.0 MPa, while for the film with 1% of oregano oil was 108.7 MPa. Films containing 1.5% oregano oil showed higher antimicrobial activity. The zone of inhibition ranged from 0 to 1.7 cm. The results showed that the whey protein-based films incorporated with oregano essential oil has potential application as active packaging.

  11. Motor oil classification based on time-resolved fluorescence.

    Science.gov (United States)

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils.

  12. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  13. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: bentonite addition and autoclaved de-oiling pretreatment

    DEFF Research Database (Denmark)

    Zhang, Duojiao; Duan, Na; Tian, Hailin

    2018-01-01

    The effects of different enhancement methods, including adding bentonite (1.25%, w/w, wet substrate) and autoclaved de-oiling pretreatment (121 °C, 30 minutes), on the anaerobic digestion of kitchen waste (KW) were comparably studied. Mesophilic continuous stirred tank reactors were used under...... design and process evaluation of a CSTR biogas plant treating with KW based on the laboratory experiment was stated....

  14. Synthesis and characterization of castor oil-based polyurethane for ...

    Indian Academy of Sciences (India)

    Administrator

    adhesives and thermal insulation.14–16 However, modifica- tion of PU for use as host in polymer electrolytes has not ... is no report related to the potential of castor oil-polyol- based PU as host in polymer electrolytes. ... The reactor was filled with castor oil and 15 wt% of gly- cerol was added to it. The percentage of the ...

  15. Synthesis and characterization of castor oil based polyurethane ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A series of interpenetrating polymer networks (IPNs) of castor oil based polyurethane/polyacrylo- nitrile (PU/PAN: 80/20, 60/40, 50/50, 40/60 and 20/80) were synthesized by condensation reaction of castor oil with methylene diisocyanate and acrylonitrile, employing benzoyl peroxide (BPO) and ethylene glycol ...

  16. Preparation of microemulsions with soybean oil-based surfactants

    Science.gov (United States)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  17. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.

    Science.gov (United States)

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer.

  18. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  19. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  20. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  1. Natural oils and waxes: studies on stick bases.

    Science.gov (United States)

    Budai, Lívia; Antal, István; Klebovich, Imre; Budai, Marianna

    2012-01-01

    The objective of the present article was to examine the role of origin and quantity of selected natural oils and waxes in the determination of the thermal properties and hardness of stick bases. The natural oils and waxes selected for the study were sunflower, castor, jojoba, and coconut oils. The selected waxes were yellow beeswax, candelilla wax, and carnauba wax. The hardness of the formulations is a critical parameter from the aspect of their application. Hardness was characterized by the measurement of compression strength along with the softening point, the drop point, and differential scanning calorimetry (DSC). It can be concluded that coconut oil, jojoba oil, and carnauba wax have the greatest influence on the thermal parameters of stick bases.

  2. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  3. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  4. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  5. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  6. Pore level investigation of oil mobility enhancement in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D.; Kantzas, A. [Calgary Univ., AB (Canada)

    2008-07-01

    This study investigated the effect of water lubrication on oil mobility at the pore level. The aim of the study was to investigate the foamy oil phenomenon associated with the solution-gas drive mechanism that occurs during heavy oil production. The study considered the physical principles of momentum transfer and viscous coupling in multiphase flow through porous media. Capillary models were used to derive expressions for the shapes of fluid-fluid interfaces, relative permeabilities, and velocity distributions. The Galerkin method was used to solve 2-phase flow problems, and various cross-sectional geometries were analyzed. Results showed that the maximum stable wetting phase saturation, and the corresponding minimum stable non-wetting phase situation were functions of the viscosity ratio. The study demonstrated that viscous coupling is an important factor in porous media multiphase flow. Viscous coupling effects were non-existent in the wetting phase, but became very important during the non-wetting phase. It was concluded that viscosity ratios have a significant influence on the relative permeabilities of heavy oil systems. 25 refs., 14 figs.

  7. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  8. Carbopol hydrogel/sorbitan monostearate-almond oil based ...

    African Journals Online (AJOL)

    Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Velichka Y. Andonova, Petya T. Peneva, Elisaveta G. Apostolova, Teodora D. Dimcheva, Zhivko L. Peychev, Margarita I. Kassarova ...

  9. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    Science.gov (United States)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  10. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qianxin; Mendelssohn, Irving A. [Wetland Biogeochemistry Institute, Center for Coastal, Energy, and Environmental Resources, Louisiana State University, Baton Rouge, LA 70803 (United States)

    1998-06-30

    The combined effects of biostimulation and phytoremediation as a means of post-oil spill habitat restoration and enhancement of oil degradation in the soil were evaluated. Marsh sods of Spartina alterniflora and Spartina patens were dosed with 0, 4, 8, 16 and 24 l m{sup -2} of south Louisiana crude oil in the greenhouse. Plants were killed at oil dosages of 8 l m{sup -2} in the growing season following oil application. Two years after application of the oil, S. alterniflora and S. patens individuals were transplanted into the oiled and unoiled sods. Fertilizer was applied 1 and 7 months after transplantation. Application of the fertilizer significantly increased biomass of the transplants within 6 months and regrowth biomass of the transplants 1 year after transplantation for both plant species. The residual oil in the soil did not significantly affect the biomass of the S. patens transplants compared with that in the no oil treatment, except at the highest oil level. However, regrowth biomass of the S. alterniflora transplants treated with fertilizer was significantly higher at all oil levels up to 250 mg g{sup -1} than in the unoiled treatment, with or without fertilizer. The oil degradation rate in the soil was significantly enhanced by the application of fertilizer in conjunction with the presence of transplants. These results suggest that vegetative transplantation, when implemented with fertilization, can simultaneously restore oil contaminated wetlands and accelerate oil degradation in the soil

  11. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  12. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    Science.gov (United States)

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  13. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.

  14. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.

    Science.gov (United States)

    Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar

    2018-01-01

    Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.

  15. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  16. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  17. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  18. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  19. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    Karousou, R.; Grammatikopoulos, G.; Lanaras, T.; Manetas, Y.; Kokkini, S.

    1998-01-01

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  20. Impact of recent Federal tax and R and D initiatives on enhanced oil recovery

    International Nuclear Information System (INIS)

    Brashear, J.P.; Biglarbigi, K.; Ray, M.R.

    1991-01-01

    The National Energy Strategy contains two major elements designed to increase oil production from known reservoirs in the contiguous United States: (1) a tax credit for specific investment and injectant costs for qualified enhanced oil recovery (EOR) projects; and (2) a highly focused, public-private cooperative R ampersand D program. Both are currently being implemented by the Department of the Treasury and the Department of Energy, respectively. The present paper estimates the potential reserve additions and impacts on public treasuries at oil prices between $22 and $34/Bbl. The new Federal tax credit, alone, could doubler current proved EOR reserves at oil prices in the $22/Bbl range and increase them by about one-third at prices in the $30/Bbl range. The effect of technology advances alone could also about double EOR reserves at these prices. The combination of technology advances and the tax incentive synergistically amplifies the effects on potential EOR reserves

  1. Biodegradation of Alaska North Slope crude oil enhanced by commercial bioremediation agents

    International Nuclear Information System (INIS)

    Aldrett, S.; Bonner, J.S.; Mills, M.A.; McDonald, T.J.; Autenrieth, R.L.

    1996-01-01

    The biodegradation of crude oil was studied. Tests were conducted in which natural unpolluted seawater was collected and then contaminated with Alaska North Slope crude oil. The oil was weathered by heating it to 521 degrees F to remove the light-end hydrocarbons. A total of 13 different bioremediation agents were tested, each one separately. Three samples per treatment were destructively analysed for petroleum chemistry. The thirteen treatments were analyzed for oil and grease. It was found that microbial degradation of petroleum hydrocarbons was enhanced by the addition of bioremediation agents, but it was not possible to identify the intermediate products responsible for the increase of resolved petroleum hydrocarbons through time. It was suggested that caution be used when interpreting results since the protocols used to test the products were prone to uncontrollable variations. 11 refs., 5 tabs., 6 figs

  2. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  3. Polymers for enhanced oil recovery: fundamentals and selection criteria.

    Science.gov (United States)

    Rellegadla, Sandeep; Prajapat, Ganshyam; Agrawal, Akhil

    2017-06-01

    With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.

  4. Performance experimental investigation of novel multifunctional nanohybrids on enhanced oil recovery

    Science.gov (United States)

    Gharibshahi, Reza; Jafari, Arezou; Omidkhah, Mohammadreza; Nezhad, Javad Razavi

    2018-01-01

    The unique characteristics of materials at the nanoscale make them a good candidate to use in the enhanced oil recovery (EOR) processes. Therefore, in this study, the effect of functionalized multi-walled carbon nanotube/silica nanohybrids on the oil recovery factor is investigated experimentally and nanofluids were injected into a glass micromodel for the first time. The nanohybrids synthesized by using sol-gel method. Micromodels as microscale apparatuses considered as 2D porous medium. Because they enable visual observation of phase displacement behavior at the pore scale. Distillated water used as the dispersion medium of nanoparticles for nanofluids preparation. A series of runs designed for flooding operations included water injection, carbon nanotube/water injection and two nanohybrids with different weight of MWCNT to the overall weight of the nanohybrid structure (10% and 70%) into the distilled water. Also, the oil recovery factor was considered as the goal parameter to compare the results. It has been found that functionalized multi-walled carbon nanotube/silica nanohybrids have a great potential in enhanced oil recovery processes. Results showed that addition of nanohybrids into distillate water causes enhancement of sweep efficiency. In other words, the fingering effect decreases and higher surface of porous medium is in contact with the injected fluid. So the higher amount of oil can produce from the porous medium consequently. By injecting nanofluid with 0.1 wt. % of carbon nanotube, the oil recovery factor increases about 11 % in comparison with water injection alone. Also by increasing the weight of MWCNT to the overall weight of the nanohybrid structure from 10% to 70%, the oil recovery factor increases from 35% to 39%.

  5. Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2016-01-01

    Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products...... cause sporulation, reducing the risk of clogging. Substrate released during sporulation can be utilized by attached vegetative bacteria and they will continue growing and producing surfactant, which prolongs the effect of the injected substrate. The simulation scenarios show that application...... of the spore-forming bacteria gives a higher total production of surfactant and the reduced risk of clogging, leading to an increased period of production and a higher oil recovery....

  6. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  7. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  8. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  9. Sequential enrichment of microbial population exhibiting enhanced biodegradation of crude oil

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Harayama, Shigeaki.

    1995-01-01

    The distribution of oil-degrading bacteria in the coastal waters and sediments of Hokkaido, Japan, was surveyed. It was found that the potential of mixed microbial populations to degrade weathered crude oil was not confined to any ecological components (water or sediment) nor to the sampling stations. One microbial culture that was stable during repeated subculturing degraded 45% of the saturates and 20% of the aromatics present in crude oil in 10 days during the initial screening. The residual hydrocarbons in this culture were extracted by chloroform and dispersed in a fresh seawater-based medium and subsequently inoculated with microorganisms from the first culture. After full growth of the second culture, the residual hydrocarbons were extracted and dispersed in a fresh medium in which microorganisms from the second culture had been inoculated. This sequential process was carried out six times to enrich those microorganisms that grew on the recalcitrant components of crude oil. After repeated exposure of the residual crude oil to the enriched microorganisms, about 80% of the initially added crude oil was degraded. The cultures obtained after each enrichment cycle were kept, and the degradation of fresh crude oil by the enriched microorganisms was monitored. The degrading activity of the enriched cultures increased as the number of enrichment cycles increased. A microbial population that had been selected six times on the residual crude oil could degrade 70% of the saturates and 30% of the aromatics of crude oil, indicating that growth of a microbial population on residual crude oil improved its ability to biodegrade crude oil. 21 refs., 2 tabs., 7 figs

  10. Investigation of biobased and petroleum base oils in the entire spectrum of lubrication regimes

    Science.gov (United States)

    The tribological properties of biobased and petroleum-based base oils in the entire lubrication regime were investigated. High oleic sunflower oil (HOSuO) and commercially available polyalphaolefin (PAO-6) were selected to represent biobased and petroleum-based base oils, respectively. These two oil...

  11. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms

    OpenAIRE

    Techtmann, Stephen M.; Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Hazen, Terry C.; Conmy, Robyn; Santo Domingo, Jorge W.

    2017-01-01

    To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in bio...

  12. Community-based oil spill response in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Banta, J. [Prince William Sound Regional Citizen' s Advisory Council, Anchorage, AK (United States); Munger, M. [Cook Inlet Regional Citizen' s Advisory Council, Kenai, AK (United States)

    2006-07-01

    The Prince William Sound Regional Citizen's Advisory Council and the Cook Inlet Regional Citizen's Advisory Council are independent, non profit organizations formed in 1989 following the Exxon Valdez oil spill to promote the concept of community-based oil spill response (COSR) in their respective regions. COSR involves local citizens in responding to oil spilled in waters they rely upon for income, recreation and subsistence. The 2 advisory councils recently held a Community Oil Spill Response Forum to review the status of existing COSR teams and to share information about past and future COSR-related efforts. The meeting served as an information exchange process about regulatory programs, COSR variations in communities and harbors, training, and personnel issues. Key groups attending the forum were harbor masters, Alaska Department of Environmental Conservation, United States Coast Guard, existing COSR teams, oil response organizations, local community governments, and volunteers from the advisory councils. This paper was based on the notes taken from the forum. It was agreed that the current system is inadequate in its response to small spills that are frequently associated with non-tank vessels. It was suggested that improved capacity for community-based response could address the situation. It was also suggested that work groups should meet on an annual or biannual basis to continue to educate responders and communities about oil spill response. 7 refs.

  13. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs....

  14. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress

    Directory of Open Access Journals (Sweden)

    Xiaofei Sun

    2017-03-01

    Full Text Available The injected fluids in secondary processes supplement the natural energy present in the reservoir to displace oil. The recovery efficiency mainly depends on the mechanism of pressure maintenance. However, the injected fluids in tertiary or enhanced oil recovery (EOR processes interact with the reservoir rock/oil system. Thus, EOR techniques are receiving substantial attention worldwide as the available oil resources are declining. However, some challenges, such as low sweep efficiency, high costs and potential formation damage, still hinder the further application of these EOR technologies. Current studies on nanoparticles are seen as potential solutions to most of the challenges associated with these traditional EOR techniques. This paper provides an overview of the latest studies about the use of nanoparticles to enhance oil recovery and paves the way for researchers who are interested in the integration of these progresses. The first part of this paper addresses studies about the major EOR mechanisms of nanoparticles used in the forms of nanofluids, nanoemulsions and nanocatalysts, including disjoining pressure, viscosity increase of injection fluids, preventing asphaltene precipitation, wettability alteration and interfacial tension reduction. This part is followed by a review of the most important research regarding various novel nano-assisted EOR methods where nanoparticles are used to target various existing thermal, chemical and gas methods. Finally, this review identifies the challenges and opportunities for future study regarding application of nanoparticles in EOR processes.

  15. Remediation of hydrocarbon contaminants in cold environments - Electrokinetically enhanced bioremediation and biodegradable oil sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Suni, S. [Helsinki Univ. (Finland). Dept. of Environmental and Ecological Sciences

    2006-07-01

    winter in the Baltic Sea. In addition, the effect of drying microbial suspension on an oil sorbent to enhance oil degradation of the oily sorbents was investigated. Microbial treatment of oil sorbents could be beneficial in mineral soils with low initial microbial density if fast degradation is of importance. Otherwise, it may not be worthwhile. (orig.)

  16. Enhancement of the Norfloxacin Antibiotic Activity by Gaseous Contact with the Essential Oil of Croton zehntneri

    Science.gov (United States)

    Coutinho, HDM; Matias, EFF; Santos, KKA; Tintino, SR; Souza, CES; Guedes, GMM; Santos, FAD; Costa, JGM; Falcão-Silva, VS; Siqueira-Júnior, JP

    2010-01-01

    This is the first on the modulation of norfloxacin antibiotic activity by the volatile compounds of an essential oil. We report the chemical composition and antibiotic modifying activity of the essential oil extracted from the leaves of Croton zehntneri Pax et Hoffm (variety estragole), using the minimal inhibitory dose method and gaseous contact. The leaves of Croton zehntneri Pax et Hoffm (Euphorbiaceae) were subjected to hydrodistillation, and the essential oil extracted was examined with respect to the chemical composition, by gas chromatography-mass spectrometry (GC/MS), and to inhibitory activity of efflux pump by gaseous contact. The main component of the essential oil of C. zehntneri was estragole (76,8%). The gaseous components of the oil enhanced the inhibition zone of norfloxacin in 39,5%. This result shows that this oil influences the antibiotic activity of norfloxacin, possibly affecting the bacterial NorA efflux system, and may be used as an adjuvant in the antibiotic therapy of multidrug resistant pathogens. PMID:21264094

  17. Comparison of steam-based processes for the Orinoco heavy oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.; Gonzalez, K.; Bashbush, J.L.; Cova, J. [Schlumberger, Piso (Venezuela, Bolivarian Republic of)

    2009-07-01

    A workflow comparison of different oil recovery methods suitable for use in the Orinoco oil belt in Venezuela were presented. The aim of the engineering study was to determine the economic feasibility and process performance of steam assisted gravity drainage (SAGD), horizontal alternating steam drive (HASD) and single well steam assisted gravity drainage (SW-SAGD). The workflow study included a technical screening of the methods as well as an economic evaluation model that considered energy requirements, incremental oil production and production costs. The effect of steam displacement and gravity segregation was considered. Each of the methods was then linked to an optimization routine in order to evaluate influential parameters related to the net present value (NPV). Recovery methods were then compared using the optimized response for the reservoir conditions of 2 sand thicknesses typically found in the Orinoco belt. The study showed that all steam-based methods increased oil at the end of a 10-year period. The percentage of oil recovery increased in thicker reservoirs. It was concluded that carbon dioxide (CO{sub 2}) sequestration costs will increase the cost of all enhanced oil recovery (EOR) methods. 8 refs., 10 tabs., 27 figs.

  18. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  19. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  20. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  1. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  2. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  3. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    catalysts, and consumes less hydrogen, if methanation can be mitigated. Our methanation data on Pt and Rh indicate effective suppression of methanation. Our data also show that our catalysts are less susceptible to coking; and unlike NiMo and CoMo, precious metal catalysts are not deactivated by water, a by-product of HDO of algae oil. Finally, our catalysts do not need to be sulfided to be active. A rigorous techno-economic analysis of our process for commercial scale production of 10,000 barrels per day of hydrotreated algae oil, with nutraceuticals co-product claiming only 0.05% of the raw algae oil, indicates an estimated plant gate price of ~$10/gal. Sensitivity analysis shows that critical parameters affecting sale price include (1) algae doubling time (2) biomass oil content (3) CAPEX, and (4) moisture content of post extracted algae residue. Modest improvements in these areas will result in enhanced and competitive economics. Based on a life cycle assessment for greenhouse gas emission, we found that if algae oil replaced 10% of the US consumption, this would result in a CO2e reduction of 210,000 tons per day. Improving the drying process for animal feed by 50% would result in further significant reduction in CO2e.

  4. Enhancing National Participation in the Oil and Gas Industry in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Heum, Per; Mwakali, Jackson A.; Ekern, Ole Fredrik; Byaruhanga, Jackson N.M.; Koojo, Charles A.; Bigirwenkya, Naptali K.

    2011-07-01

    In realization of the petroleum industry potential, Uganda's Oil and Gas policy seeks to optimize wealth creation from the industry to enhance the welfare of the citizens. This study has examined how Uganda may benefit from the participation of Ugandans and Ugandan firms in the petroleum activities. In the literature this is frequently referred to by applying the term local content. Local in this sense, however, refers to national as opposed to international or foreign contributions. Thus, we apply the concept national content to avoid any misunderstanding. Focus of our study has been on identifying the opportunities, gaps and challenges posed by the petroleum industry to recommend necessary measures to maximize the benefits of national content otherwise defined as national participation.The study has examined lessons Uganda may draw on from other countries and from the economic literature on industrial growth and national wealth. Furthermore, the specific point of departure for Uganda with regard to expected petroleum activities, Uganda's industrial base and its human resource base, has been investigated. On this basis, the study has made its recommendations.(eb)

  5. Brine-stable polymers for enhanced oil recovery. Salzstabile Polymere fuer die tertiaere Erdoelfoerderung

    Energy Technology Data Exchange (ETDEWEB)

    Boessler, H.H.

    1986-04-01

    New water soluble acrylic polymers should be developed for use as mobility control agents in enhanced oil recovery. Different types of acrylic polymers in aqueous solution, as solid products, and as emulsion in mineral oil have been polymerized. Polymethacrylamide, copolymers with cationic and anionic monomers (polyampholytes) and copolymers of (meth)acrylamide with carboxylic, phosphonic and sulfonic acids monomers have been tested. At a shear rate between 10 and 50 s/sup -1/, which should be representative for polymer flooding, nearly all polymers had a viscosity below 10 mPa.s, when dissolved in high-salinity brine. Only copolymers with acrylamide and sulfonic-acid-monomers had a viscosity of about 10 mPa.s and showed additional oil recovery in laboratory core-flood tests. With 20 figs.

  6. OPTIMIZATION OF THE MIXING PROCESS PARAMETERS TO ENHANCE THE DIELECTRIC STRENGTH OF MINERAL AND PALM FATTY ACID ESTER INSULATING OIL BLENDS

    Directory of Open Access Journals (Sweden)

    S.N. Norhan

    2017-09-01

    Full Text Available Mineral insulating (MI oils are well-established as insulating oils in power transformers for almost 100 years owing to their low cost, wide availability and good dielectric performance. However, a large number of studies have been carried out over the years to develop substitutes for MI oils since these oils are non-biodegradable and moreover, they are derived from petroleum, which is a non-renewable source. Blending MI oils with natural ester insulating (NEI oils is an innovative approach which fulfils this purpose since this approach has been proven to enhance the dielectric properties of insulating oils. However, there is a dearth of studies concerning the effects of mixing process parameters on the dielectric strength of MI-NEI oil blends. This information is important in order to produce insulating oils with favorable dielectric properties. In this study, the two-level (2k factorial design is used to determine the significance of mixing process parameters (specifically stirring speed and temperature in influencing the dielectric strength (AC breakdown voltage of an MI-NEI oil blend. The oil blend is produced by mixing Nytro Libra MI oil with palm fatty acid ester (PFAE oil at a volume ratio of 80:20 using a hot plate magnetic stirrer. The stirring speed and temperature is varied from 250 to 550 rpm and 30 to 90˚C, respectively. AC breakdown voltage test is performed using Megger OTS60PB portable oil tester in accordance with the ASTM D1816 standard test method to determine the dielectric strength of the oil blends, whereby the gap distance between the electrodes is 1 mm. Based on the results of the 2k factorial design, it is found that the combination of stirring speed and temperature has the most significant effect on the AC breakdown voltage, with a percentage contribution of 60.45%. A regression model is also developed to predict the AC breakdown voltage as a function of the stirring speed and temperature. Response surface methodology

  7. Off-shore enhanced oil recovery in the north sea: matching CO_2 demand and supply given uncertain market conditions

    Science.gov (United States)

    Compernolle, Tine; Welkenhuysen, Kris; Huisman, Kuno; Piessens, Kris; Kort, Peter

    2015-04-01

    Introduction CO2 enhanced oil recovery (CO2-EOR) entails the injection of CO2 in mature oil fields in order to mobilize the oil. In particular, the injected CO2 reduces the oil's viscosity and acts as a propellant, resulting in an increased oil extraction rate (Leach et al., 2011). Given uncertainty in both oil price and CO2 price under the EU ETS system, aim of this study is to analyze under which economic conditions a CO2 exchange can be established between a CO2 supplier (an electricity producer for whom CO2 is a by-product) and a CO2 user (an offshore oil company that exploits oil fields in the North Sea and needs CO2 for enhanced oil recovery). Methodology A techno-economic simulation tool, PSS IV, was developed to provide investment decision support on integrated CO2-EOR projects (Welkenhuysen et al., 2014). Until now, a fixed onshore supply of CO2 was presumed. An economic optimization model is now developed for both the CO2 producer and the CO2 user. Because net present value and discounted cash flow methods are inadequate to deal with issues like uncertainty and the irreversibility of an investment decision, the real options theory is applied (Dixit and Pindyck, 1994). The way in which cooperation between the companies can take place, will be studied using game theoretical concepts (Lukas and Welling, 2014). Economic and technical data on CO2 capture are available from the PSS database (Piessens et al., 2012). Data on EOR performance, CO2 requirements and various costs are taken from literature (BERR, 2007; Klokk et al., 2010; Pershad et al., 2012). Results/Findings It will be shown what the impact of price uncertainty is on the investment decision of the electricity producer to capture and sell CO2, and on the decision of the oil producer to make the necessary investments to inject CO2 for enhanced oil recovery. Based on these results, it will be determined under which economic conditions a CO2 exchange and transport can take place. Furthermore, also the

  8. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  9. Classification of enhanced oil recovery methods by lithology ...

    African Journals Online (AJOL)

    In this article classified EOR methods base on lithology of the reservoirs and investigated the frequent EOR method (gas injection) in the carbonate reservoir that is the most reservoir lithology in Iran, gas has low viscosity and due to this property we need some complementary methods like foam flooding to overcome this ...

  10. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea.

    Science.gov (United States)

    Kamarudin, Amirah N; Lai, Kok S; Lamasudin, Dhilia U; Idris, Abu S; Balia Yusof, Zetty N

    2017-01-01

    Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea . Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes ( THI4 , THIC , TH1 , and TPK ) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings.

  11. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  12. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  13. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  14. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms.

    Directory of Open Access Journals (Sweden)

    Pedro Bullon

    Full Text Available Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old and old (24 months old rats.Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA, as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

  15. Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil

    International Nuclear Information System (INIS)

    Yin, Xiulian; Ma, Haile; You, Qinghong; Wang, Zhenbin; Chang, Jinke

    2012-01-01

    Highlights: ► Four enhancing methods for preparing biodiesel were compared systematically. ► Two new enhancing methods, FPUI and PUI, were applied to prepare biodiesel. ► The energy consumptions of the four enhancing methods were studied. ► UIMS and PUI used less catalyst, methanol, energy consumption and shorter time. -- Abstract: Four different enhancing methods including mechanical stirring (MS), flat plate ultrasonic irradiation (FPUI), flat plate ultrasonic irradiation with mechanical stirring (UIMS) and probe ultrasonic irradiation (PUI) were studied to select a better one that need less catalyst, energy consumption and time to reach equilibrium for preparing biodiesel through transesterification of sunflower oil. The molar ratio of methanol to oil (3:1, 4:1, 5:1, 6:1, 7:1, 10:1 and 15:1), the catalyst concentration (0.5 wt.%, 1.0 wt.%, 1.5 wt.% and 2.0 wt.% of the weight of oil), the equilibrium time and energy consumption were studied. The PUI and UIMS methods reached the highest biodiesel conversion when methanol to oil ratio was 5:1 while that for MS was 6:1 and for FPUI was7:1. The suitable catalyst concentration for the reaction was 1.5 wt.%. At the same condition, the PUI and UIMS reached maximum biodiesel conversion about 25 min and that for MS and FPUI was about 50 min. The energy consumption of PUI and UIMS had no significant difference and were 0.19 kW h, 0.18 kW h, respectively. Results showed that under the same condition, UIMS and PUI used less catalyst, less methanol, shorter time and less energy consumption than MS and FPUI with the same biodiesel conversion.

  16. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  17. Harnessing Geothermal Energy from CO2 Enhanced Oil Recovery (EOR) Operations

    Science.gov (United States)

    Saar, M. O.; Randolph, J. B.

    2012-12-01

    Recent geotechnical research shows that geothermal heat can be efficiently mined by circulating CO2 through naturally permeable, porous rock formations. This method, called CO2 Plume Geothermal (CPG), targets the same geologic reservoirs that are suitable for deep saline aquifer CO2 sequestration or enhanced oil recovery (EOR). While previous investigations have focused on CO2-based heat mining from saline aquifers, here we present new research that is primarily concerned with EOR reservoirs, specifically those using a CO2 flood. EOR operations provide excellent opportunities for economically-favorable geothermal energy recovery, assuming subsurface temperatures are sufficient, because the majority of costly infrastructure (i.e., wells) is in place. Moreover, the subsurface characteristics that make a site suitable for hydrocarbon recovery -- at least moderate reservoir permeability and porosity, and a low-permeability capping feature -- help ensure that fluid can be circulated for heat extraction and that CO2 will be contained. However, heat extraction from the CO2 + water/brine + hydrocarbon EOR production stream is challenging, requiring fluid separation and multiple binary and/or direct power systems (depending on site-specific fluid composition and conditions). We discuss several scenarios, encompassing multiple power system configurations, for harnessing geothermal energy from CO2 EOR operations. In addition, we present preliminary numerical modeling results for net power production from such EOR operations -- accounting for wide variation in produced fluid temperature, pressure, and composition -- and consider the economic implications of power sales for EOR sites.

  18. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  19. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    Science.gov (United States)

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Biodegradation Potential of Oil-based Drill Cuttings Encapsulated ...

    African Journals Online (AJOL)

    Biodegradation potential of slabs made from oil-based drill cuttings encapsulated with cement in a soil environment has been experimentally investigated. Results of soil analyses show that physico-chemical and biological characteristics of the soil environment as; pH (5.6 – 3.9), temperature (27.7 – 39.5 oC), redox ...

  1. Biodegradation Potential of Oil-based Drill Cuttings Encapsulated ...

    African Journals Online (AJOL)

    Michael Horsfall

    equally divided into 5 plastic containers. Cement encapsulated oil-based drill cuttings were prepared by ... Into each of the plastic containers containing the soil sample, one slab each of the cement encapsulated drill cuttings was ..... Estimating biodegradable municipal solid waste diversion from landfill. Phase 1 Review of ...

  2. Performances of cutting fluids in turning. Vegetable based oil - RV

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluco, Walter

    1999-01-01

    Scope of the present measurement campaign is the evaluation of the cutting fluid performance. The report presents the standard routine and the results obtained when turning stainless steel and brass with a commercial vegetable based oil called RV. The methods were developed to be applicable...

  3. Self-Nanoemulsifying Drug Delivery Systems Based on Melon Oil ...

    African Journals Online (AJOL)

    Erah

    Preformulation istropicity test. Different batches of SNEDDS were prepared based on escalating ratios of melon oil, cow fat, surfactants and co-surfactant. The .... indomethacin. Five replicate determinations were carried out and the mean taken to obtain the absolute drug content for each batch. Drug dissolution studies.

  4. Acetic acid based oil palm biomass refining process

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Keijsers, E.R.P.; Lips, S.J.J.; Dam, van J.E.G.; Engelen-Smit, N.P.E.

    2011-01-01

    The invention relates to a process for refining a biomass from empty fruit bunches of oil palm with a dry matter content of 5-95 wt.%, based on the total wt. of the biomass, where the process comprises the subsequent stages of (a) water extn. under atm. pressure conditions and at pH of 5-7, (b) pre

  5. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic

  6. Percutaneous penetration enhancement effect of essential oil of mint (Mentha haplocalyx Briq. on Chinese herbal components with different lipophilicity

    Directory of Open Access Journals (Sweden)

    Jingyan Wang

    2014-10-01

    Conclusions: Mint oil at proper concentration could effectively facilitate percutaneous penetration of both lipophilic and hydrophilic drugs, and exhibit higher efficiency for moderate hydrophilic drugs. Mechanisms of penetration enhancement by mint oil could be explained with saturation solubility, SC/vehicle partition coefficient and the secondary structure change of SC.

  7. Off-shore enhanced oil recovery in the North Sea : The impact of price uncertainty on the investment decisions

    NARCIS (Netherlands)

    Compernolle, T.; K, Welkenhuysen,; Huisman, Kuno; K, Piessens,; Kort, Peter

    2017-01-01

    Although CO2 Capture and Storage (CCS) is considered a key solution for CO2 emission mitigation, it is currently not economically feasible. CO2 enhanced oil recovery can play a significant role in stimulating CCS deployment because CO2 is used to extract additional quantities of oil. This study

  8. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir

  9. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott M. [Illinois State Geological Survey, Champaign, IL (United States); Krapac, Ivan G. [Illinois State Geological Survey, Champaign, IL (United States); Damico, James R. [Illinois State Geological Survey, Champaign, IL (United States); Okwen, Roland T. [Illinois State Geological Survey, Champaign, IL (United States); McKaskle, Ray W. [Illinois State Geological Survey, Champaign, IL (United States)

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  10. OSIS: A PC-based oil spill information system

    International Nuclear Information System (INIS)

    Leech, M.V.; Tyler, A.; Wiltshire, M.

    1993-01-01

    Warren Spring Laboratory and BMT Ceemaid Ltd. are cooperating to produce an Oil Spill Information System (OSIS) that will have worldwide application. OSIS is based on EUROSPILL, a spill simulation model originally developed under programs sponsored by the European Commission and the Marine Pollution Control Unit of the United Kingdom government's Department of Transport. OSIS is implemented in the Microsoft Windows 3.x graphical environment on a personal computer. A variety of options enables the user to input information on continuous or instantaneous spills of different types of oil under variable environmental conditions, to simulate the fate of oil and the trajectory of a spill. Model results are presented in the forms of maps, charts, graphs, and tables, displayed in multiple windows on a color monitor. Color hard copy can be produced, and OSIS can be linked to other Windows software packages, providing the opportunity to create a suite of spill incident management tools

  11. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  12. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  13. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2016-01-01

    Full Text Available Application of Enhanced Oil Recovery (EOR in oil and gas industry is very important to increase oil recovery and prolong the lifetime of a reservoir but it has been very costly and losing properties of EOR agent due to harsh condition. Nanoparticles have been used in EOR application since they are not degradable in reservoir condition and used in smaller amount compared to polymer usage. Commonly, EOR techniques are focusing on increasing the sweep efficiency by controlling the mobility ratio between reservoir fluid and injected fluid. Thus, this research aimed to analyze the nanofluid viscosity at different particle size and shape, volumetric concentration and types of dispersing fluid, as well as to determine the oil recovery performance at different nanofluid concentration. The nanofluid viscosity was investigated at nanoparticle sizes of 15nm and 60nm and shapes of 15nm spherical-solid and porous. Five nanofluid samples with concentration ranging from 0.1wt.% to 7wt.% were used to investigate the effect of volumetric concentration. Distilled water, ethanol, ethylene glycol (EG and brine were used for the effect of dispersing fluids. Oil recovery was investigated at five different concentrations of nanofluid samples through flooding test. It was found that viscosity of nanofluid increased with decreasing particle size and increasing volumetric concentration. Solid shape particle and increasing dispersing fluid viscosity resulted in higher nanofluid viscosity. The higher the nanofluid concentration, the higher the oil recovery obtained. It can be concluded that nanofluid properties have been significantly affected by the environment and the particle used for potential EOR application.

  14. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  15. Dietary krill oil enhances neurocognitive functions and modulates proteomic changes in brain tissues of d-galactose induced aging mice.

    Science.gov (United States)

    Cheong, Ling-Zhi; Sun, Tingting; Li, Yanyan; Zhou, Jun; Lu, Chenyang; Li, Ye; Huang, Zhongbai; Su, Xiurong

    2017-05-24

    The effects of dietary krill oil on neurocognitive functions and proteomic changes in brain tissues of d-galactose-induced aging mice were evaluated. Dietary krill oil enhanced the neurocognitive functions of aging mice with a significant (P aging mice administered with krill oil showed significant (P changes in the serum malondialdehyde (MDA) level. In terms of proteomic changes, krill oil resulted in upregulation of the Celsr3 and Ppp1r1b gene expression, which contribute to brain development, learning and memory behavior processes. In particular, the Ppp1r1b gene is associated with the inhibition of dopamine releases, which decreases the motivation for learning.

  16. Potential of wheat bran to promote indigenous microbial enhanced oil recovery.

    Science.gov (United States)

    Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X

    2017-06-01

    Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

  17. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.

    Science.gov (United States)

    Wei, Bing

    2015-12-10

    This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    Science.gov (United States)

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  19. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    Science.gov (United States)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  20. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    International Nuclear Information System (INIS)

    Reichmann, S.; Amro, M.; Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A.

    2016-09-01

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  1. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  2. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation. © 2016 American Society for Nutrition.

  3. New research progress of vegetable oil-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Hongjie LIU

    2016-10-01

    Full Text Available This paper summarizes the latest progress for vegetable oil-based polyurethanes mainly from the view of thermoset and thermoplastic. Firstly, the modification methods for traditional thermoset polyurethane are introduced, including physical modification methods (filling and alloying and chemical modification methods (copolymerization grafting, crosslinking and interpenetrating polymer network. Materials used for physical modification mainly contain inorganic materials such as SiO2 and organic substances such as cellulose. Grafting copolymerization of styrene, acrylate and other monomers with polyurethane is the main method of chemical modification. The characteristics, preparations and application fields of thermoplastic polyurethane are reviewed, and the preparations, performances and applications of oleic acid-based thermoplastic polyurethane are chiefly presented. The development prospects of vegetable oil-based polyurethane are put forward. Surface-initiated living polymerization and other methods are used to controllable chemical modification of the traditional thermoset polyurethane and click chemistry method is uesd to promote multi-functionalization of the thermoplastic polyurethane.

  4. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  5. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    International Nuclear Information System (INIS)

    Mortley, Aba; Bonin, H.W.; Bui, V.T.

    2007-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13 C solid state NMR spectra imply limited sample degradation with increasing radiation

  6. Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry

    International Nuclear Information System (INIS)

    Popli, Sahil; Rodgers, Peter; Eveloy, Valerie

    2013-01-01

    generated through gas turbine compressor inlet air cooling using the waste heat powered absorption refrigeration scheme is of approximately 5264 MWh per year, compared to 1774 MWh for evaporative cooling. When integrated with other plant process cooling applications, the proposed scheme would not only permit to both meet gas turbine compressor inlet air cooling loads throughout the year, including peak summer loads, but also provide other process cooling during off-peaks time periods. The economic paypack period of the waste heat recovery scheme is estimated to range from 1.3 to 3.4 years for a three-chiller system based on present and project utility prices for NGPPs in the United Arab Emirates. This study suggests that waste heat absorption refrigeration is an attractive solution to enhance electrical power generation in Middle East NGPPs through gas turbine inlet air cooling, both in terms of thermodynamic and economic feasibility. This strategy would also reduce plant natural gas consumption for power generation, hence production costs and emissions. - Highlights: ► Efficiency enhancement of oil/gas plant utilizing gas turbines for power generation. ► Gas turbine inlet air cooling scheme for high ambient temperature and RH conditions. ► Proposed scheme uses absorption chillers powered by GT exhaust gases waste heat. ► Scheme performance superior to evaporative coolers and vapor compression chillers. ► Favorable scheme economic payback period and significant reduction in NG consumption.

  7. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s −1 ). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  8. Reservoir characterization and enhanced oil recovery research. Annual report, September 1988--August 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  9. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  10. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  11. Oil inventories should be based on margins, supply reliability

    International Nuclear Information System (INIS)

    Waguespack, K.; Cantor, B.D.

    1996-01-01

    US oil inventories have plummeted to their lowest recorded levels this year, leading industry observers to conclude that refiners have adopted new just-in-time (JIT) inventory policies. Total crude oil inventories are about 300 million bbl -- 8% below the 10-year average. Distillate inventories posted similar declines this year because of unusually cold winter temperatures and refiners' reluctance to build sufficient stocks in the autumn months. Gasoline stocks are 20% below the 10-year average at 200 million bbl, despite forecasts of record-high gasoline demand this summer. The sudden drop in crude and product inventories this year is widely considered a sign that refiners have implemented JIT, signaling a permanent shift to reduced stocks. The authors submit that the shift towards reduced oil inventories is not related to a concerted adoption of JIT by US refiners, and that oil inventory management decisions should instead be based on refining margins and supply reliability. The paper discusses the JIT revolution and the optimal-inventory model

  12. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications

    International Nuclear Information System (INIS)

    Colangelo, Gianpiero; Favale, Ernani; Risi, Arturo de; Laforgia, Domenico

    2012-01-01

    Highlights: ► This work reports experimental results for nanofluids using diathermic oil as base fluid. ► Nanofluids with CuO, Al 2 O 3 , ZnO and Cu, with different shapes and concentrations have been tested. ► Thermal conductivity enhancement of nanofluids with diathermic oil is higher than those with demineralized water. ► Better results were obtained with ZnO, for nanofluids with metal oxide nanoparticles. -- Abstract: The work reported in this paper shows the experimental results from a study on diathermic oil based nanofluids. Diathermic oil finds application in renewable energy, cogeneration and cooling systems. For example, it is used in solar thermodynamic or biomass plants, where high efficiency, compact volumes and high energy fluxes are required. Besides diathermic oil is very important in those applications where high temperatures are reached or where the use of water or vapor is not suitable. Therefore an improvement of diathermic oil thermo-physical properties, by using of nanoparticles, can increase the performance of the systems. In literature there are not many experimental data on diathermic oil based nanofluids because many experimental campaigns are focused on water nanofluids. Samples of nanofluids, with nanoparticles of CuO, Al 2 O 3 , ZnO and Cu, having different shapes and concentrations varying from 0.0% up to 3.0%, have been produced and their thermal conductivity has been measured by means of hot-wire technique, according to the standard ASTM D 2717-95. Measurements were carried out to investigate the effects of volume fraction, particle size of nanoparticles on the thermal conductivity of the nanofluid. The effect of temperature has been also investigated in the range 20–60 °C. A dependence was observed on the measured parameters and the results showed that the heat transfer performance of diathermic oil enhances more than water with the same nanoparticles.

  14. Review of statistical methods used in enhanced-oil-recovery research and performance prediction. [131 references

    Energy Technology Data Exchange (ETDEWEB)

    Selvidge, J.E.

    1982-06-01

    Recent literature in the field of enhanced oil recovery (EOR) was surveyed to determine the extent to which researchers in EOR take advantage of statistical techniques in analyzing their data. In addition to determining the current level of reliance on statistical tools, another objective of this study is to promote by example the greater use of these tools. To serve this objective, the discussion of the techniques highlights the observed trend toward the use of increasingly more sophisticated methods and points out the strengths and pitfalls of different approaches. Several examples are also given of opportunities for extending EOR research findings by additional statistical manipulation. The search of the EOR literature, conducted mainly through computerized data bases, yielded nearly 200 articles containing mathematical analysis of the research. Of these, 21 were found to include examples of statistical approaches to data analysis and are discussed in detail in this review. The use of statistical techniques, as might be expected from their general purpose nature, extends across nearly all types of EOR research covering thermal methods of recovery, miscible processes, and micellar polymer floods. Data come from field tests, the laboratory, and computer simulation. The statistical methods range from simple comparisons of mean values to multiple non-linear regression equations and to probabilistic decision functions. The methods are applied to both engineering and economic data. The results of the survey are grouped by statistical technique and include brief descriptions of each of the 21 relevant papers. Complete abstracts of the papers are included in the bibliography. Brief bibliographic information (without abstracts) is also given for the articles identified in the initial search as containing mathematical analyses using other than statistical methods.

  15. Flowsheet optimization of a lubricant base oil hydrotreatment process

    Directory of Open Access Journals (Sweden)

    Medeiros J. L.

    2004-01-01

    Full Text Available Unsaturated, nitrogenated and sulfured compounds may reach undesirable levels in lubricant base oils, requiring hydrotreatment (HDT at high temperatures and pressures. HDT processes are well known for their high capital and operational costs due to the use of hydrogen, compressors and multistage heterogeneous reactors. Process costs are thus highly dependent on the applied conditions. An oversized process entails unnecessary costs and capital investment. On the other hand, mild reaction conditions lead to unspecified products. This work analyzes the process using a compositional modeling and a kinetic framework developed previously (Barbosa et al., 2002 for the HDT of lubricant base oils. The industrial reactor is rigorously modeled on an adiabatic and multistage configuration. For the remaining equipment in the flowsheet, we adopt shortcut models for compressors and exchangers. The process is then optimized in terms of its variables subject to product specification constraints.

  16. Fast mutual-information-based contrast enhancement

    Science.gov (United States)

    Cao, Gang; Yu, Lifang; Tian, Huawei; Huang, Xianglin; Wang, Yongbin

    2017-07-01

    Recently, T. Celik proposed an effective image contrast enhancement (CE) method based on spatial mutual information and PageRank (SMIRANK). According to the state-of-the-art evaluation criteria, it achieves the best visual enhancement quality among existing global CE methods. However, SMIRANK runs much slower than the other counterparts, such as histogram equalization (HE) and adaptive gamma correction. Low computational complexity is also required for good CE algorithms. In this paper, we novelly propose a fast SMIRANK algorithm, called FastSMIRANK. It integrates both spatial and gray-level downsampling into the generation of pixel value mapping function. Moreover, the computation of rank vectors is speeded up by replacing PageRank with a simple yet efficient row-based operation of mutual information matrix. Extensive experimental results show that the proposed FastSMIRANK could accelerate the processing speed of SMIRANK by about 20 times, and is even faster than HE. Comparable enhancement quality is preserved simultaneously.

  17. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  18. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  19. Frequency Spectrum Method-Based Stress Analysis for Oil Pipelines in Earthquake Disaster Areas

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline. PMID:25692790

  20. Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhen; Zeng, Guangming; Kosa, Matyas; Huang, Danlian; Ragauskas, Arthur J.

    2014-11-07

    Light oil from pyrolysis, which accounts for ~10 % carbon yield of the starting biomass, is a complex aqueous product that is difficult to utilize and usually discarded. This work presents the feasibility of light oil as a sole carbon source to support the growth of Rhodococcus opacus (R. opacus) that in turn accumulate triacylglycerols as biodiesel feedstock. Two types of bacteria (R. opacus PD630 and DSM 1069) were selected in this study. Research results showed that after short adaption periods both strains can grow well on this complex carbon source, as proved by the consumption of oligomers and monomers in light oil. Lipid content by R. opacus PD630 and DSM 1069 was observed up to 25.8 % and 22.0 % of cell dry weight, respectively. Palmitic and stearic acids were found to be the predominant fatty acids in these bacterial cells. In addition, the light oil-based lipid production can be enhanced by reducing the pH value from 7 to 4, especially in case of DSM 1069.

  1. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  2. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  3. Comparison of rheological properties of graphene / carbon nanotube hydrogenated oil based biodegradable drilling fluid

    Science.gov (United States)

    Chai, Y. H.; Yusup, S.; Chok, V. S.; Irawan, S.; Singh, J. D. B. S.; Chin, B. L. F.

    2017-06-01

    An experimental investigation has been carried out to investigate the rheological properties of graphene / carbon nanotube hydrogenated oil based biodegradable drilling fluid at different nanoparticle loadings. The rheological behaviours of interest in this investigation are the viscosity and shear stresses of two different nanofluids respectively. The limiting parameters in this study are 25 ppm, 50 ppm and 100 ppm weight concentration at operating temperature ranging from 30°C to 50°C. Both nanofluids are subjected to shear rate ranging from 0 - 140 s-1 for comparison of rheological behaviours. Both samples’ viscosity reduces to base fluid’s viscosity value at higher shear rate with carbon nanotube-hydrogenated oil yielding higher viscosity compared to graphene-hydrogenated oil for all nanoparticle loadings at lower shear rate. Shear stress analysis also shows similar results with carbon nanotube based samples showing higher stress between the two at all particle loadings. Both samples show Newtonian behaviour that is similar to base fluid even at higher particle loadings. Analysis revealed both nanofluids yields close to zero yield stress even with the presence of graphene or carbon nanotube particles. The significance of this study shows that addition of low nanomaterials for enhancement of drilling fluids can improve its thermophysical properties without compromising the quality of drilling fluids such as viscosity and shear stress properties.

  4. Study of fuel properties of rubber seed oil based biodiesel

    International Nuclear Information System (INIS)

    Ahmad, Junaid; Yusup, Suzana; Bokhari, Awais; Kamil, Ruzaimah Nik Mohammad

    2014-01-01

    Graphical abstract: - Highlights: • This article presents the comparative studies of the fuel properties of rubber seed oil based biodiesel. • The design expert has been adopted for the optimization of the process variables. • The FTIR, cold flow properties and oxidation stability are the findings of present study. • All the fuel properties met the standards such as ASTM D6751 and EN 14214. • Present study reveals that rubber seed oil as a non-edible source potentially contributes for esters production. - Abstract: The scarcity of the fossil fuel, environmental pollution and food crisis are the world’s major issues in current era. Biodiesel is an alternative to diesel fuel, environment friendly and biodegradable and is produced from either edible or non-edible oils. In this study, a non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content of 45% were used for the production of biodiesel. The process comprises of two steps. The first step is the acid esterification to reduce the FFA value and the second step is the base transesterification. The response surface methodology (RSM) was used for parametric optimization of the two stage processes i.e. acid esterification and base transesterification. The yield of biodiesel was analyzed using gas chromatography. The FTIR (Fourier Transform Infra-Red) spectrum was also determined to confirm the conversion of fatty acid to methyl esters. The fuel properties were analyzed according to the ASTM D6751 and EN14214 and were compared with the previous finding of researchers. All analyzed properties fulfilled the biodiesel standard criteria

  5. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  6. Efficiency of recycled wool-based nonwoven material for the removal of oils from water

    NARCIS (Netherlands)

    Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Javancic, P.

    2007-01-01

    The aim of this study was to highlight the potential use of recycled wool-based nonwoven material for the removal of diesel fuel, crude, base, vegetable and motor oil from water. Sorption capacity of the material in water and in oil without water, oil retention, sorbent reusability and buoyancy in

  7. Effects of de-oiled palm kernel cake based fertilizers on sole maize ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of de-oiled palm kernel cake based fertilizer formulations on the yield of sole maize and cassava crops. Two de-oiled palm kernel cake based fertilizer formulations A and B were compounded from different proportions of de-oiled palm kernel cake, urea, muriate of potash and ...

  8. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  9. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  10. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  11. Enhanced oil recovery by improved waterflooding. Fourth annual report, October 1980-September 1981. [Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Craig, F.F. III; Passman, F.J.; Burtch, F.W.

    1982-05-01

    Energy Resourcs Co. Inc., and its subcontractor Elf Aquitaine Oil and Gas Company are conducting a 100-acre pilot polymer flood in the Storms Pool Field near Carmi, in White County, Illinois. The project is a cost-sharing venture with the United States Department of Energy (DOE). Preparation for the polymer flood began in September 1977, and the project is scheduled for completion in December 1983. This report reviews progress during the fourth year of performance (October 1980 through September 1981). The Storms Pool, once highly productive, has yielded over 12 million barrels of oil from the Waltersburg formation since its discovery in 1939. The field has been waterflooded for over 20 years and is now largely in stripper production with high watercuts at most producing wells. Material balance and recent electric logs indicate, however, that there is a substantial volume of movable oil still in place, presumably bypassed by the inefficient waterflood. The polymer flood is intended to improve the sweep efficiency, showing that the engineering, management, and financial resources required for such tertiary techniques can be applied to similar fields that might otherwise be abandoned for lack of investment by parties knowledgeable in enhanced oil technology. Preflush injection and polymer injection were both initiated during this period with total polymer injection now standing at 179,453 barrels (or about 6% pore volume). Laboratory testing has continued throughout the year with the emphasis being on field support (troubleshooting field problems and monitoring the field injection and production systems). No evidence of polymer break-through has been detected at the production wells. Details of the interference testing program and the radiotracer study executed during this period are also presented.

  12. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  13. Potentials of enhancing the physicochemical and functional characteristics of Nigella sativa oil by using the screw pressing technique for extraction

    International Nuclear Information System (INIS)

    Hamed, S.F.; Shaaban, H.A.; Ramadan, A.A.; Edris, A.E.

    2017-01-01

    In the current investigation the crude oil of Nigella sativa was extracted from seeds using hydraulic and screw pressing techniques. Different parameters were evaluated in order to find out the appropriate technique to enhance the physicochemical and functional-related characteristics of the extracted crude oil. Results showed that the acid and peroxide values were significantly lower in the screw pressed oil (SPO) than in the hydraulic pressed oil (HPO). The total phenolic content of the SPO was significantly higher than that of HPO. Evaluation of the oxidative stability using the Rancimat test showed that SPO recorded a much higher oxidative stability index (40.07 h) than HPO (0.51 h). The yield of the volatile oil fraction and its contents of thymoquinone isolated from the SPO were higher than that from the HPO. Biological evaluation revealed that the SPO had significantly higher antimicrobial activity than HPO against Listeria monocytogenes and Staphylococcus aureus at 40 μL/well. [es

  14. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  15. Rheological study of a water based oil well drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, Vikas; Sharma, V.P. [Department of Petroleum Engineering, Indian School of Mines, Dhanbad-826004, Jharkhand (India)

    2004-11-30

    Organic polymers are commonly used to control the rheology and filtrate loss required for water-based drilling fluids. An ecologically-friendly water-based drilling fluid was developed by studying the rheological behavior of tamarind gum and polyanionic cellulose on bentonite water suspensions. The effect of drilling fluid filtrate on formation damage was also analyzed. The drilling fluid that was developed has better rheological properties and fluid loss control which are required for optimum performance of oil well drilling. In addition, the drilling fluid filtrate exhibits minimum formation damage on sandstone cores.

  16. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  17. The fifth international conference on microbial enhanced oil recovery and related biotechnology for solving environmental problems: 1995 Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R. [ed.

    1995-12-31

    This volume contains 41 papers covering the following topics: field trials of microbial enhanced recovery of oil; control and treatment of sour crudes and natural gas with microorganisms; bioremediation of hydrocarbon contamination in soils; microbial plugging processes; microbial waste water treatment; the use of microorganisms as biological indicators of oils; and characterization and behavior of microbial systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  19. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  20. Speech Enhancement Based on Compressed Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2014-10-01

    Full Text Available Compressed sensing (CS is a sampled approach on signal sparsity-base, and it can effectively extract the information which is contained in the signal. This paper presents a noisy speech enhancement new method based on CS process. Algorithm uses a voice sparsity in the discrete fast Fourier transform (Fast Fourier transform, FFT, and complex domain observation matrix is designed, and the noisy speech compression measurement and de-noising are made by soft threshold, and the speech signal is sparsely reconstructed by separable approximation (Sparse Reconstruction by Separable Approximation, SpaRSA algorithm to restore, speech enhancement is improved. Experimental results show that the denoising compression reconstruction of the noisy signal is done in the algorithm, SNR margin is improved greatly, and the background noise can been more effectively suppressed.

  1. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  2. A coconut oil-rich meal does not enhance thermogenesis compared to corn oil in a randomized trial in obese adolescents.

    Science.gov (United States)

    LaBarrie, Janna; St-Onge, Marie-Pierre

    2017-01-01

    Consumption of medium chain triglycerides (MCT) in overweight adults increases thermogenesis and improves weight management. Coconut oil is a rich natural source of MCT, but its thermogenic effect is unknown. Our study evaluated the effects of a test oil enriched in coconut oil, on energy expenditure, satiety, and metabolic markers in a randomized, double blind, cross-over study. Fifteen children, age 13-18 years, body mass index >85th percentile for age and sex, were enrolled. Two test meals, containing 20 g of fat from either corn oil or a coconut oil-enriched baking fat (1.1 g of fatty acids with chain lengths ≤ 10C), were administered. A fasting blood sample was taken before breakfast and at 30, 45, 60, 120, and 180 min post-meal for measurement of metabolites. Thermic effect of food (TEF) was assessed over 6 h using indirect calorimetry. Satiety was measured using visual analog scales (VAS). There was no significant effect of fat type, time, or fat type × time interaction on TEF, appetite/satiety, glucose, and insulin area under the curve. There was a significant effect of fat type on leptin (P=0.027), triglycerides (P=0.020) and peptide YY (P=0.0085); leptin and triglyceride concentrations were lower and peptide YY concentrations were higher with corn oil consumption. A coconut oil-enriched baking fat does not enhance thermogenesis and satiety in children. Given that this is the only current study of its kind, more research is needed into the use of coconut oil as a tool in weight management in overweight and obese children.

  3. Spectrometric studies of additives to petroleum-based lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Przybylski, Z.; Borkowska, A.

    1981-01-01

    Results are presented for a study of Zn dialkyl dithiophosphates (ZDP) of the formula ((RO)(R'O)P(S)S)/sub 2/Zn (R and R' = identical or different C/sub 3/-C/sub 4/ alkyl or C/sub 6/-C/sub 16/ aryl groups) by the method of negative ion mass spectrometry (MS). ZDP serve as multifunctional additives to oils, particularly motor oils. The known methods (GC, spectrophotometry, and positive ion mass spectrometry) give more or less detailed characteristics of the R and R' groups in ZDP, but do not give the possibility to identify the ZDP containing different R and R'. In the Institute of Petroleum Technology in Krakow, with the use of negative ion MS, ZDP analysis, successfully used earlier for the study of petroleum carboxylic acids and synthetic sulfonic acids, was developed. The mass spectra of ZDP contain one group of peaks for the ((RO)/sub 2/PS/sub 2/)/sup -/ ion and a very weak line corresponding to the ((RO)/sub 2/PS)/sup -/ ion; the method offers the possibility to determine the type of substituents in ZDP (including two different residues) without preliminary conversion of them into simpler compounds and without removal of the oil base, which sometimes even facilitates registration of mass spectra.

  4. The new challenges for oil-based sovereign wealth funds

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire; Boulanger, Quentin

    2015-02-01

    Sovereign wealth funds (SWFs) are often presented as an effective instrument for managing hydrocarbon rents, reducing the impact of the volatility of oil or gas revenues on the economy, separating expenditure from income, and promoting a more transparent management of the rent. The asset allocation strategy has become more complex with the rapid rise in oil prices between 2007 and 2014, and the substantial financial reserves accumulated in hydrocarbon-producing countries, switching from an approach of wealth management to an approach of investment and financial optimisation. Hence, these funds have become major players on the international financial and industrial scene. Moreover, with the discovery of new hydrocarbon resources in recent years, particularly in Africa, the strategies of new funds appear to be moving towards a new goal of local economic development. But the unforeseen collapse of crude oil prices in recent months poses a new risk for some SWFs based on hydrocarbon revenues, which has to come to the aid of their economies and focus on their main principle of macro-economic stabilisation. (author)

  5. Hydrotreatment of bio-oil over Ni-based catalyst.

    Science.gov (United States)

    Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Zhang, Qi; Jiang, Ting

    2013-01-01

    Inexpensive non-sulfided Ni-based catalysts were evaluated for hydrotreatments using phenol as model compound. HZSM-5, a zeolite with different ratio of Si/Al and γ-Al(2)O(3) were impregnated with Ni(NO(3))(2) · 6H(2)O and calcined at 450 °C. Conversion rates and product distribution for treatment of phenol at 160-240 °C in the presence of catalysts with nickel loads of 6, 10, 14 and 17 wt.% were determined. Phenol conversion was highest (91.8%) at 240 °C in the presence of HZSM-5(Si/Al = 38) loaded with 10% Ni. When hydrotreatment was carried out with bio-oil obtained from pyrolysis of pine sawdust under the optimal conditions determined for phenol, the pH of bio-oil increased from 2.27 to 4.07, and the hydrogen content increased from 6.28 to 7.01 wt.%. The decrease in acidity is desirable for the use of upgraded bio-oil. Copyright © 2012. Published by Elsevier Ltd.

  6. Interactions of fines with base fractions of oil and its implication in smart water flooding

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate reservo...... reservoirs. This study shows that addition of water and crude oil on calcite fines leads to formation of soluble oil emulsions in the water phase. Formation of these emulsions and its implication in EOR has been experimentally analyzed.......Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate...

  7. Elucidation of penetration enhancement mechanism of Emu oil using FTIR microspectroscopy at EMIRA laboratory of SESAME synchrotron

    Science.gov (United States)

    Mansour, Randa S. H.; Sallam, Alsayed A.; Hamdan, Imad I.; Khalil, Enam A.; Yousef, Ibraheem

    2017-10-01

    It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006 cm- 1. The unsaturated components of Emu oil accumulated at about 270 μm depth of skin surface. The interaction of Emu oil with lipid and protein constituents of SC was investigated in comparison with a commonly used enhancer, IPM. Inter-sample spectral differences were identified using PCA and linked with possible enhancement mechanisms. Emu oil treatment caused a change in the slope of the right contour of amide I band of the protein spectral range. This was also clear in the second derivative spectra where the emergence of a new shoulder at higher frequency was evident, suggesting disorganization of keratin α-helix structure. This effect could be a result of disruption of some hydrogen bonds in which amide Cdbnd O and Nsbnd H groups of keratin are involved. The low intensity of the emerged shoulder is also in agreement with formation of weaker hydrogen bonds. IPM did not affect the protein component. No conclusions regarding the effect of penetration enhancers on the SC lipids were obtained. This was due to the overlap of the endogenous (skin) and exogenous (oil) CH stretching and scissoring frequencies. The SC carbonyl stretching peak disappeared as a result of IPM treatment which may reflect some degree of lipid extraction.

  8. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  9. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    Science.gov (United States)

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  10. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    Science.gov (United States)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (pcanola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  11. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    Science.gov (United States)

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  12. Enhancing the value of argan oil is the best mean to sustain the argan grove economy and biodiversity, so far

    Directory of Open Access Journals (Sweden)

    Charrouf Zoubida

    2008-07-01

    Full Text Available In Morocco, the region covered with argan trees is named the argan grove. Its long-term preservation depends on the discovery of new and economically rewarding markets to sell argan tree produces. At the present time, the argan oil appears to be the best candidate to fulfill this task. The scientific results that have allowed the emergence of argan oil on the international edible and cosmetic oil markets are reported together with recent analytic results. Alternative approaches, not based on argan oil marketing but also aimed at safeguarding the argan grove, are also reported.

  13. Green waste cooking oil-based rigid polyurethane foam

    Science.gov (United States)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  14. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  15. The potential use of Khaya senegalensis oil as base in paracetamol ...

    African Journals Online (AJOL)

    The potential of the oil from Khaya senegalensis seed as a suppository base was investigated. Some physicochemical properties of the oil like the physical appearance, saponification value, iodine value, acid value and refractive index were evaluated. The oil was used to prepare paracetamol suppositories either as the ...

  16. Ni-Based Catalysts for the Hydrotreatment of Fast Pyrolysis Oil

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Bykova, M. V.; Khromova, S. A.; Yin, W.; Venderbosch, R. H.; Yakovlev, V. A.; Heeres, Hero

    Catalytic hydrotreatment is an attractive technology to convert fast pyrolysis oil to stabilized oil products for co processing in conventional crude oil refinery units. We report here the use of novel bimetallic NiCu- and NiPd-based (Picula) catalysts characterized by a high Ni content (29-58 wt %)

  17. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L -1 and its surface tension was 26.52 ± 0.057 mN m -1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil

  18. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.

    Science.gov (United States)

    Keshavarz, Alireza; Zilouei, Hamid; Abdolmaleki, Amir; Asadinezhad, Ahmad

    2015-07-01

    A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. HMX based enhanced energy LOVA gun propellant.

    Science.gov (United States)

    Sanghavi, R R; Kamale, P J; Shaikh, M A R; Shelar, S D; Kumar, K Sunil; Singh, Amarjit

    2007-05-08

    Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 degrees C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 microm HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.

  20. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  1. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  2. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  3. Performance of taste enhancers mixed with cereal bases and ...

    African Journals Online (AJOL)

    Baiting technique if appropriately applied is the most reliable strategy to control rodent pests. Behavior modifying components may play a significant role in developing the most attractive baits. An attempt was therefore made to investigate the behavior revolutionizing effect of taste enhancers including peanut oil, peanut ...

  4. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  5. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  6. Enhancement of the nutritional status and quality of fresh pork sausages following the addition of linseed oil, fish oil and natural antioxidants.

    Science.gov (United States)

    Valencia, I; O'Grady, M N; Ansorena, D; Astiasarán, I; Kerry, J P

    2008-12-01

    Fresh pork sausages (pork shoulder, pork back fat, water, rusk and seasoning) were manufactured where 15% of the pork back fat was substituted with linseed oil (LO) or fish oil (FO). Green tea catechins (GTC) and green coffee antioxidant (GCA) were added to both LO (LGTC 200 and LGCA 200) and FO (FGTC 200 and FGCA 200) substituted sausages at a level of 200mg/kg. Raw and cooked pork sausages were either over-wrapped with oxygen permeable film (aerobic storage) or stored in modified atmosphere packages (MAP) containing 80% O(2):20% CO(2) or 70% N(2):30% CO(2), respectively for 7 days at 4°C. Effects on fatty acid profiles, lipid oxidation, colour and sensorial properties were investigated. α-Linolenic acid increased from 1.34% (control) to 8.91% (LO) and up to 11.2% (LGTC 200 and LGCA 200). Addition of fish oil increased levels of EPA from 0.05% (control) to 2.83% (FO), 3.02% (FGTC 200) and 2.87% (FGCA 200) and DHA levels increased from 0.04% (control) to a maximum of 1.93% (FGTC 200). Lipid oxidation was low in raw and cooked linseed oil containing sausages. GTC (200mg/kg) significantly (Praw fish oil containing sausages after 7 days of storage. Colour parameters in raw pork sausages were unaffected by the packaging atmosphere. L(∗) lightness values were lower (P<0.05) in LGTC 200 and a(∗) redness values lower (P<0.05) in LGTC 200 and FGTC 200 after 7 days of storage. Sensory scores of cooked pork sausages were unaffected by linseed oil addition. Flavour and overall acceptability scores in cooked fish oil containing sausages were improved by GTC addition. Results obtained demonstrate potential for the production of nutritionally enhanced fresh pork sausages.

  7. Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

    Science.gov (United States)

    Jahediesfanjani, Hossein

    2017-07-17

    IntroductionIn the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

  8. Application of sustainable foaming agents to control the mobility of carbon dioxide in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Roozbeh Rafati

    2012-12-01

    Full Text Available Carbon dioxide (CO2 flooding is a conventional process in which the CO2 is injected into the oil reservoir to increase the quantity of extracting oil. This process also controls the amount of released CO2 as a greenhouse gas in the atmosphere which is known as CO2 sequestration process. However, the mobility of the CO2 inside the hydrocarbon reservoir is higher than the crude oil and always viscous fingering and gravity override problems occur during a CO2 injection. The most common method to overcome these problems is to trap the gas bubbles in the liquid phase in the form of aqueous foam prior to CO2 injection. Although, the aqueous foams are not thermodynamically stable, special care should be considered to ensure bulk foam preparation and stability. Selection of a proper foaming agent from a large number of available surfactants is the main step in the bulk foam preparation. To meet this purpose, many chemical and crude oil based surfactants have been reported but most of them are not sustainable and have disposal problems. The objective of this experimental study is to employ Lignosulfonate and Alkyl Polyglucosides (APGs as two sustainable foaming agents for the bulk foam stability investigations and foam flooding performance in porous media. In the initial part, the bulk foam stability results showed that APGs provided more stable foams in comparison with Lignosulfonate in all surfactant concentrations. In the second part, the results indicated that the bulk foam stability measurements provide a good indication of foam mobility in porous media. The foaming agent’s concentration which provided the maximum foam stability also gave the highest value of mobility reduction in porous media.

  9. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline

  10. Importance of fines in smart water enhanced oil recovery (SmW-EOR) for chalk outcrops

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    In SmW-EOR it is generally believed that precipitation of brines must be avoided since it can have a negative impact on the SmW sweep efficiency. But substitution of Mg2+ by Ca2+ on calcite surfaces (a well-accepted phenomenon) can change the brine combination and enhance the possibility of fine...... formation at speciation. Considering this phenomenon we analyze the possibility of fines formation and its influence in SmW-EOR. To calculate the brine speciation and the amount of precipitate formed at different pressure and temperature conditions, we use the Extended UNIQUAC model for 61 Sm......W-EOR experiments reported in literature. Both the amount of available soluble SO4 2- (aq) in the solution and the amount of CaSO4 precipitation has been calculated and correlated to the corresponding oil recovery....

  11. Sources and delivery of carbon dioxide for enhanced oil recovery. Final report, October 1977--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hare, M.; Perlich, H.; Robinson, R.; Shah, M.; Zimmerman, F.

    1978-12-01

    Results are presented from a comprehensive study by Pullman Kellogg, with assistance from Gulf Universities Research Consortium (GURC) and National Cryo-Chemics Incorporated (NCI), of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. A survey of carbon dioxide sources within the geographic areas of potential EOR are shown on four regional maps with the tabular data for each region to describe the sources in terms of quantity and quality. Evaluation of all the costs, such as purchase, production, processing, and transportation, associated with delivering the carbon dioxide from its source to its destination are presented. Specific cases to illustrate the use of the maps and cost charts generated in this study have been examined.

  12. An innovative treatment method for an aqueous waste from the enhanced oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Alimahmoodi, M.; Mulligan, C.N. [Concordia Univ., Montreal, Quebec (Canada)

    2009-07-01

    Anaerobic treatment was evaluated to determine its effectiveness in treating a waste stream from the process of Enhanced Oil Recovery (EOR) to remove solubilized CO{sub 2} (98%) and petroleum hydrocarbons (83%) using formate (2 g/L) and sucrose (2.5 g/L) as electron donors in two consecutive reactors. The method of evolutionary operation (EVOP) factorial design was applied to optimize the system and the net energy ratio (NER) of 3.7 was calculated for the system which showed a sustainable biogas production. This method is less complex than other competitive methods, and in addition to its low energy requirements, it can produce CH{sub 4} from CO{sub 2} as a clean source of energy. (author)

  13. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  14. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  15. Forensic profiling of sassafras oils based on comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Schäffer, M; Gröger, T; Pütz, M; Zimmermann, R

    2013-06-10

    Safrole, the main compound in the essential oil of several plants of the Laurel family (Lauraceae), and its secondary product piperonylmethylketone are the predominantly used precursors for the illicit synthesis of 3,4-methylenedioxymethamphetamine (MDMA) which is, in turn, the most common active ingredient in Ecstasy tablets. Analytical methods with adequate capacity to identify links and origin of precursors, such as safrole, provide valuable information for drug-related police intelligence. Authentic sassafras oil samples from police seizures were subjected to comparative analysis based on their chemical profiles obtained by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). The enhanced separation power and increased sensitivity of GC × GC allowed for the detection of minor compounds present in the essential oils which were of particular interest in case of very pure samples whose impurity profiles were not very pronounced. Discrimination of such samples was still possible even in the absence of characteristic main compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Round table discussion on used oil recycling and re-refined base oils

    International Nuclear Information System (INIS)

    Patel, J.A.

    1992-01-01

    The re-refining of use d engine oils into marketable fuels and lubricants has received xxx recent attention inlight of proposed Federal legislation mandating collection and recycling of used oils. In this paper the current technologies employed to process used oils into new fuseless and lubricants will be outlined and the performance features of these products compared to virgin materials. Attention will be focused on the environmental and health-related issues of used oil recycling with some emphasis on how processing influences the chemical composition of recycled products

  17. Solvent extraction of base oil from used lubricant oil: a study on the performance of zeolite adsorption

    International Nuclear Information System (INIS)

    Lim Lee Ping; Rosli Mohd Yunus; Adnan Ripin

    2001-01-01

    Solvent extraction is known as one of the potential techniques for recycling used lubricant oil. The recovered oil is identical to the virgin oil, but the oil maintains its darkish color and some odor. This paper is to study the performance of zeolite in removing color and odor. A part from the study, factorial design analysis indicated that the concentration of zeolite exerts to be the most influenced on the adsorption process in which the increase of zeolite concentration resulted in an average increase of 2.22% adsorption response. The number of contact stage appeared to be the second most influential effects, which brought an average increase of 1.38% adsorption response. Further more, it was found that the interaction between the concentration of zeolite and the number of contact stage was the most significant of all interactions under study, at 2.71%. Thus, the additions of 10 g zeolite in 50 ml base oil of 3 rd stage color removal produces the best color removal from the recovered base oil. (Author)

  18. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2018-05-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  19. A new turbine model for enhancing convective heat transfer in the presence of low volume concentration of Ag-Oil Nanofluids

    Science.gov (United States)

    Jafarimoghaddam, Amin; Aberoumand, Sadegh; Jafarimoghaddam, Reza

    2017-12-01

    This study aims to experimentally investigate and introduce a new model for enhancing convective heat transfer in the presence of Ag/ oil nanofluid. An annular tube was designed with a turbine element attached to the inner tube. The inner tube was a bearing shaft which could rotate with the rotation of turbine element. As the previous works by authors, the setup was conducted with a fully developed laminar flow regime with the Reynolds numbers less than 160. The outer surface of the annular tube was heated by an element with constant heat flux of 204 W. Ag/ oil nanofluid was used in different volume concentrations of 0.011%, 0.044% and 0.171%. The new model could enhance the convective heat transfer coefficient up to 54% (compared to the simple annular tube in the case of base fluid) for the best studied case (nanofluid with the volume concentration of 0.171%) while the friction factor remained low. The new model can be applied for related applications regarding Ag/ oil nanofluid as a new step in enhancing the convective heat transfer coefficient.

  20. Laboratory based degradation of light crude oil by aquatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... This spilled oil produces destructive effect on the environment. For example, when ... growth was separated from the oil using gas chromatography. The hydrocarbon that dissolved in carbon tetrachloride ... Gasoline and gas oil were also degraded (Figure 1). ACKNOWLEDGEMENT. The authors wish to ...

  1. Base catalyzed transesterification of sunflower oil biodiesel | Ahmad ...

    African Journals Online (AJOL)

    In this study, sunflower oil was investigated for biodiesel production. Sunflower is one of the leading oil seed crop, cultivated for the production of oil in the world. It has also been considered as an important crop for biodiesel production. Seeds for biodiesel production were procured from local farmers of Attock and ...

  2. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  3. Comparative study of using Water-Based mud containing Multiwall Carbon Nanotubes versus Oil-Based mud in HPHT fields

    Directory of Open Access Journals (Sweden)

    M.I. Abduo

    2016-12-01

    Full Text Available Water-Based mud (WBM and Oil-Based mud (OBM are the most common drilling fluids currently used and both have several characteristics that qualify them for High Pressure High Temperature (HPHT purposes. This paper compares the different characteristics of WBM containing Multiwall Carbon Nanotubes (MWCNTs and OBM to help decide the most suitable mud type for HPHT drilling by considering mud properties through several laboratory tests to generate some engineering guidelines. The tests were formulated at temperatures from 120 °F up to 500 °F and pressures from 14.7 psi to 25,000 psi. The comparison will mainly consider the rheological properties of the two mud types and will also take into account the environmental feasibility of using them. The results showing that the Water-Based offers a more environmental friendly choice yet some of additives that are used to enhance its performance at (HPHT conditions, such as (MWCNTs, thus it is necessary to develop new formulas for (HPHT Water-Based muds that could act like Oil-Based mud but cause less harm to the environment.

  4. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems

    NARCIS (Netherlands)

    Chavalparit, O.; Rulkens, W.H.; Mol, A.P.J.; Khaodhair, S.

    2006-01-01

    The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the

  5. 18F-FDG PET/CT Findings Following Repeated Intramuscular Injections of "Site Enhancement Oil" in the Upper Extremities

    DEFF Research Database (Denmark)

    Dejanović, Danijela; Loft, Annika

    2017-01-01

    We present the findings on F-FDG PET/CT in a 50-year-old man known to self-administer intramuscular injections with site enhancement oil in the upper extremities. PET images show diffuse pathological high FDG uptake in soft tissue of the upper arms and in scanned portions of the forearms. On the CT...

  6. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...

  7. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash...

  8. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were regrown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. We conducted a push-pull test to study in-situ biosurfactant production by exogenous biosurfactant producers to aid in oil recovery from depleted reservoirs. Five wells from the same

  9. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Knowledge base verification based on enhanced colored petri net

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Verification is a process aimed at demonstrating whether a system meets it`s specified requirements. As expert systems are used in various applications, the knowledge base verification of systems takes an important position. The conventional Petri net approach that has been studied recently in order to verify the knowledge base is found that it is inadequate to verify the knowledge base of large and complex system, such as alarm processing system of nuclear power plant. Thus, we propose an improved method that models the knowledge base as enhanced colored Petri net. In this study, we analyze the reachability and the error characteristics of the knowledge base and apply the method to verification of simple knowledge base. 8 refs., 4 figs. (Author)

  11. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  12. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    Science.gov (United States)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  13. Non-Oil Sector and the Enhancement of Revenue Generation in ...

    African Journals Online (AJOL)

    -oil sector failed owing to improper implementation. This paper examines the likely causes for the failure and suggests possible strategies to boost revenue from the non-oil sector to include: improving existing infrastructure to boost production; ...

  14. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    Science.gov (United States)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  15. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  16. Oxidative Degradation and Stabilisation of Mineral Oil-Based Lubricants

    Science.gov (United States)

    Aguilar, G.; Mazzamaro, G.; Rasberger, M.

    Thermally induced hydrocarbon oxidation is a self-accelerating autoxidation process and is divided into 'low'-, 30-120°C, and 'high'-, >120°C, temperature phases. The first has four stages - induction of radical chain reactions, propagation, branching and then termination. Mechanisms of these processes are described and discussed. Differences in hydrocarbon reactivity are related to molecular structure. For hydrocarbon oxidation >120°C, the first stage is the same as low-temperature oxidation but with reduced selectivity and increased reactivity; second, the oxidation phase becomes diffusion controlled as hydrocarbon viscosities increase from progressive polycondensation of higher molecular weight products, causing varnish and sludge formation. Base oil oxidation stabilities depend upon their derivation, whether solvent neutral, hydrocracked or synthetic, and their response to antioxidant treatment. Lubricant oxidation control focuses on radical scavengers and hydroperoxide decomposers and their synergistic mixtures.

  17. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  18. In vitro evaluation of copaiba oil as a kojic acid skin enhancer

    Directory of Open Access Journals (Sweden)

    Robson Vicente Machado de Oliveira

    2010-06-01

    Full Text Available The capacity of copaíba oil to act as a skin penetration enhancer for the depigmenting agent kojic acid was evaluated using an in vitro diffusion system with static flux and shed rattlesnake skin membrane, Crotalus durissus terrificus, in saline solution at 34±2 ºC as the fluid receptor. The quantities of kojic acid liberated into the fluid receptor were determined by spectrophotometry at 268 nm with intervals of one and a half hours. The membranes, pretreated with copaíba oil at 25% and 50% v/v, gave flux values of 8.0 and 12.7 µg/cm²/h, permeability values of 2.0 and 3.3 cm×10-4/h, and promotion factors of 4.1 and 3.7, respectively. These results indicate that copaíba oil, at the two concentrations studied, has the capacity to promote penetration of kojic acid.A propriedade do óleo de copaíba como agente promotor de penetração cutânea do despigmentante ácido kójico foi avaliada utilizando-se sistema de difusão in vitro com fluxo estático, membrana de pele da serpente cascavel - Crotalus durissus terrificus e solução salina a 34±2 ºC como fluido receptor. As quantidades liberadas do ácido kójico no fluido receptor foram determinadas por espectrofotometria em 268 nm em intervalos de 1:30 h. As membranas pré-tratadas com óleo de copaíba a 25 e 50% v/v apresentaram valores de fluxo de 8,0 e 12,7 µg/cm²/h, permeabilidade de 2,0 e 3,3 cm×10-4/h, e fatores de promoção de 4,1 e 3,7, respectivamente. Os resultados obtidos indicaram que o óleo de copaíba, nas duas concentrações estudadas, apresentou capacidade de promoção da penetração do ácido kójico.

  19. Molecular performance of commercial MTG variety oil palm based on RAPD markers

    Science.gov (United States)

    Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.

    2018-02-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.

  20. Oxidative stability of fish oil-enriched mayonnaise-based salads

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    The oxidative stability of fish oil-enriched mayonnaise-based salads and the influence of different vegetables in shrimp and tuna salads were evaluated. Moreover, the lipid oxidation in the presence of 1% oregano, rosemary, or thyme in fish oil-enriched tuna salad was assessed. The results obtained...... showed that the mayonnaise itself was more oxidatively stable without vegetables and tuna or shrimp, in spite of the higher oil content in mayonnaise (63 and 6.3% fish oil, respectively) compared to salads (∼24 and 2.4% fish oil, respectively). Surprisingly, the fish oil-enriched mayonnaise was only...... significantly different from the standard mayonnaise in the volatile concentration during the end of storage. In fish oil-enriched shrimp salad, asparagus had an anti-oxidative effect and shrimp a pro-oxidative effect, where the anti-oxidative effect of asparagus was strong enough to prevent the pro...

  1. Effect of antiwear additives in synthetic base oils. Goseiyu ni taisuru mamo boshizai no koka

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, S.; Nakashima, T.; Yokomori, Y.; Nishi, S. (The National Defence Academy, Kanagawa (Japan))

    1994-01-01

    The antiwear effects of organic phosphates (tricresyl phosphate (TCP), trioctyl phosphate (TOP) and dioctyl phosphate (DOP)) and a commercial zinc dialkyl dithiophosphate (ZDP) admixed in three different types of synthetic base oils, poly [alpha] olefin (PAO), diester (DA) and trimethylol propane ester (TMP), were examined using a soda four-ball tester. As a result, effects of these antiwear additives were in the following order: PAO>DA[much gt] TMP. Adsorption of these additives on iron powder from the synthetic oil solutions, and hydrolysis or thermal decomposition in the synthetic oils, were also examined. As a result, these effects of the antiwear additives in synthetic base oils were highly affected by the relative intensity of adsorption between additives and synthetic oils on the rubbing surfaces. Furthermore, it was clarified that hydrolysis of phosphates and thermal decomposition of ZDP were affected by synthetic base oils. 14 refs., 8 figs., 4 tabs.

  2. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types

  3. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    Science.gov (United States)

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fish Oil-Based Fat Emulsion Reduces Acute Kidney Injury and Inflammatory Response in Antibiotic-Treated Polymicrobial Septic Mice

    Directory of Open Access Journals (Sweden)

    Juey-Ming Shih

    2016-03-01

    Full Text Available Acute kidney injury (AKI is a common complication in sepsis. This study compared the effects of a fish oil-based with a mixed oil fat emulsion on remote renal injury in an antibiotic-treated septic murine model. Mice were randomly assigned to a normal control (NC group and three septic groups. Sepsis was induced by cecal ligation and puncture (CLP. The antibiotic was injected intraperitoneally (IP after CLP and then daily till the time of sacrifice. Three hours after antibiotic treatment, one of the septic groups was injected IP with a fish oil-based emulsion (FO, while the other two groups were given either a mixed oil emulsion (MO or saline (SC. The septic groups were further divided into two separate time groups, with blood and kidneys samples collected at 24 h or 72 h post-CLP. The results showed that sepsis leads to the activation of neutrophils, T helper (Th1/Th-2/Th-17 and Treg cells (p < 0.05. Plasma NGAL and mRNA expressions of renal MyD88 and TLR4 were also enhanced (p < 0.05. Compared to the SC group, the group given the fish oil-based emulsion had decreased plasma NGAL by 22% and Treg by 33%. Furthermore, renal gene expressions of MyD88 and TLR4 reduced by 46% and 62%, respectively, whereas heat shock protein 70 and peroxisome proliferator-activated receptor-γ increased by 158% and 69%, respectively (p < 0.05, at Day 3 after CLP. These results suggest that administration of a fish oil-based emulsion has favorable effects, maintaining blood T cell percentage, downregulating Treg expression, attenuating systemic and local inflammation and offering renal protection under conditions of antibiotic-treated polymicrobial sepsis.

  5. Motor Oil Classification Based on Time-Resolved Fluorescence

    OpenAIRE

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as uniq...

  6. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.

    Science.gov (United States)

    Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M

    2018-02-01

    In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  7. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms.

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza; Manshad, Soheila

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.

  8. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  9. Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics.

    Science.gov (United States)

    Zhao, Tao; Zheng, Junzhi; Sun, Gang

    2012-06-05

    Vegetable oil-based fluorocarbon water repellent agents were prepared by chemical modifications of different vegetable oils - soybean and linseed oils through several reactions, including saponification, acidification, acylation of vegetable oil and trans-esterification with 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoropropanol. The resulted fluorocarbon agents were then copolymerized with styrene. The structures of the vegetable oil based agents were characterized by FT-IR and NMR. By evaluating water contact angle and time of water disappearance on cotton fabrics, as well as whiteness and breaking strength of cotton fabrics that were treated by these agents, optimum fabric finishing conditions were explored. The cotton fabrics finished with the vegetable oil-based fluorocarbon agents showed excellent water repellency, while other properties of the cotton fabrics declined to certain level. The linseed oil-based tetrafluoropropanol water repellent agent displayed the highest water repellency among all modified oils. All the treated fabrics exhibited good durability of water repellency. The linseed oil-based tetrafluoropropanol water repellent agent demonstrated the best durability among all repellent agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  11. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    Science.gov (United States)

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-01-18

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  12. Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP-198 conidia in corn oil-based suspension.

    Science.gov (United States)

    Kim, Jae Su; Je, Yeon Ho; Woo, En Ok; Park, Jong Sung

    2011-01-01

    Long-term persistence of entomopathogenic fungi as biopesticides is a major requirement for successful industrialization. Corn oil carrier was superior in maintaining germination rates of Isaria fumosorosea SFP-198 conidia during exposure to 50°C for 2 h, when compared with other oils, such as soybean oil, cottonseed oil, paraffin oil, and methyl oleate. The corn oil-based conidial suspension (91.6% germination) was also better in this regard than conidial powder (28.4% germination) after 50°C for 8 h. Long-term storage stabilities of corn oil-based conidial suspension and conidial powder at 4 and 25°C for 24 months were investigated, based on the correlation of germination rate with insecticidal activity against greenhouse whiteflies, Trialeurodes vaporariorum. Viability of conidia in corn oil was more than 98.4% for up to 9 months of storage at 25°C, and followed by 23% at 21 months. However, conidial powder had only 34% viability after 3 months of storage at 25°C, after which its viability rapidly decreased. The two conidial preparations stored at 4°C had better viabilities than those at 25°C, showing the same pattern as above. These results indicate that corn oil-based conidial suspension can be used to improve conidial persistence in long-term storage and be further applied to the formulation of other thermo-susceptible biological control agents.

  13. Green bio-oil extraction for oil crops

    Science.gov (United States)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  14. A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ji-Hua; Liu, Zhao-Qing; Li, Nan, E-mail: nanli@gzhu.edu.cn; Chen, Yi-Bo; Wang, Dong-Yao [Guangzhou University, School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology (China)

    2017-02-15

    The nanofluid as a pivotal role in heat transfer system has attracted more and more attention. Herein, the stearic acid-modified CuS (SA-CuS) nanoparticles with a uniform diameter of 60 nm were synthesized successfully by a facile two-phase approach. Accordingly, the CuS-oil nanofluids, with SA-CuS concentrations ranging from 0.01 to 0.04 vol%, were prepared by a one-step method in the heat transfer oil. These CuS-oil nanofluids exhibit good stability and considerable enhanced thermal conductivity. The improvement is even up to 20.5% with a volume fraction of 0.04 vol% at 30 °C. Furthermore, the effect of volume fraction and temperature on the viscosity of the nanofluids was also systematically investigated.

  15. INEEL Biotechnology for Oilfield Application--Microbial Enhanced Oil Recovery FY-03 Report

    Energy Technology Data Exchange (ETDEWEB)

    G. A. Bala; D. F. Bruhn; S. L. Fox; K. S. Noah; K. D. Schaller; E. P. Robertson; X. Xie

    2003-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Biotechnology for Oilfield Operations program supports development, engineering, and application of biotechnology for exploration and production. This continuing INEEL program also supports mitigation of detrimental field conditions. The program is consistent with the United States Department of Energy mission to ¡§promote activities and policies through its oil technology and natural gas supply programs to enhance the efficiency and environmental quality of domestic oil and natural gas exploration, recovery, processing, transport, and storage.¡¨ In addition, the program directly supports the focus areas of Reservoir Life Extension; Advanced Drilling, Completion and Stimulation Systems; Effective Environmental Protection; and Cross Cutting Areas. The program is enhanced by collaborative relationships with industry and academia. For fiscal year 2003, the program focused on production and characterization of biological surfactants from agricultural residuals and the production and application of reactive microbial polymers. This report specifically details: 1. Use of a chemostat reactor operated in batch mode for producing surfactin, with concomitant use of an antifoam to prevent surfactant loss. The program achieved production and recovery of 0.6 g/L of surfactin per 12 hr. 2. Characterization of surfactin produced from agricultural residuals with respect to its ability to mediate changes in surface tension. Conditions evaluated were salt (as NaCl) from 0 to 10% (w/v), pH from 3 to 10, temperature from 21 to 70¢XC, and combinations of these conditions. When evaluated singularly, pH below 6 and salt concentrations above 30 g/L were found to have an adverse impact on surfactin. Temperatures of 70¢XC for 95 days had no effect. When the effect of temperature was added to the pH experiment, there were no significant changes, and, again, surface tension, at any temperature, increased at pH below 6

  16. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme...

  17. Development and characterization of cocoa butter alternatives from palm-based oils for chocolate application

    OpenAIRE

    NIRUPAM BISWAS

    2017-01-01

    Cocoa butter (CB) is the main ingredient of chocolate, which is expensive among the vegetable fats/oils. This study was undertaken to produce a suitable alternative to CB in terms of melting profile and chemical composition from palm-based oils using blending and/or enzymatic interesterification. Cocoa butter substitute (CBS) made from palm oil fractions was used to produce dark chocolate and its physical and sensorial properties such as taste, appearance and hardness were evaluated. CBS made...

  18. THE TRADE-ENHANCING EFFECT OF NON-TARIFF MEASURES ON VIRGIN OLIVE OIL

    Directory of Open Access Journals (Sweden)

    Eyal Ronen

    2017-07-01

    Full Text Available Over the last 15 years, the global trade of virgin olive oil (VOO seems to face a stringent regulatory regime, mainly through the imposition of TBT and SPS measures. Such a development should have adversely impacted global levels of VOO trade. However, evidence shows that the world's imports of VOO have more than quadrupled in value since 2000. Alongside this trend, the share of VOO imports gradually shifts from traditional sources (mainly EU to New World producing countries, such as Argentina, Australia, the USA, and Chile. By extracting data from hundreds of NTM regulations, as well as all possible registered bilateral trade flows between 2002 to 2014, this paper aims to empirically explore to what extent particular NTMs impact imports of VOO. The results indicate that while tariffs remain a stringent barrier, most NTMs have a positive impact on imports, rather than enhancing restrictiveness. The paper asserts that the majority of NTMs respond to consumers' demand for higher food safety standards and protection of human health, while increasing available information and transparency. That, in turn, leads to an expansion in the magnitude of imports of VOO products

  19. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  20. Enhanced oil recovery in naturally fractured reservoirs in mexico, technical challenge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, Francisco; Meza P, Edgar; Moran O, Oscar [PEMEX - Petroleos Mexicanos, Mexico D.F. (Mexico)

    2008-07-01

    Unlike single porosity reservoirs, naturally fractured reservoirs have several problems to implant any additional recovery processes (secondary or enhanced) due to a great amount of oil is trapped in the matrix and the injected fluids bypass matrix through fractures because of they have a greater capacity to allow flow. So far there, there is not a complete knowledge of improved recovery processes that can be applied to naturally fractured reservoirs, there are some laboratory tests, tests pilot in fields and very few projects in execution. All this make an opportunity area to develop more investigation. Taking into account the previous limitations is possible to begin to evaluate several processes for naturally fractured reservoirs as: gas injection, chemical treatments and thermal processes, but a common process to all of them is gravity drainage which implies new considerations in operation to extract hydrocarbons of the fractured reservoirs. There are many challenges to implant additional recovery processes in naturally fractured reservoirs and we mentioned in this work, moreover we show Mexican experience in EOR processes in Naturally Fractured Reservoirs, too. (author)

  1. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    Energy Technology Data Exchange (ETDEWEB)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  2. Oil base fluids without tensoactive additives; Fluidos a base de oleo sem tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Jose Carlos V.; Aragao, Atila Fernando L. [PETROBRAS, XX (Brazil). Centro de Desenvolvimento de Recursos Humanos Norte e Nordeste

    1989-12-31

    The goal of this paper is to define an ideal oil base fluid composition without tensoactive additives, since these may cause damage to producing formation during drilling or well completion. We investigated the rheological, filtrating and phase separation properties of the systems composed of diesel oil, organophilic clay and a polar agent (water or ethyl alcohol). In order to to that, we used the 286 Baroid digital rotating viscometer, filtrating cells standardized according to the American Petroleum Institute (AP) for temperatures of 25 deg C to 149 deg C and pressures of 6,89 x 10{sup 5} Pa (100 psig) to 3,44 x 10{sup 6} (500 psig), and the setting method, according to the determinations of respectively rheological, filtrating and phase separation parameters. Results proved that the composition: diesel oil-94% v/v, Na Cl saturated solution - 6% v/v and bentone - 17,1 to 22,8 kg/m{sup 3} (6 to 8 lb/bbl), is ideal to meet the properties required for drilling and well completion operations for low densities, that is 0,84% to 1,02 (6,9 to 8,5 ib/gal). In order to obtain densities in the interval of 1,02 to 1,14 (8,5 to 9,5 ib/gal) the system should be condensed with calcite (Ca CO{sub 3}) and the base fluid composition should be : diesel oil-94 to 98% v/v, Na Cl saturated solution - 2 to 6% v/v and bentone 17,1 to 22,8 kg/m{sup 3} (6 to 8 ib/bbl). The average cost per barrel for the systems studied here is of the same order of conventional oil base fluids (with tensoactive additives). (author) 13 refs., 7 figs., 3 tabs.

  3. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Abdalrahman B. Fadhil

    2012-06-01

    Full Text Available Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction time were optimized. The study raveled that, 0.50% KOH w/w of oil; a 6:1 methanol to oil molar ratio; a reaction temperature of 60°C and a duration of 1h were the optimal conditions because they resulted in high biodiesel yield. Fuel properties of the products were assessed and found better than those of the parent oil. Furthermore, they met the specified limits according to the ASTM standards. Thin layer chromatography was used as a simple technique to monitor the transesterification of the oil. Blending of the optimal biodiesel sample with petro diesel using specified volume percentages was done as well. The results indicated that biodiesel had slight effect on the values of the assessed properties.

  4. Thermoplastic shape-memory polyurethanes based on natural oils

    Science.gov (United States)

    Saralegi, Ainara; Foster, E. Johan; Weder, Christoph; Eceiza, Arantxa; Corcuera, Maria Angeles

    2014-02-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure-property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80-100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties.

  5. Optimization of ultrasound-assisted extraction of grape seed oil to enhance process yield and minimize free radical formation.

    Science.gov (United States)

    Böger, Bruna R; Salviato, Aroldo; Valezi, Daniel F; Di Mauro, Eduardo; Georgetti, Sandra R; Kurozawa, Louise E

    2018-03-30

    Grape seeds are a relatively abundant source of oil and bioactive compounds. In order to use this by-product, the current work aimed to optimize the ultrasound-assisted extraction of grape seed oil to obtain greater process yield and minimize free radicals formation in the oil. The optimal condition was 15°C and amplitude of ultrasonic wave of 42 μm, leading to a process yield of 82.9% and content of free radicals of 14.7×10 17 kg -1 and 3.4×10 18 kg -1 for samples stored for 7 and 30 days, respectively. No significant differences in fatty acid composition and acidity and iodine values were observed between samples. The oil obtained by ultrasound had greater phenolic compound content and antioxidant activity by ferric reduction than the control sample (without ultrasound application). However, higher content of free radicals and peroxide value was observed. Sonication improved extraction yield when compared to the process without ultrasound application. Moreover, UAE favored phenolic compounds extraction. Since the proposed condition extraction enhanced process yield with the minimum formation of free radicals, UAE is a promising oil extraction technology. This article is protected by copyright. All rights reserved.

  6. 17 alpha-hydroxyprogesterone caproate vehicle, castor oil, enhances the contractile effect of oxytocin in human myometrium in pregnancy.

    Science.gov (United States)

    O'Sullivan, Michael D; Hehir, Mark P; O'Brien, Yvonne M; Morrison, John J

    2010-05-01

    The possibility exists that the vehicle for 17-alpha-hydroxyprogesterone caproate, castor oil, exerts an effect on human uterine contractility. The aim of this study was to evaluate its effects on contractility of myometrial preparations that were obtained during pregnancy. Myometrial strips were suspended under isometric conditions. Contractility was induced with oxytocin. Strips were incubated in castor oil or physiologic salt solution and suspended for a further oxytocin challenge. Contractile integrals were compared between both groups. Strips that were exposed to castor oil demonstrated increased contractile activity that was elicited by oxytocin (mean contractility value, 165.53%+/-17.03%; n=8; P=.004), compared with control strips (mean contractility value, 72.57%+/-7.48%; n=8; P=.003). There was a significant increase in contractile activity of the castor oil-exposed strips, compared with those that were exposed to physiologic salt solution (n=8; Pcastor oil results in enhanced oxytocin-induced contractility. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  7. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  8. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  9. Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan

    2017-11-15

    In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (pshell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (pshell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Remediation of hydrocarbon contaminants in cold environments : electrokinetically enhanced bioremediation and biodegradable oil sorbents

    OpenAIRE

    Suni, Sonja

    2006-01-01

    Owing to the vast amounts of oil in the world, oil spills are common on land as well as at sea. In addition to oil products, other industrially used hydrocarbons, such as creosote, also contaminate soils. Most hydrocarbons are biodegradable. Hence, bioremediation is an attractive alternative for cleaning up hydrocarbon spills. In cold climate areas, however, biodegradation is often a slow process. The aim of this thesis was to develop efficient, cost-effective, and ecologically sound techniqu...

  11. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach.

    Science.gov (United States)

    González, Jorge Werdin; Yeguerman, Cristhian; Marcovecchio, Diego; Delrieux, Claudio; Ferrero, Adriana; Band, Beatriz Fernández

    2016-08-01

    The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mechanical Behavior of Castor-Oil-Based Advanced Polyurethane Functionalized with Glycidol and Siloxanes

    Science.gov (United States)

    Mathew, Aiswarea; Kurmvanshi, Surendra; Mohanty, Smita; Nayak, Sanjay K.

    2017-12-01

    Castor-oil-based polyurethane (PU), epoxy (glycidol) terminated polyurethane (EPU), and hydroxy terminated poly (dimethyl siloxane) (HTPDMS) modified EPU (EPDMS) were synthesized. The PU and EPU were synthesized with polyol:diisocyanate and polyol:diisocyanate:glycidol ratio of 1:1.2 and 1:3:3, respectively, whereas EPDMS was prepared by the incorporation of 5 wt.%, 10 wt.%, 20 wt.%, and 30 wt.% of HTPDMS into the EPU. The structural modification of EPDMS was confirmed by solid-state CP/MAS 13C and 29Si NMR spectroscopy. The results of a tensile test revealed that the EPDMS with 10 wt.% loading of HTPDMS (EPDMS10) exhibited considerable enhancement in the tensile strength and modulus. The scanning electron microscope analysis was performed to understand the increased phase heterogeneity of the samples.

  13. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  14. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis

    Science.gov (United States)

    E, Jianwei; Bao, Yanling; Ye, Jimin

    2017-10-01

    As one of the most vital energy resources in the world, crude oil plays a significant role in international economic market. The fluctuation of crude oil price has attracted academic and commercial attention. There exist many methods in forecasting the trend of crude oil price. However, traditional models failed in predicting accurately. Based on this, a hybrid method will be proposed in this paper, which combines variational mode decomposition (VMD), independent component analysis (ICA) and autoregressive integrated moving average (ARIMA), called VMD-ICA-ARIMA. The purpose of this study is to analyze the influence factors of crude oil price and predict the future crude oil price. Major steps can be concluded as follows: Firstly, applying the VMD model on the original signal (crude oil price), the modes function can be decomposed adaptively. Secondly, independent components are separated by the ICA, and how the independent components affect the crude oil price is analyzed. Finally, forecasting the price of crude oil price by the ARIMA model, the forecasting trend demonstrates that crude oil price declines periodically. Comparing with benchmark ARIMA and EEMD-ICA-ARIMA, VMD-ICA-ARIMA can forecast the crude oil price more accurately.

  15. Synthesis and characterization of oil sorbent based on Hydroxypropyl Cellulose Acrylate

    Directory of Open Access Journals (Sweden)

    Mohamed Keshawy

    2013-12-01

    Full Text Available The present work deals with the preparation of some oil sorbers based on cellulose derivatives to control petroleum oil spills. In this respect, hydroxypropyl cellulose HPC was used to synthesize hydroxypropyl cellulose acrylate HPCA macromonomer by esterification of HPC with acryloyl chloride. Then the produced HPCA monomer was copolymerized with octadecyl acrylate (ODA in the presence of two types of crosslinkers to produce oil gel. The chemical structures of both HPC and HPCA were confirmed by using FTIR and 1HNMR spectroscopic analysis. Whereas the thermal properties of the crosslinked oil absorbents were investigated using TGA. Furthermore, morphological properties of prepared crosslinked copolymers were studied using SEM. Several parameters were considered to evaluate the oil sorbers, such as: monomers feed ratio, type and concentration of the applied crosslinkers. Finally, the swelling efficiency of oil gel was thoroughly investigated in light and heavy oil. It observed that as the octadecyl acrylate content increased the oil absorbency also increased and reached a maximum value at monomer feed ratio 10/90 HPCA/ODA. It is found that the maximum oil absorbency measured with MBA at a monomer feed ratio 10/90 HPCA/ODA are 29.7 and 18.6 g/g for toluene and crude oil, respectively.

  16. Enhanced oil recovery from Sandstones and Carbonates with “Smart Water”

    OpenAIRE

    Torrijos, Ivan Dario Pinerez

    2017-01-01

    PhD thesis in Petroleum engineering According to the International Energy Agency crude oil is expected to contribute approximately with 26% of the world’s energy supply by 2040. In a per year basis, new oil discoveries have dropped to a 60-year low in 2015, and capital expenditure is in the longest period of retrenchment in 40 years. Therefore, oil in place from already discovered reservoirs has become an important target for oil companies. “Smart Water” injection is a relatively new E...

  17. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  18. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards; SEMIANNUAL

    International Nuclear Information System (INIS)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr. D.P.; Sharma, P.K.; Jackson, B.E.

    2002-01-01

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains

  19. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant.

    Science.gov (United States)

    Harvey, S; Elashvili, I; Valdes, J J; Kamely, D; Chakrabarty, A M

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30 degrees C and above.

  20. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    Sveum, P.; Faksness, L.-G.

    1993-01-01

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  1. Experimental investigations of mineral and ester-based oils at low temperature

    Directory of Open Access Journals (Sweden)

    Anđelković Miloš

    2014-01-01

    Full Text Available The aim of this study is to create references to mineral oil and recommendations for design rules for ester oil applications. Interest in the application of natural and synthetic ester-based fluids in different types of high voltage power equipment has increased over the last years. Most of the parameters relevant to insulation and cooling of high voltage equipment are studied at room or normal operating temperatures. Nevertheless, this equipment has to keep its functionality over the range of various uncommon conditions. For regions with cold climates, an important issue is the behaviour at low temperature. The objective of this work was to determine the insulation strength of mineral- and ester-based oil under a homogenous field at low temperatures for different oil states (moisture content between 5 and 25%. At low temperature (-25°C, the tested ester-based oil is not solidified but in a very thick aggregate state. At this temperature its insulation strength is still very high, even higher than at room temperature. As soon as the ester-based oil becomes solidified (-35°C, its insulation strength drops dramatically. The insulation strength of the tested ester-based oil at a low temperature, when the oil changes its aggregate state, is not dependent on water content.

  2. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  3. Investigation on the Electrical Conductivity of Transformer Oil-Based AlN Nanofluid

    Directory of Open Access Journals (Sweden)

    M. Dong

    2013-01-01

    Full Text Available Aluminum-nitride-(AlN-transformer oil-based nanofluid was prepared by dispersing AlN nanoparticles in transformer oil. The composition-dependent electrical conductivity of AlN-transformer oil nanofluid was investigated at different ambient temperatures. The results indicate the nonlinear dependences of the electrical conductivity on volumetric fraction and temperature. In comparison to the pure transformer oil, the electrical conductivity of nanofluid containing 0.5% AlN nanoparticles has increased by 1057 times at 60°C. By considering the electrophoresis of the AlN nanoparticles, a straightforward electrical conductivity model is established to modulate and understand the experiment results.

  4. Palm oil based polymer materials obtained by ROMP: study by low field NMR

    International Nuclear Information System (INIS)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.

    2015-01-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  5. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fiber Optic Long Period Grating Based Sensor for Coconut Oil Adulteration Detection

    Directory of Open Access Journals (Sweden)

    T. M. Libish

    2010-03-01

    Full Text Available We report the development and demonstration of a Long-Period Grating (LPG based optical fiber sensor for determining the adulteration of coconut oil by palm oil. The fundamental principle of detection is the sensitive dependence of the resonance peaks of LPG on the changes of the refractive index of the environmental medium around the cladding surface of the grating. Refractive index sensing with LPGs employs light coupling between core and cladding modes in the grating section. The transmittance spectra of a long period grating element immersed in different mixtures of coconut oil and palm oil were recorded. Results show that resonance wavelengths and transmission intensities varied as a function of the adulteration level of coconut oil. Detection limit of adulteration was found to be 2 % for coconut oil–palm oil binary mixture.

  7. Adsorption Removal of Glycidyl Esters from Palm Oil and Oil Model Solution by Using Acid-Washed Oil Palm Wood-Based Activated Carbon: Kinetic and Mechanism Study.

    Science.gov (United States)

    Cheng, Weiwei; Liu, Guoqin; Wang, Xuede; Han, Lipeng

    2017-11-08

    Acid-washed oil palm wood-based activated carbon (OPAC) has been investigated for its potential application as a promising adsorbent in the removal of glycidyl esters (GEs) from both palm oil and oil model (hexadecane) solution. It was observed that the removal rate of GEs in palm oil was up to >95%, which was significantly higher than other adsorbents used in this study. In batch adsorption system, the adsorption efficiency and performance of acid-washed OPAC were evaluated as a function of several experimental parameters such as contact time, initial glycidyl palmitate (PGE) concentration, adsorbent dose, and temperature. The Langmuir, Freundlich, and Dubinin-Radushkevich models were used to describe the adsorption equilibrium isotherm, and the equilibrium data were fitted best by the Langmuir model. The maximum adsorption capacity of acid-washed OPAC was found to be 36.23 mg/g by using the Langmuir model. The thermodynamic analysis indicated that the adsorption of PGE on acid-washed OPAC was an endothermic and physical process in nature. The experimental data were fitted by using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. It was found that the kinetic of PGE adsorption onto acid-washed OPAC followed well the pseudo-second-order model for various initial PGE concentrations and the adsorption process was controlled by both film diffusion and intraparticle diffusion. The desorption test indicated the removal of GEs from palm oil was attributed to not only the adsorption of GEs on acid-washed OPAC, but also the degradation of GEs adsorbed at activated sites with acidic character. Furthermore, no significant difference between before and after PGE adsorption in oil quality was observed.

  8. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles.

    Science.gov (United States)

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, Hps; Alwani, M Siti; Nadirah, Wo Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions.

  9. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  10. Visual display of reservoir parameters affecting enhanced oil recovery. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.

    1996-03-01

    The purpose of this project is to provide a detailed example, based on a field trial, of how to evaluate a field for enhanced oil recovery (EOR) operations utilizing data typically available in a field that has undergone primary development. The approach will utilize readily available, affordable computer software and analytical services. For example, the GeoGraphix Exploration System software package was acquired, installed on a PC in the Subsurface Laboratory at Michigan Technological University, and is currently in use. The USGS Digital Land Grid and National Geophysical Data Center`s Gravity Data CDROM were acquired and installed on GeoGraphix. Microsoft Access databases are being developed to archive analytical data and digitized log traces. Data tables for geochemical and petrographic data, well logs, well header information, well production data, formation tops, and fault trace data have been completed. A new effort was initiated during the last quarter of 1995. The surface geological maps of the southern San Joaquin Valley were digitized and loaded into the computer drafting program Canvas where they were edited combined into one large map and colored. When completed, the integrated map will be printed in large format on the HP650C color plotter.

  11. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin.

    Science.gov (United States)

    Lv, Xia; Liu, Tiantian; Ma, Huipeng; Tian, Yan; Li, Lei; Li, Zhen; Gao, Meng; Zhang, Jianbin; Tang, Zeyao

    2017-11-01

    Quercetin can bring many benefits to skin based on its various bioactivities. However, the therapeutic effect of quercetin is limited due to the poor water solubility, pH instability, light instability, and skin permeation. The aim of the present work was applying essential oil-based microemulsions to improve the solubility, pH stability, photostability, and skin permeation of quercetin for topical application. Peppermint oil (PO-ME), clove oil (CO-ME), and rosemary oil (RMO-ME) were selected as model essential oils. Microemulsions composed of Cremophor EL/1,2-propanediol/essential oils (47:23:30, w/w) were selected as model formulations, based on the pseudo-ternary phase diagram and the characterizations. In the solubility study, the solubility of quercetin was improved dozens of times by microemulsions. Quercetin was found instable under alkaline condition, with 50% degraded in the solution of pH 13. However, PO-ME, CO-ME, and RMO-ME could protect quercetin from the hydroxide ions, with 47, 9, and 12% of quercetin degraded. In the photostability study, the essential oil-based microemulsions showed the capability of protecting quercetin from degradation under UV radiation. Where more than 67% of quercetin was degraded in aqueous solution, while less than 7% of quercetin degraded in microemulsions. At last, the in vitro skin permeation study showed that the essential oil-based microemulsions could enhance the permeation capacity of quercetin by 2.5-3 times compared to the aqueous solution. Hence, the prepared essential oil microemulsions could improve the solubility, pH stability, photostability, and skin permeation of quercetin, which will be beneficial for its topical application.

  12. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  13. Study of methane solubility in oil base used in oil base drilling fluid; Estudo da solubilidade de metano em base oleo utilizada em fluido de perfuracao base oleo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carolina Teixeira da; Mariolani, Jose Ricardo Lenzi [Universidade Estadual de Campinas, SP (Brazil); Ribeiro, Paulo Roberto; Lomba, Rosana Fatima Teixeira; Bonet, Euclides Jose

    2004-07-01

    During drilling a well, it is necessary to prevent and control high pressurized zones because while drilling on those zones, could occur a kick if the formation pressure were higher then downhole pressure, allowing the entering of undesirables fluids from the formation to the wellbore. If the well is not controlled this kick could became a blowout, generating damages to the environment, to the equipment and the human life. When drilling using oil-based mud, the concern related to the well control would be higher due the gas solubility in the mud, which could make it hard to detect the kick, especially in deep and ultra deep waters. In this work we have studied the interaction between methane and organic liquids used in drilling fluids, and the measurement and analysis of the thermodynamic properties of those gas liquid mixtures. There have been measured parameters like the oil formation volume factor (FVF{sub o}), bubble pressure, solubility (Rs) and the density of the saturated liquid in function of methane mole fraction and temperature. The results have shown that the gas solubility, at downhole conditions and during kick circulation, is a factor very important to the safety during well drilling in deep and ultra deep waters. (author)

  14. SCOR based key success factors in cooking oil supply chain buyers perspective in Padang City

    Science.gov (United States)

    Zahara, Fatimah; Hadiguna, Rika Ampuh

    2017-11-01

    Supply chain of cooking oil is a network of companies from palm oil as raw material to retailers which work to create the value and deliver products into the end consumers. This paper is aimed to study key success factors based on consumer's perspective as the last stage in the supply chain. Consumers who are examined in this study are restaurants management or owners. Restaurant is the biggest consumption of cooking oil. The factors is studied based on Supply Chain Operation Reference (SCOR) version 10.0. Factors used are formulated based on the third-level metrics of SCOR Model. Factors are analyzed using factors analysis. This study found factors which become key success factors in managing supply chain of cooking oil encompass reliability, responsiveness and agility. Key success factors can be applied by governments as policy making and cooking oil companies as formulation of the distribution strategies.

  15. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well

  16. Sublethal Toxic effects of spent Oil Based Drilling Mud and Cuttings ...

    African Journals Online (AJOL)

    Sublethal toxic effects of spent oil based drilling mud collected from an abandoned oil drilling site in Mpanak, Akwa Ibom State, Nigeria were assessed in the earthworm Aporrectodea longa. The test annelid was exposed to sub-lethal Concentration of 0ppm SPP; 62,500ppm SPP; 125, 000ppm SPP; 250,000ppm SPP and ...

  17. Miniature FBG-based fluidic flowmeter to measure hot oil and water

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.E.V.N.; Jansen, T.H.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flowmeter based on a packaged FBG and laser-heated fibers. The flow rates of water and hydraulic oil were measured by utilizing the proposed flowmeter. The measured results exhibited good sensitivity of 0.339 nm/(m/s) for water and 0.578 nm/(m/s) for oil

  18. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    Science.gov (United States)

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  19. Experimental Comparison of the Behavior between Base Oil and Grease Starvation Based on Inlet Film Thickness

    Directory of Open Access Journals (Sweden)

    D. Kostal

    2017-03-01

    Full Text Available This paper deals with the experimental study of an elastohydrodynamic contact under conditions of insufficient lubricant supply. Starvation level of this type of the contact may be experimentally determined based on the position of the meniscus, but this way can't determine all levels of starvation. Consequent development in the field of tribology achieved theoretical model that can determine all levels of starvation by dependency on the thickness of the lubricant film entering the contact, but it is difficult for experimental verification. The main goal of this work is an experimental study and description of the behavior of the elastohydrodynamic contact with controlled thickness of the lubricant film at the contact input. Contact was lubricated by the base oil and the grease and compared. Results were surprising because the only differences between oil and grease were observed for more viscous lubricants at thicker film layer entering to the contact.

  20. Expressly Fabricated Molar Tube Bases: Enhanced Adhesion

    Science.gov (United States)

    Phull, Tarun Singh; Rana, Tarun; Kumar, Varun

    2014-01-01

    Clinicians, Orthodontists and their patients’ parents often expect the best results in the shortest time span possible. Orthodontic bonding of molar tubes has been an acceptable risk in a modern era of refined biomaterials and instrumentation. Although many orthodontists still prefer banding to bonding, it is the failure rate of the tubes on molars which accounts to an impedance in molar bonding. One of the reasons for molar attachment failures is attributed to improper adaptation of the buccal tube base with or without increased thickness of composite. Merits of banding the second molars especially when these are the terminal teeth for anchorage have been overemphasized in the literature. The present article presents a simple and relatively less time consuming technique of preparing molar tubes to be bonded on tooth surfaces which may be quite difficult to isolate especially for bonding, for example, mandibular second molars. The increased surface area of the composite scaffold helps not only in enhanced bond strength but also serves to reduce the incidence of plaque accumulation given the dexterity of invitro preparation. The removal of the occlusal part of the molar tube scaffold helps in prevention of open / raised bite tendencies. The present innovation, therefore, is not merely serendipity but a structured technique to overcome a common dilemma for the clinical orthodontist. The present dictum of banding being superior to molar tube bonding may prove to be futile with trendsetting molar attachments. It is also an established fact that bonding proves to be a lesser expensive modality when compared to banding procedures. PMID:25121070

  1. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    Science.gov (United States)

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  2. Exercise based transportation reduces oil consumption and carbon emissions

    Science.gov (United States)

    Higgins, P. A.

    2004-12-01

    Current abuse and misrepresentation of science hinders society's ability to address climate change. Scientific abuse results, in part, from a widespread perception that curbing emissions will require substantial economic, political, or personal sacrifice. Here I provide one example to illustrate that this perception is false. Simply walking or biking the amount recommended for a healthy lifestyle could reduce carbon emissions up to 11 percent if the distances traveled were substituted for car travel. This level of exercise is also sufficient to eliminate obese and overweight conditions in a few years without draconian diet plans. A reduction in carbon dioxide emissions of roughly 35 percent is possible if the revenue saved through decreased health care spending on obesity is redirected toward carbon abatement. This emissions reduction far exceeds that required by the Kyoto Protocol at no net cost. Finally, widespread substitution of driving with distances traveled during recommended daily exercise would considerably ease societal dependence on oil, which leads not only to climate change but also to air pollution, political and economic instability and habitat degradation. Thus, exercise based transportation constitutes a potentially favorable alternative to the energy and diet plans that are currently under consideration and a substantial step toward dealing with the threat of climate change.

  3. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    Bacillus licheniformis 421 was used as it was shown to be a good candidate in a previous study. Bacterial spore can penetrate deeper into the chalk rock, squeezing through the pore throats. Our results showed that injection of B. licheniformis 421 as a tertiary oil recovery method, in the residual oil...

  4. Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria.

    Science.gov (United States)

    Thompson, Haydn; Angelova, Angelina; Bowler, Bernard; Jones, Martin; Gutierrez, Tony

    2017-07-01

    Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    Science.gov (United States)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  6. Use of controlled atmospheres to enhance essential oil fumigant toxicity against Western Flower Thrips, Frankliniella occidentalis

    NARCIS (Netherlands)

    Woltering, E.J.; Janmaat, A.F.; Kogel, de W.J.; Oosterhaven, J.; Peppelenbos, H.W.

    2003-01-01

    The fumigant toxicity of selected essential oils was assessed against the Western Flower Thrips, Frankliniella occidentalis. Adult females and larvae were exposed to combinations of essential oil doses and increased carbon dioxide and decreased oxygen levels. Application of such combinations were

  7. The Virtual Oil Rig - Simulation-based Immersive Training

    OpenAIRE

    Tait, Jo-Anne; Hetherington, Colin; Tate, Austin

    2017-01-01

    The Oil & Gas Institute in the School of Engineering at Robert Gordon University (RGU) in Aberdeen, Scotland has made significant investment in developing methods to ensure its graduates are “industry-ready”. As visits to oil rigs are not often possible or practical for students it was decided to develop a virtual space for students to familiarise themselves with aspects of the offshore environment in a virtual environment. Such simulation tools give students immersive experiences that ca...

  8. Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage.

    Science.gov (United States)

    Bernard, Laurence; Shingfield, Kevin J; Rouel, Jacques; Ferlay, Anne; Chilliard, Yves

    2009-01-01

    Based on the potential benefits to long-term human health there is interest in developing sustainable nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids in ruminant milk. The impact of plant oil supplements to diets containing different forages on caprine milk fatty acid composition was examined in two experiments using twenty-seven Alpine goats in replicated 3 x 3 Latin squares with 28 d experimental periods. Treatments comprised of no oil (control) or 130 g/d of sunflower-seed oil (SO) or linseed oil (LO) supplements added to diets based on grass hay (H; experiment 1) or maize silage (M; experiment 2). Milk fat content was enhanced (Pdiets, resulting in 17, 15 and 14% increases in milk fat secretion, respectively. For both experiments, plant oils decreased (Pplant oil composition and forage in the diet. In conclusion, plant oils represent an effective strategy for altering the fatty acid composition of caprine milk, with evidence that the basal diet is an important determinant of ruminal unsaturated fatty acid metabolism in the goat.

  9. Fish-oil supplementation enhances the effects of strength training in elderly women.

    Science.gov (United States)

    Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio

    2012-02-01

    Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.

  10. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  11. LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY

    OpenAIRE

    M. Shamim Ahmad; Vijaya Subramaniam; Halimah Mohammad; Anis Mokhtar; B. S. Ismail

    2014-01-01

    Life Cycle Assessment (LCA) is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefor...

  12. A new approach for crude oil price prediction based on stream learning

    Directory of Open Access Journals (Sweden)

    Shuang Gao

    2017-01-01

    Full Text Available Crude oil is the world's leading fuel, and its prices have a big impact on the global environment, economy as well as oil exploration and exploitation activities. Oil price forecasts are very useful to industries, governments and individuals. Although many methods have been developed for predicting oil prices, it remains one of the most challenging forecasting problems due to the high volatility of oil prices. In this paper, we propose a novel approach for crude oil price prediction based on a new machine learning paradigm called stream learning. The main advantage of our stream learning approach is that the prediction model can capture the changing pattern of oil prices since the model is continuously updated whenever new oil price data are available, with very small constant overhead. To evaluate the forecasting ability of our stream learning model, we compare it with three other popular oil price prediction models. The experiment results show that our stream learning model achieves the highest accuracy in terms of both mean squared prediction error and directional accuracy ratio over a variety of forecast time horizons.

  13. Identification of molecular performance from oil palm clones based on SSR markers

    Science.gov (United States)

    Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.

    2018-03-01

    In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

  14. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA

  16. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways.

    Science.gov (United States)

    Nafar, F; Clarke, J P; Mearow, K M

    2017-05-01

    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted

  17. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  18. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  19. Enhanced oil recovery by CO/sub 2/ foam flooding. Annual report, October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-12-22

    The objective is to identify commercially available additives which are effective in reducing the mobility of carbon dioxide, CO/sub 2/, thereby improving its efficiency in the recovery of tertiary oil, and which are low enough in cost to be economically attractive. During the past year significant progress has been made in developing a commercial method of reducing the mobility of carbon dioxide in enhanced oil recovery processes. Four basic chemical structures, listed below, appear to show most promise for gas mobility control: (1) ethoxylated adducts of C/sub 8/ - C/sub 14/ linear alcohols; (2) sulfate esters of ethoxylated C/sub 9/ - C/sub 16/ linear alcohols; (3) low molecular weight co-polymers of ethylene oxide and propylene oxide; and (4) synthetic organic sulfonates. With the exception of the sulfonates, the above types are compatible with normal oil field brines, unaffected by the presence of crude oil and stable under conditions common in a petroleum reservoir. The second significant result during the year involves identification of several sulfonate structures that have high potential for mobility control for carbon dioxide. Commercial sulfonate additives are available that appear optimum for reservoirs where freshwater will be used to inject the surfactant solution. They can also be considered for limited brine applications, for as temperature increases the utility of sulfonates for mobility control also increases. This is encouraging since some of the previously identified additives are chemically unstable at temperatures encountered in most petroleum reservoirs. 113 references, 23 figures, 4 tables.

  20. Water deficit during pit hardening enhances phytoprostanes content, a plant biomarker of oxidative stress, in extra virgin olive oil.

    Science.gov (United States)

    Collado-González, Jacinta; Pérez-López, David; Memmi, Houssem; Gijón, M Carmen; Medina, Sonia; Durand, Thierry; Guy, Alexandre; Galano, Jean-Marie; Ferreres, Federico; Torrecillas, Arturo; Gil-Izquierdo, Angel

    2015-04-15

    No previous information exists on the effects of water deficit on the phytoprostanes (PhytoPs) content in extra virgin olive oil from fruits of mature olive (Olea europaea L. cv. Cornicabra) trees during pit hardening. PhytoPs profile in extra virgin olive oil was characterized by the presence of 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP + ent-16-B1-PhytoP, and 9-L1-PhytoP + ent-9-L1-PhytoP. The qualitative and quantitative differences in PhytoPs content with respect to those reported by other authors indicate a decisive effect of cultivar, oil extraction technology, and/or storage conditions prone to autoxidation. The pit hardening period was critical for extra virgin olive oil composition because water deficit enhanced the PhytoPs content, with the concomitant potential beneficial aspects on human health. From a physiological and agronomical point of view, 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, and 16-B1-PhytoP + ent-16-B1-PhytoP could be considered as early candidate biomarkers of water stress in olive tree.

  1. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    2016-01-01

    Full Text Available The mineral oil or synthetic oil in conjunction with paper is mainly being applied as dielectric medium in many of the high voltage apparatus. However, the advent of high voltage levels such high voltage alternating current (HVAC and high voltage direct current (HVDC has prompted researchers to direct their focus onto an insulation system which can bear the rising high voltage levels. The modern insulating liquid material development is guided by various factors such as high electrical insulation requirements and other safety and economic considerations. Therefore transformer manufacturer companies have to design transformers with these new specific requirements. The transformer oil-based nanofluids with improved dielectric and thermal properties have the potential to replace mineral oil base products in the market place. They are favorable because they function more superior than mineral oil and they contribute definite insulating and thermal gains. This paper reviews recent status of nanofluids use as transformer oils. The nanofluids used as transformer oils are presented and their advantages are described in comparison with mineral oil. The multiple experimental works carried out by different researchers are described, providing an overview of the current research conducted on nanofluids. In addition scope and challenges being confronted in this area of research are clearly presented.

  2. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Chiu

    2016-06-01

    Full Text Available Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA, which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.

  3. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.

    Science.gov (United States)

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-06-22

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.

  4. Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.

    Science.gov (United States)

    Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan

    2017-12-01

    The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Enhanced oil recovery by improved waterflooding. Third annual report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Craig, III, Forrest F.; Boghossian, David M.; Burtch, Fred W.

    1981-04-01

    Energy Resources Co. Inc. and its subcontractor Elf-Aquitaine Oil and Gas Company are conducting a 100-acre pilot polymer flood in the Storms Pool Field near Carmi, in White County, Illinois. The first annual report reviewed the groundwork upon which much of the second year's work was based. That report included a geologic analysis of the Storms Pool and its production potential, the rationale for the selection of a pilot site, some preparation of wells and facilities, an extensive plan for testing candidate polymers in the laboratory, and a proposed approach to the computerized simulation of the pilot polymer flood. The second annual report reviewed a year of intensive laboratory, design and field work, including a reservoir and well test program, the results of the polymer selection and additional laboratory testing, workovers and construction of facilities, preliminary reservoir simulation, and program support activities. This report discusses the final polymer selection, design of the graded polymer banks, results of reservoir pressure tests and plans for continued testing, and completion of basic plant construction. An updated milestone chart is also presented which takes into account the unexpected delays encountered to data. Because the second report actually covered a 15-month period, this report overlaps somewhat with information contained in the second report.

  6. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.

    Science.gov (United States)

    Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping

    2018-06-01

    Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Candidate reservoirs for enhanced oil recovery, guidelines for their selection and appraisal of significant tests to date. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cronquist, C.; Portugal, D.

    1977-03-01

    Elements which are keys to the effective management of the ERDA Enhanced Oil Recovery Programs are described. Results of efforts to develop screening criteria to identify reservoir rock-fluid characteristics considered suitable for application of EOR processes which appear to have the best chance for commercial recovery of significant additional volumes of oil are summarized. A review of significant field tests made to develop the management matrices is included. Over a hundred published references describing completed and ongoing tests of EOR processes were reviewed to compile the data reported in the four matrices. The knowledge derived from these and subsequent field tests, plus that derived from laboratory research, serves to continually improve the state-of-the-art, thereby reducing the risk in tests yet to come. As the state-of-the-art improves, and as more data comes into the public domain, the matrices should be updated, and the screening criteria should be revised accordingly. An extensive set of data representing 2,420 reservoirs in the United States which have been identified as potential candidates for enhanced oil recovery is included.

  8. Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass

    Directory of Open Access Journals (Sweden)

    Nur Fatin Athirah Ahmad Rizal

    2018-04-01

    Full Text Available The combination of superheated steam (SHS with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB and oil palm mesocarp fiber (OPMF were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.

  9. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids.

    Science.gov (United States)

    Ashraf-Khorassani, Mehdi; Taylor, Larry Thomas

    2004-05-05

    Pure supercritical CO(2) was used to remove >95% of the oil from the grape seeds. Subcritical CO(2) modified with methanol was used for the extraction of monomeric polyphenols, whereas pure methanol was used for the extraction of polyphenolic dimers/trimers and procyanidins from grape seed. At optimum conditions, 40% methanol-modified CO(2) removed >79% of catechin and epicatechin from the grape seed. This extract was light yellow in color, and no higher molecular weight procyanidins were detected. Extraction of the same sample after removal of the oils and polyphenols, but now under enhanced solvent extraction conditions using methanol as a solvent, provided a dark red solution shown via electrospray ionization HPLC-MS to contain a relatively high concentration of procyanidins. The uniqueness of the study is attested to by the use of CO(2)-based fluids and the employment of a single instrumental extraction system.

  10. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht

    2010-01-01

    in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation....... The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines...... the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations...

  11. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain

    Directory of Open Access Journals (Sweden)

    Debajit Borah

    2017-03-01

    Full Text Available Petroleum based hydrocarbon degrading and biosurfactant producing bacterial strain was isolated from an automobile engine. The strain was identified as Bacillus cereus DRDU1 on the basis of 16S rDNA sequencing analysis. The strain was found to be efficiently degrading 96% of kerosene making it a potential tool for bioremediation of petroleum based contaminants. Production and optimization of the biosurfactant produced by the isolate were also carried out. Surface hydrophobicity trait of isolate was found to be 60.67 ± 1.53% and foaming percentage of the crude biosurfactant was found to be 31.33 ± 0.58%. The presence of amino acids and sugar moieties in the biosurfactant was confirmed by biochemical tests and were further validated by FTIR (the Fourier transform infrared spectrometric analysis revealing the presence of υOH, υCOO, υCOOH, υCH (stretching, υNH, υCH2, υCH3, and υCH (bending, and υCO (ester in the surfactant. The decrease in contact angle of hydrocarbon oil from (30.67 ± 1.15° to (21.3 ± 1.53° respectively after 3 and 6 days of incubation reveals its potential to emulsify petroleum oil. Further, emulsification index (E24 of biosurfactant against kerosene, crude oil, and used engine oil were determined to be 55.33 ± 1.53%, 29.67 ± 1.53%, and 20 ± 1% respectively which attracts its future application in MEOR (microbial enhanced oil recovery process.

  12. Mechanical Properties of a Water-Based Acrylic Coating Containing Microcapsules of Rapeseed Oil- Ethyl Cellulose

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Mirabedini

    2013-08-01

    Full Text Available Rapeseed oil-filled ethyl cellulose microcapsules were prepared using a two-step solvent evaporation method. The prepared oil-filled microcapsules were characterized by; optical microscopy, scanning electron microscopy and particle size analyzer. The mechanical properties of carboxylated styrene/butadiene copolymer latex films containing various levels of microcapsules were studied using DMTA and tensile strength measurements. The characterization test results showed that rapeseed oil-contained microcapsules with a regular spherical shape, diameter range of 10-45 μm, and a relatively rough porous shell were successfully prepared. The results also revealed that the overall mechanical properties of the latex films containing oil-filled microcapsules improved, due to reinforcing effect of capsules within the latex films; with the best results using 1-2 wt% of oil-filled microcapsules. The improved results were obtained in reinforcing the samples before tests such as tensile tension, capsule rupturing and the oil release within the polymeric network by maintaining the integrity of the films by plasticization of the surrounding polymeric network, increased elongation-at-break, and enhanced resistance against tear or break. With further increasing of microcapsules content up to 3 wt%, there was a drop in overall mechanical properties of latex films, due to possible aggregation of microcapsules, presence of free rapeseed oil within the latex film and weak polymer/microcapsules interface. A proper distribution and dispersion of oil-filled microcapsules within the latex film, and rupture of sufficiently large microcapsules under stress, oil release within the polymeric network and easy movement of the chains were the main requirements for achieving latex film with good mechanical properties.