WorldWideScience

Sample records for based enhanced oil

  1. Enhanced oil recovery projects data base

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  2. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  3. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  4. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    OpenAIRE

    Mehrnoosh Moradi; Xiuyu Wang; Vladimir Alvarado

    2011-01-01

    Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR) operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require a...

  5. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  6. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  7. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  8. A STREAMLINE-BASED PREDICTIVE MODEL FOR ENHANCED-OIL-RECOVERY POTENTIALITY

    Institute of Scientific and Technical Information of China (English)

    HOU Jian; ZHANG Shun-kang; DU Qing-jun; LI Yu-bin

    2008-01-01

    A pseudo-three-dimensional model of potentiality prediction is proposed for enhanced oil recovery, based on the streamline method described in this article. The potential distribution of the flow through a porous medium under a complicated boundary condition is solved with the boundary element method. Furthermore, the method for tracing streamlines between injection wells and producing wells is presented. Based on the results, a numerical solution can be obtained by solving the seepage problem of the stream-tube with consideration of different methods of Enhanced Oil Recovery(EOR). The advantage of the method given in this article is that it can obtain dynamic calculation with different well patterns of any shape by easily considering different physicochemical phenomena having less calculation time and good stability. Based on the uniform theory basis-streamline method, different models, including CO2 miscible flooding, polymer flooding, alkaline/surfactant/polymer flooding and microbial flooding, are established in this article.

  9. Enhancement of Epimedium Fried with Suet Oil Based on in Vivo Formation of Self-Assembled Flavonoid Compound Nanomicelles

    Directory of Open Access Journals (Sweden)

    Xiao-Bin Jia

    2012-11-01

    Full Text Available The purpose of this work was to research the enhancement of Epimedium fried with suet oil based on the in vivo formation self-assembled flavonoid nanomicelles. Taking icariin as the representative, under the action of suet oil, self-assembled nanomicelles were prepared under simulated gastrointestinal tract conditions and were characterized by dynamic light scattering and transmission electron microscopy (TEM. The experiments with icariin self-assembled nanomicelles without suet oil were done according to the above. The influence of suet oil on the transportation of icariin across Caco-2 cell monolayers and the absorption in rat intestine of self-assembled nanomicelles were evaluated. The particle size of icariin self-assembled nanomicelles with suet oil was smaller than without suet oil. The nanomicelles seemed to be monodisperse spherical particle with smooth surfaces. The icariin entrapment efficiency of self-assembled nanomicelles with suet oil was increased from 43.1% to 89.7%. In Caco-2 cell monolayers, the absorptive permeability, secretory permeability and efflux ratio of icariin self-assembled nanomicelles with suet oil was 1.26 × 10−6 cm/s, 5.91 × 10−6 cm/s and 4.69, respectively, while that of icariin self-assembled nanomicelles without suet oil was 0.62 × 10−6 cm/s, 3.00 × 10−6 cm/s, and 4.84, respectively. In rat intestinal perfusion experiments, the permeability coefficient of icariin self-assembled nanomicelles with suet oil in duodenum was higher than the value of icariin self-assembled nanomicelles without suet oil (p < 0.05. With the action of suet oil, icariin self-assembled nanomicelles were more stable and the entrapment efficiency was higher than that without suet oil, which could increase the solubility of icariin and improve its intestinal absorption. Therefore, suet oil plays a role in its enhancement.

  10. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  11. Applicability of solvent based Huff-and-Puff Method to enhance heavy oil recovery

    Science.gov (United States)

    Qazvini Firouz, Alireza

    Over and above solvent based processes, specifically, the cyclic solvent injection well known as "Huff-and-Puff', has demonstrated a significant potential to enhance heavy oil recovery. Solvent and CO2 Huff-and-Puff are analogies to cyclic steam stimulation; however, in this method, steam is replaced with CO2, hydrocarbon solvent or mixture of the two. This study attempts to validate the feasibility of the Solvent Based Huff-and-Puff Method with respect to enhancing heavy oil recovery and to investigate the effect of fluid, operation, and reservoir parameters on its' performance. Thus, both experimental and reservoir simulation approaches were applied and, the impact of the aforementioned parameters on the performance of the process was investigated. All experiments were conducted in a Berea core with the dimensions of 30.48 cm by 5.07 cm. The core has a permeability of 1800 md and a porosity of 24% which was mounted in a high pressure, stainless steel core holder. Before conducting each Huff-and-Puff Test, the core was saturated with an oil sample representative of Saskatchewan heavy oil reservoirs and exhibited a viscosity of 952 mPa.s, at a temperature of 28°C. Prior to the tests, a complete phase behavior (PVT) analysis of the oil sample and solvents mixture was conducted using CMG- WinProp(TM) software. Over 12 sets of Huff-and-Puff Experiments, utilizing the pure solvent of carbon dioxide, methane, and mixtures of CO2 and propane, were performed at different operating pressures. A soaking time period of 24 hrs and a cut-off pressure of 276 kPa were considered for all cycles. In addition, all Huff-and-Puff Cycles were continued for each operating pressure until production dropped below one percent of the original oil in place. The production trend and recovery factor for each experiment were determined. The final oil recoveries, at the highest operating pressure of 7239 kPa for pure CO2 and, at 6895 kPa for pure methane, were 71 and 50 % OOIP, respectively

  12. Microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Brown, Lewis R

    2010-06-01

    Two-thirds of the oil ever found is still in the ground even after primary and secondary production. Microbial enhanced oil recovery (MEOR) is one of the tertiary methods purported to increase oil recovery. Since 1946 more than 400 patents on MEOR have been issued, but none has gained acceptance by the oil industry. Most of the literature on MEOR is from laboratory experiments or from field trials of insufficient duration or that lack convincing proof of the process. Several authors have made recommendations required to establish MEOR as a viable method to enhance oil recovery, and until these tests are performed, MEOR will remain an unproven concept rather than a highly desirable reality. PMID:20149719

  13. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  14. Preparation and Enhancement of Thermal Conductivity of Heat Transfer Oil-Based MoS2 Nanofluids

    Directory of Open Access Journals (Sweden)

    Yuan-Xian Zeng

    2013-01-01

    Full Text Available The lipophilic MoS2 nanoparticles are synthesized by surface modification with stearic acid (SA. The heat transfer oil-based nanofluids, with the mass fraction of lipophilic nanoparticles varying from 0.25% up to 1.0%, are prepared and their thermal conductivity is determined at temperatures ranging from 40 to 200°C using an apparatus based on the laser flash method. It has been found that the nanofluids have higher thermal conductivity and the thermal conductivity enhancement increased not only with increasing mass fraction of nanoparticles, but also with increasing temperature in the range 40–180°C The results show a 38.7% enhancement of the thermal conductivity of MoS2 nanofluid with only 1.0% mass fraction at 180°C.

  15. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  16. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    Science.gov (United States)

    Hendraningrat, Luky; Zhang, Julien

    2015-11-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  17. Solvent enhanced bioremediation of weathered oil contamination

    International Nuclear Information System (INIS)

    This paper describes a novel bioremediation process for the treatment of oil spills on land. The method was developed specifically to deal with long term oil contamination where the volatile fractions have evaporated leaving the more recalcitrant fractions. A model system of sand and Kuwaiti crude oil was used to test the system. A combined treatment which introduced an additional solvent component was found to enhance mobility and availability of oil, enhancing bioremediation. (author)

  18. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  19. Oil-based paint poisoning

    Science.gov (United States)

    Paint - oil based - poisoning ... Hydrocarbons are the primary poisonous ingredient in oil paints. Some oil paints have heavy metals such as lead, mercury, cobalt, and barium added as pigment. These heavy metals can cause additional ...

  20. Nanostructured systems for enhanced oil recovery

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  1. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    be resistant to and remain active at reservoir conditions such as high temperatures, pressures and salinities. Understanding the underlying mechanisms of systems that exhibit liquid-liquid equilibrium (e.g. oil-brine systems) at reservoir conditions is an area of increasing interest within EOR. This is true...... characterization of the two crude oils using gas chromatography and SARA analysis confirmed that the heavier components in the crude oils, (in the case of the Latin American crude oil), are correlated to the observed decrease of viscosity, where the viscosity decrease may be explained from change of the shape......Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...

  2. Microbial enhanced oil recovery: Entering the log phase

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  3. KEROGEN OIL VALUE ENHANCEMENT RESEARCH

    International Nuclear Information System (INIS)

    Three general categories of products from the Estonia Kukersite kerogen oil were defined: pure compounds, broad range concentrates, and sweet refinery feedstock. Product development and market research center on these three categories. Further attempts were made to identify and test chemical approaches for producing lower alkyl resorcinols (what the market requires) from higher alkyl resorcinols. The approaches and process conditions tested have not yet produced satisfactory results. Progress was made to interest industry in the phenolic products producible. A sample of oil from the Galoter retort was received from Estonia and characterization of this sample was initiated. The sample was batch extracted and results of yields and selectivity are reported

  4. Study of the enhanced oil recovery with surfactant based systems; Estudo de recuperacao avancada de petroleo por sistemas a base de tensoativos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Neto, Valdir Cotrim; Paulino, Luisa Cimatti; Acyoly, Alessandra; Santos, Enio Rafael M.; Dantas Neto, Afonso Avelino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, it must be used enhanced recovery methods. One of these technologies is the injection of surfactant solutions, where exists a chemical interaction between the injected fluid and the reservoir's fluid. With this in mind, this work was developed with two main objectives: to study of parameters that influence the surfactant behavior in solution, namely the critical micelle concentration (CMC), the surface and interface tensions between fluids and the evaluation of oil recovery with these solutions. After the Botucatu sandstone (Brazil) porosity study, the plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The solutions were studied in enhanced recovery step, when the plug samples could already be compared to a mature field. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater. (author)

  5. Experimental Studies of Microbial Enhanced Oil Recovery

    OpenAIRE

    Crescente, Christian Miguel

    2012-01-01

    The main purpose of this work was to understand the driving mechanisms by which the bacterium Rhodococcus sp. 094 increases oil recovery. The reason for only using this species was to thorougly investigate different aspects of it, to be able to answer as many questions as possible so that in the end it would be possible to confidently understand which mechanisms are responsible for enhanced oil recovery with this bacterium. From the lessons learned on this work one could more efficiently desi...

  6. Seismic stimulation for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

    2008-07-22

    The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

  7. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  8. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    CERN Document Server

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  9. Tax incentives and enhanced oil recovery techniques

    International Nuclear Information System (INIS)

    Tax expenditures-reductions in income tax liability resulting from a special tax provision-are often used to achieve economic and social objectives. The arguments for petroleum production tax incentives usually encompass some combination of enhancing energy security, rewarding risk, or generating additional investment in new technologies. Generally, however, some portion of any tax expenditure is spend on activities that would have occurred anyway. This paper is a review of tax incentives for petroleum production found two to be of questionable merit. Others, including tax preferences for enhanced oil recovery methods, which offered the potential for better returns on the tax dollar. Increased use of enhanced oil recovery techniques could lead to additional environmental costs, however, and these need to be factored into any cost-benefit calculation

  10. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  11. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical me

  12. Enhanced oil recovery: an update review

    International Nuclear Information System (INIS)

    With the decline in oil discoveries during the last decades it is believed that Enhanced Oil Recovery (EOR) technologies will play a key role to meet the energy demand in years to come. This paper presents a comprehensive review of EOR status and opportunities to increase final recovery factors in reservoirs ranging from extra heavy oil to gas condensate. Specifically, the paper discusses EOR status and opportunities organized by reservoir lithology (sandstone and carbonates formations and turbiditic reservoirs to a lesser extent) and offshore and onshore fields. Risk and rewards of EOR methods including growing trends in recent years such as CO2 injection, high pressure air injection (HPAI) and chemical flooding are addressed including a brief overview of CO2-EOR project economics. (authors)

  13. Microbial enhanced oil recovery and wettability research program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  14. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    OpenAIRE

    Nielsen, Sidsel Marie; Shapiro, Alexander; Stenby, Erling Halfdan; Michelsen, Michael Locht

    2010-01-01

    In this project, a generic model has been set up to include the two main mechanisms in the microbial enhanced oil recovery (MEOR) process; reduction of the interfacial tension (IFT) due to surfactant production, and microscopic fluid diversion as a part of the overall fluid diversion mechanism due to formation of biofilm. The construction of a one-dimensional simulator enables us to investigate how the different mechanisms and the combination of these influence the displacement processes, the...

  15. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  16. Tracer monitoring of enhanced oil recovery projects

    Science.gov (United States)

    Dugstad, Ø.; Viig, S.; Krognes, B.; Kleven, R.; Huseby, O.

    2013-05-01

    In enhanced oil recovery (EOR), chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  17. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  18. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  19. Sonochemical approaches to enhanced oil recovery.

    Science.gov (United States)

    Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Altunina, Lyubov K; Gerasin, Artyom S; Pashin, Dmitriy M; Mason, Timothy J

    2015-07-01

    Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported. PMID:25242671

  20. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  1. Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory

    Directory of Open Access Journals (Sweden)

    Mikhail Turbakov

    2015-10-01

    Full Text Available Most of the current Russian oil production comes from mature fields. The application of enhanced oil recovery methods on oil fields increases recovery efficiency. This article presents an analysis of the increased field development efficiency methods of the Volga-Ural oil and gas region, which allows the full and efficient development of last-stage fields with unconventional reserves and production stabilization. The selection of the optimum method for a given field is a complex procedure consisting of many stages, from collecting data about the field, through more advanced data interpretation, to working out a detailed proposal for the most efficient extraction method. In this article the instantaneous and average annual growth above wells average was taken as a performance criterion for enhanced oil recovery methods. Based on the performed analysis, it follows that candidate wells for enhanced oil recovery method use must meet the I group parameters (high values of the remaining recoverable reserves and improved reservoir properties, low water cut, obtained oil rate increase. In order to assess the possible increase in production rate after enhanced oil recovery methods hydrodynamic modeling of radial drilling, acid treatment and water-alternated-gas injection for two oil fields of the Volga-Ural oil and gas region were performed.

  2. Environmental regulations handbook for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Blatchford, R.P.; Spears, R.B. (Spears and Associates, Inc., Tulsa, OK (United States))

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  3. Environmental regulations handbook for enhanced oil recovery

    International Nuclear Information System (INIS)

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them

  4. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-01-01

    Full Text Available The application of enhanced oil recovery (EOR in offshore oil fields has received significant attention due to the potentially enormous amount of recoverable oil. However, EOR application offshore is in its very early stage due to conditions that are more complex than onshore oil fields, owing to the unique parameters present offshore. Therefore, successful EOR applications in offshore oil fields require different screening criteria than those for conventional onshore applications. A comprehensive database for onshore applications of EOR processes together with a limited offshore EOR application database are analyzed in this paper, and the important parameters for successful offshore application are incorporated into the new EOR screening criteria. In this paper, screening criteria to determine acceptable EOR processes for offshore fields, including hydrocarbon gas miscible, CO2 miscible, and polymer processes, are presented. Suggested screening criteria for these EOR processes comprise quantitative boundaries and qualitative considerations. Quantitative screening criteria are predominantly based on quantifiable data, such as oil and reservoir properties. Qualitative screening considerations mainly focus on the operational issues present offshore, including platform space constraints, limited disposal options, injectant availability, and flow assurance matters (including hydrate formation and difficulties in emulsion separation.

  5. Microbial enhanced oil recovery. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Zekri, A.Y. [United Arab Emirates Univ., Al Ain (United Arab Emirates)

    2001-03-01

    Several literature reviews have been published on microbial enhanced oil recovery (MEOR). This paper updates the state of art in MEOR process and presents a summary of field projects. The most common practice technique of MEOR is cyclic stimulation treatment of production wells. Normally small amount of microbial solution injected in a single well and left to soak for a period of time before putting the well back on production. This process results in a limited volume of the reservoir being treated. This usual type of treatment is easy to implement, quick response and relatively inexpensive. The second technique is to apply microbial along with water flooding to improve both sweep efficiency and displacement efficiency. A number of projects have been conducted to improve oil recovery using MEOR technique. In laboratory, bacteria have been shown to produce chemicals such as surfactant, acids, solvents and gases (mainly CO{sub 2}) that can extensively contribute to improvement of displacement efficiency. Microorganism growth at substantial rate and some are capable of polymer production, which resulted in improving the volumetric sweep efficiency of the process and consequently improvement of oil recovery. MEOR process is friendly to the environment, which is an addition plus to the process. In this paper a complete review of the current laboratory work and field projects will be presented in additional to reviewing the mechanism of the process in details. (orig.)

  6. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

    OpenAIRE

    Pan-Sang Kang; Jong-Se Lim; Chun Huh

    2016-01-01

    The application of enhanced oil recovery (EOR) in offshore oil fields has received significant attention due to the potentially enormous amount of recoverable oil. However, EOR application offshore is in its very early stage due to conditions that are more complex than onshore oil fields, owing to the unique parameters present offshore. Therefore, successful EOR applications in offshore oil fields require different screening criteria than those for conventional onshore applications. A compreh...

  7. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    OpenAIRE

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical methods, (partially) miscible methods and thermal methods. Air injection is categorized as a thermal recovery method as it leads to combustion and therefore high temperature in the reservoir. However...

  8. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO2 is significantly different from that of oil recovery alone. Currently, the volumes of CO2 injected solely for oil recovery are minimized due to the purchase cost of CO2. If and when CO2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO2 emplaced in oil reservoirs. This process is coined 'cooptimization'. This paper proposes a work flow for cooptimization of oil recovery and geologic CO2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid

  9. Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; L. R. Rodrigues; Coutinho, João A. P.; J.A. Teixeira

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from a reservoir beyond primary and secondary recovery operations using microorganisms and their metabolites. Stimulation of bacterial growth for biosurfactant production and degradation of heavy oil fractions by indigenous microorganisms can enhance the fluidity and reduce the capillary forces that retain the oil into the reservoir. MEOR offers major advantages over conventional EOR, namely low...

  10. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  11. Enzymes for Enhanced Oil Recovery (EOR)

    OpenAIRE

    Nasiri, Hamidreza

    2011-01-01

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR me...

  12. Preparation of function-enhanced vegetable oils

    OpenAIRE

    Hiroshi Maeda; Takao Satoh; Waliul Islam

    2016-01-01

    Background: Previously, we (HM) found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO.), or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1). Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of...

  13. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  14. National Bases Constructed to Stockpile Oil

    Institute of Scientific and Technical Information of China (English)

    Fu Rong

    2003-01-01

    @@ CNPC has recently started the preliminary work for construction of the large-scale oil stockpiling base in Yizheng City, Jiangsu Province. When the base is completed, it will be connected to CNPC's other oil stockpiling bases in Qinhuangdao and Huangdao, shaping the country's national oil stockpiling base at its preliminary stage.

  15. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration......In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion is...

  16. New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential

    OpenAIRE

    Iglauer, Stefan; Wu, Yongfu; Shuler, Patrick; Tang, Yongchun; Goddard, William A.

    2010-01-01

    We investigate four different types of surfactants for effectiveness in tertiary oil recovery (TOR). The selected surfactant formulations were tested for enhanced oil recovery using coreflood tests on Berea sandstones. In addition to the corefloods, one sandpack surfactant flood was performed. The porous media were conditioned to residual waterflood oil saturation prior to surfactant slug injection. This was followed by polymer drive slug injection, and incremental oil recovery was measured a...

  17. Solar technology application to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

    1979-12-01

    One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

  18. New technologies of enhanced oil recovery

    International Nuclear Information System (INIS)

    It is known from the literature that up to 27 % of oil in oil-fields can be produced using primary and hydration methods. The efficiency of production can be increased by employing more advanced methods, i.e. EOR. The Polish Oil and Gas Company work with Polish oil-fields, where currently primary methods are applied, but the Polish experiences with EOR date back to the years 1932-1987. In view of high oil prices, reconsidering EOR as a production method is economically justifiable. Therefore, it is purposeful to implement new pilot technologies, aimed at implementing new technologies, understanding accompanying phenomena, and calibrating of simulation models, including economical models for an optimal control of the oil-field exploitation. World's new exploitation methods worked out in the last few years and suggestions for their implementation in Polish conditions are presented in the paper (authors)

  19. Microbial enhanced oil recovery research. Final report, Annex 5

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  20. Enhanced oil recovery by CO{sub 2} injection

    Energy Technology Data Exchange (ETDEWEB)

    Moctezuma Berthier, Andres E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2008-07-15

    Firstly are presented some basic concepts on the enhanced oil recovery; then a description is made of where the oil deposits in Mexico are located; comments are made over what has been done in Mexico in terms of enhanced oil recovery, the projects of the Instituto Mexicano del Petroleo that have dealt with the subject of enhanced oil recovery, and finally an approach is presented towards the problem of oil recovery using CO{sub 2}. [Spanish] Primeramente se presentan unos conceptos basicos sobre la recuperacion mejorada de petroleo; luego se hace una descripcion de donde se encuentran los yacimientos de petroleo en Mexico; se comenta sobre que se ha hecho en Mexico en terminos de recuperacion mejorada de petroleo; se mencionan los proyectos del Instituto Mexicano del Petroleo que han abordado el tema de la recuperacion mejorada del petroleo y por ultimo se presenta un enfoque hacia el problema de la recuperacion del petroleo usando CO{sub 2}.

  1. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Full Text Available Background: Previously, we (HM found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO., or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1. Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of health oriented diet. Oxidized oils may eventually cause DNA cleavages, modification of proteins, RNA, and lipids, as well as cellular damage, or promote inflammation and carcinogenesis at later time [5-9]. These commercial oils of low antioxidant activity may be improved by adding functionally effective antioxidative components, by using dried vegetable-waste such as tomato-juice-waste-residues and wine-ferment-waste-residues. Their antioxiative components will be transferred into the functionally poor grade edible oils, and consequently, one can improve the quality of such functionally poor oils and thereby contributing human health [2,8,9]. The purpose of this paper is to report a practical procedure to fortify functionally low grade conventional edible oils to functionally enriched edible oils using dried vegetable-waste residues such as tomato juice waste, and wine-ferment-residues, or other vegetable-waste residues. Methods: (1 Preparation and measurements of lycopene and carotenoid enriched oils. To 5.0g or 1.0g of the dried residue of tomato juice waste, 100ml of commercial rape seed (canola oil was added respectively. Each mixture was incubated at room temperature in dark for several weeks. Amount of lycopene and carotenoids extracted into the oil was monitored by increase of absorption (400-550nm and fluorescence at 470nm of carotenoid. Grape-juice ferment (wine waste was similarly prepared after hot air drying, and immersed in canola oil. (2

  2. Microbial Enhanced Oil Recovery - Modeling and Numerical Simulations

    OpenAIRE

    Amundsen, Aleksander

    2015-01-01

    This thesis examines the process by which microbes are used to enhance oil recovery from subsurface reservoirs. A brief introduction to reservoirs is given and the possible effects of microbes are explained. A model is developed combining porous media flow and microbial kinetics. The model is then used to run simulations in conjunction with the MATLAB Reservoir Simulation Toolbox from SINTEF (Stiftelsen for Industriell og Teknisk Forskning). Microbial enhanced oil recovery (MEOR) is simulated...

  3. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  4. Carbon-based tribofilms from lubricating oils

    Science.gov (United States)

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L.; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K. R. S.

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid ‘tribofilms’, which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant’s anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon–carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.

  5. Carbon-based tribofilms from lubricating oils.

    Science.gov (United States)

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm. PMID:27488799

  6. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addi......Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal...

  7. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  8. Preparation and Characterization of All-Biomass Soy Protein Isolate-Based Films Enhanced by Epoxy Castor Oil Acid Sodium and Hydroxypropyl Cellulose

    OpenAIRE

    La Wang; Jianzhang Li; Shifeng Zhang; Junyou Shi

    2016-01-01

    All-biomass soy protein-based films were prepared using soy protein isolate (SPI), glycerol, hydroxypropyl cellulose (HPC) and epoxy castor oil acid sodium (ECOS). The effect of the incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental results showed that the tensile strength of the resultant films increased from 2.84 MPa (control) to 4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and 10% ECOS. The increas...

  9. Shale oil value enhancement research: Separation characterization of shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Bunger, J.W.

    1993-12-31

    The overall objective is to develop a new technology for manufacturing valuable marketable products form shale oil. Phase-I objectives are to identify desirable components in shale oil, develop separations techniques for those components, identify market needs and to identify plausible products manufacturable from raw shale oil to meet those needs. Another objective is to conduct preliminary process modeling and economic analysis of selected process sequences and product slates, including an estimation of process, costs and profitability. The end objective of Phase-I is to propose technically and economically attractive separations and conversion processes for small-scale piloting in the optional Phase-II. Optional Phase-II activities include the pilot-scale test of the Shale Oil Native Products Extraction (SO-NPX) technology and to produce specification products. Specific objectives are to develop the engineering data on separations processing, particularly those in which mixtures behave non-ideally, and to develop the conversion processes for finishing the separations concentrates into specification products.The desired process scenarios will be developed and economic analysis will be performed on the process scenarios. As a result of the process simulation and economic analysis tasks, a product manufacture and test marketing program shall be recommended for the optional Phase-III. Optional Phase-III activities are to manufacture specification products and to test market those products in order to ensure market acceptability. The activities involve the assembling of the technical, market and economic data needed for venture evaluation. The end objective is to develop the private sector interest to carry this technology forward toward commercialization.

  10. A biosurfactant-producing and oil-degrading Bacillus subtilis strain enhances oil recovery under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; Costa, Rita; L. R. Rodrigues; Coutinho, João A. P.; J.A. Teixeira

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions reduces the capillary forces that retain the oil inside the reservoir and decreases oil viscosity, thus promoting its flow and increasing oil production. Bacillus subtilis #573, isolated from crude oil s...

  11. Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

    1979-12-01

    Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

  12. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander;

    2010-01-01

    Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is requir...

  13. The effects of fractional wettability on microbial enhanced oil recovery

    Science.gov (United States)

    Wildenschild, D.; Armstrong, R. T.

    2011-12-01

    Microbial enhanced oil recovery (MEOR) is a tertiary oil recovery technology that has had inconsistent success at the field-scale, while lab-scale experiments are mostly successful. One potential reason for these inconsistencies is that the efficacy of MEOR in fractional-wet systems is unknown. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (that lower interfacial tension via biosurfactant production) into fractional-wet cores containing residual oil. Fractional-wet cores tested were 50%, 25%, and 0% oil-wet and two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with x-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR and wettability effects. Results indicate that during MEOR the larger residual oil blobs in mostly fractional-wet pores and residual oil held under relatively low capillary pressures were the main fractions recovered, while residual oil blobs in purely oil-wet pores remained in place. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44% and 80%; the highest AOR values were observed in the most oil-wet system.

  14. A Comparative Study of Diesel Oil and Soybean Oil as Oil-Based Drilling Mud

    OpenAIRE

    Okorie E. Agwu; Okon, Anietie N.; Udoh, Francis D.

    2015-01-01

    Oil-based mud (OBM) was formulated with soybean oil extracted from soybean using the Soxhlet extraction method. The formulated soybean mud properties were compared with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The results obtained show that the soybean oil mud exhibited Bingham plastic rheological model with applicable (low) yield point and gel stren...

  15. How Specific Microbial Communities Benefit the Oil Industry: Microbial-Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Rudyk, Svetlana; Søgaard, Erik

    Microbial-enhanced oil recovery (MEOR) involves injecting into the oil-saturated layer microbes and/nutrients to create the in situ production of metabolic products or nutrients to stimulate indigenous microbes. The purposes of MEOR are to increase oil production, decrease the water cut and prolong the productive life of the oilfield. The most probable targets of MEOR are reservoirs that have reached the limits of oil production by injection of water to displace oil (Donaldson and Obeida, 1991). MEOR is the cheapest approach of oil recovery after water flooding. MEOR investigations have been conducted all over the world and resulted in many successful field applications in the USA, UK, China, Russia, Malaysia, Germany, Romania, Poland and others.

  16. Enhanced Oil Recovery: An Update Review

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2010-08-01

    Full Text Available With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. This paper presents a comprehensive review of EOR status and opportunities to increase final recovery factors in reservoirs ranging from extra heavy oil to gas condensate. Specifically, the paper discusses EOR status and opportunities organized by reservoir lithology (sandstone and carbonates formations and turbiditic reservoirs to a lesser extent and offshore and onshore fields. Risk and rewards of EOR methods including growing trends in recent years such as CO2 injection, high pressure air injection (HPAI and chemical flooding are addressed including a brief overview of CO2-EOR project economics.

  17. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    to formation of biofilm. The construction of a one-dimensional simulator enables us to investigate how the different mechanisms and the combination of these influence the displacement processes, the saturation profiles and thus the oil recovery curves. The reactive transport model describes...... of the relative permeabilities. Overall, these methods produce similar results. Separate investigations of the surfactant effect have been performed through exemplifying simulation cases, where no biofilm is formed. The water phase saturation profiles are found to contain a waterfront initially...... investigated. A super efficient surfactant produces an incremental recovery recovery around 40 % OOIP over that of waterflooding. Application of the less efficient -- and probably more realistic -- surfactant results in an incremental oil recovery of 9 % OOIP, but it is still considered a significant...

  18. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.

    Science.gov (United States)

    Bordoloi, N K; Konwar, B K

    2008-05-01

    Microbial enhanced oil recovery (MEOR) is potentially useful to recover incremental oil from a reservoir being beyond primary and secondary recovery operations. Effort has been made to isolate and characterize natural biosurfactant produced by bacterial isolates collected from various oil fields of ONGC in Assam. Production of biosurfactant has been considered to be an effective major index for the purpose of enhanced oil recovery. On the basis of the index, four promising bacterial isolates: Pseudomonas aeruginosa (MTCC7815), P. aeruginosa (MTCC7814), P. aeruginosa (MTCC7812) and P. aeruginosa (MTCC8165) were selected for subsequent testing. Biosurfactant produced by the promising bacterial isolates have been found to be effective in the recovery of crude oil from saturated column under laboratory conditions. Two bacterial strains: P. aeruginosa (MTCC7815) and P. aeruginosa (MTCC7812) have been found to be the highest producer of biosurfactant. Tensiometer studies revealed that biosurfactants produced by these bacterial strains could reduce the surface tension (sigma) of the growth medium from 68 to 30 mN m(-1) after 96 h of growth. The bacterial biosurfactants were found to be functionally stable at varying pH (2.5-11) conditions and temperature of 100 degrees C. The treatment of biosurfactant containing, cell free culture broth in crude oil saturated sand pack column could release about 15% more crude oil at 90 degrees C than at room temperature and 10% more than at 70 degrees C under laboratory condition. PMID:18164187

  19. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  20. Enhanced crude oil biodegradation in soil via biostimulation.

    Science.gov (United States)

    Al-Saleh, Esmaeil; Hassan, Ali

    2016-08-01

    Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered. PMID:26854134

  1. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  2. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  3. EFFECT OF CHAMOMILE OIL AS A PERCUTANEOUS ABSORPTION ENHANCER

    Directory of Open Access Journals (Sweden)

    Ali Heyam Saad

    2013-09-01

    Full Text Available The aim of this study was to investigate the ability of Chamomile oil as absorption enhancers for cutaneously administered Silver Sulfadiazine by comparing it with a penetration enhancer Dimethyl Sulfoxide. Silver sulfadiazine is used in burn infection. Gel was selected as the vehicle for Silver Rat’ skin samples were placed in a continuous flow diffusion cell, with Silver Sulfadiazine gel on top. Receptor fluid samples were analyzed using high-performance liquid chromatography. The quantity of gel remaining on the skin surface after completion of each test was weighed and the amount of drug in the skin was analyzed. Addition of chamomile oil or Dimethyl Sulfoxide to the gel increased the percutaneous absorption of the drug. 5 % Chamomile oil was found to be the most efficient absorption enhancer in this comparison.

  4. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; Costa, Rita; Coutinho, João A. P.; J.A. Teixeira; L. R. Rodrigues

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of resi...

  5. Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation

    Science.gov (United States)

    Borden, Robert C.

    2007-10-01

    Recent laboratory and field studies have shown that injection of emulsified edible oils can provide an effective, low-cost alternative for stimulating anaerobic biodegradation processes. A pilot-scale permeable reactive bio-barrier (PRBB) was installed at a perchlorate and chlorinated solvent impacted site by injecting 380 L of commercially available emulsion (EOS ®) containing emulsified soybean oil, food-grade surfactants, lactate, and yeast extract through ten direct push injection wells over a two day period. Soil cores collected six months after emulsion injection indicate the oil was distributed up to 5 m downgradient of the injection wells. A previously developed emulsion transport model was used to simulate emulsion transport and retention using independently estimated model parameters. While there was considerable variability in the soil sampling results, the model simulations generally agreed with the observed oil distribution at the field site. Model sensitivity analyses indicate that increasing the injection flow rate or diluting the oil with more water will have little effect on final oil distribution in the aquifer. The only effective approach for enhancing the spread of emulsified oil away from the injection well appears to be injecting a greater mass of oil.

  6. Modelling and laboratory investigation of microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, S.M. [King Saud University, College of Engineering, Riyadh (Saudi Arabia); Abdel-Daim, M.M.; Sayyouh, M.H.; Dahab, A.S. [Cairo University, College of Engineering and Petroleum Engineering Department, Giza (Egypt)

    1996-08-15

    A one-dimensional model was developed to simulate the process of enhanced oil recovery by microorganisms. The model involves five components (oil, water, bacteria, nutrient and metabolites), with adsorption, diffusion, chemotaxis, growth and decay of bacteria, nutrient consumption, permeability damage and porosity reduction effects. Experiments were conducted to identify the parameters affecting the transport and growth of three bacterial strains: Streptococcus, Staphylococcus and Bacillus in porous media. Several correlations were developed from the experimental laboratory data and were used in the simulator. Comparison between the experimental and simulated results emphasized the validity of the developed simulator and determined its degree of accuracy (average absolute relative error=8.323%). The simulator was used to investigate the effects of indigenous bacteria, slug size, incubation time, residual oil saturation, absolute permeability, and injection flow rate on oil recovery. Results show that more oil can be recovered by using Streptococcus with molasses as a medium. Oil recovery is sensitive to variation in concentration of injected indigenous bacteria, size of bacterial culture slug, incubation time and residual oil saturation. The change of absolute permeability, or injection flow rate, has no effect on oil recovery efficiency by bacteria

  7. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  8. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  9. ENHANCED OIL RECOVERY BY FLOODING WITH HYDROPHILIC NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Binshan Ju; Tailiang Fan; Mingxue Ma

    2006-01-01

    In this paper, the mechanism of enhanced oil recovery using lipophobic and hydrophilic polysilicon (LHP)nanoparticles ranging in size from 10 to 500 nm for changing the wettability of porous media was analysed theoretically. A one-dimensional two-phase mathematical model considering the migration and adsorption of LHP and wettability change in reservoir rock was proposed, and a simulator was developed to quantitatively predict the changes in relative and effective permeability of the oil and water phases and the oil recovery in sandstone after water driving. Numerical simulations were conducted to study the distribution of the particle concentration, the reduction in porosity and absolute permeability, the LHP volume retention on pore walls and in pore throats along a dimensionless distance, and oil production performance. In conclusion, oil recovery can obviously be improved by flooding with hydrophilic nanometer powders though permeability declines for the retention of nanoparticles in porous media. It is suggested that an LHP concentration ranging from 0.02 to 0.03 is preferable to enhance oil recovery.

  10. Enhanced oil recovery: air injection in a Potiguar basin light oil reservoir

    International Nuclear Information System (INIS)

    The feasibility of air injection, at reservoir temperature and pressure, is studied with a view towards enhanced oil recovery from the Potiguar Basin (Brazil). The aim is to inject air in such a way that almost all oxygen is consumed and the residual gas, basically nitrogen, displaces the oil. In this work, the reactivity of crude oil samples is studied at conditions of Low Temperature Oxidation (LTO). As a first step, the kinetic and equilibrium properties are measured using a variable volume PVT glass equilibrium cell, which enabled to simultaneously observe the sample and measure the reaction rates and phase compositions, needed for estimating oxygen consumption. Different strategies are then studied for enhanced recovery by water and air injection, using a commercial reservoir simulator for thermal processes. The results show that it was possible to delineate an optimum strategy for LTO recovery of light crude oils. (author)

  11. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR. PMID:23314376

  12. Miscibility Development Computation in Enhanced Oil Recovery by Flare Gas Flooding

    OpenAIRE

    Tjokorde Walmiki Samadhi; Utjok W.R. Siagian; Angga P. Budiono

    2012-01-01

    The use of flare gas as injection gas in miscible gas flooding enhanced oil recovery (MGF-EOR) presents a potential synergy between oil production improvement and greenhouse gases emission mitigation. This work is a preliminary evaluation of the feasibility of miscible flare gas injection based on phase behavior computations of a model oil (43%n-C5H12 : 57%n-C16H34) and a model flare gas (91%CH4 : 9%C2H6). The computations employed the multiple mixing-cell model with Peng-Robinson and PC-SAFT...

  13. Thermal enhanced oil recovery in Indonesia. Prospect of HTGR application

    International Nuclear Information System (INIS)

    In the next future, Indonesia will face oil scarcity. The present reserves are estimated to be depleted in 20 years. However, after primary and secondary recovery processes, there are still more than 50% of original oil in place remaining in the reservoir, and this could be recovered by using tertiary recovery method or which is known as enhanced oil recovery (EOR) processes. Among the three major methods of EOR, steam flooding is a thermal recovery method into which High Temperature Reactor (HTR) module can be integrated for producing steam. However, the feasibility of application of HTR as an alternative to conventional oil-fired steam generator will depend strongly on the price of oil. This paper discusses EOR screening for Indonesian oil fields to identify the appropriate oil reservoirs for steam flooding application as well as the possibility of steam supply by HTR module. Also reviewed is the previous study on HTR application for Duri Steam Flood Project. (author). 8 refs, 6 figs, 5 tabs

  14. EFFECT OF CHAMOMILE OIL AS A PERCUTANEOUS ABSORPTION ENHANCER

    OpenAIRE

    Ali Heyam Saad; Shehab Naglaa Ahmed; El-ahaj Babiker Mohamed

    2013-01-01

    The aim of this study was to investigate the ability of Chamomile oil as absorption enhancers for cutaneously administered Silver Sulfadiazine by comparing it with a penetration enhancer Dimethyl Sulfoxide. Silver sulfadiazine is used in burn infection. Gel was selected as the vehicle for Silver Rat’ skin samples were placed in a continuous flow diffusion cell, with Silver Sulfadiazine gel on top. Receptor fluid samples were analyzed using high-performance liquid chromatography. The quantity ...

  15. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  16. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR. PMID:21853326

  17. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible. PMID:26301922

  18. Biosurfactant-producing Bacillus subtilis strains isolated from crude oil samples enhance oil recovery at lab scale

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira

    2012-01-01

    Biosurfactant-producing Bacillus subtilis strains isolated from crude oil samples enhance oil recovery at lab scale Eduardo J Gudiña, Lígia R. Rodrigues, José A. Teixeira IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using micro...

  19. Use of indigenous or injected microorganisms for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Knapp, R.M.; Chisholm, J.L.; Bhupathiraju, V.K.; Coates, J.D. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    Microbial enhanced oil recovery (MEOR) as an economically attractive alternative to conventional oil recovery methods which rely on thermal or chemical processes. Microbial growth occurs at exponential rates. It is therefore possible to produce large amounts of products quickly from inexpensive and renewable resources. MEOR can be grouped into the following three main categories: (1) well bore clean out process which makes use of hydrocarbon-degrading or scale-removing bacteria to remove deposits from the oil well, (2) well stimulation where an oil well close to its economic limit is treated with a mixture of anaerobic bacteria and a fermentable carbohydrate, and (3) microbially enhanced waterflooding processes which involve the injection of nutrients or microorganisms into the reservoir to stimulate microbial activity. Permeability is a limiting factor in oil production. In this study, laboratory experiments were conducted to show that stimulation of in situ microbial growth by nutrient injection can reduce permeability in sandstone significantly. It was shown that plugging high permeability regions diverts fluid flow to less permeable regions. A field test of this process was conducted at the Southeast Vassar Vertz sandstone reservoir in Oklahoma. The test confirmed that metabolic activity occurred as a consequence of nutrient injection and sulfide production was observed. 18 refs., 1 tab., 1 fig.

  20. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR)

    OpenAIRE

    Astri Nugroho

    2009-01-01

    Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR). The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A ...

  1. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers. PMID:27087065

  2. Microbial enhanced oil recovery by Bacillus subtilis strains under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Pereira, J. F.; Coutinho, J.A.P.; Soares, L. P.; Ribeiro, M. T.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process in which microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions in situ reduces the capillary forces that retain the oil into the reservoir and decreases oil viscosity, thus promoting its flow. As a result, oil production can be increased. In previous work, Bacillus subtilis strains that...

  3. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  4. Enhanced oil and gas recovery in Michigan: Aurelius 35 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Matzkanin, A.D.; Layton, F.L.; Lorenz, J.S.; Pollom, R.J.; Tefertiller, R.A. Jr.

    1977-01-01

    A successful pressure maintenance program began in June, 1974, on the Aurelius 35 Field in Aurelius Township of Ingham County, Michigan. A computer simulation model evaluated geological and rock property parameters associated with the field. The implementation of pressure maintenance was expected to enhance ultimate production from the field to 32% of recoverable original oil in place as compared to a primary recovery of 10.5% or 805,000 barrels. Through the second quarter of 1977 total oil production had exceeded 1,280,000 barrels. 5 figures, 2 tables.

  5. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. PMID:24240116

  6. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    Science.gov (United States)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  7. Essays on carbon policy and enhanced oil recovery

    Science.gov (United States)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  8. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  9. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  10. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13C-NMR and FTIR spectra. (author)

  11. Vegetable oil base stocks for lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Garces, R.; Martinez-Force, E.; Salas, J.

    2011-07-01

    The use of vegetable biodegradable base stocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for bio lubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. (Author).

  12. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  13. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    Science.gov (United States)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  14. Rhamnolipids enhance marine oil spill bioremediation in laboratory system.

    Science.gov (United States)

    Chen, Qingguo; Bao, Mutai; Fan, Xiaoning; Liang, Shengkang; Sun, Peiyan

    2013-06-15

    This paper presents a simulated marine oil spill bioremediation experiment using a bacterial consortium amended with rhamnolipids. The role of rhamnolipids in enhancing hydrocarbon biodegradation was evaluated via GC-FID and GC-MS analysis. Rhamnolipids enhanced total oil biodegradation efficiency by 5.63%, with variation in normal alkanes, polyaromatic hydrocarbons (PAHs) and biomakers biodegradation. The hydrocarbons biodegradation by bacteria consortium overall follows a decreasing order of PAHs>n-alkanes>biomarkers, while in different order of PAHs>biomarkers>n-alkanes when rhamnolipids was used, and the improvement in the removal efficiency by rhamnolipids follows another order of biomarkers>n-alkanes>PAHs. Rhamnolipids played a negative role in degradation of those hydrocarbons with relatively volatile property, such as n-alkanes with short chains, PAHs and sesquiterpenes with simple structure. As to the long chain normal alkanes and PAHs and biomakers with complex structure, the biosurfactant played a positive role in these hydrocarbons biodegradation. PMID:23566561

  15. Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  16. Enhancement of Horizontal Well Oil Recovery by Means of Chemical Stimulation

    Directory of Open Access Journals (Sweden)

    A. F. Yartiev

    2015-04-01

    Full Text Available Complex of self production technologies solves the problem of preservation, restoration and enhancement ofnatural collection characteristics of bottom hole formation zone and, moreover, enhancement of active drainingfield and level of hydrocarbon selection by oil wells of different construction in non-uniform porous fracturedcarbonate reservoirs. The scientific and methodological basis for complex of well stimulation technologies incarbonate reservoirs is the following principle – phased, consistent, rational inclusion in the development andexploitation of the entire producing formation thickness, and only thereafter – successive, phased realization ofphysical and chemical influence on the formation-reservoirs depth and extent. The article deals with the solutionof up-to-date problems of restoration and enhancement of productivity of oil wells in Tatarstan carbonatereservoirs under conditions of import substitution of advanced technologies of the formation oil recoveryenhancement. Stimulation issues on the entire chain of oil extraction technological process are regarded from theformation drilling-in until repair-isolation works. Reduction in oil recovery cost is taken into account by meansof the effective application of complex technical solutions, operations matching in time and power inputs onproduction enhancement in wells from water-bearing horizon. Enhancement of technical and economicefficiency of one's own technologies of acid treatment of vertical and horizontal wells leads to enhancement ofcurrent and final coefficient of hydrocarbon resources extraction. Solution of the above stated tasks wasperformed on the basis of the suggested by the authors principally new, scientifically based, mastered inproduction and inculcated in industrial scales complex of our own technical and technological solutionsproviding achievement of considerable enhancement of the efficiency of hydrocarbon raw materials extraction inTatarstan.

  17. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  18. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  19. Novel bioemulsifier produced by a Paenibacilus sp. strain and its applicability in microbial enhanced oil recovery

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira

    2015-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce surface active compounds reduces the capillary forces that retain the oil inside the reservoir, thus promoting its flow and increasing oil production. Paenibacillus sp. #510, isolated from crude oil samples obtained from a Brazilian oil field, produc...

  20. Enhanced Oil Recovery by Horizontal Waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scott Robinowitz; Dwight Dauben; June Schmeling

    2005-09-05

    -term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Another project is exploring biological systems. In particular, we are investigating the possibility of developing a photovoltaic cell, based on a catalyst (bacteriorhodopsin) which converts light to electrical ion flow across the cell membrane of a particular bacteria.

  1. Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan;

    2012-01-01

    injections and oil production such that ow is uniform in a given geological structure. Even in the case of conventional water ooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved are......Conventional recovery techniques enable recovery of 10-50% of the oil in an oil eld. Advances in smart well technology and enhanced oil recovery techniques enable signicant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate the...... sensitivity computation. We demonstrate the procedure on a water ooding example with conventional injectors and producers....

  2. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  3. Enhancing bioaerosol sampling by Andersen impactors using mineral-oil-spread agar plate.

    Directory of Open Access Journals (Sweden)

    Zhenqiang Xu

    Full Text Available As a bioaerosol sampling standard, Andersen type impactor is widely used since its invention in 1950s, including the investigation of the anthrax attacks in the United States in 2001. However, its related problems such as impaction and desiccation stress as well as particle bounce have not been solved. Here, we improved its biological collection efficiencies by plating a mineral oil layer (100 µL onto the agar plate. An Andersen six-stage sampler and a BioStage impactor were tested with mineral-oil-spread agar plates in collecting indoor and outdoor bacterial and fungal aerosols. The effects of sampling times (5, 10 and 20 min were also studied using the BioStage impactor when sampling environmental bioaerosols as well as aerosolized Bacillus subtilis (G+ and Escherichia coli (G-. In addition, particle bounce reduction by mineral-oil-plate was also investigated using an optical particle counter (OPC. Experimental results revealed that use of mineral-oil-spread agar plate can substantially enhance culturable bioaerosol recoveries by Andersen type impactors (p-values<0.05. The recovery enhancement was shown to depend on bioaerosol size, type, sampling time and environment. In general, more enhancements (extra 20% were observed for last stage of the Andersen six-stage samplers compared to the BioStage impactor for 10 min sampling. When sampling aerosolized B. subtilis, E. coli and environmental aerosols, the enhancement was shown to increase with increasing sampling time, ranging from 50% increase at 5 min to ∼100% at 20 min. OPC results indicated that use of mineral oil can effectively reduce the particle bounce with an average of 66% for 10 min sampling. Our work suggests that enhancements for fungal aerosols were primarily attributed to the reduced impaction stress, while for bacterial aerosols reduced impaction, desiccation and particle bounce played major roles. The developed technology can readily enhance the agar-based techniques

  4. Direct current stimulation : new approach to enhancing heavy oil production

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, J.K. [Electro-Petroleum Inc., Wayne, PA (United States); Hill, D.G. [Southern California Univ., Los Angeles, CA (United States)

    2006-07-01

    The limited recovery of heavy crude oil can be attributed to the high viscosity of the liquids in the oil reservoirs. A viable technology has been lacking for the economic recovery of heavy oil. This paper discussed the advantages of direct current electrical stimulation or electro-enhanced oil recovery (EEOR). The paper outlined the advantages, including data produced from field demonstrations as well as the results of recent laboratory studies. The paper provided a historical and electro-chemical background of EEOR. Field operations that were discussed included electric field maps and a comparison of direct current versus alternating current electrical power. A series of EEOR field demonstrations were presented for the Santa Maria basin in California and the eastern Alberta plains. The paper also discussed produced fluid chemical changes and electro-osmosis and effective permeability. Last, the paper provided a comparison of EEOR to other existing and emerging technologies including steam flood; surfactant flood; co-solvent flood; carbon dioxide flood; and fire flood. It was concluded that the biggest EEOR limitation is its limited field application portfolio. EEOR has produced encouraging field demonstrations to date and has facilitated beneficial chemical changes in the produced fluids. 26 refs., 5 tabs., 10 figs.

  5. Enhancement of the spectral selectivity of complex samples by measuring them in a frozen state at low temperatures in order to improve accuracy for quantitative analysis. Part II. Determination of viscosity for lube base oils using Raman spectroscopy.

    Science.gov (United States)

    Kim, Mooeung; Chung, Hoeil

    2013-03-01

    The use of selectivity-enhanced Raman spectra of lube base oil (LBO) samples achieved by the spectral collection under frozen conditions at low temperatures was effective for improving accuracy for the determination of the kinematic viscosity at 40 °C (KV@40). A collection of Raman spectra from samples cooled around -160 °C provided the most accurate measurement of KV@40. Components of the LBO samples were mainly long-chain hydrocarbons with molecular structures that were deformable when these were frozen, and the different structural deformabilities of the components enhanced spectral selectivity among the samples. To study the structural variation of components according to the change of sample temperature from cryogenic to ambient condition, n-heptadecane and pristane (2,6,10,14-tetramethylpentadecane) were selected as representative components of LBO samples, and their temperature-induced spectral features as well as the corresponding spectral loadings were investigated. A two-dimensional (2D) correlation analysis was also employed to explain the origin for the improved accuracy. The asynchronous 2D correlation pattern was simplest at the optimal temperature, indicating the occurrence of distinct and selective spectral variations, which enabled the variation of KV@40 of LBO samples to be more accurately assessed. PMID:23342358

  6. From oil-based mud to water-based mud

    International Nuclear Information System (INIS)

    Maersk Olie og Gas AS has used low toxic oil-based muds extensively since 1982 for drilling development wells and later in the development of horizontal well drilling techniques. However, in view of the strong drive towards a reduction in the amount of oil discharged to the North Sea from the oil industry, Maersk Olie og Gas AS initiated trials with new or improved types of water-based mud, first in deviated wells (1989) and then in horizontal wells (1990). The paper reviews Maersk Olie og Gas As experience with oil-based mud since the drilling of the first horizontal well in 1987, specifically with respect to cuttings washing equipment, oil retention on cuttings, and the procedure for monitoring of this parameter. It describes the circumstances leading to the decision to revert to water-based mud systems. Finally, it reviews the experience gained so far with the new improved types of water-based mud systems, mainly glycol and KCl/polymer mud systems. Comparison of operational data, such as rate of penetration, torque and drag, etc., is made between wells drilled with oil-based mud and water-based mud. The trials with the new improved types of water-based mud systems have been positive, i.e. horizontal wells can be drilled successfully with water-based mud. As a result, Maersk Olie og and Gas AS has decided to discontinue the use of low toxic oil-based muds in the Danish sector of the North Sea

  7. Computer based training for oil spill management

    International Nuclear Information System (INIS)

    Large oil spills are infrequent occurrences, which poses a particular problem for training oil spill response staff and for maintaining a high level of response readiness. Conventional training methods involve table-top simulations to develop tactical and strategic response skills and boom-deployment exercises to maintain operational readiness. Both forms of training are quite effective, but they are very time-consuming to organize, are expensive to conduct, and tend to become repetitious. To provide a variety of response experiences, a computer-based system of oil spill response training has been developed which can supplement a table-top training program. Using a graphic interface, a realistic and challenging computerized oil spill response simulation has been produced. Integral to the system is a program editing tool which allows the teacher to develop a custom training exercise for the area of interest to the student. 1 ref

  8. Environmental regulations handbook for enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  9. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  10. Enhanced bioremediation of oil spills in the sea.

    Science.gov (United States)

    Ron, Eliora Z; Rosenberg, Eugene

    2014-06-01

    Hydrocarbon-degrading bacteria are ubiquitous in the sea, including hydrocarbonoclastic bacteria that utilize hydrocarbons almost exclusively as carbon and energy sources. However, the rates at which they naturally degrade petroleum following an oil spill appear to be too slow to prevent oil from reaching the shore and causing environmental damage, as has been documented in the Exxon Valdez and Gulf of Mexico disasters. Unfortunately, there is, at present, no experimentally demonstrated methodology for accelerating the degradation of hydrocarbons in the sea. The rate-limiting factor for petroleum degradation in the sea is availability of nitrogen and phosphorus. Oleophilic fertilizers, such as Inipol EAP 22 and urea-formaldehyde polymers, have stimulated hydrocarbon degradation on shorelines but are less effective in open systems. We suggest uric acid as a potentially useful fertilizer enhancing bioremediation at sea. PMID:24657912

  11. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  12. Mixed Field Modification of Thermally Cured Castor Oil Based Polyurethanes

    International Nuclear Information System (INIS)

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanatee (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of accumulated doses (0.0-3.0 MGy) produced by the mixed ionizing field of the SLOWPOKE-2 research reactor. The physico-mechanical properties of COPU, unirradiated and irradiated, were characterized by mechanical tests. Increased bond formation resulting from radiation-induced crosslinking was confirmed by favorable increases in mechanical properties and by solid-state 13C-NMR and FTIR spectra

  13. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  14. Experimental and numerical simulation study of microbial enhanced oil recovery using bio-surfactants

    Science.gov (United States)

    Maudgalya, Saikrishna

    An experimental and numerical study were conducted to investigate the ability of bio-surfactant produced by the microbe Bacillus mojavensis strain JF-2 to recover residual oil from consolidated porous media. Experiments showed that the bio-surfactant at concentrations as low as 40.0 ppm. (0.04 mg/scc) and viscosified with 1000.0 ppm of polymer could recover 10.0 % to 40.0 % of residual oil when injected through sandstone cores at typical field rates. A 2-phase, 10-component microbial enhanced oil recovery numerical simulator was modified to include reservoir salinity and facilitate surfactant and polymer injection. The effects of reservoir brine salinity and divalent ion effects on bio-surfactant and polymer adsorption, polymer retention, polymer viscosity, bio-surfactant interfacial tension and the shear rate effect on polymer viscosity were added to the simulator. Core flood experiments where JF-2 bio-surfactant viscosified with partially hydrolyzed polyacrylamide was injected into Berea cores at waterflood residual oil saturation were simulated. The effects of brine salinity and hardness on surfactant and polymer behavior were tested and the core flood simulation results compared with the experimental results. After the laboratory and simulation studies, a residual oil recovery method based on non-aqueous phase liquid (NAPL) contaminant removal from aquifers is discussed and functional form of the transport equation presented. In this method, residual oil is treated as another chemical species dispersed in porous media instead of a phase that is uniformly distributed across the media.

  15. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  16. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  17. Microbial degradation of hydrocarbons and its applications to enhanced oil recovery at lab scale

    OpenAIRE

    Pereira, Jorge F. B.; Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Coutinho, J.A.P.

    2011-01-01

    The renewed interest in Enhanced Oil Recovery (EOR) techniques as a consequence of the current oil prices is boosting the development of the Microbial Enhanced Oil Recovery (MEOR). This technique is useful to recover incremental oil from a reservoir beyond primary and secondary recovery operations and can be carried by the injection of exogenous or stimulation of indigenous microorganisms. This last approach is here investigated. In this work we address the isolation and identification of mic...

  18. Micro-Employees Employment, Enhanced Oil-Recovery Improvement

    Science.gov (United States)

    Allahtavakoli, M.; Allahtavakoli, Y.

    2009-04-01

    Employment of Micro-organisms, as profitable micro-employees in improvement of Enhanced Oil Recovery (EOR), leads us to a famous method named "MEOR". Applying micro-organisms in MEOR makes it more lucrative than other EOR ways because feeding these micro-employees is highly economical and their metabolic processes require some cheap food-resources such as molasses. In addition, utilizing the local micro-organism in reservoirs will reduce the costs effectively; Furthermore these micro-organisms are safety and innocuous to some extent. In MEOR, the micro-organisms are always employed for two purposes, "Restoring pressure to reservoir" and "Decreasing Oil-Viscosity". As often as more, the former is achievable by In-Situ Mechanism or by applying the micro-organisms producing Biopolymers and the latter is also reachable by applying the micro-organisms producing Bio-surfactants. This paper as a proposal which was propounded to National Iranian Oil Company (NIOC) is an argument for studying and reviewing "Interaction between Micro-organisms and Reservoir physiochemical properties", "Biopolymer producers and Bio-Surfactant Producers", "In-Situ Mechanism", "Proposed Methods in MEOR" and their limitations.

  19. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  20. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    Science.gov (United States)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. PMID:23644688

  1. Biosurfactant producing microorganisms and its application to enhanced oil recovery at lab scale

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; L. R. Rodrigues; Coutinho, J. A.; J.A. Teixeira; Soares, L. P.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process where microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of biosurfactant production by indigenous microorganisms can reduce the capillary forces that retain the oil into the reservoir. The studied reservoir is characterized by alternated oil and water sand layers, with an average porosity of 25% and a permeability of 50 mD. It’s a flat structure at 450 m dept...

  2. Enhancement of Shelf Life of Button Mushroom, Agaricus bisporus (Higher Basidiomycetes) by Fumigant Application of Lippia alba Essential Oil.

    Science.gov (United States)

    Vishwakarma, Pratima; Pandey, Abhay K; Mishra, Priyanka; Singh, Pooja; Tripathi, N N

    2015-01-01

    Eleven essential oils isolated from higher plant species were assessed against the four isolates of Verticillium fungicola found on fruiting bodies of Agaricus bisporus. Eucalyptus citriodora and Lippia alba oils were more efficacious and completely inhibited the mycelial growth of fungal isolates. L. alba oil was fungistatic and fungicidal at 10- and 20-µL concentrations against all of the isolates, respectively, and was more potent than E. citriodora oil as well as some prevalent synthetic fungicides such as benomyl, ethylene dibromide, and phosphine. Eighty microliters of L. alba oil protected 500 g of fruiting bodies of A. bisporus for up to 7 d from infection of the fungus under in vivo conditions. The findings strengthen the possibility of L. alba oil as a plant-based protectant to enhance the shelf life of A. bisporus fruiting bodies. PMID:25746409

  3. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    Science.gov (United States)

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. PMID:23994957

  4. UV curable palm oil based inks

    International Nuclear Information System (INIS)

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  5. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs. PMID:27362472

  6. Microemulsion Based Transdermal Drug Delivery of Tea Tree Oil

    Directory of Open Access Journals (Sweden)

    Khokhra Sonia

    2011-03-01

    Full Text Available Psoriasis is an inflammatory and proliferate disease of skin that results in rapid turnover of skin cells. Tea tree oil (TTO is the essential oil steam-distilled from Melaleuca alternifolia, known for its antimicrobial, antifungal and anti-inflammatory properties. This oil is a mix of many terpenes and among them terpinen-4-ol is the main active component. The study aimed at formulating a microemulsion based transdermal drug delivery system for psoriasis. Microemulsions were formulated using 5% Tea tree oil, different concentrations of Polysorbate 80 as surfactant and Isopropyl Myristate and Isopropyl alcohol as cosurfactants. The formulations were characterized for pH, Droplet size, PDI, Viscosity and Surface morphology. The mean droplet size of the microemulsion was found in the range of 84-115 nm with a PDI of 0.764 indicating uniformity in the microemulsion. Rheological data was assessed for viscosity and microemulsions were found to be low viscosity system. The maximum terpinen-4-ol content observed was 1.68 µg/mg of microemulsion. The TEM images of the microemulsion depicted spherical shape and even boundary of the oil particles. The skin diffusion studies clearly depicted the enhanced ability of microemulsion to deliver the drugs through transdermal application. About 14.5% Tepinen-4-ol penetration was observed from the microemulsion. Skin irritation confirmed that levels up to 5% tea tree oil could be safely applied to the skin. The studies showed that microemulsion system of tea tree oil might be promising vehicles for the transdermal delivery for psoriasis.

  7. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.

    Science.gov (United States)

    Gudiña, Eduardo J; Pereira, Jorge F B; Costa, Rita; Coutinho, João A P; Teixeira, José A; Rodrigues, Lígia R

    2013-10-15

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of residual oil by the selected microorganisms. Four different hydrocarbon mixtures and three Bacillus subtilis strains isolated from crude oil samples were used. Additional oil recoveries ranged from 6 to 24% depending on the hydrocarbon mixture and microorganism used. Biosurfactant production was observed with all the microorganisms and hydrocarbon mixtures studied. The oils recovered after incubation with B. subtilis isolates showed a reduction in the percentage of long-chain n-alkanes and lower viscosity when compared with the original oils. The results obtained suggest that stimulation of the selected B. subtilis strains in situ can contribute to mobilize entrapped oil in mature reservoirs. PMID:23911831

  8. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action

    OpenAIRE

    Indu Vashisth; Abdul Ahad; Mohd Aqil; Suraj P. Agarwal

    2014-01-01

    The effect of tea tree oil (TTO), cumin oil (CO), rose oil (RO) and aloe vera oil (AVO) on the skin permeation of losartan potassium (LP) was investigated. In vitro skin permeation studies were carried out using rat skin. The mechanism of skin permeation enhancement of LP by essential oils treatment was evaluated by FTIR, DSC, activation energy measurement and histopathological examination. Both concurrent ethanol/enhancer treatment and neat enhancer pretreatment of rat SC with all the oils p...

  9. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  10. Oil spill monitoring via microwave tomography enhanced GPR surveys

    Science.gov (United States)

    Catapano, Ilaria; Affinito, Antonio; Bertolla, Luciana; Porsani, Jorge Luís; Soldovieri, Francesco

    2014-09-01

    Oil spill detection and monitoring deserve huge attention in environmental protection as well as for timely planning maintenance actions, with the final aim to mitigate soil pollution. In this frame, the requirement for detailed subsurface diagnostics, while performing non-invasive surveys, motivates the use of ground penetrating radar (GPR) systems and their continuous development in order to improve the achievable performance. Moving in this direction, this paper aims at investigating the reconstruction capabilities of a full 3D microwave tomography approach as a tool for pollution characterization and imaging. The microwave tomography approach exploits a Born Approximation based model of the electromagnetic scattering phenomenon and is capable of accounting for the vectorial nature of the wave-material interaction. The reconstruction capabilities are assessed against experimental data referred to oil spill in dry and water saturated sand soils, gathered in laboratory controlled conditions at the Department of Geophysics of the University of São Paulo, Brazil. The provided results state that the full 3D microwave tomography approach is able to gain accurate images of the surveyed scenarios allowing to acquire information on the oil diffusion process in both the considered soils.

  11. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  12. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    Microbial Enhanced Oil Recovery (MEOR) is a process where microorganisms are used for tertiary recovery of oil. Some bacteria can facilitate the mobilization of oil through the production of amphiphilic compounds called biosurfactants that reduce the interfacial tension (IFT) between immiscible phases. Additionally, most bacteria have an inclination to colonize surfaces and form biofilm, which can change a reservoir's wetting properties or clog preferential flow paths. Herein, we aim to understand changes in wettability during MEOR under mixed wettability conditions within silicon etched micromodels and to identify the type of oil field (i.e. based on wettability) in which MEOR is likely to be most profitable. To quantify porous media wettability, macro-scale indexes (obtained with techniques such as the Carter or Amott methods) are used regularly. However, these measurements lack the capability for characterization of changes in wettability during MEOR treatment, and only provide macro-scale information. In an effort to understand micro-scale temporal and spatial changes in wettability we measure interfacial curvature from stereo microscope images using level set methods. Curvature, from the perspective of the oil phase, is positive for a concave interface (i.e. water-wet surface) and negative for a convex interface (i.e. oil-wet surface). Thus, shifts in the radius of curvature distribution (i.e. from positive to negative or conversely) are indicative of wettability changes. Both curvature distributions using level-set methods and the Carter method are used to characterize wettability before and after microbial treatment. In preliminary studies aimed at understanding wettability changes due to microbial surface interactions by Bacillus mojavensis JF-2, oil droplets were placed on glass slides suspended in growth media and the resulting contact angle was measured over time. Results showed that a water-wet surface will become more water wet as JF-2 accumulated in

  13. Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2016-01-01

    Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products...... spore-forming bacteria gives a higher total production of surfactant and the reduced risk of clogging, leading to an increased period of production and a higher oil recovery....

  14. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil

    OpenAIRE

    Ramprasath, Vanu R; Eyal, Inbal; Zchut, Sigalit; Jones, Peter JH

    2013-01-01

    Background Due to structural differences, bioavailability of krill oil, a phospholipid based oil, could be higher than fish oil, a triglyceride-based oil, conferring properties that render it more effective than fish oil in increasing omega-3 index and thereby, reducing cardiovascular disease (CVD) risk. Objective The objective was to assess the effects of krill oil compared with fish oil or a placebo control on plasma and red blood cell (RBC) fatty acid profile in healthy volunteers. Partici...

  15. Vegetable oil based emulsions in milk

    Directory of Open Access Journals (Sweden)

    Veronika Mikulcová

    2014-07-01

    Full Text Available Milk and dairy products represent an important part of functional food in the market. Based on their positive health and nutritional benefits, they have gained popularity and their consumption as well as production is on the rise in the last few decades. As a result of this trend, milk-based products are being used for the delivery of bioactive food ingredients. This study is devoted to the formulation of stable emulsions containing grape seed oil dispersed with several emulsifiers (Tween 80, monocaprylin, and lecithin in milk. Photon correlation spectroscopy was used to evaluate the characteristics of the emulsions in terms of mean droplet size, droplet size distribution and polydispersity index. Emulsions were prepared using 2% and 5% w/w grape seed oil, and 3%, 5%, or 8% w/w emulsifier, and these were homogenized at two different rates of 1050 and 13400 rpm. Parameters influencing emulsion particle size and particle size distribution were identified, which included emulsifier type, its HLB value, oil type (virgin, refined, homogenization rate and the fat content in the milk. Homogenization at 13400 rpm for 10 min. produced fine emulsions with small mean particle sizes and monomodal distribution of droplets. Regarding emulsifier type, the smallest droplet sizes were obtained with formulations containing Tween 80 (250-315 nm, whereas lecithin primarily accounted for the monomodal particle size distributions.

  16. Preparation and properties of copper-oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Wenjie

    2011-01-01

    Full Text Available Abstract In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  17. Enterprise field. Enhanced oil and gas recovery in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Matzkanin, A.D.; Layton, F.L.; Lorenz, J.S.; Pollom, R.J.; Tefertiller, R.A. Jr.

    1977-01-01

    The Enterprise oil field of Missaukee and Roscommon counties is a successful Richfield interval waterflood project, indicated by the fact that oil production has exceeded expected primary production estimates by 42% as of 1975. The reservoir performance is described.

  18. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  19. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea.

    Science.gov (United States)

    Chen, Jun; Jiang, Qiu-Dong; Wu, Ye-Ming; Liu, Pei; Yao, Jun-Hong; Lu, Qing; Zhang, Hui; Duan, Jin-Ao

    2015-01-01

    The present study was conducted to evaluate and compare five essential oils (EOs) as penetration enhancers (PEs) to improve the transdermal drug delivery (TDD) of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil > Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p oil (p oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea. PMID:26457698

  20. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2015-10-01

    Full Text Available The present study was conducted to evaluate and compare five essential oils (EOs as penetration enhancers (PEs to improve the transdermal drug delivery (TDD of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil >> Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05. The contents of calcium ion and nitric oxide (NO were also significantly changed after the addition of Chuanxiong oil (p < 0.05. In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.

  1. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    Science.gov (United States)

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  2. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  3. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    OpenAIRE

    Abdolsaeid Ganjehkaviri; Mohammad Nazri Mohd Jaafar; Seyed Ehsan Hosseini; Anas Basri Musthafa

    2016-01-01

    This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME), also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF) and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx)...

  4. Characterization of indigenous oil field microorganisms for microbially enhanced oil recovery (MEOR)

    Energy Technology Data Exchange (ETDEWEB)

    Sitte, J.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Biegel, E.; Herold, A. [BASF SE, Ludwigshafen (Germany); Alkan, H. [Wintershall Holding GmbH, Kassel (Germany)

    2013-08-01

    Microbial activities and their resulting metabolites became a focus of attention for enhanced oil recovery (MEOR, microbial enhanced oil recovery) in the recent years. In order to develop a strategy for a MEOR application in a German oil field operated by Wintershall experiments were performed to investigate different sampling strategies and the microbial communities found in these samples. The objectives of this study were (1) to characterize the indigenous microbial communities, (2) to investigate the dependency of microbial activity/diversity on the different sampling strategies, and (3) to study the influence of the in situ pressure on bacterial growth and metabolite production. Fluids were sampled at the well head (surface) and in situ in approx. 785 m depth to collect uncontaminated production water directly from the reservoir horizon and under the in situ pressure of 31 bar (subsurface). In the lab the pressure was either released quickly or slowly to assess the sensitivity of microorganisms to rapid pressure changes. Quantitative PCR resulted in higher microbial cell numbers in the subsurface than in the surface sample. Biogenic CO{sub 2} and CH{sub 4} formation rates were determined under atmospheric and high pressure conditions in the original fluids, with highest rates found in the surface fluid. Interestingly, no methane was formed in the native fluid samples. While nitrate reduction was exclusively detected in the surface samples, sulfide formation also occurred in the subsurface fluids. Increased CO{sub 2} formation was measured after addition of a variety of substrates in the surface fluids, while only fructose and glucose showed a stimulating effect on CO{sub 2} production for the subsurface sample. Stable enrichment cultures were obtained in complex medium inoculated with the subsurface fluid, both under atmospheric and in situ pressure. Growth experiments with constant or changing pressure, and subsequent DGGE analysis of bacterial 16S rRNA genes

  5. Optimization of oil retention in sesame based halva using emulsifiers and fibers: an industrial assay.

    Science.gov (United States)

    Aloui, F; Maazoun, B; Gargouri, Y; Miled, N

    2016-03-01

    Oil bleeding during storage oleaginous seeds based confectionery products is a major problem affecting acceptance by consumers. Halva is a popular sweet food prepared from a sesame paste and a sugar mixture. The objective of this work was to improve the oil retention in this product by incorporating commercial fibers and emulsifiers: soya lecithin and monoglycerides (MG1 or MG2) during manufacturing. Oil retention yield was optimized on small batches, by response surface methodology using a central composite design applied with two factors, emulsifier concentration (0.25-2.25 %) and fibers concentration (0-2 %) at three levels. A centrifugation test was optimized to assess oil retention in halva samples. The experimental response (oil retention) was fitted with quadratic equations for each emulsifier, using multiple regression analysis. The emulsion stability increased with increasing the emulsifier concentration, particularly to 2.25 %. The oil bleeding assessed at 45 °C was slow but yielded similar results to those estimated by centrifugation test. The latter seems an attractive rapid method to quantify oil retention in oleaginous seeds and crops based food matrices. At an industrial scale, the increase of MG1 concentration to 2.25 % in halva enhances the oil retention of the product but does not affect its color or textural characteristics. Microscopic observations allowed us to explain high oil retention in this product by a homogeneous dispersion of oil droplets in the aqueous phase. PMID:27570279

  6. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  7. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  8. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  9. Numerical Modelling of Microbial Enhanced Oil Recovery with Focus on Dynamic Effects: An Iterative Approach

    OpenAIRE

    Skiftestad, Kai

    2015-01-01

    Recovering more of the available oil has been a main driver behind the extensive work done in the field of enhanced oil recovery (EOR) over the last decades. Microbial en- hanced oil recovery (MEOR) has been heavily researched, and is picking up pace com- pared with other EOR methods used today. MEOR is economically attractive and has a huge potential if applied in accordance to reservoir conditions. This thesis considers a two-phase flow regime in homogeneous porous media, under the influenc...

  10. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    OpenAIRE

    Babu, K.; N. K. Maurya; Mandal, A.; Saxena, V. K.

    2015-01-01

    AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES) was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited go...

  11. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Ryan T.; Wildenschild, Dorthe (Oregon State U.)

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  12. Sustainability of oil shale-based electricity production

    International Nuclear Information System (INIS)

    Production of oil shale-based electricity covers Estonian electricity consumption and enables also to export electricity. Oil shale-based electricity production is by now competitive on the electricity market of the Baltic States and of the neighboring EU Member States. However, production of oil shale-based electricity has low energy efficiency, demands large investments for renovation and has high environmental risks. Taxation of environmental damage will be more severe in the future, lowering the competitiveness of oil shale-based electricity. Therefore, the key issue of sustainable development of Estonian energy sector is reduction of the environmental damage of the oil shale-based electricity production, or reduction of the share of oil shale in the energy balance at the expense of other energy resources, especially renewable energy. (author)

  13. Elastic waves and plasma - a new era of enhanced oil recovery

    Science.gov (United States)

    Pashchenko, A. F.; Ageev, P. G.

    2016-06-01

    New technology of enhanced oil recovery - plasma pulse treatment is described. The basic problems of residual oil recovery observed, taking in consideration elastic properties of a reservoir and dominant frequencies of a stratum. Numerical estimates of major parameters of an impact to the reservoir while plasma pulse treatment obtained. Positive results of PPT application introduced.

  14. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna;

    2015-01-01

    Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focuses on core flooding experiments designed to see microbial plugging and its effect on oil recovery. A pressure tapped core holder was used for this purpose. A spore forming bacteria Bac...

  15. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    OpenAIRE

    Biji Shibulal; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil...

  16. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2003-01-01

    The general one-parameter friction theory (f-theory) models have been further extended to the prediction of the viscosity of real "live" reservoir fluids based on viscosity measurements of the "dead" oil and the compositional information of the live fluid. This work representation of the viscosity...... within the oil industry. In sake of completeness, this work also presents a simple characterization procedure which is based on compositional information of an oil sample. This procedure provides a method for characterizing an oil into a number of compound groups along with the critical constants...

  17. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study*

    OpenAIRE

    LAN, YI; Li, Hui; Chen, Yan-Yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-01-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds...

  18. Natural self cleaning and enhanced self cleaning of crude oil, crude oil emulsions and diesel from Arctic shoreline sediments

    International Nuclear Information System (INIS)

    Natural removal and enhanced removal by chemical treatment of crude oil, crude oil emulsion, and diesel were studied in field and basin experiments on Spitsbergen. The beach types comprised gravel beaches, sandy beaches, and mud flats. Each shoreline was divided into nine 25-m2 plots. The chemical treatment comprised Corexit 7664 and Finasol OSR12. Oil concentrations were monitored from the time of contamination and until the end of the season. The upper and lower zones of the beach were treated separately. The decrease in oil concentration during an Arctic summer season was found to be considerable in all the experiments except in the mud flat sediments. Partitioning in the sediment depends on the water level in the sediment, thus oil retention is limited in the more or less water-saturated lower beach zone. Although the overall effect of chemical treatment can be questioned, the chemicals have an effect on oil removal from the sediment. The extensive removal of oil from the control plots indicates that a leave-alone option can be viable on these types of beaches unless extreme requirements for immediate cleanliness exist. 4 refs., 10 figs., 2 tabs

  19. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  20. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  1. Diets Based on Virgin Olive Oil or Fish Oil but Not on Sunflower Oil Prevent Age-Related Alveolar Bone Resorption by Mitochondrial-Related Mechanisms

    OpenAIRE

    Pedro Bullon; Maurizio Battino; Alfonso Varela-Lopez; Patricia Perez-Lopez; Sergio Granados-Principal; Ramirez-Tortosa, Maria C.; Ochoa, Julio J.; Mario D Cordero; Adrian Gonzalez-Alonso; César L Ramirez-Tortosa; Corrado Rubini; Antonio Zizzi; Quiles, José L.

    2013-01-01

    Background/Objectives: Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. Methods/Findings: Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 pol...

  2. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  3. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst;

    2015-01-01

    Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have experiment...

  4. Computational estimation of soybean oil adulteration in Nepalese mustard seed oil based on fatty acid composition

    OpenAIRE

    Shrestha, Kshitij; De Meulenaer, Bruno

    2011-01-01

    The experiment was carried out for the computational estimation of soybean oil adulteration in the mustard seed oil using chemometric technique based on fatty acid composition. Principal component analysis and K-mean clustering of fatty acid composition data showed 4 major mustard/rapeseed clusters, two of high erucic and two of low erucic mustard type. Soybean and other possible adulterants made a distinct cluster from them. The methodology for estimation of soybean oil adulteration was deve...

  5. The effects of oil-base drilling mud and crude oil on demersal fish eggs

    OpenAIRE

    Serigstad, Bjørn; Sværen, Ingrid; Føyn, Lars

    1988-01-01

    The Norwegian spring spawning herring and the Barents Sea capelin both with demersal eggs, spawn in relative small and concentrated areas on the Norwegian continental shelf. Besides potential impact on the fish resources from oil pollution, drilling of oil wells can in some cases, where oil-base drilling mud is used, have an impact on the development of demersal eggs. This paper presents the biotest setup at the Institute of Marine Research in Bergen for testing effects f...

  6. Enhanced oil and gas recovery in Michigan: Enterprise Field

    Energy Technology Data Exchange (ETDEWEB)

    Matzkanin, A.D.; Layton, F.L.; Lorenz, J.S.; Pollom, R.J.; Tefertiller, R.A. Jr.

    1977-01-01

    The Enterprise Oil Field of Missaukee and Roscommen counties is a successful Richfield interval waterflood project, indicated by the fact that oil production has exceeded expected primary production estimates by 42% as of 1975. In the Enterprise Field the oil production is obtained from nine dolomite stringers located immediately below the massive anhydrite and separated by either anhydrite or dense limestone. The vertical succession of the reservoir rocks and in impervious evaporites within the Richfield interval is an important element in the success of the waterflood project. 4 figures, 2 tables.

  7. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  8. A business process for enhanced heavy oil recovery research and development

    International Nuclear Information System (INIS)

    Husky Oil's enhanced oil recovery (EOR) research management processes for reducing process development time and increasing investment efficiency were described. The considerations that went into the development of the plan a decade ago were reviewed and new ideas incorporated into the revised plan were presented. Four case studies were presented to illustrate the need for process to reservoir matching. A need for strategic research planning was emphasized. Proposed technologies for enhancement of heavy oil reservoir productivity were presented in tabular form. 1 tab., 7 figs

  9. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    Science.gov (United States)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  10. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Cheng; SONG Kao-Ping; LIU Li; YANG Er-Long

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding.There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep effciency alone,or can increase both of sweep efficiency and displacement efficiency.We present a study on this problem.Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water.Moreover,photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding,which show remaining oil saturation distribution at the middle cross section and the central longitudinal section.Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency.

  11. Specifications and Quality of Lube Oil Base Stocks in China

    Institute of Scientific and Technical Information of China (English)

    Wang Ping

    2004-01-01

    The Chinese standard Q/SHR001-95 for base stocks is compared with the API specifications. The viscosity-temperature characteristics of base stock required by lube oil in use and market demand on oil quality are analyzed. The quality indicators of base stocks in China and other countries are compared. A new classification of base stocks in response to the requirements of modem lube oil is proposed and the research on new technology to produce premium base stocks meeting API specification is recommended on the basis of current base stock processing technology.

  12. Physicochemical properties of magnetic fluids based on synthetic oils

    Science.gov (United States)

    Korolev, V. V.; Ramazanova, A. G.; Yashkova, V. I.; Balmasova, O. V.

    2013-04-01

    A technique for synthesizing magnetic fluids based on Alkaren synthetic oil is described. The optimum synthesis conditions for the magnetite are selected, and the magnetic phase-stabilizer quantitative ratio is calculated. A magnetic fluid based on synthetic hydrocarbon oil is synthesized, and its physicochemical characteristics are determined.

  13. Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction

    International Nuclear Information System (INIS)

    Oil debris sensors can provide important machine health information by detecting metallic particles in lubricating oil. However, the debris signal generated by the sensor is often contaminated by background noise, thereby leading to misleading detection results. Though some methods have been proposed to detect particle existence by noise reduction, they often cause severe signal distortion and hence the volume of the debris cannot be accurately estimated. This paper presents an integral enhanced empirical mode decomposition (EMD) and correlated reconstruction (CR) approach to extract particle signature with minimal distortion. The integral transform is used to boost the detectability of the weak signature and suppress the high-frequency noise. EMD with a mode cell thresholding strategy is then adopted to remove the trend components caused by the integral transform and further purify the integral enhanced signal. The trend components of decomposed intrinsic-mode functions (IMFs) are identified and removed using a high-pass filter with variable cutoff frequency. Some of the de-trended IMFs are selected based on a synthesized correlation coefficient to reconstruct the particle signature with minimal distortion. It should be also pointed out that the only pre-specified parameter in the proposed method is the level of de-trending accuracy, and no other parameters are needed to be pre-selected for its execution. The proposed approach is validated using both simulated and experimental data. The results show that the proposed method can effectively extract weak particle signatures from noisy data mixtures

  14. Knowledge Based Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Amir; Blomgren, Atle

    2011-07-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gas related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, RandD and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.(au)

  15. Knowledge Based Oil and Gas Industry

    OpenAIRE

    Sasson, Amir; Blomgren, Atle

    2011-01-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gasrelated firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  16. PRODUCTION OF HIGH QUALITY LUBRICATING BASE OIL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@High VI lubricating oil is produced in hydrocracker through hydrocracking (HDC) and hydroisome-rization reactions. In order to effectively produce high VI component, such as iso-pafaffins and monocyclic naphtenes, it is important to load suitable HDC catalysts and operate them in the appropriate reaction conditions.   Nippon Mitsubishi Oil Corporation (NMOC) and its affiliate company, Nippon Mitsubishi Petroleum Refining Company (NMPRC) reported their original HDC catalysts four years ago in this Japan-China joint se-minar in Beijing[1]. NMOC and NMPRC operate their hydrocracker both in fuel oil production mode and in lubricating oil production mode. In lubricating oil production mode, high VI lubricating oil called VHDC are produced.   In this paper, at first, the advantages of high VI lubricating oil are described. And then it is announced that NMOC and NMPRC have developed a new generation of HDC catalyst with higher cracking activity, higher middle distillate selectivity and longer life than the other commercial HDC catalysts. In addition to those properties, the catalyst is able to yield high VI lubricating oil as well.

  17. Nutrient-enhanced bioremediation of oil-contaminated shoreline

    International Nuclear Information System (INIS)

    On March 24, 1989, the collision of the supertanker Exxon Valdez with a submerged reef in Prince William Sound AK, released 41.6 million L (11 million gal) of Prudhoe Bay crude oil. The oil spread with time to contaminate an estimated 565 km (350 miles) of shoreline. The degradation of oil components by biological mechanisms has been intensively studied during the last 20 years. The general outline of biodegradation pathways for aliphatic and aromatic hydrocarbons has been formulated and continues to be developed in greater detail. Consequently, the microbial decomposition of oil in aquatic environments is well understood to include descriptions of biodegradation kinetics; temperature effects for biodegradation can be described by an Arrhenius relationship. Even cold-water environments have been shown to support the biodegradation of oil components. This paper reports that a panel of experts was assembled to assist the U.S. Environmental Protection Agency (EPA) in determining the best treatment strategy to accelerate the natural biodegradation process in Prince William Sound

  18. Enhancing saltiness in emulsion based foods

    Directory of Open Access Journals (Sweden)

    Lad Mita

    2012-07-01

    Full Text Available Abstract Background The concept of enhancing saltiness perception in emulsions and a liquid food formulated with the emulsions (ambient vegetable soup through increasing salt concentration in the continuous phase while retaining the fat content of the (aqueous continuous product was evaluated. This was accomplished by increasing the droplet phase volume using duplex emulsion technology. Viscosity and droplet size distribution was measured. Saltiness evaluation was based on simple paired comparison testing (2-Alternate Forced Choice tests, BS ISO 5495:2007. Results Single and duplex emulsions and emulsion-based products had comparable mean oil droplet diameters (25 to 30 μm; however, viscosity of the duplex emulsion systems was considerably higher. Sensory assessment of saltiness of emulsion pairs (2AFC indicated duplex technology enhanced saltiness perception compared to a single emulsion product at the same salt content (6.3 g/100 g in both simple emulsions and the formulated food product (P = 0.0596 and 0.0004 respectively although assessors noted the increased viscosity of the duplex systems. The formulated food product also contained pea starch particles which may have aided product mixing with saliva and thus accelerated tastant transport to the taste buds. Lowering salt content in the duplex systems (to levels of aqueous phase salt concentration similar to the level in the single systems resulted in duplex systems being perceived as less salty than the single system. It appears that the higher viscosity of the duplex systems could not be “overruled” by enhanced mixing through increased droplet phase volume at lowered salt content. Conclusions The results showed that salt reduction may be possible despite the added technology of duplex systems increasing the overall measured viscosity of the product. The changes in viscosity behavior impact mouthfeel, which may be exploitable in addition to the contribution towards salt

  19. Biodiesel from Sesame oil: Base catalysed transesterification

    Directory of Open Access Journals (Sweden)

    Kaniz Ferdous

    2012-08-01

    Full Text Available A process for the production of methyl ester from Sesame oil containing 6.1% free fatty acid (FFA for the use as a biodiesel was studied. These studies were carried out on transesterification reaction of Sesame oil with methanol to produce biodiesel. The reaction parameters such as Methanol/Oil molar ratio, catalyst concentration and reaction time were optimized for the production of sesame oil methyl ester (SOME. Conversion of triglyceride has been monitored from viscosity measurement and also by measuring produced glycerin concentration. Pseudo first order kinetic model has been proposed for the transesterification of Sesame oil to biodiesel and the data are fitted with the model to evaluate the kinetic parameters. Biodiesel properties such as cetane number, kinematic viscosity, flash point, pour point, cloud point are measured and compared with biodiesel and petro-diesel standard.

  20. Enhanced oil and gas recovery in Michigan: Onondaga 10 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, R.J.; Layton, F.L.; Lorenz, J.S.; Matzkanin, A.D.; Tefertiller, R.A. Jr.

    1977-01-01

    The Onondaga 10 Unit is the first waterflood pressure maintenance project in the State of Michigan. The Onondaga 10 Unit produces oil from two distinct anomalies which are believed to be connected through a common water zone. The project, begun in August 1973, is monitored through a computerized field instrumentation system to assure maximum production efficiency. The field has produced 4.5 million barrels of oil through June 1977, a quantity far in excess of the original primary production estimates of 2.7 million barrels. 5 figures, 2 tables.

  1. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  2. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  3. Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol

    OpenAIRE

    Jing Zhang; Ji Jun Tang; Jiao Xia Zhang

    2015-01-01

    Several biorenewable vegetable oil-based polyols with different molecular weights and various hydroxyl functionalities were successfully prepared by ring-opening epoxidized soybean oil with a castor oil-based fatty diol. It was found that several factors, including reaction time, reaction temperature, and molar ratios between epoxidized soybean oil and castor oil diol, affect structures and rheology behaviors of the final polyols. Proton NMR, FT-IR, GPC, and rheometry results revealed that th...

  4. Enhanced oil and gas recovery in Michigan: Hamilton Field, Richfield Oil Pool

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.E.; Layton, F.L.; Lorenz, J.S.; Matzkanin, A.D.; Pollom, R.J.

    1976-01-01

    The Richfield Oil Pool of the Hamilton Field in Clare County, Michigan, is a successful waterflood project. The Hamilton Oil Field is a multipool field associated with an anticlinal structure located in parts of Frost, Hayes, and Hamilton townships of Clare County. Richfield reservoir rocks are assigned to the basal part of the Lucas Formation, Detroit River Group. This was the first waterflood project in the state to use the computer to predict production. Cumulative production has exceeded original production estimates made by Sun Oil Company. 4 figures, 2 tables.

  5. Downhole cuttings injection allows use of oil-base muds

    International Nuclear Information System (INIS)

    This paper reports that of the potential methods for handling oily drill cuttings, the most attractive is their injection downhole. This approach, which has been used by BP on its Gyda platform in the North Sea where stringent new environmental regulations are expected, will enable operators to enjoy the economic advantages of using oil-based muds. The discharge of oil-based-mud-contaminated cuttings form offshore drilling operations has a significant, though localized, environmental impact. This is despite the change from diesel-based fluids to less toxic, low aromatic, base oils which occurred in the late 1970s

  6. Influence of relative permeabilities on chemical enhanced oil recovery

    International Nuclear Information System (INIS)

    The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.

  7. Enhanced oil and gas recovery in Michigan: Beaver Creek Field

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, R.J.; Layton, F.L.; Lorenz, J.S.; Matzkanin, A.D.; Wilson, S.E.

    1976-01-01

    The Beaver Creek Field produces from an anticlinal structure being waterflooded in the Richfield interval. It produces from one lensic rock unit whose permeability and porosity are relatively uniform throughout the field. Orderly development and prudent operating procedures have allowed the field to surpass its original primary production estimates by over 3,000,000 barrels of oil. 4 figures, 2 tables.

  8. Territory, tourism and local products. The extra virgin oil's enhancement and promotion: a benchmarking Italy-Spain

    OpenAIRE

    Paola De Salvo; José Manuel Hernández Mogollón; Elide Di Clemente; Viviana Calzati

    2013-01-01

    Purpose – This paper intends to highlight how local tourism development is strongly oriented towards policy development based on the combination typical product-territory, in particular extra virgin olive oil, which assigns value to identity, social capital and indigenous cultural heritage. Design – The work supports the idea that the development strategies of typical products should be considered as a potential local development tool. Besides the enhancing the knowledge of product itse...

  9. Experimental Study of Castor Oil Based Lubricant for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Amit Suhane,

    2014-01-01

    Full Text Available Vegetable oils due to their better natural propertiescan be used as an alternative to reduce the dependency on the conventional lubricants. With the depletion of conventional resources at faster pace, need of hour is to approach the safer alternatives for ensuring the availability of such resources for longer periods with lesser harm to the mankind and sorroundings.This workevaluates the prospects of Castor oil based lubricant for automotive applications in contrast to the available commercial servo gear oil. Experimentation has been performed on four ball tester set up.Material used is carbon steel balls. Refined castor and mahua oils are blended in fixed ratios and subjected to friction and wear tests. Experimentation reveals that castor mahua oil blend possess immense potential in contrast to servo gear oil due to good wear reducing traits apart from environmental benefits.

  10. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  11. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  12. Preparation of microemulsions with soybean oil-based surfactants

    Science.gov (United States)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  13. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery: a new economic feasibility study

    International Nuclear Information System (INIS)

    The concept of capturing carbon dioxide from fossil-fuelled electric power generating plants and utilizing it as a flooding agent in enhanced oil recovery (EOR) processes, was explored. In this context, this paper describes how cogeneration concepts, together with process optimization strategies, help to reduce the carbon dioxide production cost by utilizing low-pressure steam and waste heat from various sections of the power generation process. Based on these optimization strategies, the recovery cost of carbon dioxide from coal-fired power stations is estimated to be in the range of $ 0.50 to $ 2.00/mscf. Assuming an average cost of $ 1.25/mscf, the production cost of incremental oil would be about $ 18.00. This means that even with today's modest oil prices, there is room for profit to be made operating a carbon dioxide flood with flue gas extracted carbon dioxide

  14. Quantitative Modeling Of Formation Damage On The Reservoir During Microbial Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nmegbu, Chukwuma Godwin Jacob

    2014-07-01

    Full Text Available Microbial enhanced oil recovery is an inexpensive, environmentally friendly method of oil recovery, utilizing the potentials of certain microbes to significantly influence oil productionwith wide range of oil recovery mechanisms including oil mobilization, reservoir re-pressurization, permeability alteration, mobility control and a range of other exploitable recovery techniques. This study presents an investigation on the degree of damage to the reservoir as a result of microbial injection. Results from this analysis shows that for a continuous microbial injection process, the pore area of the formation reduces equivalently due to microbial plugging and or as a result of biomass accumulation in the reservoir. The prevailing effects of formation damage (skin due to these microbes are also presented. Residual fluid flow rates and corresponding velocities were found to reduce in magnitude with deducing pore area after several days of injection.

  15. Enhancing Colour Appearances of Cultivated 15 year-old Acacia hybrid Through Oil Heat Treatment Process

    OpenAIRE

    Izyan Khalid; Razak Wahab; Othman Sulaiman; Aminuddin Mohamed; Tamer A. Tabet; Roziela Hanim Alamjuri

    2010-01-01

    This study investigated the effect of oil heat treatment process on colour appearance of cultivated Acacia hybrid. Parameters such as temperatures and treatment time are taken in account due to their influences in enhancing the colour chandes of the natural untreated and oil heat treated of the wood from sapwood right trough the heartwood. Young, natural and untreated Acacia hybrid would normally have the sapwood having lighter colour than the dark colour heartwood. Turning these timbers into...

  16. Enhancement of Oil Spreadability of Biscuit Surface by Nonthermal Barrier Discharge Plasma

    OpenAIRE

    Misra, N.; Sullivan, Carl; Pankaj, Shashi; Alvarez-Jubete, Laura; Cama, Raquel; Jacoby, Franklyn; Cullen, Patrick

    2014-01-01

    The application of non-thermal dielectric barrier discharge (DBD) plasma for altering the hydrophilicity or hydrophobicity of polymer surfaces is well known. In this work, we demonstrate the potential of DBD plasma in enhancing the surface hydrophobicity of freshly baked biscuits, evident from the increased spread area of vegetable oil. The electrical and optical characteristics of the DBD plasma source have also been described. The spread area of individual oil drops has been measured using ...

  17. Enhanced recovery pay off : EOR research aims to increase heavy oil recovery in a big way

    Energy Technology Data Exchange (ETDEWEB)

    Louie, J.

    2008-03-15

    Enhanced oil recovery (EOR) research in Saskatchewan was discussed. Saskatchewan's Petroleum Technology Research Centre (PTRC) is home to the Joint Implementation of Vapour Extraction (JIVE) program, a multi-partner research consortium that is currently studying and field testing a solvent vapour extraction oil recovery process. PTRC also runs a carbon dioxide (CO{sub 2}) sequestration project that is run in conjunction with the Weyburn and Midale CO{sub 2} flood projects. PTRC's Enhanced Oil Recovery (EOR) Research Program plays a large role in the centre's research and innovation activities. The centre now estimates that new technologies will enable producers to recover an additional 6 to 8 billion barrels of Saskatchewan's heavy oil resources. PTRC is also collaborating with the University of Regina within 3 major areas, notably (1) enhanced oil recovery; (2) CO{sub 2} storage and sequestration; and (3) oilfield simulation and numerical modelling. Researchers are also investigating new waterflooding techniques and neural networks modelling techniques. It is estimated that improved polymer flooding techniques will result in the recovery of between 10 to 20 per cent more oil. The Saskatchewan Research Council (SRC) is also collaborating with the centre on a gas injection process for the enhanced recovery of light and heavy oil. The chemical-alternating-gas (CAG) will be field-tested. It was concluded that the CAG process will result in improved recoveries of up to 15 per cent of original oil in place. It was concluded that the CAG process may also be applied at locations around the world. 3 figs.

  18. Onondaga 10 unit. Enhanced oil and gas recovery in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, R.J.; Layton, F.L.; Lorenz, J.S.; Matzkanin, A.D.; Tefertiller, R.A. Jr.

    1977-01-01

    The Onondage 10 unit is the first Salina-Niagaran reservoir reported in the Secondary Recovery Report series and is the first waterflood pressure maintenance project in Michigan. The term pressure maintenance as used in this study is not synonymous with the term secondary recovery. A secondary recovery operation is initiated some time near the depletion of estimated primary reserves for the purpose or recovering residual oil in place. In contrast, a pressure maintenance operation is begun before the reservoir pressure has dropped to a level requiring secondary recovery. This project, begun in Aug. 1973, is monitored through a computerized field instrumentation system to assure maximum production efficiency. The field has produced 4.5 million bbl of oil through June 1977, a quantity far in excess of the original primary production estimates of 2.7 million bbl.

  19. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  20. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. PMID:22159733

  1. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  2. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    Science.gov (United States)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the initial 10 days. Activities of enzymes not directly associated with metabolism of oil were also enhanced

  3. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  4. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  5. China's oil reserve forecast and analysis based on peak oil models

    International Nuclear Information System (INIS)

    In order to forecast future oil production it is necessary to know the size of the reserves and use models. In this article, we use the typical Peak Oil models, the Hu-Chen-Zhang model usually called HCZ model and the Hubbert model, which have been used commonly for forecasting in China and the world, to forecast China's oil Ultimate Recovery (URR). The former appears to give more realistic results based on an URR for China of 15.64 billion tons. The study leads to some suggestions for new policies to meet the unfolding energy situation

  6. A Novel Enhanced Oil Recovery Technology Using Pore-scale Elastic Microspheres after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Chuanjin Yao

    2013-10-01

    Full Text Available In this study, a novel enhanced oil recovery method using pore-scale elastic microspheres after polymer flooding was proposed. Using single-tube sand pack models, the resistant coefficient of polymer flooding and elastic microspheres profile control and flooding was contrastively studied. Then the resistant coefficient of injecting elastic microspheres after polymer flooding was studied. At last, physical simulation of elastic microspheres flooding after polymer was conducted. The results show that polymer and elastic microspheres have synergistic effect; the polymer can make the migration of elastic microspheres easily; the elastic microspheres can prevent polymer from crossing flow along the high permeability channel and extend the polymer output time of oil well. Compared to polymer flooding (1000 mg/L and (2000 mg/L, elastic microspheres flooding (1000 mg/L after polymer flooding (1000 mg/L can enhance oil recovery by 5.6 and 4.4%, respectively. The results confirm that elastic microspheres can enhance oil recovery effectively after polymer flooding. This novel technology will become an effective technical measure for polymer flooding oilfield to enhance oil recovery further.

  7. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  8. UV curable palm oil based ink

    International Nuclear Information System (INIS)

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  9. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  10. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  11. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  12. Enhanced Oil Recovery with CO2 Capture and Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Maria; De Simoni, Michela; Delbianco, Alberto; Cazzani, Piero; Zanibelli, Laura

    2010-09-15

    This paper presents the results of a feasibility study aimed at extending the production life of a small oilfield in Italy through EOR, employing the CO2 captured from the flue gas streams of the refinery nearby. The EOR operation allows the recovery of additional reserves while a consistent amount of the CO2 injected remains permanently stored into the reservoir. The screening process selection for EOR-CO2 and the main elements of the pilot project for the proper upstream-downstream integration will be described. Evaluation of EOR-CO2 extension to other oilfields and its effect on oil production and project's economics will be reported.

  13. Enhanced oil and gas recovery in Michigan: Columbus 3 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Matzkanin, A.D.; Layton, F.L.; Lorenz, J.S.; Pollom, R.J.; Tefertiller, R.A. Jr.

    1978-01-01

    The Columbus 3 Unit located in St. Clair County is an example of a successful pressure maintenance project. The Columbus 3 field, new unitized, produces from a Niaguran reef developed during Silurian time. The incremental gain of 64% in excess of anticipated primary production is generally the result of more efficient production of the field, achieved through selective production of the best wells as permitted through the unitization agreement. As of May 1978, total field production per 1 psig pressure drop has been 10,300 barrels of oil. 5 figures, 2 tables.

  14. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid

    Science.gov (United States)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.

  15. Base Oils Biodegradability Prediction with Data Mining Techniques

    OpenAIRE

    Malika Trabelsi; Saloua Saidane; Sihem Ben Abdelmelek

    2010-01-01

    In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classifi...

  16. [Peculicidal activity of plant essential oils and their based preparations].

    Science.gov (United States)

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin. PMID:25296426

  17. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.

  18. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data.

    Science.gov (United States)

    Xing, Yage; Xu, Qinglian; Yang, Simon X; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-01-01

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O₂ and increase the level of CO₂ in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption. PMID:27438841

  19. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data

    Science.gov (United States)

    Xing, Yage; Xu, Qinglian; Yang, Simon X.; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-01-01

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O2 and increase the level of CO2 in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption. PMID:27438841

  20. Systematic approach for synthesis of palm oil-based biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

    2012-11-01

    Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

  1. Fingerprint Verification based on Gabor Filter Enhancement

    CERN Document Server

    Lavanya, B N; Venugopal, K R

    2009-01-01

    Human fingerprints are reliable characteristics for personnel identification as it is unique and persistence. A fingerprint pattern consists of ridges, valleys and minutiae. In this paper we propose Fingerprint Verification based on Gabor Filter Enhancement (FVGFE) algorithm for minutiae feature extraction and post processing based on 9 pixel neighborhood. A global feature extraction and fingerprints enhancement are based on Hong enhancement method which is simultaneously able to extract local ridge orientation and ridge frequency. It is observed that the Sensitivity and Specificity values are better compared to the existing algorithms.

  2. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg−1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  3. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  4. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. PMID:21444201

  5. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  6. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht;

    2010-01-01

    characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines....... For all the methods, the incremental recovery is very similar, only coming from small differences in water phase saturation profiles. Overall, a significant incremental oil recovery can be achieved, when the sensitive parameters in the context of MEOR are carefully dealt with.......We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites. In the...

  7. Enhancement of Palm Oil Extraction Using Cell Wall Degrading Enzyme Formulation

    International Nuclear Information System (INIS)

    In this recent work, application of aqueous enzymatic process to enhance recovery of palm oil was studied. Experiments were carried out to investigate the structural carbohydrate composition of oil palm mesocarp (Elaeis guineensis) and to analyze the effect of different combination of enzymes on the palm oil recovery and degree of digestibility and the respective correlation. The optimum combination of enzymes comprising of Cellic CTec2 (X1), Cellic HTec2 (X2) and Pectinex Ultra SP-L (X3) for Aqueous Enzymatic Oil Extraction Process (AEOEP), were determined using Simplex Lattice mixture design under fixed parameters. Maximum oil recovery of 88 % was achieved with ratio of enzymes at 0.46: 0.34: 0.2 (X1:X2:X3), at enzyme loading of 30 mg protein/ 10 g substrate, substrate loading of 50 % w/v, pH 4.8, and 2 hours of incubation at 50 degree Celsius. The conversion of reducing sugar at corresponding condition was measured to evaluate the effectiveness of enzymes in degrading fruit cell wall releasing trapped oil. Moreover, transmission electron microscopy (TEM) was utilized to indicate the increase in cell wall disintegration leading to higher release of oil with enzymatic treatment. (author)

  8. Enhancement of Horizontal Well Oil Recovery by Means of Chemical Stimulation

    OpenAIRE

    A. F. Yartiev; M. H. Musabirov; A. M. Tufetulov; L. L. Grigoryeva

    2015-01-01

    Complex of self production technologies solves the problem of preservation, restoration and enhancement ofnatural collection characteristics of bottom hole formation zone and, moreover, enhancement of active drainingfield and level of hydrocarbon selection by oil wells of different construction in non-uniform porous fracturedcarbonate reservoirs. The scientific and methodological basis for complex of well stimulation technologies incarbonate reservoirs is the following principle – phased, con...

  9. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  10. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs. PMID:25894951

  11. Microbial Enhanced Oil Recovery-Laboratory Experiments with a Strain of Clostridium tyrobutyricum

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji

    It is well known that each microbial enhanced oil recovery (MEOR) method has its own selection criteria in order to match different reservoir conditions. Therefore successful application of MEOR method depends on the ability of microbes to adapt to extreme reservoir conditions and to produce the...

  12. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Science.gov (United States)

    2010-04-01

    ..., undertakes a polymer augmented waterflood project with respect to the property. G drills water wells to provide water for injection in connection with the project. The costs of drilling the water wells are..., the costs of drilling the water wells are qualified enhanced oil recovery costs. Example 10....

  13. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  14. Experimental Study of Castor Oil Based Lubricant for Automotive Applications

    OpenAIRE

    Amit Suhane; R.M.Sarviya

    2014-01-01

    Vegetable oils due to their better natural propertiescan be used as an alternative to reduce the dependency on the conventional lubricants. With the depletion of conventional resources at faster pace, need of hour is to approach the safer alternatives for ensuring the availability of such resources for longer periods with lesser harm to the mankind and sorroundings.This workevaluates the prospects of Castor oil based lubricant for automotive applications in contrast to the ava...

  15. Enhancement of spilled oil biodegradation by nutrients of natural origin

    International Nuclear Information System (INIS)

    Ten years ago, Elf Aquitaine began developing the technologies for the acceleration of hydrocarbon biodegradation. The continuation of this work has involved the study of new additives to complement the oleophilic nutrient, INIPOL EAP 22. In particular, it has been shown in both laboratory and in situ tests that hydrocarbon degradation can be accelerated by animal meals, which are natural products. Preliminary laboratory studies carried out under batch conditions have shown that the use of these products has resulted in considerable growth of the bacteria, coupled with a notable increase in the biological degradation kinetics of the hydrocarbons. These results are comparable with the performance of the nutrient INIPOL EAP 22. In situ experiments undertaken on soils polluted by hydrocarbons have shown that by using animal meals, 50 percent biodegradation was obtained after six weeks and this increased to 80 percent when mechanical aeration was also employed. Under nutrient-free control conditions, 25 percent biodegradation was obtained with no aeration and 35 percent with mechanical aeration. In trials using coastal sandy sediments, the use of these nutrients has resulted in an increase of both the number of hydrocarbon specific bacteria and the hydrocarbon degradation. It can be concluded from these pilot experiments that in the development of bioremediation as an operational tool in the response to accidental oil spills, these nutrients of natural origin represent an interesting advance

  16. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  17. Integrated barge based oil response system

    International Nuclear Information System (INIS)

    The Oil Pollution Act of 1990 creates an entirely new environment for industry, agencies, and now involves citizen groups. New liability limits and expanded planning requirements involve increased coordination among the entities involved in marine facilities, pipelines, and tanker/barge operations. While prevention provides the best solution, the risk is not going to be eliminated. Response is directly linked to preparation/planning and timely implementation. This report chronicles the assembly of a fully self contained response system, which is modeled after the barge used to support drilling operations in the Chukichi Sea. The report includes planning, equipment list, training, and centers around the development of application specific deployment scenarios

  18. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    Directory of Open Access Journals (Sweden)

    K. Babu

    2015-09-01

    Full Text Available AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited good surface activity, reducing the surface tension of surfactant solution up to 38.4 mN/m and 27.6 mN/m without and with NaCl, respectively. During the thermal analysis of SMES, a 31.2% mass loss was observed from 70 ˚C to 500 ˚C. The phase behavior of the cosurfactant/SMES-oil-water system plays a key role in interpreting the performance of enhanced oil recovery by microemulsion techniques. Flooding experiments were performed using a 0.5 pore volume of synthesized SMES solutions at three different concentrations. In each case chase water was used to maintain the pressure gradient. The additional recoveries in surfactant flooding were found to be 24.53%, 26.04% and 27.31% for 0.5, 0.6 and 0.7 mass% of surfactant solutions, respectively.

  19. Technical review of enhanced oil recovery literature. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    This report represents the work done under DOE grant No. DE-FG05-79ER10086. It reviews the chemical, miscible and thermal areas of enhanced and recovery (EOR) and has produced a comprehensive bibliography and glossary of terms. The analysis looks into several areas of interest, including: screening criteria, process design, variable interaction and reservoir applicability. In this summary section, the following are shown: (1) screening criteria for process selection; (2) screening guide summary for EOR process; and (3) representative schematics of three major process operations.

  20. Interplay of bacteria, bacteriophage, and Berea sandstone rock in relation to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Chang, P.L.

    1986-01-01

    Much research and development is needed to recovery oil reserves presently unattainable, and biologically enhanced oil recovery is a technology that may be used for this purpose. To address the problem of bacterial contamination in an oil field injection well region, each end of a Teflon-sleeved Berea sandstone rock was connected to a flask containing nutrient medium. By inoculation one flask with Escherichia coli B, observations of the bacterial growth in the uninoculated flask resulting from the transport and establishment of cells across the rock could be made. Differences in bacterial populations occurred depending on whether bacteriophage T4D was first adsorbed to the rock. The results of these experiments indicate that the inhibition of bacterial establishment within a rock matrix is possible via lytic interaction. Some nonlytic effects are also implied by experiments with B/4 cells, which are T4D-resistant mutants of E. coli B. A 10 to 40% retention of T4 by the rock occurred when it was loaded with 10/sup 5/ to 10/sup 6/ PFU. Also proposed is a lysogenic system for possible use in biologically enhanced oil recovery techniques. In addition to the model bacteria and phage system described above, measurements of the passage of Pseudomonas putida. 12633 and a phage-resistant mutant through Berea sandstone rock were also made. When bacteriophage gh-1 was adsorbed within the rock matrix, a reduction in the passage of the susceptible but no the resistant cells through the rock was observed. The use of P. putida and gh-1 represents a more realistic group of experiments since these pseudomonas are ubiquitous soil bacteria commonly found in oil rock regions. Preliminary work on the degradation of certain nitrogen compounds in the context of biologically enhanced oil recovery is also described in this dissertation.

  1. Aerial spraying of demulsifiers to enhance the natural dispersion of oil slicks

    International Nuclear Information System (INIS)

    Large-scale sea trials were conducted to investigate the effectiveness of the aerial application of demulsifiers and the potential of this process in oil spill response. Preliminary tests were first conducted to verify the effectiveness of the Shell demulsifier LA 1834 diluted with Shell Surdyne X113 solvent and to determine the range of swath widths and discharge rates of the aerial spraying system. Four trials were carried out in the southern North Sea using either crude oil or medium fuel oil/gas oil mixes to simulate the oil spill. Infrared, ultraviolet, and video sensing data were obtained during all trials with emphasis on direct comparison between control slicks and slicks treated with aerially sprayed demulsifier. Results show that application of demulsifier solution has enhanced the natural dispersion of both fresh and emulsified oil to a greater degree than the adjacent control slicks. The demulsifier appeared to remain with the treated slicks after aerial application, influencing slick behavior for a considerable time. 5 refs., 6 figs., 2 tabs

  2. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    Science.gov (United States)

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-03-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm‑1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases.

  3. Remediation of hydrocarbon contaminants in cold environments - Electrokinetically enhanced bioremediation and biodegradable oil sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Suni, S. [Helsinki Univ. (Finland). Dept. of Environmental and Ecological Sciences

    2006-07-01

    winter in the Baltic Sea. In addition, the effect of drying microbial suspension on an oil sorbent to enhance oil degradation of the oily sorbents was investigated. Microbial treatment of oil sorbents could be beneficial in mineral soils with low initial microbial density if fast degradation is of importance. Otherwise, it may not be worthwhile. (orig.)

  4. Comparison of steam-based processes for the Orinoco heavy oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.; Gonzalez, K.; Bashbush, J.L.; Cova, J. [Schlumberger, Piso (Venezuela, Bolivarian Republic of)

    2009-07-01

    A workflow comparison of different oil recovery methods suitable for use in the Orinoco oil belt in Venezuela were presented. The aim of the engineering study was to determine the economic feasibility and process performance of steam assisted gravity drainage (SAGD), horizontal alternating steam drive (HASD) and single well steam assisted gravity drainage (SW-SAGD). The workflow study included a technical screening of the methods as well as an economic evaluation model that considered energy requirements, incremental oil production and production costs. The effect of steam displacement and gravity segregation was considered. Each of the methods was then linked to an optimization routine in order to evaluate influential parameters related to the net present value (NPV). Recovery methods were then compared using the optimized response for the reservoir conditions of 2 sand thicknesses typically found in the Orinoco belt. The study showed that all steam-based methods increased oil at the end of a 10-year period. The percentage of oil recovery increased in thicker reservoirs. It was concluded that carbon dioxide (CO{sub 2}) sequestration costs will increase the cost of all enhanced oil recovery (EOR) methods. 8 refs., 10 tabs., 27 figs.

  5. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  6. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie;

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs....

  7. Isomeric enhancement of davanone from natural davana oil aided by supercritical carbon dioxide.

    Science.gov (United States)

    Coleman, William Monroe; Dube, Michael Frances; Ashraf-Khorassani, Mehdi; Taylor, Larry Thomas

    2007-04-18

    The chemical nature of davanone isolated from natural davana oil via packed column preparative supercritical fluid chromatography with a carbon dioxide-based mobile phase has been defined. Analyses used to characterize davanone included nuclear magnetic resonance spectroscopy, optical rotation, mass spectrometry, headspace solid-phase microextraction, enantiomeric purity via gas chromatography (GC), and GC-coupled olfactometry. For comparison, natural davana oil was subjected to the same types of measurements. The enriched davanone sample was nearly 100% optically pure. This indicates that fractionation of the davana oil with supercritical fluids at near room temperature had little effect on the optical integrity of the sample. PMID:17385880

  8. Analytical Quality check of oil based blend in Flaxilip capsule

    Directory of Open Access Journals (Sweden)

    Rajashree Rane

    2014-12-01

    Full Text Available Analysis of capsules containing blend in the powder form is easy, but it is bit difficult to analyse the soft gelatin capsule containing oil based blend. The purpose of this study was to develop test parameters to determine and supervise the quality of such herbal capsule formulation. Five different lots of soft gelatin Flaxilip capsule containing Linseed oil, Guggulu processed with linseed oil, Garlic oil, Fenugreek oil along with Soyabean oil as an excipient , were selected for the study. All the five lots were subjected to general capsule tests such as determination of average weight and disintegration time. Results obtained were around 1.3500g and 10minutes respectively. Specific test parameters applicable for oils like specific gravity, refractive index, acid value, peroxide value, saponification value, iodine value were applied quantitatively for quality evaluation. Standardised suitable classical methods were applied. Results in all the five lots were found to be well within inhouse limit. All the samples were subjected to heavy metals and microbiological testing. Compliance of corresponding findings with the standard pharmacopoeial guidelines assure the safe intake of the drug. For getting the better effect, the Guggulu that is Commiphora mukul used in the formulation was processed with linseed oil. Its presence was confirmed by carrying out HPTLC for E and Z guggulu sterone. Resemblance of spots at Rf ranging from 0.36 to 0.38 and 0.43 to 0.45 in Toluene : Acetone (9:1 system showed the presence of gugulu in blends of all the lots. Hence by applying all these test parameters one can ensure the quality of the soft gelatin ayurvedic capsule formulation containing oily base like in Flaxilip capsule.

  9. In vitro evaluation of copaiba oil as a kojic acid skin enhancer

    OpenAIRE

    Robson Vicente Machado de Oliveira; Mitsuko Taba Ohara; Marta Maria Duarte Carvalho Vila; Marcos Moisés Gonçalves

    2010-01-01

    The capacity of copaíba oil to act as a skin penetration enhancer for the depigmenting agent kojic acid was evaluated using an in vitro diffusion system with static flux and shed rattlesnake skin membrane, Crotalus durissus terrificus, in saline solution at 34±2 ºC as the fluid receptor. The quantities of kojic acid liberated into the fluid receptor were determined by spectrophotometry at 268 nm with intervals of one and a half hours. The membranes, pretreated with copaíba oil at 25% and 50% ...

  10. Optimization of Spore Forming Bacteria Flooding for Enhanced Oil Recovery in North Sea Chalk Reservoir

    OpenAIRE

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna; Shapiro, Alexander

    2015-01-01

    Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focused on core flooding experiments to see microbial plugging and its effect on oil recovery. A pressure tapped core holder with pressure ports at 1.2 cm, 3.8 cm, and 6.3 cm from the inlet was used for this purpose. A spore forming bacterium, Bacillus licheniformis 421, was used as it was shown to be a good candidate in the previous study. Bacterial spore can penetrate deeper into the ...

  11. Prospects of Microbial Enhanced Oil Recovery  in Danish chalk rocks

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Jørgensen, Leif Wagner; Bah Awasi, Ismail

      Microbial Enhanced Oil Recovery (MEOR) uses bacteria, producing gas (CO2), polymers or surfactants to help recover residual oil after the water injection depletes its possibilities. Two strains of Clostridia tyrobutiricum were investigated as possible candidates for MEOR  implementation in Danish...... chalk reservoir rocks. Parameters such as high salinity, low permeability, high temperature and toxic elements, being typical characteristics of Danish fields can cause limiting effects on MEOR applications. The work fulfilled showed that microbes can be adapted to higher salinities through a serial...

  12. The Status and Prospects of Enhancing Oil Recovery Technology for Waterflooding Oilfields in China

    Institute of Scientific and Technical Information of China (English)

    Shen Pingping; Yuan Shiyi

    1994-01-01

    @@ The water injection method has been used in most of oilfields in China even at the beginning of development, meanwhile the laboratory research on enhancing oil recovery (EOR) for these oilfields simultareously started too. Oilfields developed in 1960's have mostly been at a high watercut stage since 1990.Tasks in face of petroleum reservoir engineers are on the one hand, further improving recovery of waterflooding by integrated adjustments such as infill well drilling, water/oil ratio controlling, injection profile adjusting, etc. On the other hand, EOR techniques for waterflooding oilfields must be studied and applied to improve mostly the potential of underground resources and to increase recoverable reserves.

  13. Fundamental studies for microbial enhanced oil recovery field test; Biseibutsu koho (MEOR) fuirudo tesuto no tameno kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, H. [Tohoku Univ., Sendai (Japan). Dept. of Geoscience and Tech.; Fujiwara, K. [Kansai Research Inst., Kyoto (Japan). Lefescience Research Center; Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan). Tech. Research Center

    2000-03-01

    This paper describes a series of experiments relevant to the screening of microbes to adapt and monitor the targeted microbes in the microbial enhanced oil recovery (MEOR) process. Firstly, the samples of reservoir brine, soil of well site, drilling cuttings, and activated sludge were collected from domestic oil fields, drilling sites, sewage treatment facilities, and environmental conditions. To achieve higher oil recovery, metabolic products of isolates were individually evaluated. These isolates were also incubated in culture bottles packed with silica sands, to clarify the growth potential and metabolic activity in the micro culture space. By carrying out two stages of flooding experiments simulating the reservoir environment, the capability of isolates for improving oil recovery was evaluated, and the microbes were selected. Two gene-engineering techniques were established in parallel with the screening experiments for monitoring the microbes injected into the reservoir. These techniques are potentially capable of rapidly detecting the presence of injecting microbes; moreover, they are available and effective for studying the microbes relevant to the MEOR process. In addition, it was demonstrated that metabolic activity of the microbes capable of producing effective gas could be estimated based on the quantity of 2,3-butanediol found as a major end product of fermentation. The results of the huff and puff field test implied that the gene-engineering techniques established in this study and the metabolic activity analysis on 2,3-butanediol were effective for understanding the growth and metabolic activity of the microbes injected into the reservoir. (author)

  14. Enhancing National Participation in the Oil and Gas Industry in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Heum, Per; Mwakali, Jackson A.; Ekern, Ole Fredrik; Byaruhanga, Jackson N.M.; Koojo, Charles A.; Bigirwenkya, Naptali K.

    2011-07-01

    In realization of the petroleum industry potential, Uganda's Oil and Gas policy seeks to optimize wealth creation from the industry to enhance the welfare of the citizens. This study has examined how Uganda may benefit from the participation of Ugandans and Ugandan firms in the petroleum activities. In the literature this is frequently referred to by applying the term local content. Local in this sense, however, refers to national as opposed to international or foreign contributions. Thus, we apply the concept national content to avoid any misunderstanding. Focus of our study has been on identifying the opportunities, gaps and challenges posed by the petroleum industry to recommend necessary measures to maximize the benefits of national content otherwise defined as national participation.The study has examined lessons Uganda may draw on from other countries and from the economic literature on industrial growth and national wealth. Furthermore, the specific point of departure for Uganda with regard to expected petroleum activities, Uganda's industrial base and its human resource base, has been investigated. On this basis, the study has made its recommendations.(eb)

  15. An environmentally safe water-based alternative to oil muds

    International Nuclear Information System (INIS)

    In this paper, a mechanism describing the onset of bit balling is given. On the basis of this mechanism, a new copolymer/polypropylene glycol (COP/PPG) water-based drilling fluid was developed. The properties of this fluid are described, and field test comparisons are made with water- and oil-based fluids

  16. DRUG VEHICLE BASED APPROACHES OF PENETRATION ENHANCEMENT

    OpenAIRE

    Swaroop R Lahoti; MOHD. HASSAN G DEHGHAN; Dinesh L Dhamecha; AMIT A RATHI; MARIA SAIFEE

    2009-01-01

    Transdermal delivery of drugs through the skin to the systemic circulation provides a convenient route of administration for a variety of clinical indications. For transdermal delivery of drugs, stratum corneum is the main barrier layer for permeation of drug. So to circumvent the stratum corneum and to increase the flux through skin membrane, different approaches of penetration enhancement are used. Many reviews had described regarding the chemical penetration enhancement but vehicle based e...

  17. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    Science.gov (United States)

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately. PMID:23016334

  18. Commercial scale demonstration enhanced oil recovery by miceller-polymer flooding. M-1 project: facilities report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, B.L. (ed.)

    1977-04-01

    ERDA and Marathon Oil Company contracted together for a commercial scale demonstration of enhanced oil recovery by the Maraflood (TM) oil recovery process. This M-1 Project is located within Sections 15, 16, 21 and 22, T6N, R13W, Crawford County, Illinois, encompassing approximately 407 acres of Robinson Sand reservoir developed in the first decade of the century. The area covers portions of several waterfloods developed on 10-acre spacing in the 1950's that were approaching their economic limit. This report describes all M-1 Project facilities, how they were prepared or constructed, their purpose and how they operate: (1) wells (drilling and completion); (2) production facility; (3) injection facility; and (4) various service systems required during project development and/or operation. (48 fig, 7 tables) (DLC).

  19. Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Sun, Kexi; Huang, Qing

    2016-05-01

    Highly ordered hexagonally patterned Ag-nanorod (Ag-NR) arrays for surface-enhanced Raman scattering (SERS) detection of unhealthy chemical residues in food oil was reported, which was obtained by sputtering Ag on the alumina nanotip arrays stuck out of conical-pore anodic aluminum oxide (AAO) templates. SERS measurements demonstrate that the as-fabricated large-scale Ag-nanostructures can serve as highly sensitive and reproducible SERS substrates for detection of trace amount of chemicals in oil with the lower detection limits of 2×10-6 M for thiram and 10-7 M for rhodamine B, showing the potential of application of SERS in rapid trace detection of pesticide residues and illegal additives in food oils.

  20. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action

    Directory of Open Access Journals (Sweden)

    Indu Vashisth

    2014-10-01

    Full Text Available The effect of tea tree oil (TTO, cumin oil (CO, rose oil (RO and aloe vera oil (AVO on the skin permeation of losartan potassium (LP was investigated. In vitro skin permeation studies were carried out using rat skin. The mechanism of skin permeation enhancement of LP by essential oils treatment was evaluated by FTIR, DSC, activation energy measurement and histopathological examination. Both concurrent ethanol/enhancer treatment and neat enhancer pretreatment of rat SC with all the oils produced significance increase in the LP flux over the control. The effectiveness of the oils as the penetration enhancers was found to be in the following descending order: AVO > RO > CO > TTO. However, only AVO was the only enhancer to provide target flux required to deliver the therapeutic transdermal dose of LP. FTIR and DSC spectra of the enhancer treated SC indicated that TTO, CO, RO and AVO increased the LP permeation by extraction of SC lipids. The results of thermodynamic studies and histopathological examination of AVO treated SC suggested additional mechanisms for AVO facilitated permeation i.e. transient reduction in barrier resistance of SC and intracellular transport by dekeratinization of corneocytes which may be attributed to the presence of triglycerides as constituents of AVO. It is feasible to deliver therapeutically effective dose of LP via transdermal route using AVO as penetration enhancer.

  1. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2016-02-01

    Full Text Available This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME, also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx and carbon monoxide (CO. The combustion experiments were conducted using three different oil burner nozzles (1.25, 1.50 and 1.75 USgal/h under lean (equivalence ratio (Φ = 0.8, stoichiometric (Φ = 1 and rich fuel (Φ = 1.2 ratio conditions. The results show that the rate of emission formation decreases as the volume percent of palm biodiesel in a blend increases. PME combustion tests present a lower temperature inside the chamber compared to CDF combustion. High rates of NOx formation occur under lean mixture conditions with the presence of high nitrogen and sufficient temperature, whereas high CO occurs for rich mixtures with low oxygen presence.

  2. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  3. Positive and negative effects of dielectric breakdown in transformer oil based magnetic fluids

    International Nuclear Information System (INIS)

    The transformer oil based magnetic fluids can be considered as the next-generation insulation fluids because they offer exciting new possibilities to enhance dielectric breakdown voltage as well as heat transfer performance compared to pure transformer oils. In this study, we have investigated the dielectric breakdown strength of the fluids with the various volume concentrations of nanoparticles in accordance with IEC 156 standard and have tried to find the reason for changing the dielectric breakdown voltage of the fluids from the magnetic field analysis. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 kV with the gap distance of 1.5 mm. In the case of our transformer oil-based magnetic fluids with 0.08% < Φ < 0.6% (Φ means the volume concentration of magnetic nanoparticles), the dielectric breakdown voltage shows above 40 kV, which is 3.3 times higher positively than that of pure transformer oil. Negatively in the case when the volume concentration of magnetic nanoparticles is above 0.65%, the dielectric breakdown voltage decreases reversely. From the magnetic field analysis, the reason might be considered as two situations: the positive is for the conductive nanoparticles dispersed well near the electrodes, which play an important role in converting fast electrons to slow negatively charged particles, and the negative is for the agglomeration of the particles near the electrodes, which leads to the breakdown initiation.

  4. Off-shore enhanced oil recovery in the north sea: matching CO_2 demand and supply given uncertain market conditions

    Science.gov (United States)

    Compernolle, Tine; Welkenhuysen, Kris; Huisman, Kuno; Piessens, Kris; Kort, Peter

    2015-04-01

    Introduction CO2 enhanced oil recovery (CO2-EOR) entails the injection of CO2 in mature oil fields in order to mobilize the oil. In particular, the injected CO2 reduces the oil's viscosity and acts as a propellant, resulting in an increased oil extraction rate (Leach et al., 2011). Given uncertainty in both oil price and CO2 price under the EU ETS system, aim of this study is to analyze under which economic conditions a CO2 exchange can be established between a CO2 supplier (an electricity producer for whom CO2 is a by-product) and a CO2 user (an offshore oil company that exploits oil fields in the North Sea and needs CO2 for enhanced oil recovery). Methodology A techno-economic simulation tool, PSS IV, was developed to provide investment decision support on integrated CO2-EOR projects (Welkenhuysen et al., 2014). Until now, a fixed onshore supply of CO2 was presumed. An economic optimization model is now developed for both the CO2 producer and the CO2 user. Because net present value and discounted cash flow methods are inadequate to deal with issues like uncertainty and the irreversibility of an investment decision, the real options theory is applied (Dixit and Pindyck, 1994). The way in which cooperation between the companies can take place, will be studied using game theoretical concepts (Lukas and Welling, 2014). Economic and technical data on CO2 capture are available from the PSS database (Piessens et al., 2012). Data on EOR performance, CO2 requirements and various costs are taken from literature (BERR, 2007; Klokk et al., 2010; Pershad et al., 2012). Results/Findings It will be shown what the impact of price uncertainty is on the investment decision of the electricity producer to capture and sell CO2, and on the decision of the oil producer to make the necessary investments to inject CO2 for enhanced oil recovery. Based on these results, it will be determined under which economic conditions a CO2 exchange and transport can take place. Furthermore, also the

  5. Synthetic heat carrier oil compositions based on polyalkylene glycols

    International Nuclear Information System (INIS)

    The results of syntheses of heat carrier oils based on polyalkylene glycols (PAGs) using suitable additives have been reported. Polyalkylene glycols have been prepared by heating diethylene glycol, propylene oxide, glycols, adipic acid and 2-ethyhexanol in the presence of KOH and stannyl octoate as catalyst in the molar ratio to give proper physical properties and viscosity-temperature index. The prepared PAGs have been taken as basic components for heat carrier oil compositions. In order to improve the thermal stability and viscosity indices, as well as other specifications, anti-oxidant and anti-foaming additives were added to the base material to reach optimum compositions. Thermal stability, mass loss on vaporization at 250 oC, 350 oC and changing the specifications after heating at 300 oC for 10 h have also been investigated. The obtained heat carrier oils showed comparable improved properties in comparison with commercially available heat carriers

  6. Tribological characteristic enhancement effects by polymer thickened oil in lubricated sliding contacts

    Science.gov (United States)

    Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.

    2016-04-01

    Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.

  7. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  8. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  9. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    OpenAIRE

    Abdalrahman B. Fadhil; Mohammed M. Dheyab; Kareem M. Ahmed; Marwa H. Yahya

    2012-01-01

    Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl) and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction...

  10. Effect of TiO2 Nanoparticles on Charge Transportation in Mineral Oil and Natural Ester Based Nanofluid

    Institute of Scientific and Technical Information of China (English)

    DU Yuefan; LI Chengrong; L(U) Yuzhen; ZHONG Yuxiang; CHEN Mutian; ZHOU You

    2013-01-01

    TiO2 semiconductive nanoparticles are added into mineral and ester based transformer oil to form semiconductive nanofluids (SNFs) with the aim of enhancing the oil's insulating performance.Charge accumulation and decay characteristics of both pure oils and SNFs are measured by pulse electroacoustic (PEA) technique.The result reveals that compared with pure oil,SNFs have more uniform internal electric fields with voltage applied and higher charge decay rate after removing the applied voltage.This is caused by the increase of shallow trap density in SNFs,due to the test results of thermally stimulated current (TSC).It is proposed that the electron trapping and de-trapping processes in shallow traps could be the main charge transport processes in the nanofluid transformer oil.

  11. Induction of mutations for enhanced essential oil in palmarosa (Cymbopogon martinii)

    International Nuclear Information System (INIS)

    Four cultivars (PRC-1, Trisha, Tripta, and M.P.) of palmarosa (Cymbopogon martinii var. martinii) exposed to one physical mutagen (gamma irradiation at 15 Kr) and two chemical mutagens (EMS-0.4% and EI-0.04%) together with their relative effectiveness for enhanced biomass growth and oil yield in M1 generation have been studied. The data on herbage yield in terms of plant height, second internode length, inflorescence length, leaf number and tiller number and oil yield and free geraniol percentage in the three mutagen treated cultivars (PRC-1, Trishna and Tripta) showed significant increase/enhancement over the respective untreated controls. The mutagen response in the fourth cultivar (M.P.) was found to be transgressively variable, showing an increased effect for some traits and a decreased trend for others which was attributed to heterogeneity and open pollinated nature of this cultivar

  12. Large spatial self-phase modulation in castor oil enhanced by gold nanoparticles

    Science.gov (United States)

    Alencar, Márcio A. R. C.; Nascimento, César M.; Chávez-Cerda, Sabino; da Silva, Monique G. A.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2006-02-01

    Spatial self-phase modulation was observed when a CW laser beam propagated along a cell containing castor oil. The minimum power needed to excite this effect decreases when the sample length is increased, as well as when the laser wavelength approaches to the absorption band of the medium. The same phenomenon was also observed when a laser beam interacts with a colloidal solution of gold nanoparticles in castor oil. For this system the self-phase modulation minimum power decreased dramatically, which indicates that the nonlinear refractive index for this system is enhanced due to the gold nanoparticles. Moreover, for laser wavelength near to the plasmon resonance of the gold nanoparticles, this enhancement factor is even higher. Although the large value of those media nonlinearity, its temporal response is slow. This fact suggests that this phenomenon is due to thermal effects mainly.

  13. The Effect of Salt Concentration on Microbes during Microbial Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nmegbu, Chukwuma Godwin Jacob

    2014-06-01

    Full Text Available Reservoir fluid salinity, its effectiveness on viscosity as well as temperature dependency is an important parameter for enhanced oil recovery consideration. Previous studies on formation fluid properties focused on NaCl and KCl, the two most common brines in connate water and in water-based drilling mud, failing, however, to relate its performance to bacterial survival. This work has considered four different brine solutions and how it will affect the useability of pseudomonas species and halobacterium H – 356. The bacterial mixture viscosity shows a considerable difference between NaCl, CsCl, KCl and LiCl with NaCl and LiCl being favourable brines. Hence, for flooding agent at varying temperature since it makes the bacteria mixture viscosity more viscous whereas the KCl appeared less viscous compared to liquid mixture standard water. For the bacteria mixture, the viscosity of KCl and CsCl decreases with the concentration of a low temperature range and increases with the concentration at a high range.

  14. Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    Directory of Open Access Journals (Sweden)

    Arvind K Singh

    2014-04-01

    Full Text Available Availability of inorganic nutrients, particularly N and P, is often a primary control on crude oil hydrocarbon degradation in marine systems. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N&P are not limiting. Crude oil degradation was limited by both N&P availability. When N was added alone maximum rates of CO2 production measured were 3.94±0.46 µmol CO2 /g wet sediment/day. However when the same levels of N were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment maximum rates of measured CO2 production more than doubled (11.52±0.72 µmol CO2 /g wet sediment/day. Ks and qmax estimates for N (in the form of sodium nitrate when P was not limiting were 1.57±0.56 µmol/g wet sediment and 10.57±0.63 µmol CO2 /g wet sediment/day respectively. The corresponding values for P were 80 nmol/g wet sediment and 8.76±1.15 µmol CO2 /g wet sediment/day. The qmax values with respect to N and P were not significantly different (P< 0.05. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation

  15. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    OpenAIRE

    Rong Xiao; Nenad Miljkovic; Ryan Enright; Wang, Evelyn N.

    2013-01-01

    peer-reviewed Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where w...

  16. CO2 Enhanced Oil Recovery in Strong Water-Drive Reservoirs

    OpenAIRE

    Forest, Thibaut

    2012-01-01

    The growing demand for energy has prompted oil companies to increase the production while paying more and more attention to the CO_2 footprint of their activities. To fulfill these requirements CO_2 storage and enhanced recovery have been tremendously developed in the last few years. Despite this consideration for lowering carbon emissions, the political incentives and the economic faisability of the projects, certain CO_2 pilot projects turn to be a failure. This study deals with a subject t...

  17. Enhancing quality management in a Finnish oil refining and marketing company

    OpenAIRE

    Vilppola, K. (Katri)

    2014-01-01

    Quality management (QM) is considered more and more to be an essential business approach to organisational improvements. Today, quality is seen as a beneficial aspect to invest in because it has proven to for example enhance the company revenue, increase productivity, reduce cost of quality and improve business performance. Nevertheless, many companies in addition to Neste Oil are struggling with questions such as “What is the best governance and management structure for quality to maximize t...

  18. Enhanced Oil Recovery by CO2 Injection in Fractured Reservoirs. Emphasis on Wettability and Water Saturation

    OpenAIRE

    Steinsbø, Marianne

    2016-01-01

    The work presented in this Thesis is part of ongoing research on Enhanced Oil Recovery (EOR) in fractured reservoirs within the reservoir physics research group at the Department of Physics and Technology, University of Bergen. This research group has previously identified chemical EOR to alter wettability, miscible gas injection and mobility control by foam and polymers to be the most promising methods for applications on the Norwegian Continental Shelf. In this Thesis a series of labor...

  19. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms.

    Directory of Open Access Journals (Sweden)

    Pedro Bullon

    Full Text Available BACKGROUND/OBJECTIVES: Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old and old (24 months old rats. METHODS/FINDINGS: Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA, as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS: The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

  20. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    Science.gov (United States)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  1. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    OpenAIRE

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic component and in-situ soap generation. The impact of alkali, IFT reduction, in-situ soap generation and oil acid number were systematically studied by measurement of phase behaviour, interfacial tensi...

  2. Experimental Studies of N2 - and CO2-Foam Properties in Relation to Enhanced Oil Recovery Applications

    OpenAIRE

    Solbakken, Jonas

    2015-01-01

    Foams can do more than soften a beard or extinguish a fire. Foam also offers the oil industry better mobility control. The presence of a foaming agent in porous rocks can reduce the mobility of gas and water, stabilize the gas injection front and prevent unwanted production of gas and water. These unique properties can assist the reservoir engineer in different optimization processes to enhance oil recovery (EOR) and improve the economics of mature oil fields. A number of factors influence...

  3. Feruloylated Soybean Oil: Novel Soy-Based Cosmeceuticals

    Science.gov (United States)

    We have synthesized novel, lipid-based cosmeceutical ingredients by incorporating ferulic acid onto the glycerol backbone of soybean oil. Ferulic acid is present in nature esterified to other plant components, such as the hemicellulose and lignin fractions of plant cell walls, as well as in the wax...

  4. Acetic acid based oil palm biomass refining process

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Keijsers, E.R.P.; Lips, S.J.J.; Dam, van J.E.G.; Engelen-Smit, N.P.E.

    2011-01-01

    The invention relates to a process for refining a biomass from empty fruit bunches of oil palm with a dry matter content of 5-95 wt.%, based on the total wt. of the biomass, where the process comprises the subsequent stages of (a) water extn. under atm. pressure conditions and at pH of 5-7, (b) pre

  5. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  6. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  7. OSIS: A PC-based oil spill information system

    International Nuclear Information System (INIS)

    Warren Spring Laboratory and BMT Ceemaid Ltd. are cooperating to produce an Oil Spill Information System (OSIS) that will have worldwide application. OSIS is based on EUROSPILL, a spill simulation model originally developed under programs sponsored by the European Commission and the Marine Pollution Control Unit of the United Kingdom government's Department of Transport. OSIS is implemented in the Microsoft Windows 3.x graphical environment on a personal computer. A variety of options enables the user to input information on continuous or instantaneous spills of different types of oil under variable environmental conditions, to simulate the fate of oil and the trajectory of a spill. Model results are presented in the forms of maps, charts, graphs, and tables, displayed in multiple windows on a color monitor. Color hard copy can be produced, and OSIS can be linked to other Windows software packages, providing the opportunity to create a suite of spill incident management tools

  8. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  9. Percutaneous penetration enhancement effect of essential oil of mint (Mentha haplocalyx Briq. on Chinese herbal components with different lipophilicity

    Directory of Open Access Journals (Sweden)

    Jingyan Wang

    2014-10-01

    Conclusions: Mint oil at proper concentration could effectively facilitate percutaneous penetration of both lipophilic and hydrophilic drugs, and exhibit higher efficiency for moderate hydrophilic drugs. Mechanisms of penetration enhancement by mint oil could be explained with saturation solubility, SC/vehicle partition coefficient and the secondary structure change of SC.

  10. The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs

    International Nuclear Information System (INIS)

    Over 60% of the original oil in a place (OOIP) is retained in a reservoir after conventional methods have been exploited. Application of enhanced oil recovery (EOR) technology gives an additional chance to get out possibly about 20% more oil from the reservoir. The use of water-soluble polymers improves the water–oil mobility ratio, therefore, the displacement efficiency increased, and leads to enhanced oil recovery. High-molecular-weight polyacrylamide group is widely and successfully used in EOR. But no commercial polymer composition can be used in conditions of high temperature and hardness brine offshore reservoirs yet. To avoid the time consumption and high expense for selection and synthesis of the appropriate-structural polymer for EOR application, we attempt to find additives to enhance the thermal stability of polymer solutions. In this paper, we report the results of improved viscosity stability of diluted polymer/seawater solutions aged at reservoir conditions for 31days by adding graphite-oxide particles (GOs). In the presence of 300 ppm of GOs, the viscosity stability of 1700 ppm acrylamide-based polymer in sea water solution increases from 92 °C to 135 °C. FESEM pictures show good distribution of GOs in polymer network, which is a result of integration of functional groups in GOs surfaces and hydrophilic polymer chains. (paper)

  11. The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs

    Science.gov (United States)

    Dung Nguyen, Ba; Kien Ngo, Trung; Bui, Truong Han; Khanh Pham, Duy; Loc Dinh, Xuan; Nguyen, Phuong Tung

    2015-03-01

    Over 60% of the original oil in a place (OOIP) is retained in a reservoir after conventional methods have been exploited. Application of enhanced oil recovery (EOR) technology gives an additional chance to get out possibly about 20% more oil from the reservoir. The use of water-soluble polymers improves the water-oil mobility ratio, therefore, the displacement efficiency increased, and leads to enhanced oil recovery. High-molecular-weight polyacrylamide group is widely and successfully used in EOR. But no commercial polymer composition can be used in conditions of high temperature and hardness brine offshore reservoirs yet. To avoid the time consumption and high expense for selection and synthesis of the appropriate-structural polymer for EOR application, we attempt to find additives to enhance the thermal stability of polymer solutions. In this paper, we report the results of improved viscosity stability of diluted polymer/seawater solutions aged at reservoir conditions for 31days by adding graphite-oxide particles (GOs). In the presence of 300 ppm of GOs, the viscosity stability of 1700 ppm acrylamide-based polymer in sea water solution increases from 92 °C to 135 °C. FESEM pictures show good distribution of GOs in polymer network, which is a result of integration of functional groups in GOs surfaces and hydrophilic polymer chains.

  12. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    International Nuclear Information System (INIS)

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH−) are involved into diffusion process

  13. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    Science.gov (United States)

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. PMID:23455221

  14. Oil-removal enhancement in media with keratinous or chitinous wastes by hydrocarbon-degrading bacteria isolated from oil-polluted soils.

    Science.gov (United States)

    Cervantes-González, E; Rojas-Avelizapa, N G; Cruz-Camarillo, R; García-Mena, J; Rojas-Avelizapa, L I

    2008-02-01

    The aim of this work was to isolate oil-degrading bacteria that use chitin or keratin as carbon sources from oil contaminated soils; and additionally to study if oil removal by these bacteria is enhanced when a chitinous or a keratinous waste is added to the culture media. To isolate the above-mentioned bacteria, 12 soil samples were collected close to an oil-well. Such soils showed unsuitable nutrients content, but their counts of heterotrophic bacteria ranged within 10(5)-10(8) CFU g(-1) soil, of which 0.1-77% corresponded to oil hydrocarbon-degrading ones. By sampling on plates, 109 oil-degrading bacterial isolates were obtained. Their keratinase and chitinase activities were then screened by plate assays and spectrophotometric methods, resulting in 13 isolates that were used to integrate two mixed cultures, one keratinolytic and the other chitinolytic. These mixed cultures were grown in media with oil, or oil supplemented with chicken-feathers or shrimp wastes. The oil-hydrocarbon removal was measured by gas chromatography. Results showed that keratinolytic bacteria were better enzyme producers than the chitinolytic ones, and that oil removal in the presence of chicken-feathers was 3.8 times greater than with shrimp wastes, and almost twice, in comparison with oil-only added cultures. Identification of microorganisms from the mixed cultures by 16S rDNA, indicated the presence of seven different bacterial genera; Stenotrophomonas, Pseudomonas, Brevibacillus, Bacillus, Micrococcus, Lysobacter and Nocardiodes. These findings suggest that the isolated microorganisms and the chicken-feather wastes could be applied to the cleaning of oil-contaminated environments, whether in soil or water. PMID:18613616

  15. FAST TRACK COMMUNICATION: Enhanced dc conductivity of low volume-fraction nano-particulate suspensions in silicone and perfluorinated oils

    Science.gov (United States)

    Wilson, S. A.; Libor, Z.; Skordos, A. A.; Zhang, Q.

    2009-03-01

    The dc conductivities of several different types of nanoparticles (nickel, barium titanate and magnetite) suspended in both silicone and perfluorinated oils have been measured and contrasted. Enhanced dc conductivity through interaction between the particles and the fluid has been demonstrated, even at quite moderate fields, and different types of nanoparticles have been shown to exhibit different behavioural trends. Whilst the dc enhancement is partly related to the concentration (or spatial arrangement) of the particles as expected, there is clear evidence that energy-activated (electric field activated) processes also play a major role. It can be said that effective-medium theories based solely on the electrical properties and volume fractions of the component materials have limited applicability when assessing the dc conductivities of these nanoparticle-fluid combinations at low volume fractions.

  16. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  17. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  18. Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery

    International Nuclear Information System (INIS)

    Geologic sequestration of carbon dioxide (CO2) in oil and gas reservoirs is one possibility to reduce the amount of CO2 released to the atmosphere. Carbon dioxide injection has been used in enhanced oil recovery (EOR) processes since the 1970s; the traditional approach is to reduce the amount of CO2 injected per barrel of oil produced. For a sequestration process, however, the aim is to maximize both the amount of oil produced and the amount of CO2 stored. It is not readily apparent how this aim is achieved in practice. In this study, several strategies are tested via compositional reservoir simulation to find injection and production procedures that 'cooptimize' oil recovery and CO2 storage. Flow simulations are conducted on a synthetic, three dimensional, heterogeneous reservoir model. The reservoir description is stochastic in that multiple realizations of the reservoir are available. The reservoir fluid description is compositional and incorporates 14 distinct components. The results show that traditional reservoir engineering techniques such as injecting CO2 and water in sequential fashion, a so-called water-alternating-gas process, are not conducive to maximizing the CO2 stored within the reservoir. A well control process that shuts in (i.e. closes) wells producing large volumes of gas and allows shut in wells to open as reservoir pressure increases is the most successful strategy for cooptimization. This result holds for both immiscible and miscible gas injection. The strategy appears to be robust in that full physics simulations employing multiple realizations of the reservoir model all confirmed that the well control technique produced the maximum amount of oil and simultaneously stored the most CO2

  19. Investigating the Potential of Nanomaterials for Enhanced Oil Recovery: State of Art

    Directory of Open Access Journals (Sweden)

    Adel Moh. Salem Ragab

    2014-07-01

    Full Text Available Petroleum industry has been changed by the introduction of the nanotechnology. Nanotechnology has been tried in exploration. Drilling, production, and finally in enhanced oil recovery. For EOR, nanomaterials are considered an additive to the fluid used to displace the residual oil from the reservoir, which changes the characteristics of these solutions. These nano solutions have unique properties for a wide range of applications in oil field industry.   There are several approaches for preparations of the nanomaterials; namely chemical and mechanical methods. Of course there a big difference between both of them and one can detect these variations by measuring its characterization and properties. From these methods, SEM, TEM, and EDX. The size and shape of the powder particles normally examined by x-ray diffraction (XRD and scanning electron microscope (SEM while their microanalysis are normally measured energy dispersive system (EDX.   The initial stage used to investigate the performance of the nano materials for improving the oil recovery is normally done by displacing the crude oil in a flooding system and compare the final recovery factor to that of other EOR techniques such as water flooding or polymer flooding. The second step is to try to explain and interpret the results.   This work offers an extensive literature review for assessing the applications of nano materials for improving oil recovery and investigating the current recovery problems, and then evaluating the potential technical and economic benefits that nanomaterials could provide to the reservoir engineering. Several nano materials are addressed and discussed. Moreover, it investigates the effect of nano materials on the relative permeability, the retention and loss of these materials inside the formation, and the numerical simulation of the nano material flowing in the pores. 

  20. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott M. [Illinois State Geological Survey, Champaign, IL (United States); Krapac, Ivan G. [Illinois State Geological Survey, Champaign, IL (United States); Damico, James R. [Illinois State Geological Survey, Champaign, IL (United States); Okwen, Roland T. [Illinois State Geological Survey, Champaign, IL (United States); McKaskle, Ray W. [Illinois State Geological Survey, Champaign, IL (United States)

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  1. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  2. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  3. Use of the photoacoustic spectroscopy for characterization of magnetic fluid based on mamona oil

    Science.gov (United States)

    Silveira, L. B.; Webler, G. D.; Oliveira, A. C.; Garg, V. K.; Santos, J. G.; Morais, P. C.

    2010-03-01

    In this study the photoacoustic spectroscopy was used to investigate the interaction between colloidal suspended nanosized maghemite particles and molecules present in mamona oil (ricinus communis L.). Maghemite nanoparticles were used to produce a magnetic fluid sample dispersed in mamona oil (MF-Mamona oil). In the L-band region (600 to 900 nm) of the photoacoustic spectra we found the photoacustic signal of sample MF-Mamona oil enhanced with respect to the signal of the purified mamona oil. This finding is claimed to be the signature of the strong interaction between the mamona oil's molecules and the solid surface provided by the suspended nanosized maghemite particles.

  4. Evaluation of a novel soybean oil-based surfactant for fine emulsion preparation

    Science.gov (United States)

    Soybean oil is currently the world’s second largest source of vegetable oil. The growth in soybean oil production and the concerns over petrochemical surfactants have promoted the development of soybean oil-based surfactants. In this paper, we briefly describe the synthesis and properties of soybean...

  5. 26 CFR 1.954-8 - Foreign base company oil related income.

    Science.gov (United States)

    2010-04-01

    ... (“extraction exception”), or (ii) Oil, gas, or a primary product of oil or gas which is sold by the controlled... daily production (extraction) of foreign crude oil and natural gas by the related group which includes...) (extraction exception under paragraph (a)(1)(i) of this section (75x) (D) Foreign base company oil...

  6. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.

    Science.gov (United States)

    Wei, Bing

    2015-12-10

    This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. PMID:26428140

  7. The in situ microbial enhanced oil recovery in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Soudmand-asli, Alireza; Ayatollahi, S. Shahab; Zareie, Maryam [School of Chemical and Petroleum Engineering, Shiraz University, Shiraz (Iran); Mohabatkar, Hassan [Department of Biology, School of Sciences, Shiraz University, Shiraz (Iran); Shariatpanahi, S. Farzad [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran)

    2007-08-15

    These experiments aim to investigate the microbial enhanced oil recovery (MEOR) technique in fractured porous media using etched-glass micromodels. Three identically patterned micromodels with different fracture angle orientation of inclined, vertical and horizontal with respect to the flow direction were utilized. A non-fractured model was also used to compare the efficiency of MEOR in fractured and non-fractured porous media. Two types of bacteria were employed: Bacillus subtilis (a biosurfactant-producing bacterium) and Leuconostoc mesenteroides (an exopolymer-producing bacterium). The results show that higher oil recovery efficiency can be achieved by using biosurfactant-producing bacterium in fractured porous media. Further investigation on the effect of the mentioned bacteria on oil viscosity, porous media permeability and wettability suggests that the plugging of matrix-fracture interfaces by an exopolymer is the main reason for the low performance of the exopolymer-producing bacterium. Oil viscosity reduction as well as the reduction of IFT was also found to be the reason for better microbial recovery efficiencies of biosurfactant-producing bacterium in the fractured models. (author)

  8. Inhalation of Shin-I essential oil enhances lactate clearance in treadmill exercise

    Institute of Scientific and Technical Information of China (English)

    Hsuan-Ying Chen; Ming-Fu Wang; Jun-Ying Lin; Ying-Chieh Tsai; Fu-Chou Cheng

    2014-01-01

    Objective: To evaluate the effect of Shin-I essential oil inhalation on blood lactate changes in rats subjected to treadmill exercise.Methods: Adult male Sprague Dawley rats (n=12) were randomly divided into the control or the Shin-I group. Rats were subjected to a treadmill exercise program (15 m/min for 30 min). After exercise, rats were exposed to 200 µL of water or Shin-I essential oil, respectively, using a nebulizer for 180 min during the recovery period. Blood samples were collected every 15 min. Blood glucose and lactate concentrations were determined in a CMA 600 analyzer.Results: The basal glucose and lactate levels were no significantly different between two groups. After exercise, glucose levels were slightly increased to about 110%-120% of the basal level in both groups. Lactate levels of both groups reached to 110%-140% of basal levels during exercise. In the recovery period, lactate levels further increased to 180% of the basal level and were maintained at a plateau in the control group. However, lactate levels gradually decreased to 60%-65% of the basal level in the Shin-I group. Lactate clearance was significantly enhanced after Shin-I essential oil inhalation.Conclusions: Our results provide evidence that Shin-I essential oil inhalation may accelerate recovery after exercise in rats.

  9. Enhanced fecal elimination of stored hexachlorobenzene from rats and rhesus monkeys by hexadecane or mineral oil.

    Science.gov (United States)

    Rozman, K; Rozman, T; Greim, H

    1981-01-01

    The effect of various dietary treatments on the fecal excretion of [14C]-hexachlorobenzene (HCB) was studied in rats and rhesus monkeys. Cholestyramine and sesame oil failed to influence fecal excretion of HCB and/or metabolites. However, dietary administration of n-hexadecane (5%) increased fecal excretion of radioactivity 4-13-fold in rats and rhesus monkeys. Similarly, mineral oil in the diet (5%) of rhesus monkeys elicited a 6-9-fold increase in fecal excretion of HCB and/or metabolites. As a result of the mineral oil treatment, and enhanced depletion of HCB from blood and also of the stored HCB from adipose tissue was observed. The concentration of HCB in the blood declined in accordance with decreasing storage levels of HCB in adipose tissue. The major site of elimination of HCB and/or metabolites seemed to be the intestine; in particular, the cecum and the colon ascendens. Both hexadecane and mineral oil appeared to stimulate specifically this elimination path way. PMID:7336436

  10. Enhanced Bioavailability of EPA From Emulsified Fish Oil Preparations Versus Capsular Triacylglycerol.

    Science.gov (United States)

    Raatz, Susan K; Johnson, LuAnn K; Bukowski, Michael R

    2016-05-01

    For those individuals who are unable to consume adequate long chain omega-3 fatty acids (LCn3) from dietary sources, fish oil supplementation is an attractive alternative Pre-emulsified fish oil supplements, an alternative to capsular triacylglycerol, may enhance the uptake of LCn3 fatty acids it contains. A randomized, Latin-square crossover design was used to compare the effects of four fish oil supplement preparations (Emulsions S, B and N) on phospholipid fatty acid (PLFA) concentrations in ten healthy volunteers compared to oil capsules over 48 h after a single dose and chylomicron fatty acid (CMFA) was evaluated over 8 h. Blood samples were collected at 0, 2, 4, 8, 24 and 48 h and fatty acid concentrations of PLFA and CMFA were determined by gas chromatography and the integrated area under the curve over 40 h (iAUC0-48) was determined. Emulsion S and Emulsion N promoted increased uptake of EPA into PLFA over 48 h when evaluating by iAUC0-48 or individual time points of assessment. No differences were observed between supplements in the CMFA concentrations. PMID:26688435

  11. Offshore disposal of oil-based drilling fluid waste

    International Nuclear Information System (INIS)

    Offshore drilling operations in the Gulf of Mexico may use oil-based drilling fluids to mitigate drilling problems. The result is the generation of a significant quantity of oily cuttings and mud. The transportation of this waste for onshore disposal is a concern from a standpoint of both personnel safety and potential environmental impact. A process for preparing a slurry of this waste and the subsequent disposal of the slurry through annular pumping has been put into use by ARCO Oil and Gas Company. The disposal technique has been approved by the Minerals Management Service (MMS). The slurried waste is displaced down a casing annulus into a permeable zone at a depth below the surface casing setting depth. The annular disposal includes all cuttings and waste oil mud generated during drilling with oil-based fluids. This disposal technique negates the need for cuttings storage on the platform, transportation to shore, and the environmental effects of onshore surface disposal. The paper describes the environmental and safety concerns with onshore disposal, the benefits of annular disposal, and the equipment and process used for the preparation and pumping of the slurry

  12. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  13. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  14. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    Science.gov (United States)

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed. PMID:21929380

  15. Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry

    International Nuclear Information System (INIS)

    through gas turbine compressor inlet air cooling using the waste heat powered absorption refrigeration scheme is of approximately 5264 MWh per year, compared to 1774 MWh for evaporative cooling. When integrated with other plant process cooling applications, the proposed scheme would not only permit to both meet gas turbine compressor inlet air cooling loads throughout the year, including peak summer loads, but also provide other process cooling during off-peaks time periods. The economic paypack period of the waste heat recovery scheme is estimated to range from 1.3 to 3.4 years for a three-chiller system based on present and project utility prices for NGPPs in the United Arab Emirates. This study suggests that waste heat absorption refrigeration is an attractive solution to enhance electrical power generation in Middle East NGPPs through gas turbine inlet air cooling, both in terms of thermodynamic and economic feasibility. This strategy would also reduce plant natural gas consumption for power generation, hence production costs and emissions. - Highlights: ► Efficiency enhancement of oil/gas plant utilizing gas turbines for power generation. ► Gas turbine inlet air cooling scheme for high ambient temperature and RH conditions. ► Proposed scheme uses absorption chillers powered by GT exhaust gases waste heat. ► Scheme performance superior to evaporative coolers and vapor compression chillers. ► Favorable scheme economic payback period and significant reduction in NG consumption.

  16. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    Science.gov (United States)

    Mortley, Aba; Bonin, H. W.; Bui, V. T.

    2007-12-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13C solid state NMR spectra imply limited sample degradation with increasing radiation.

  17. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    International Nuclear Information System (INIS)

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13C solid state NMR spectra imply limited sample degradation with increasing radiation

  18. Enhanced Coagulation Efficiency of Moringa Oleifera Seeds Through Selective Oil Extraction

    OpenAIRE

    2012-01-01

    In this laboratory based study, varying quantities of oil, corresponding to 20 % w/w, 25 % w/w and 30 % w/w kernel weight extracted from Moringa oleifera seeds ( S1, S2, S3) respectively  were applied in the coagulation of model turbid water (kaolin suspension) and turbid river water samples from River Batang Kali and River Selangor in Malaysia to determine the percentage oil removed which gave the best coagulation efficiency. For model turbid water (kaolin suspension) coagulation of low...

  19. Nigella sativa Oil Enhances the Spatial Working Memory Performance of Rats on a Radial Arm Maze

    OpenAIRE

    Mohamad Khairul Azali Sahak; Abdul Majid Mohamed; Noor Hashida Hashim; Durriyyah Sharifah Hasan Adli

    2013-01-01

    Nigella sativa, an established historical and religion-based remedy for a wide range of health problems, is a herbal medicine known to have antioxidant and neuroprotective effects. This present study investigated the effect of Nigella sativa oil (NSO) administration on the spatial memory performance (SMP) of male adult rats using eight-arm radial arm maze (RAM). Twelve Sprague Dawley rats (7–9 weeks old) were force-fed daily with 6.0  μ L/100 g body weight of Nigella sativa oil (NSO group; n ...

  20. Efficient Textural Model-Based Mammogram Enhancement

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Remeš, Václav

    Piscataway: IEEE, 2013, s. 522-523. ISBN 978-1-4799-1053-3. [2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS). Porto (PT), 20.06.2013-22.06.2013] Institutional support: RVO:67985556 Keywords : mammogram enhancement * autoregressive texture model * breast tissue modeling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-0397607.pdf

  1. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  2. Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2016-02-01

    In this paper, novel graphene/cellulose (GC) aerogels were prepared based on a green NaOH/PEG solution. Scanning electron microscope observation indicates that the three-dimensional network skeleton structure of cellulose aerogels is tightly covered by the compact sheet structure. X-ray diffraction and Raman spectroscopy analyses demonstrate that the graphene nanosheets have been successfully synthesized and embedded in the cellulose aerogels. The incorporation of graphene nanosheets gives rise to the significant improvement in the specific surface area and pore volume, thermal stability, mechanical strength, and oil adsorption efficiency of GC aerogels. Therefore, the green hybrid GC aerogels have more advantages over the pure cellulose aerogels in treating oil-containing wastewater or oil spills under the harsh environment.

  3. Mathematical modeling of the soaking period in a microbial enhanced oil recovery application

    Energy Technology Data Exchange (ETDEWEB)

    Behlulgil, K. [Middle East Technical University, Ankara (Turkey). Petroleum and Natural Gas Engineering Dept.; Durgut, I. [Norwegian University of Science and Technology, Trondheim (Norway). Petroleum Engineering and Applied Geophysics Dept.

    2003-09-01

    In this study, experimental conditions of the microbial enhanced oil recovery (MEOR) technique applied for Garzan oil (26{sup o} API; southeast Turkey) were utilized in a mathematical model that describes the transport of bacteria and its nutrients by convective and dispersive forces, including bacterial decay and growth. From the results of the variation of bacterial concentration with distance, it was observed that the bacterial concentration increased as the nutrients were consumed with time. Although some bacteria died during the experiments, this did not slow down the overall increase in bacterial population significantly at earlier times. However, in the later periods of the soaking process, severe bacterial decay occurred due to the lack of nutrients. The pressure behavior in the model during the shut-in period was also calculated and agreed well with the experimental results. (author)

  4. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    Science.gov (United States)

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  5. Reservoir characterization and enhanced oil recovery research. Annual report, September 1988--August 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  6. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation. PMID:26980811

  7. Detection of Edible Oils Based on Voltammetric Electronic Tongue

    OpenAIRE

    Hong Men; Caiwa Zhang; Ke Ning; Donglin Chen

    2013-01-01

    A voltammetric electronic tongue to classify five different types of edible oil samples is described in this study. The standard three-electrode configuration composes the sensor array: gold electrode, platinum electrode and saturated calomel electrode. Using cyclic voltammetric measurement, respectively, on five different types of edible oil samples (peanut oil, corn oil, soybean oil, sesame oil and sunflower oil) collected data. The data extracted from the cyclic voltammetry are processed b...

  8. Enhancement of skin permeation of ibuprofen from ointments and gels by sesame oil, sunflower oil and oleic acid

    OpenAIRE

    Dinda S; Vijay Ratna J

    2006-01-01

    Several batches of paraffin ointments were prepared and ibuprofen was incorporated into them. Sesame oil, sunflower oil, and oleic acid in different concentrations were incorporated into different batches. Commercial ibuprofen gel was obtained and divided into several batches and different concentrations of sesame oil, sunflower oil, and oleic acid were incorporated into them. The in vitro drug release characteristics through hairless (88 mm) rat skin was carried out by using modified Inser...

  9. Marketing Risk Management of Palm Oil Based Biodiesel Agroindustry

    Directory of Open Access Journals (Sweden)

    I Gusti Bagus Udayana

    2014-03-01

    Full Text Available Biodiesel is fuel generates from vegetable oils that have properties similar to diesel oil. The advantages of biodiesel compared to diesel is an environmentally friendly fuel because it produces much lower emissions (sulfur free, low smoke number in accordance with global issues, higher cetane number (> 57 so that the combustion efficiency is better than diesel, lubrication properties of the piston engine; biodegradable, a renewable energy because it is made from natural materials, and improve the independence of fuel supply because it can be produced locally. The purpose of this research is to design the risk management decision support system for agro-industry development biodiesel of oil palm-based. Determination of objectives and risk management strategies using the used to obtain an alternative value in the aspect of marketing. This research resulted in a decision support system that is useful to help decision makers in addressing the risk of agro-bio-diesel. Risk management model is designed in a decision support system  (DSS, can be used by industrial users and investors in the field of biodiesel. DSS software development using Microsoft Visual Basic Version 6.0 consists of three main components namely database management system, knowledge base management system and model base management system. Model base management system consists of risk marketing analysis.

  10. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  11. Fish Oil Enhances Recovery of Intestinal Microbiota and Epithelial Integrity in Chronic Rejection of Intestinal Transplant

    Science.gov (United States)

    Li, Qiurong; Zhang, Qiang; Wang, Chenyang; Tang, Chun; Zhang, Yanmei; Li, Ning; Li, Jieshou

    2011-01-01

    Background The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. Methods/Principal Findings The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. Conclusions/Significance Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation. PMID:21698145

  12. Speech Enhancement based on Compressive Sensing Algorithm

    Science.gov (United States)

    Sulong, Amart; Gunawan, Teddy S.; Khalifa, Othman O.; Chebil, Jalel

    2013-12-01

    There are various methods, in performance of speech enhancement, have been proposed over the years. The accurate method for the speech enhancement design mainly focuses on quality and intelligibility. The method proposed with high performance level. A novel speech enhancement by using compressive sensing (CS) is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. Using CS can reduce the number of degrees of freedom of a sparse/compressible signal by permitting only certain configurations of the large and zero/small coefficients, and structured sparsity models. Therefore, CS is significantly provides a way of reconstructing a compressed version of the speech in the original signal by taking only a small amount of linear and non-adaptive measurement. The performance of overall algorithms will be evaluated based on the speech quality by optimise using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). Experimental results show that the CS algorithm perform very well in a wide range of speech test and being significantly given good performance for speech enhancement method with better noise suppression ability over conventional approaches without obvious degradation of speech quality.

  13. Teapot Dome: Site Characterization of a CO2- Enhanced Oil Recovery Site in Eastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S J; Stamp, V

    2005-11-01

    Naval Petroleum Reserve No. 3 (NPR-3), better known as the Teapot Dome oil field, is the last U.S. federally-owned and -operated oil field. This provides a unique opportunity for experiments to provide scientific and technical insight into CO{sub 2}-enhanced oil recovery (EOR) and other topics involving subsurface fluid behavior. Towards that end, a combination of federal, academic, and industrial support has produced outstanding characterizations of important oil- and brine-bearing reservoirs there. This effort provides an unparalleled opportunity for industry and others to use the site. Data sets include geological, geophysical, geochemical, geomechanical, and operational data over a wide range of geological boundary conditions. Importantly, these data, many in digital form, are available in the public domain due to NPR-3's federal status. Many institutions are already using portions of the Teapot Dome data set as the basis for a variety of geoscience, modeling, and other research efforts. Fifteen units, 9 oil-bearing and 6 brine-bearing, have been studied to varying degrees. Over 1200 wells in the field are active or accessible, and over 400 of these penetrate 11 formations located below the depth that corresponds to the supercritical point for CO{sub 2}. Studies include siliciclastic and carbonate reservoirs; shale, carbonate, and anhydrite cap rocks; fractured and unfractured units; and over-pressured and under-pressured zones. Geophysical data include 3D seismic and vertical seismic profiles. Reservoir data include stratigraphic, sedimentological, petrologic, petrographic, porosity, and permeability data. These have served as the basis for preliminary 3D flow simulations. Geomechanical data include fractures (natural and drilling induced), in-situ stress determination, pressure, and production history. Geochemical data include soil gas, noble gas, organic, and other measures. The conditions of these reservoirs directly or indirectly represent many

  14. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  15. Research on surfactant flooding in high temperature and high-salinity reservoir for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ming [Southwest Petroleum Univ., Chengdu, Sichuan (China). State Key Lab. of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum Univ., Chengdu, Sichuan (China). School of Material Science and Engineering; Zhao, Jinzhou; Yang, Yan [Southwest Petroleum Univ., Chengdu, Sichuan (China). State Key Lab. of Oil and Gas Reservoir Geology and Exploitation; Wang, Xu [Southwest Petroleum Univ., Chengdu, Sichuan (China). School of Material Science and Engineering

    2013-05-15

    The aim of this work was to research the solution properties of a new surfactant flooding system for high temperature and high salinity reservoir, which include trimeric sulfonate surfactants 1,2,3-tri(2-oxypropyl sulfonation-3-alkylether-propoxyl) propanes (TTSS-n) and anion-nonionic surfactant NPSO [sodium nonyl phenol polyethyleneoxy ether sulfonate, (EO = 10)]. The critical micelle concentrations (CMCs) of five trimeric sulfonate surfactants were smaller than 400 mg L{sup -1}. Furthermore, their interfacial tensions (IFTs) could reach an ultralow value with Tazhong 4 oil at lower concentrations. Through optimized formulation, we found that TTSS-12 had better properties and was selected as the major component of the surfactant flooding system. We designed an optimal formulation of the surfactant flooding system with 1000 mg . L{sup -1} TTSS-12 and 1000 mg . L{sup -1} NPSO surfactant. The system with a very small surfactant concentration could reach ultralow IFT with Tazhong 4 crude oils at high temperature (110 C) and high concentration formation brine (112,228.8 mg/L TDS), which proved that the simpler component surfactant had better reservoir compatibility. NPSO could weaken the disadvantage of the surfactant TTSS-12 in oil/water interface. The stability of this surfactant flooding system was evaluated by aging time, static adsorption and chromatographic separation. All experiments showed that it still keeps ultralow IFT in high temperature and high salinity conditions. Coreflooding experimentation showed that average oil recovery reached 9.8 wt% by surfactant flooding, therefore, it is feasible to use as a surfactant flooding system for enhanced oil recovery (EOR). (orig.)

  16. Oil inventories should be based on margins, supply reliability

    International Nuclear Information System (INIS)

    US oil inventories have plummeted to their lowest recorded levels this year, leading industry observers to conclude that refiners have adopted new just-in-time (JIT) inventory policies. Total crude oil inventories are about 300 million bbl -- 8% below the 10-year average. Distillate inventories posted similar declines this year because of unusually cold winter temperatures and refiners' reluctance to build sufficient stocks in the autumn months. Gasoline stocks are 20% below the 10-year average at 200 million bbl, despite forecasts of record-high gasoline demand this summer. The sudden drop in crude and product inventories this year is widely considered a sign that refiners have implemented JIT, signaling a permanent shift to reduced stocks. The authors submit that the shift towards reduced oil inventories is not related to a concerted adoption of JIT by US refiners, and that oil inventory management decisions should instead be based on refining margins and supply reliability. The paper discusses the JIT revolution and the optimal-inventory model

  17. Structuring from nanoparticles in oil-based ferrofluids

    OpenAIRE

    Z. Rozynek; Jozefczak, A.; Knudsen, K. D.; Skumiel, A.; Hornowski, T.; Fossum, J. O.; Timko, M.; Kopcansky, P.; Koneracka, M.

    2011-01-01

    The effect of magnetic field on the structure formation in an oil-based magnetic fluid with various concentrations of magnetite particles was studied. The evaluation of the experimental data obtained from small-angle X-ray scattering and ultrasonic attenuation indicates the formation of chain-like aggregates composed of magnetite particles. The experimental data obtained from ultrasonic spectroscopy fit well with the recent theoretical model by Shliomis, Mond and Morozov but only for a dilute...

  18. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    OpenAIRE

    Salmiah Ibrahim; Azizan Ahmad; Nor Sabirin Mohamed

    2015-01-01

    Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurem...

  19. Influence of physical and chemical methods of enhanced oil recovery in formation microflora and properties of crude oil

    Science.gov (United States)

    Shcherbakova, A. G.; Altunina, L. K.; Svarovskaya, L. I.; Ovsyannikova, V. S.; Filatov, D. A.; Chuikina, D. I.

    2015-10-01

    The results of the analyzes of crude oil and produced water from wells in the areas of pilot testing of new flow deflection and oil-displacing Compounds developed in the Institute of Petroleum Chemistry SB RAS. It was found that changes in the properties and Compound of the oil and water mainly occur in the redistribution of filtration flows and integration in the development of the previously unwashed areas, as well as in washing off the residual heavy oil from the reservoir rock, and in some wells - due to formation biocenosis, contributing to desorption of oil from the rock.

  20. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  1. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  2. Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Khire, J M

    2010-01-01

    Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR). PMID:20545280

  3. Study of fuel properties of rubber seed oil based biodiesel

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • This article presents the comparative studies of the fuel properties of rubber seed oil based biodiesel. • The design expert has been adopted for the optimization of the process variables. • The FTIR, cold flow properties and oxidation stability are the findings of present study. • All the fuel properties met the standards such as ASTM D6751 and EN 14214. • Present study reveals that rubber seed oil as a non-edible source potentially contributes for esters production. - Abstract: The scarcity of the fossil fuel, environmental pollution and food crisis are the world’s major issues in current era. Biodiesel is an alternative to diesel fuel, environment friendly and biodegradable and is produced from either edible or non-edible oils. In this study, a non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content of 45% were used for the production of biodiesel. The process comprises of two steps. The first step is the acid esterification to reduce the FFA value and the second step is the base transesterification. The response surface methodology (RSM) was used for parametric optimization of the two stage processes i.e. acid esterification and base transesterification. The yield of biodiesel was analyzed using gas chromatography. The FTIR (Fourier Transform Infra-Red) spectrum was also determined to confirm the conversion of fatty acid to methyl esters. The fuel properties were analyzed according to the ASTM D6751 and EN14214 and were compared with the previous finding of researchers. All analyzed properties fulfilled the biodiesel standard criteria

  4. Frequency Spectrum Method-Based Stress Analysis for Oil Pipelines in Earthquake Disaster Areas

    Science.gov (United States)

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline. PMID:25692790

  5. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  6. A study of the chemical composition of black cumin oil and its effect on penetration enhancement from transdermal formulations.

    Science.gov (United States)

    Amin, Saima; Mir, Showkat R; Kohli, Kanchan; Ali, Babar; Ali, Mohd

    2010-07-01

    The chemical composition of the solvent extracted fixed oil of black cumin (Nigella sativa L.) seeds was determined by capillary GC and GC/MS. Thirty-two fatty acids (99.9%) have been identified in the fixed oil. The major fatty acids were linoleic acid (50.2%), oleic acid (19.9%), margaric acid (10.3%), cis-11,14-eicosadienoic acid (7.7%) and stearic acid (2.5%). The effect of black cumin oil on in vitro percutaneous absorption of the model lipophilic drug carvedilol was investigated using excised rat abdominal skin. Transdermal flux, permeability coefficient and enhancement factor were calculated for different concentrations of oil in isopropyl alcohol. Black cumin oil (5% v/v) exhibited the highest enhancement in permeation. The increase in the permeability of the drug is due to increased drug diffusivity through the stratum corneum under the influence of black cumin oil. A higher content of linoleic acid (and other unsaturated fatty acids) in the oil has been postulated to be responsible for the enhancement of in vitro percutaneous absorption of the drug. PMID:20582810

  7. Integrated well-completion strategies with CHOPS to enhance heavy-oil production : a case study in Fula Oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Zou, H. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Chinese Academy of Sciences, Beijing (China); Li, G.; Nie, C. [China National Oil and Gas Exploration and Development Corp., Beijing (China); Chen, J. [Shengli Oil Field (China)

    2005-11-01

    Cold Heavy Oil Production with Sand (CHOPS) is an enhanced oil recovery method that induces sand production to form a network of wormholes that increase the porosity and permeability of a formation. Under proper conditions, CHOPS can improve formation flow characteristics. Integrated well completion strategies that were used to increase oil production at Fula oil field on the south flank of Mughad Basin in Sudan were described. Limited sand influx provided a means for effective sand control while eliminating the need for conventional sand control processes. Cold heavy oil production with limited sand influx requires optimized completion methods to stimulate sand production, thereby reducing oil flow resistance and prolonging the sand removal operation cycle. Completion tests were performed in terms of different formation conditions including perforating completion; perforating and full sand control completion by screen liner; and perforating and limited sand control completion by slotted liner. Particle settling experiments for different sizes of sand samples for were also performed using clear water, guar gel and silicone oil. The wellbore sand washing treatment was described along with surface oil and separation technologies. The lifting capability of the sand for crude oil was also examined. Results indicate that 0.9 mm of sand moved up with the heavy oil to the surface while 510 mPa.s of viscous oil was lifted in 3.5 inch tubing. The use of a progressing cavity pump initiated sand influx but only 15 per cent solids were controlled to form wormholes to improve the permeability of the pay zone. Twenty heavy oil wells were equipped with progressing cavity pumps, and the average oil rate of each well was increased from 175 bopd to 580 bopd. It was noted that the best well had a peak production rate of 1200 bopd. 4 refs., 2 tabs., 9 figs.

  8. Research and Application of Radiation Processed Polymers to Enhance Oil Recovery in Petroleum Industry - Current Status and Prospects

    International Nuclear Information System (INIS)

    The preparation of polymers for enhanced oil recovery has been carried out by radiation copolymerization method involving two monomers of acrylamide and N-vinyl-2- pyrrolidone, and N-methylpyrrolidone used as an anti-gel agent. The properties and oil recovery efficiency of polymer solution was discussed. The studied polymer dissolved in water and in saline water. They have non-precipitating behavior in hard brines at high temperature (>120oC) and their viscosity decreased 20% after heating 30 days at 120oC. Evaluation of oil recovery efficiency has been carried out at Laboratory model of reservoir of oil wells were submerged, the obtained results shown that the recovery yield of oil enhanced higher than 10% in the reservoir temperature and pressure conditions. The experimental results also shown that studied polymer products are applying in effect for submerged oil wells. These studied polymers have been being planned for application in pilot scale on the White Tiger oil field one of the big oil fields in this country. (author)

  9. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH AN EPA (ENVIRONMENTAL PROTECTION AGENCY) HEAVY OIL LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 30-day flue gas monitoring on a 16-MW (55 million Btu/hr) enhanced oil recovery steam generator equipped with the EPA low-NOx burner firing high-nitrogen crude.

  10. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH AN EPA (ENVIRONMENTAL PROTECTION AGENCY) HEAVY OIL LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 30-day flue gas monitoring on a 16-MW (55 million Btu/hr) enhanced oil recovery steam generator equipped with the EPA low-NOx burner firing high-nitrogen crude.

  11. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    Science.gov (United States)

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells. PMID:25149457

  12. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents. PMID:15750748

  13. Adaptive Model-Based Mammogram Enhancement

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Remeš, Václav

    Los Alamitos, USA: IEEE Computer Society CPS, 2014 - (Yetongno, K.; Dipanda, A.; Chbeir, R.), s. 65-72 ISBN 978-1-4799-7978-3. [Tenth International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2014). Marrakech (MA), 23.11.2014-27.11.2014] R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : mammography * image enhancement * MRF * textural models Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0436549.pdf

  14. Efficiency of recycled wool-based nonwoven material for the removal of oils from water

    NARCIS (Netherlands)

    Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Javancic, P.

    2008-01-01

    The aim of this study was to highlight the potential use of recycled wool-based nonwoven material for the removal of diesel fuel, crude, base, vegetable and motor oil from water. Sorption capacity of the material in water and in oil without water, oil retention, sorbent reusability and buoyancy in s

  15. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  16. Vegetable Oil-Based Metal Working Fluids-A Review

    Directory of Open Access Journals (Sweden)

    Vaibhav Koushik A.V

    2012-06-01

    Full Text Available Metal working fluids are widely employed to increase the machining productivity and quality of metal cutting, but their usage poses a great threat to ecology and health of workers in the industry. Therefore, a need arose to identify eco-friendly and hazard free alternatives to conventional mineral oil based metal working fluids. Vegetable oils have become identified world over as a potential source of environmentally favorable metal working fluids due to a combination of biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low temperature behavior, however limit their potential application as metal working lubricants and has become the thrust area of research of scientists and tribologists world over.

  17. Synthesis and Characterization of Novel Polyurethanes Based on Tall Oil

    Directory of Open Access Journals (Sweden)

    Vladimir YAKUSHIN

    2013-12-01

    Full Text Available Amide and ester type polyols were synthesized from different kinds of tall oil and two types of ethanolamine (diethanolamine and triethanolamine. Poly(urethane amides and polyester urethanes based on the synthesized polyols were prepared. The influence of the chemical structure of the obtained polyurethanes on density, glass transition temperature, thermal stability, mechanical properties and adhesive strength was investigated. The effect of the content of rosin acids in original tall oil on the specified characteristics was estimated. It has been found that poly(urethane amides have higher mechanical characteristics, but their thermal stability is lower than that of polyester urethanes. The chemical structure of the synthesized polyols and polyurethanes is qualitatively confirmed by IR-spectroscopy data.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2666

  18. Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen

    Directory of Open Access Journals (Sweden)

    Abdullah DK

    2012-09-01

    Full Text Available Norazlinaliza Salim,1 Mahiran Basri,1,2 Mohd BA Rahman,1 Dzulkefly K Abdullah,1 Hamidon Basri31Department of Chemistry, Faculty of Science, 2Laboratory of Biomolecular Medicine, Institute of Bioscience, 3Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, MalaysiaIntroduction: During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied.Methods: A palm kernel oil esters nanoemulsion was modified with different hydrocolloid gums for the topical delivery of ibuprofen. Three different hydrocolloids (gellan gum, xanthan gum, and carrageenan were selected for use. Ternary phase diagrams were constructed using palm kernel oil esters as the oil, Tween 80 as the surfactant, and water. Nanoemulsions were prepared by phase inversion composition, and were gradually mixed with the freshly prepared hydrocolloids. The initial nanoemulsion and modified nanoemulsions were characterized. The abilities of the nanoemulsions to deliver ibuprofen were assessed in vitro, using a Franz diffusion cell fitted with rat skin.Results: No significant changes were observed in droplet size (~16–20 nm but a significant difference in polydispersity indexes were observed before and after the modification of nanoemulsions using gellan gum, carrageenan, and xanthan gum. The zeta potentials of the initial nanoemulsions (–11.0 mV increased to –19.6 mV, –13.9 mV, and –41.9 mV, respectively. The abilities of both the initial nanoemulsion (T802 and the modified nanoemulsion to deliver ibuprofen

  19. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  20. Fluid loss additives for oil base muds and low fluid loss compositions thereof

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A.D.; Salandanan, C.S.

    1987-01-20

    This patent describes an oil base drilling mud formulation comprising a petroleum oil, an emulsifier, a water soluble salt, a gelling agent, a weighting agent and a quebracho ammonium salt reaction product of quebracho with an alkyl quaternary ammonium salt.

  1. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  2. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  3. Enhanced oil recovery by improved waterflooding. Fourth annual report, October 1980-September 1981. [Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Craig, F.F. III; Passman, F.J.; Burtch, F.W.

    1982-05-01

    Energy Resourcs Co. Inc., and its subcontractor Elf Aquitaine Oil and Gas Company are conducting a 100-acre pilot polymer flood in the Storms Pool Field near Carmi, in White County, Illinois. The project is a cost-sharing venture with the United States Department of Energy (DOE). Preparation for the polymer flood began in September 1977, and the project is scheduled for completion in December 1983. This report reviews progress during the fourth year of performance (October 1980 through September 1981). The Storms Pool, once highly productive, has yielded over 12 million barrels of oil from the Waltersburg formation since its discovery in 1939. The field has been waterflooded for over 20 years and is now largely in stripper production with high watercuts at most producing wells. Material balance and recent electric logs indicate, however, that there is a substantial volume of movable oil still in place, presumably bypassed by the inefficient waterflood. The polymer flood is intended to improve the sweep efficiency, showing that the engineering, management, and financial resources required for such tertiary techniques can be applied to similar fields that might otherwise be abandoned for lack of investment by parties knowledgeable in enhanced oil technology. Preflush injection and polymer injection were both initiated during this period with total polymer injection now standing at 179,453 barrels (or about 6% pore volume). Laboratory testing has continued throughout the year with the emphasis being on field support (troubleshooting field problems and monitoring the field injection and production systems). No evidence of polymer break-through has been detected at the production wells. Details of the interference testing program and the radiotracer study executed during this period are also presented.

  4. Microvawe pyrolysis of biomass: control of process parameters for high pyrolysis oil yields and enhanced oil quality

    OpenAIRE

    Robinson, John; Dodds, Chris; Stavrinides, Alexander; Kingman, Sam; Katrib, Juliano; Wu, Zhiheng; Medrano, Jose; Overend, Ralph

    2015-01-01

    The oil yield and quality of pyrolysis oil from microwave heating of biomass was established by studying the behaviour of Larch in microwave processing. This is the first study in biomass pyrolysis to use a microwave processing technique and methodology that is fundamentally scalable, from which the basis of design for a continuous processing system can be derived to maximise oil yield and quality. It is shown systematically that sample size is a vital parameter that has been overlooked by pr...

  5. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  6. Image enhancement based on edge boosting algorithm

    Science.gov (United States)

    Ngernplubpla, Jaturon; Chitsobhuk, Orachat

    2015-12-01

    In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.

  7. Multi-species monitoring for fugitive gases and CO2 leakage at enhanced oil recovery operations

    Science.gov (United States)

    Risk, D. A.; Lavoie, M.; Brooks, B.; Goeckede, M.; Phillips, C. L.

    2013-12-01

    Carbon, Capture, and Storage (CCS) remains an option for reducing fossil CO2 emissions, but public acceptance continues to limit the roll-out of new projects. Monitoring is one mechanism by which operators can demonstrate credibility, competency, and environmental performance. While many previous research initiatives on surface monitoring have focused largely on soil gas sampling and geochemistries, fewer have tackled site-scale atmospheric detection techniques. This study aims to develop suitable techniques for identifying produced fluid leaks from wells and fugitive emissions from other associated infrastructure, and also to understand the variability of the target gases across land use types, and through time. During the growing season of 2013, we conducted multi-species atmospheric surveys of a 100 square kilometre Enhanced Oil Recovery site, using stationary and vehicle-mounted Cavity Ringdown Spectrometers (CRDS) targeting CH4, δ13C-CH4, CO2, and H2S. The study site offered excellent opportunity to study anthropogenic emissions, as it had well over 1000 active wells onsite, spatially distributed pipeline infrastructure, geochemical differentiation among the various possible emission sources, and also a road network that provided good access to most areas of the site. Leak detection using this method presented challenges related to the atmospheric transport modelling needed to back-calculate the source regions for observed anomalies. Transport models are generally not readily applicable at these smaller scales, so we developed an operational leak detection package. This package included the in situ and roving measurements, interpreted using simple mathematical models, maps, and remote sensing data, to narrow our survey search window and score sub-domains based on the gases present and the probability that these gases were man-made (as opposed to natural), in addition to the likely nature of the anthropogenic source as indicated by gas mixing ratios. Both

  8. Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy.

    Science.gov (United States)

    Oakley, Lindsay H; Dinehart, Stephen A; Svoboda, Shelley A; Wustholz, Kristin L

    2011-06-01

    A novel spectroscopic approach, correlated surface-enhanced Raman scattering (SERS) and fluorescence microscopy, is used to identify organic materials in two 18th century oil paintings. The vibrational fingerprint of analyte molecules is revealed using SERS, and corresponding fluorescence measurements provide a probe of local environment as well as an inherent capability to verify material identification. Correlated SERS and fluorescence measurements are performed directly on single pigment particles obtained from historic oil paintings with Ag colloids as the enhancing substrate. We demonstrate the first extractionless nonhydrolysis SERS study of oil paint as well as the potential of correlated SERS and fluorescence microscopy studies for the simultaneous identification of organic colorants and binding media in historic oil paintings. PMID:21524143

  9. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  10. Enhancing the value of argan oil is the best mean to sustain the argan grove economy and biodiversity, so far

    OpenAIRE

    Charrouf Zoubida; Harhar Hicham; Gharby Saïd; Guillaume Dominique

    2008-01-01

    In Morocco, the region covered with argan trees is named the argan grove. Its long-term preservation depends on the discovery of new and economically rewarding markets to sell argan tree produces. At the present time, the argan oil appears to be the best candidate to fulfill this task. The scientific results that have allowed the emergence of argan oil on the international edible and cosmetic oil markets are reported together with recent analytic results. Alternative approaches, not based on ...

  11. Induced Mutagenesis for Oil Quality Enhancement in Peanut (Arachis hypogaea L.)

    International Nuclear Information System (INIS)

    Increasing the ratio of oleic to linoleic acid (O/L) in peanut (Arachis hypogaea L.) significantly improves the nutritional and quality attributes of the crop. The lack of sufficient genetic variation in fatty acid composition, particularly the O/L ratio, in peanut germplasm and presently grown cultivars make the creation of such variability necessary. Mutation breeding of peanut was initiated with the objective of identifying stable peanut mutants with altered fatty acid composition for improved oxidative stability and nutritional quality. Seeds of peanut cultivars 'GPBD-4' and 'TPG-41' were treated with γ-radiation and/or ethyl methane sulphonate (EMS). Randomly selected mutants were advanced based on single plant selection up to the M4 generation and the harvest of M4 plants was evaluated for fatty acid composition by gas chromatography. Highly significant variation for palmitic, stearic, oleic, linoleic and arachidic acid was observed. EMS (0.5%) and 200Gy treatments were found to be effective in increasing the variability in fatty acid content in GPBD-4 and TPG-41, respectively. The variability was skewed towards high levels of oleic acid (38-67%) and low levels of linoleic acid (15-41%). Mutants selected for improved oil quality were significantly superior for O/L ratio and had reduced palmitic acid. Oil with reduced palmitic acid and increased O/L ratio is desired nutritionally. Hence, these mutants can be exploited for the improvement of oil quality. The mutants GE-87 and T3-105 recorded the highest O/L ratios, of 4.30 and 3.91, compared to control values of 1.75 and 2.60, respectively. A significant negative correlation between oleic acid and linoleic acid, palmitic acid and iodine values, and weak inverse relationship with oil content indicates the possibility of selection for improved fatty acid composition. These high oleic acid lines could be utilized further in breeding programmes for improvement of peanut oil quality. (author)

  12. Induced mutagenesis for oil quality enhancement in peanut (Arachis hypogaea l.)

    International Nuclear Information System (INIS)

    Increasing the ratio of oleic to linoleic acid (O/L) in peanut (Arachis hypogaea L) significantly improves the nutritional and quality attributes of the crop. The lack of sufficient genetic variation for fatty acid profile, particularly O/L ratio in peanut germplasm and presently grown cultivars has necessitated the creation of variability. Mutation breeding of peanut was therefore initiated with the objective of identifying stable peanut mutants with altered fatty acid composition for improved oxidative stability and nutritional quality. Seeds of peanut cultivars 'GPBD-4' and 'TPG-41' were treated with γ-radiation and/or ethyl methane sulphonate (EMS). Randomly selected mutants were advanced based on single plant selection up to M4 generation and the harvest of M4 plants was evaluated for fatty acid composition by gas chromatography. Highly significant variation for palmitic, stearic, oleic, linoleic and arachidic acid was observed. EMS (0.5%) and 200Gy treatment were found to be effective in increasing the variability for fatty acid content in GPBD-4 and TPG-41 respectively. The variability was skewed towards high levels of oleic (38-66.58%) and low levels of linoleic acid (15-41%). Mutants with improved oil quality selected were significantly superior for O/L ratio and had reduced palmitic acid. Oil with reduced palmitic acid and increased O/L ratio is nutritionally desired. Hence these mutants can be exploited in improvement of oil quality. The mutant GE-87 and T3-105, recorded highest O/L ratio of 4.30 and 3.91 as against control value of 1.75 and 2.60 respectively. A significant negative correlation between oleic acid and linoleic acid, palmitic acid and iodine value and weak inverse relationship with oil content indicates the possibility of selection for improved fatty acid composition. These high oleic acid lines could be utilized further in breeding programs for improvement of peanut oil quality. (author)

  13. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems

    OpenAIRE

    Chavalparit, O.; Rulkens, W.H.; A P J Mol; Khaodhair, S.

    2006-01-01

    The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the output sides of its activities. On the input side, crude palm oil mills use large quantities of water and energy in the production process. On the output side, manufacturing processes generate large qu...

  14. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    OpenAIRE

    Shuang Cindy Cao; Bate Bate; Jong Wan Hu; Jongwon Jung

    2016-01-01

    Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power), PEO (polyethylene oxide), Xanthan (xanthan gum), SA (Alginic Acid Sodium Salt), and PAA (polyacrylic acid), including th...

  15. Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR)

    OpenAIRE

    Caili Dai; Kai Wang; Yifei Liu; Jichao Fang; Mingwei Zhao

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were stud...

  16. Water solubility enhancements of PAHs by sodium castor oil sulfonate microemulsions

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-zhong; ZHAO Bao-wei; LI Zong-lai

    2003-01-01

    Water solubility enhancements of naphthalene(Naph), phenantherene(Phen) and pyrene(Py) in sodium castor oil sulfonate(SCOS) microemulsions were evaluated. The apparent solubilities of PAHs are linearly proportional to the concentrations of SCOS microemulsion, and the enhancement extent by SCOS solutions is greater than that by ordinary surfactants on the basis of weight solubilization ratio(WSR). The logKem values of Naph, Phen, and Py are 3.13, 4.44 and 5.01 respectively, which are about the same as the logKow values. At 5000 mg/L of SCOS conccentration, the apparent solubilities are 8.80, 121, and 674 times as the intrinsic solubilities for Naph, Phen, and Py. The effects of inorganic ions and temperature on the solubilization of solutes are also investigated. The solubilization is improved with a moderate addition of Ca2+, Na+, NH4+ and the mixture of Na+, K+, Ca2+, Mg2+ and NH4+. WSR values are enhanced by 22.0% for Naph, 23.4% for Phen, and 24.6% for Py with temperature increasing by 5℃. The results indicated that SCOS microemulsions improve the performance of the surfactant-enhanced remediation(SER) of soil, by increasing solubilities of organic pollutants and reducing the level of surfactant pollution and remediation expenses.

  17. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  18. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  19. Knowledge base verification based on enhanced colored petri net

    International Nuclear Information System (INIS)

    Verification is a process aimed at demonstrating whether a system meets it's specified requirements. As expert systems are used in various applications, the knowledge base verification of systems takes an importatn position. The conventional Petri net approach that has been studied recently in order to verify the knowledge base is found that it is inadequate to verify the knowledge base of large and complex system, such as alarm processing system of nuclear power plant. Thus, we propose an improved method that models the knowledge base as enhanced colored Petri net. In this study, we analyze the reachability and the error characteristics of the knowledge base and apply the method to verification of simple knowledge base

  20. Knowledge base verification based on enhanced colored petri net

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Verification is a process aimed at demonstrating whether a system meets it`s specified requirements. As expert systems are used in various applications, the knowledge base verification of systems takes an important position. The conventional Petri net approach that has been studied recently in order to verify the knowledge base is found that it is inadequate to verify the knowledge base of large and complex system, such as alarm processing system of nuclear power plant. Thus, we propose an improved method that models the knowledge base as enhanced colored Petri net. In this study, we analyze the reachability and the error characteristics of the knowledge base and apply the method to verification of simple knowledge base. 8 refs., 4 figs. (Author)

  1. Interactions of fines with base fractions of oil and its implication in smart water flooding

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate reservo...... reservoirs. This study shows that addition of water and crude oil on calcite fines leads to formation of soluble oil emulsions in the water phase. Formation of these emulsions and its implication in EOR has been experimentally analyzed.......Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate...

  2. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  3. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    Science.gov (United States)

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production. PMID:26272089

  4. Enhancement of skin permeation of ibuprofen from ointments and gels by sesame oil, sunflower oil and oleic acid

    Directory of Open Access Journals (Sweden)

    Dinda S

    2006-01-01

    Full Text Available Several batches of paraffin ointments were prepared and ibuprofen was incorporated into them. Sesame oil, sunflower oil, and oleic acid in different concentrations were incorporated into different batches. Commercial ibuprofen gel was obtained and divided into several batches and different concentrations of sesame oil, sunflower oil, and oleic acid were incorporated into them. The in vitro drug release characteristics through hairless (88 mm rat skin was carried out by using modified Insertion cell designed in our laboratory. The cell was placed into a borosil beaker containing 50 ml of pH 7.4 phosphate buffer as the diffusion fluid. The beaker was placed over the magnetic stirrer, which was maintained at 37±0.5° to maintain the temperature of diffusion fluid. The released drug content at predetermined time interval was measured using U-V-double beam spectrophotometer at 272 nm. The drug release was raised with increase in oil concentration.

  5. Enhancing the value of argan oil is the best mean to sustain the argan grove economy and biodiversity, so far

    Directory of Open Access Journals (Sweden)

    Charrouf Zoubida

    2008-07-01

    Full Text Available In Morocco, the region covered with argan trees is named the argan grove. Its long-term preservation depends on the discovery of new and economically rewarding markets to sell argan tree produces. At the present time, the argan oil appears to be the best candidate to fulfill this task. The scientific results that have allowed the emergence of argan oil on the international edible and cosmetic oil markets are reported together with recent analytic results. Alternative approaches, not based on argan oil marketing but also aimed at safeguarding the argan grove, are also reported.

  6. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    Science.gov (United States)

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil. PMID:25145172

  7. Gas inflow in oil base fluids; Influxo de gas em fluidos a base de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Welmar [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Boas, Mario Barbosa V. [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    One of the major problems related to the use of oil base fluids is the dissolution of the natural gas in the fluid. This paper attempts initially at making a bibliographical review of all that was written on the subject of drilling fluids up to now. It also mentions some theoretical aspects regarding the process of gas dissolution in diesel oils, in order to produce an understanding of how the dissolution mechanism is processed. For a same increase in measured volume on the surface, the amount of gas incorporated into the fluid is significantly larger if the gas is dissolved in the oil phase than if it is emulsified in the fluid, as occurs when the fluid is water base. A rig team used to working with water-base fluids may be surprised with the fact that an increase of 20 bbl of fluid on the surface of a 5000 m well can mean the incorporation of about 1800 m{sup 3} of gas, if the fluid is oil-base and all the gas is in solution instead of the incorporation of 900 m{sup 3} if the fluid is water base. This paper has the goal of warning drilling engineers and technicians about this problem, as well as presenting charts and equations that allow for a more realistic evaluation of the amount of gas incorporated into oil fluids. (author) 16 refs., 7 figs., 2 tabs.

  8. Acid base catalyzed transesterification kinetics of waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P.; Rajvanshi, Shalini [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (India)

    2011-01-15

    The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 C and 50 C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H{sub 2}SO{sub 4} and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min{sup -1} and 0.0078 min{sup -1} respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield. (author)

  9. The Effect of Fish Oil-Based Lipid Emulsion and Soybean Oil-Based Lipid Emulsion on Cholestasis Associated with Long-Term Parenteral Nutrition in Premature Infants

    Science.gov (United States)

    Wang, Leilei; Zhang, Jing; Gao, Jiejin; Qian, Yan; Ling, Ya

    2016-01-01

    Purpose. To retrospectively study the effect of fish oil-based lipid emulsion and soybean oil-based lipid emulsion on cholestasis associated with long-term parenteral nutrition in premature infants. Methods. Soybean oil-based lipid emulsion and fish oil-based lipid emulsion had been applied in our neonatology department clinically between 2010 and 2014. There were 61 qualified premature infants included in this study and divided into two groups. Soybean oil group was made up of 32 premature infants, while fish oil group was made up of 29 premature infants. Analysis was made on the gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, age at which feeding began, usage of lipid emulsions, and incidence of cholestasis between the two groups. Results. There were no statistical differences in terms of gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, and age at which feeding began. Besides, total incidence of cholestasis was 21.3%, and the days of life of occurrence of cholestasis were 53 ± 5.0 days. Incidence of cholestasis had no statistical difference in the two groups. Conclusion. This study did not find the different role of fish oil-based lipid emulsions and soybean oil-based lipid emulsions in cholestasis associated with long-term parenteral nutrition in premature infants.

  10. Synthesis of Rubber Seed Oil and Trimethylolpropane Based Bio lubricant Base Stocks

    International Nuclear Information System (INIS)

    Esters derived through a chemical combination of vegetable oil with trimethylolpropane (TMP) have the potential for bio lubricants usage due to their biodegradable, non toxic and environmentally friendly nature. The synthesis of ester was carried out via esterification of TMP with fatty acid rubber seed oil (FARSO) for 5 hours of reaction at 150 degree Celsius in the present of concentrated sulphuric acid (2 % w/ w). A Fourier Transform Infrared Resonance (FTIR) and a Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine both the presence of the ester carbonyl group (C=O) as well as the ester composition. The results showed that the esterification process has increased the oil flash point (310 degree Celsius), viscosity indices (283) and lower the pour point (-40 degree Celsius). RSOTMP ester produced has shown comparative physicochemical properties that plausible it to be used as good bio lubricant base stock oil. (author)

  11. Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.

    Science.gov (United States)

    Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao

    2016-01-01

    Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection

  12. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  13. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.

    Science.gov (United States)

    Keshavarz, Alireza; Zilouei, Hamid; Abdolmaleki, Amir; Asadinezhad, Ahmad

    2015-07-01

    A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup. PMID:25917559

  14. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  15. Interaction of Chloroprene and Nitrile- Butadiene Rubber with Lubricating Greases and Base Oils

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present communication addresses compatibility of two synthetic rubber types, chloroprene and nitrilebutadiene ones, with a number of base oils of petroleum origin and lubricating greases produced thereof. Four base oils,including three naphthenic products with varying degrees of refining and one paraffinic product,were compared with each other in terms of their effect on the rubbers. Degenerative changes occurring in the rubbers on contact with the oils and greases were studied using accelerated ageing tests. Alterations in rubber parameters, such as hardness, weight and glass transition temperature, caused by interaction with oil were monitored. The main physicochemical mechanisms standing behind the changes observed in the rubber properties were found to be (i) migration of plasticizer from rubber into the oil phase, (ii) absorption of oil by rubber,and (iii) oxidation of rubber. An increase in glass transition temperature (Tg) of rubber aged in a base oil or grease was considered as an indirect indication that the plasticizer had migrated out of rubber;the plasticizer accumulation in the oil phase being directly confirmed by gas chromatography. In order to suppress the plasticizer migration, oil additivation with dioctyl adipate (DOA), a common plasticizer used in rubber formulations, was attempted. However, the BOA-additivated oils, while reducing plasticizer migration, were found to cause more swelling than the original oils in the case of chloroprene rubber. As an alternative, replacement of BOA by an alkylated aryl phosphate in nitrile- butadiene rubber formulations was considered, but it did not solve the problem either.The results of this study suggest conclusively that the type of rubber, the plasticizer, and the base oil are all the crucial parameters that should be considered when matching rubber with oil in real- life applications. Interaction of rubber with base oils and with greases produced thereof is largely controlled by (i) solvency of the

  16. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  17. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  18. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    International Nuclear Information System (INIS)

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  19. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. (ed.)

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  20. Enhanced Coagulation Efficiency of Moringa Oleifera Seeds Through Selective Oil Extraction

    Directory of Open Access Journals (Sweden)

    Suleyman A. Muyibi

    2012-10-01

    Full Text Available In this laboratory based study, varying quantities of oil, corresponding to 20 % w/w, 25 % w/w and 30 % w/w kernel weight extracted from Moringa oleifera seeds ( S1, S2, S3 respectively  were applied in the coagulation of model turbid water (kaolin suspension and turbid river water samples from River Batang Kali and River Selangor in Malaysia to determine the percentage oil removed which gave the best coagulation efficiency. For model turbid water (kaolin suspension coagulation of low turbidity of 35 NTU, medium turbidity of 100 NTU and high turbidity of 300 NTU, sample S2  gave the best turbidity removal corresponding to 91.7%, 95.5% and 99% respectively. Application of sample S2 to River Batang Kali with low initial turbidity of 32 NTU and high initial turbidity of 502 NTU gave a highest turbidity removal of 69% and 99% respectively. Application to River Selangor with medium initial turbidity- of 87 NTU and high initial turbidity of 466 NTU gave a highest residual turbidity' of 94% and 98.9%,  respectively.Key words: Moringa oleifera seed, selective oil extraction, coagulation, model turbid water (kaolin suspension, river water, turbidity removal.

  1. Revival of microbial enhanced oil recovery (MEOR) initiatives on UK continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.; Brealey, N. [Reservoir Management Ltd., Aberdeen (United Kingdom)

    2003-09-01

    This paper reviewed early activities of the Microbial Enhanced Oil Recovery (MEOR) initiative with particular reference to design and implementation of the MEOR project on the United Kingdom's continental shelf. Results of tests conducted in the 1980s and 1990s of the Biological Oil Stimulation process were ambiguous. A microbial flow diversion method was also being developed at that time to determine temperature profiles between injector and producer wells. The challenge for reservoir managers was the general lack of understanding on how a microbial treatment could affect flow within the reservoir at the microscopic and macroscopic level. There was also a need to model MEOR within a commercial reservoir. In 2001, Statoil announced the first field-wide offshore application of an aerobic MEOR technique with its development of the Norne field in the Norwegian sector of the North Sea. This prompted a rival and review of MEOR activity on the UK continental shelf. A workshop for UK operators was held to evaluate potential design characteristics and performance of MEOR using an adapted and commercially available reservoir simulator. New joint initiatives in the UK were also established. 12 refs., 12 figs.

  2. Enhanced radioactivity due to natural oil and gas production and related radiological problems

    International Nuclear Information System (INIS)

    Within the scope of a research contract, the following aspects are considered: External radiation exposure at production sites; internal radiation exposures during cleaning operations such as removing of scale by sand blasting; problems of waste disposal; internal radiation exposure due to radon inhalation by consumers; the origin of the high radium content of brines from oil and gas fields. Enhanced dose rates up to 50 μSv/h have been found at the external surface of saltwater tanks, but 72% of the 160 sites investigated did not show any increase above the natural background. Brines from gas contained radium-226 up to 286 Bq/1 and scale up to 1 kBq/g. In brines and scale from oil fields radium-228 was usually the dominating radionuclide. Some samples contained significant amounts of lead-210 and even actinium-227, too, but practically no uranium or thorium. The radon-222 concentrations in natural gas samples varied between 0.004 and 4 Bq/l with an average value of 0.6 Bq/l. Related radiological problems are discussed. (orig./HP)

  3. Enhanced oil recovery by CO/sub 2/ foam flooding. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    An extensive review of the literature revealed that the use of foam to lower the mobility of gases used to displace oil has been considered since 1956. Although early work was related mainly to light hydrocarbons, it is natural to extend the concept to the CO/sub 2/ flooding process. Samples of foaming agents, compatible with oil reservoir environments, were obtained from major manufacturers. Ninety-three samples were tested both alone and in admixture. The most promising class of additives appears to be ionic surfactants produced by ethoxylation of a linear alcohol followed by sulfation. One of the best, Plurafoam NO-2N was tested in a linear sandpack and found to reduce the mobility of gas relative to water an average of 300-fold. Viscosity measurements of the foam at varying shear rates were made to help explain the dramatic change in gas mobility in the linear flow model. The foam is non-Newtonian but many-fold more viscous than the liquid from which it is generated at all reasonable shear rates. Viscosities exceeding 1000 centipose are routinely obtained. Addition of water-soluble polymers to the foaming liquid greatly enhances the stability of the foam. Five different polymer structures were tested, all of which had a common cellulosic type backbone. Of this group, hydroxypropyl cellulose and zanthan gum appear to be the most promising candidates. The superiority of these polymers lies primarily in their stability at reservoir conditions in the acid environment created when carbon dioxide dissolves in water.

  4. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  5. Development of young oil palm tree recognition using Haar- based rectangular windows

    Science.gov (United States)

    Daliman, S.; Abu-Bakar, S. A. R.; Nor Azam, S. H. Md

    2016-06-01

    This paper presents development of Haar-based rectangular windows for recognition of young oil palm tree based on WorldView-2 imagery data. Haar-based rectangular windows or also known as Haar-like rectangular features have been popular in face recognition as used in Viola-Jones object detection framework. Similar to face recognition, the oil palm tree recognition would also need a suitable Haar-based rectangular windows that best suit to the characteristics of oil palm tree. A set of seven Haar-based rectangular windows have been designed to better match specifically the young oil palm tree as the crown size is much smaller compared to the matured ones. Determination of features for oil palm tree is an essential task to ensure a high successful rate of correct oil palm tree detection. Furthermore, features that reflects the identification of oil palm tree indicate distinctiveness between an oil palm tree and other objects in the image such as buildings, roads and drainage. These features will be trained using support vector machine (SVM) to model the oil palm tree for classifying the testing set and subimages of WorldView-2 imagery data. The resulting classification of young oil palm tree with sensitivity of 98.58% and accuracy of 92.73% shows a promising result that it can be used for intention of developing automatic young oil palm tree counting.

  6. Sources and delivery of carbon dioxide for enhanced oil recovery. Final report, October 1977--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hare, M.; Perlich, H.; Robinson, R.; Shah, M.; Zimmerman, F.

    1978-12-01

    Results are presented from a comprehensive study by Pullman Kellogg, with assistance from Gulf Universities Research Consortium (GURC) and National Cryo-Chemics Incorporated (NCI), of the carbon dioxide supply situation for miscible flooding operations to enhance oil recovery. A survey of carbon dioxide sources within the geographic areas of potential EOR are shown on four regional maps with the tabular data for each region to describe the sources in terms of quantity and quality. Evaluation of all the costs, such as purchase, production, processing, and transportation, associated with delivering the carbon dioxide from its source to its destination are presented. Specific cases to illustrate the use of the maps and cost charts generated in this study have been examined.

  7. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline

  8. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles

    OpenAIRE

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, HPS; Alwani, M Siti; Nadirah, WO Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and...

  9. Enhanced oil recovery for Norne Field's E-segment using surfactant flooding

    OpenAIRE

    Emegwalu, Chinenye Clara

    2010-01-01

    About 60% of oil still lays trapped in the reservoir even after primary and secondary recovery processes have been completed. This trapped oil could be residual or by-passed oil. Residual oil occurs as a result of high capillary action of water that keeps the oil immobile. One way ofrecovering this capillary trapped oil is by flooding the reservoir with surfactants. Surfactants are surface active agents that act on the interface between oil and water with the aim of reducing the interfacial t...

  10. Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives.

    Science.gov (United States)

    Chen, Xiao-Wei; Fu, Shi-Yao; Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-11-15

    Structuring edible oils into solid lipids without saturated and trans fats has attracted increasing interest due to the benefits for human health and promises potential as novel delivery systems for lipophilic bioactive ingredients. The study shows that a zein stabilized high (ϕ=0.6) oil-in-glycerol (O/G) emulgels enriched with β-carotene was performed, by a facile one-step homogenization. Rheological measurements and morphologies observations indicated that increasing β-carotene resulted in a progressive strengthening of gel-like network and improving their spreadability in the O/G emulgels stabilized by zein, which was closely related to the hydrophobic interaction of zein and β-carotene. The formation of emulgels significantly enhanced the UV photo-stability of β-carotene, and more than 88% of β-carotene was retained in 64h storage under UV exposure, and consequently retarded oil oxidation while storage. Further, cakes prepared using zein-based O/G emulgels as a margarine alternative showed comparable functionalities (texture and sensory attributes) to the standard cake. PMID:27283703

  11. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    Science.gov (United States)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  12. Enhanced Crude Oil Biodegradation in a Two-liquid Phase Partitioning Bioreactor

    OpenAIRE

    Ismail, Z. Z.; Abdulrazzak, I. A.

    2015-01-01

    The biodegradation of crude oil at relatively high concentrations in an aquatic environment is constrained by the inherent toxicity of crude oil. In this study, a new application of an aqueous- organic two-liquid phase partitioning bioreactor (TLPPB) was developed to degrade high concentrations of crude oil up to 5000 mg L–1. Silicon oil was selected as the sequestering organic phase to control the delivery of crude oil in aqueous phase by absorbing, and subsequently releasing the crude oi...

  13. Robust Hydrocarbon Degradation and Dynamics of Bacterial Communities during Nutrient-Enhanced Oil Spill Bioremediation

    OpenAIRE

    Röling, Wilfred F. M.; Milner, Michael G.; Jones, D. Martin; Lee, Kenneth; Daniel, Fabien; Swannell, Richard J. P.; Head, Ian M.

    2002-01-01

    Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel...

  14. Processing and Utilization of Naphthenic Base Heavy Crude Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Xianqing; Men Cungui

    1995-01-01

    @@ Recently China National Petroleum Corporation (CNPC) has gradually set up its own down stream industry in response to the development of oil fields, the demand of domestic market and the unique characteristics of crude oil resources.The capacity of crude oil processing has reached 21million tons per year approximately and 14 million tons of crude oil was processed in 1994,making up one-tenth of CNPC's total output.

  15. Potential for use of methylene blue index testing to enhance geotechnical characterization of oil sands ores and tailings

    Energy Technology Data Exchange (ETDEWEB)

    Boxill, Lois [SRK Consulting (Canada)

    2011-07-01

    At the CONRAD conference held in Edmonton in 2011, clay scientist expressed their concern over the variability of clay structures and its impact both on oil sands ores and on tailings. This paper discusses the potential for using methylene blue index testing to enhance geotechnical understanding of the impact of the cation exchange capacity of clay present in oil sands ores and both solid and fluid components of the tailings stream. A description of the methylene blue index test procedure is provided. This process is most commonly used for characterization in the oil sands industry. The requirements for obtaining consistency in the test results are discussed. The test is often used to enhance geotechnical characterization of clays in other areas. The potential for developing correlations between methylene blue index test results and other geotechnical parameters is also discussed. It can be concluded from the study that geotechnical data on soil indicate the effect of clay minerals on the overall plasticity of the soil.

  16. Solvent extraction of base oil from used lubricant oil: a study on the performance of zeolite adsorption

    International Nuclear Information System (INIS)

    Solvent extraction is known as one of the potential techniques for recycling used lubricant oil. The recovered oil is identical to the virgin oil, but the oil maintains its darkish color and some odor. This paper is to study the performance of zeolite in removing color and odor. A part from the study, factorial design analysis indicated that the concentration of zeolite exerts to be the most influenced on the adsorption process in which the increase of zeolite concentration resulted in an average increase of 2.22% adsorption response. The number of contact stage appeared to be the second most influential effects, which brought an average increase of 1.38% adsorption response. Further more, it was found that the interaction between the concentration of zeolite and the number of contact stage was the most significant of all interactions under study, at 2.71%. Thus, the additions of 10 g zeolite in 50 ml base oil of 3rd stage color removal produces the best color removal from the recovered base oil. (Author)

  17. Oil spill detection from SAR image using SVM based classification

    Directory of Open Access Journals (Sweden)

    A. A. Matkan

    2013-09-01

    Full Text Available In this paper, the potential of fully polarimetric L-band SAR data for detecting sea oil spills is investigated using polarimetric decompositions and texture analysis based on SVM classifier. First, power and magnitude measurements of HH and VV polarization modes and, Pauli, Freeman and Krogager decompositions are computed and applied in SVM classifier. Texture analysis is used for identification using SVM method. The texture features i.e. Mean, Variance, Contrast and Dissimilarity from them are then extracted. Experiments are conducted on full polarimetric SAR data acquired from PALSAR sensor of ALOS satellite on August 25, 2006. An accuracy assessment indicated overall accuracy of 78.92% and 96.46% for the power measurement of the VV polarization and the Krogager decomposition respectively in first step. But by use of texture analysis the results are improved to 96.44% and 96.65% quality for mean of power and magnitude measurements of HH and VV polarizations and the Krogager decomposition. Results show that the Krogager polarimetric decomposition method has the satisfying result for detection of sea oil spill on the sea surface and the texture analysis presents the good results.

  18. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  19. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: DESIGN PHASE REPORT

    Science.gov (United States)

    The report documents the detailed scale-up and design phase of a program to develop a low-NOx burner system that can be retrofitted to an existing thermally enhanced oil recovery (TEOR) steam generator. The emission design goal for the 16 MW commercial grade burner system is to m...

  20. Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand through Enhancement of Industrial Ecosystems

    NARCIS (Netherlands)

    Chavalparit, O.; Rulkens, W.H.; Mol, A.P.J.; Khaodhair, S.

    2006-01-01

    The crude palm oil industry plays an important role in the economic development of Thailand and in enhancing the economic welfare of the population. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation, both at the input and the outp

  1. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  2. Development of flax oil-based biopolymer for biocomposites

    OpenAIRE

    Li, X; Panigrahi, S.; Kushwaha, R; Dhakal, Hom

    2009-01-01

    Flax oil is the main goal of growing flaxseed. Flax oil has been used for nutrition, food, paint binder, putty, and wood finish. However, synthetic resin from flax oil has not been developed. In this paper we will develop a biopolymer derived from flax oil and the goal is to use it as a resin to produce a viable, biodegradable composite using natural fiber as reinforcement. First, the functionalization of the triglyceride group of the flax oil fatty acids with polymerizable chemical groups wa...

  3. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the oil-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent...

  4. Feature-based and statistical methods for analyzing the Deepwater Horizon oil spill with AVIRIS imagery

    Science.gov (United States)

    Rand, R.S.; Clark, R.N.; Livo, K.E.

    2011-01-01

    The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed. ?? 2011 SPIE.

  5. Enhanced oil recovery under laboratory conditions using biosurfactant-producing microorganisms

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; L. R. Rodrigues; Coutinho, J.A.P.; J.A. Teixeira

    2011-01-01

    Oil recovery comprises a primary phase, which produces oil using the natural pressure drive of the reservoir, and a secondary phase, which includes the injection of water to improve the flow of oil to the wellhead [1,2]. While primary recovery produces 5-10% of the original oil in place, recovery efficiencies in the secondary stage vary from 10% to 40% [1]. Most of the unrecovered oil (up to two-thirds of the total oil reserves) is trapped in the reservoir pores by high capillary forces [2]. ...

  6. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were regrown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. We conducted a push-pull test to study in-situ biosurfactant production by exogenous biosurfactant producers to aid in oil recovery from depleted reservoirs. Five wells from the same

  7. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  8. A CUDA based parallel multi-phase oil reservoir simulator

    Science.gov (United States)

    Zaza, Ayham; Awotunde, Abeeb A.; Fairag, Faisal A.; Al-Mouhamed, Mayez A.

    2016-09-01

    Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in porous media to draw conclusions about the behavior of certain flow variables and well responses. Besides the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel platforms is indispensable. By considering the state of art advances in massively parallel computing and the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be incorporated in such simulations instead of the more expensive, storage demanding and usually utilized GMRES.

  9. Expanded fluid based viscosity correlation : diluted heavy oil case study

    Energy Technology Data Exchange (ETDEWEB)

    Yarranton, H.; Satyro, M.A.; Schoeggl, F. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2009-07-01

    The viscosity of pure hydrocarbons has been correlated using a simple function involving fluid density, low pressure gas viscosity and pressure. The correlation was developed based on measured densities from the NIST database. The correlation has been refit to use densities predicted from the Advanced Peng-Robinson equation of state. The usefulness of the correlation was shown for pure hydrocarbons such as n-alkanes, branched alkanes, alkenes, cyclics and aromatics as well as binary mixtures of pure hydrocarbons. This presentation included a case study on the viscosity of heavy oil diluted with solvent. The newly proposed, simple and quick method for calculating liquid and vapour viscosities was found to be suitable for incorporation into process and reservoir simulators. tabs., figs.

  10. Bio-based thermosetting copolymers of eugenol and tung oil

    Science.gov (United States)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  11. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    Science.gov (United States)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  12. The Improvement of Screening the Significant Factors of Oil Blends as Bio lubricant Base Stock

    International Nuclear Information System (INIS)

    A new formulation bio lubricant base stock was developed by blending of waste cooking oil (WCO) with Jatropha curcas oil (JCO). The objective of this research is to evaluate significant factors contributing to the production of oil blends for bio lubricant application. The significant factors used in this study were oil ratio (WCO:JCO), agitation times (min) and agitation speed (rpm). The blended oil bio based lubricant was used to determine the saponification, acid, peroxide and iodine values. The experimental design used in this study was the 2 level-factorial design. In this experiment, it was found that the effect of oil ratio and interaction of oil ratio and agitation speed gave the most significant effect in oil blends as bio lubricant base stock. The highest ratio of oil blend 80 %:20 % WCO:JCO, with low agitation speed of 300 rpm and low agitation time of 30 minutes gave the optimum results. The acid, saponification, peroxide and iodine values obtained were 0.517±0.08 mg KOH/ g, 126.23±1.62 mg/ g, 7.5±2.0 m eq/ kg and 50.42±2.85 mg/ g respectively. A higher ratio of waste cooking oil blends was found to be favourable as bio lubricant base stock. (author)

  13. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  14. Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery.

    Science.gov (United States)

    Wang, Jun; Ma, Ting; Zhao, Lingxia; Lv, Jinghua; Li, Guoqiang; Zhang, Hao; Zhao, Ben; Liang, Fenglai; Liu, Rulin

    2008-06-01

    A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated. PMID:18273653

  15. Design of Multiple Metal Doped Ni Based Catalyst for Hydrogen Generation from Bio-oil Reforming at Mild-temperature

    Institute of Scientific and Technical Information of China (English)

    Li-xia Yuan; Fang Ding; Jian-ming Yao; Xiang-song Chen; Wei-wei Liu; Jin-yong Wu; Fei-yan Gong

    2013-01-01

    A new kind of multiple metal (Cu,Mg,Ce) doped Ni based mixed oxide catalyst,synthesized by the co-precipitation method,was used for efficient production of hydrogen from bio-oil reforming at 250-500 ℃.Two reforming processes,the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR),were performed for the bio-oil reforming.The catalyst with an atomic mol ratio of Ni∶Cu∶Mg∶Ce∶Al=5.6∶1.1∶1.9∶1.0∶9.9 exhibited very high reforming activity both in CSR and ECR processes,reaching 82.8% hydrogen yield at 500 ℃ in the CSR,yield of 91.1% at 400 ℃ and 3.1 A in the ECR,respectively.The influences of reforming temperature and the current through the catalyst in the ECR were investigated.It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current.The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of biooil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis.The catalyst also shows high water gas shift activity in the range of 300-600 ℃.The catalyst features and alterations in the bio-oil reforming were characterized by the ICP,XRD,XPS and BET measurements.The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations.The research catalyst,potentially,may be a practical catalyst for high efficient production of hydrogen from reforning of bio-oil at mild-temperature.

  16. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    OpenAIRE

    Pingting Liu; Zhiyu Huang; Hao Deng; Rongsha Wang; Shuixiang Xie

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by am...

  17. Modeling the feasibility of gas-water or gas-oil contact control by microgravity monitoring during enhanced oil recovery

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan

    Houten : EAGE, 2012, P21/1-P21/11. ISBN 978-90-73834-30-9. [ECMOR XIII - European conference on the mathematic s of oil recovery /13./. Biarritz (FR), 10.09.2012-13.09.2012] Institutional support: RVO:67985530 Keywords : time-lapse gravity * feasibility study * reservoir monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. In vitro evaluation of copaiba oil as a kojic acid skin enhancer

    Directory of Open Access Journals (Sweden)

    Robson Vicente Machado de Oliveira

    2010-06-01

    Full Text Available The capacity of copaíba oil to act as a skin penetration enhancer for the depigmenting agent kojic acid was evaluated using an in vitro diffusion system with static flux and shed rattlesnake skin membrane, Crotalus durissus terrificus, in saline solution at 34±2 ºC as the fluid receptor. The quantities of kojic acid liberated into the fluid receptor were determined by spectrophotometry at 268 nm with intervals of one and a half hours. The membranes, pretreated with copaíba oil at 25% and 50% v/v, gave flux values of 8.0 and 12.7 µg/cm²/h, permeability values of 2.0 and 3.3 cm×10-4/h, and promotion factors of 4.1 and 3.7, respectively. These results indicate that copaíba oil, at the two concentrations studied, has the capacity to promote penetration of kojic acid.A propriedade do óleo de copaíba como agente promotor de penetração cutânea do despigmentante ácido kójico foi avaliada utilizando-se sistema de difusão in vitro com fluxo estático, membrana de pele da serpente cascavel - Crotalus durissus terrificus e solução salina a 34±2 ºC como fluido receptor. As quantidades liberadas do ácido kójico no fluido receptor foram determinadas por espectrofotometria em 268 nm em intervalos de 1:30 h. As membranas pré-tratadas com óleo de copaíba a 25 e 50% v/v apresentaram valores de fluxo de 8,0 e 12,7 µg/cm²/h, permeabilidade de 2,0 e 3,3 cm×10-4/h, e fatores de promoção de 4,1 e 3,7, respectivamente. Os resultados obtidos indicaram que o óleo de copaíba, nas duas concentrações estudadas, apresentou capacidade de promoção da penetração do ácido kójico.

  19. BIOREMEDIATION TREATABILITY TRIALS USING NUTRIENT APPLICATION TO ENHANCE CLEANUP OF OIL-CONTAMINATED SHORELINE

    Science.gov (United States)

    On March 24, 1989, the supertanker Exxon Valdez went aground in Prince William Sound, Alaska, releasing approximately 11 million gallons of Prudhoe Bay crude oil. he spilled oil spread over, an estimated 350 miles of shoreline. he oil settled into the beach gravel and on rock sur...

  20. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  1. Fish Oil-Based Fat Emulsion Reduces Acute Kidney Injury and Inflammatory Response in Antibiotic-Treated Polymicrobial Septic Mice

    Directory of Open Access Journals (Sweden)

    Juey-Ming Shih

    2016-03-01

    Full Text Available Acute kidney injury (AKI is a common complication in sepsis. This study compared the effects of a fish oil-based with a mixed oil fat emulsion on remote renal injury in an antibiotic-treated septic murine model. Mice were randomly assigned to a normal control (NC group and three septic groups. Sepsis was induced by cecal ligation and puncture (CLP. The antibiotic was injected intraperitoneally (IP after CLP and then daily till the time of sacrifice. Three hours after antibiotic treatment, one of the septic groups was injected IP with a fish oil-based emulsion (FO, while the other two groups were given either a mixed oil emulsion (MO or saline (SC. The septic groups were further divided into two separate time groups, with blood and kidneys samples collected at 24 h or 72 h post-CLP. The results showed that sepsis leads to the activation of neutrophils, T helper (Th1/Th-2/Th-17 and Treg cells (p < 0.05. Plasma NGAL and mRNA expressions of renal MyD88 and TLR4 were also enhanced (p < 0.05. Compared to the SC group, the group given the fish oil-based emulsion had decreased plasma NGAL by 22% and Treg by 33%. Furthermore, renal gene expressions of MyD88 and TLR4 reduced by 46% and 62%, respectively, whereas heat shock protein 70 and peroxisome proliferator-activated receptor-γ increased by 158% and 69%, respectively (p < 0.05, at Day 3 after CLP. These results suggest that administration of a fish oil-based emulsion has favorable effects, maintaining blood T cell percentage, downregulating Treg expression, attenuating systemic and local inflammation and offering renal protection under conditions of antibiotic-treated polymicrobial sepsis.

  2. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types

  3. Life-cycle Assessment of Carbon Dioxide Capture for Enhanced Oil Recovery%为强化石油回采捕集CO2的全周期评估

    Institute of Scientific and Technical Information of China (English)

    E.G Hertwich; M.Aaberg; B.Singh; A.H.Strφmman

    2008-01-01

    The development and deployment of Carbon dioxide Capture and Storage (CCS) technology is a cornerstone of the Norwegian government's climate strategy. A number of projects are currently evaluated/planned along the Norwegian West Coast, one at Tjeldbergodden. CO2 from this project will be utilized in part for enhanced oil recovery in the Halten oil field, in the Norwegian Sea. We study a potential design of such a system. A combined cycle power plant with a gross power output of 832 MW is combined with CO2 capture plant based on a post-combustion capture using amines as a solvent. The captured CO2 is used for enhanced oil recovery (EOR). We employ a hybrid life-cycle assessment (LCA) method to assess the environmental impacts of the system. The study focuses on the modifications and operations of the platform during EOR. We allocate the impacts connected to the capture of CO2 to electricity production, and the impacts connected to the transport and storage of CO2 to the oil produced. Our study shows a substantial reduction of the greenhouse gas emissions from power production by 80% to 75g·(kW·h)-1. It also indicates a reduction of the emissions associated with oil production per unit oil produced, mostly due to the increased oil production. Reductions are especially significant if the additional power demand due to EOR leads to power supply from the land.

  4. Enhancing Jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure

    OpenAIRE

    Marasabessy, Ahmad; Moeis, Maelita R; Sanders, Johan P. M.; Weusthuis, Ruud A.

    2011-01-01

    We investigated the use of bacterial cells isolated from paddy crab for the extraction of oil from Jatropha seed kernels in aqueous media while simultaneously preserving the protein structures of this protein-rich endosperm. A bacterial strain—which was marked as MB4 and identified by means of 16S rDNA sequencing and physiological characterization as either Bacillus pumilus or Bacillus altitudinis—enhanced the extraction yield of Jatropha oil. The incubation of an MB4 starter culture with pre...

  5. Image Enhancement Algorithm based on Improved Fuzzy Filter

    Directory of Open Access Journals (Sweden)

    Shaosheng Sun

    2014-01-01

    Full Text Available Due to dynamic range compression and contrast enhancement realized simultaneously in traditional image enhancement algorithm based on frequency domain, which cause the low contrast degree, an improved image enhancement algorithm based on fuzzy filter is proposed in this paper. According to subjective feeling of the human visual system to light luminance, the image is processed with the global brightness transform. And the image with the global low contrast degree and the poor effect of edge parts has sound reinforcing effect. Furthermore, the edge contrast is enhanced, even the brightness contrast and information can also effectively improve. Experimental results demonstrate that the algorithm has got good enhancement effect.

  6. Comparison of Expansion During Fermentation on Medium-Chain Triacylglycerols Oil-Based and Butter Fat-Based Doughs

    Directory of Open Access Journals (Sweden)

    Toshiyuki Toyosaki

    2010-09-01

    Full Text Available Expansion during fermentation on Medium-Chain Triacylglycerols (MCT oil-based doughs compared to butter fat-based doughs were studied, and the mechanism of fermentation accelerator of MCT oilbased in dough was also investigated. The results obtained as follows; the concentration of MCT oil-based accelerator on the fermentation of dough was confirmed maximum at 6.0%. The rate of expansion became the maximum a 60% of gluten contents at the dough with MCT oil-based. Mechanism of expansion of fermentation on MCT oil-based doughs was discussed. Gluten is formed of gliadin and glutenin. Gluten was denatured by MCT oil-based, which gluten molecule grows large. Fermentation is promoted by this phenomenon. This fact can provide new information to the bread-making industry.

  7. Construction Starts for China's First Production Line of Coal-based Synthetic Oil

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ On Feb. 22, the foundation-laying ceremony for the Lu'an Coal-based Synthetic Oil Plant, a major component of China's first coal-based synthetic oil demonstration project,was held at Tunliu Coal Mine of the Lu'an Coal Mine Group in north China's Shanxi Province, marking the start of the first such production line in this country.

  8. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  9. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2016-07-10

    Recovery of oil from oil-in-water emulsion has been investigated by many scientists and it continues to be a challenging task for environmental scientists so far. Among all the techniques, adsorption is found to be an appropriate process for the removal of oil from oil-in-water emulsion owing to its high efficiency and easy operation. A hybrid material, zirconium-chitosan composite (Zr-CS-HC) was prepared to remove the oil from oil-in-water emulsion and oil was measured by extractive gravimetric method. Various parameters viz., agitation time, pH, sorbent dosage and initial oil concentration for maximum sorption were optimized. In this study, the maximum oil removal percentage was found to be at pH 3.0 and a minimum contact time of 50min using prepared sorbent. The pH of the sorption studies revealed that oil sorption was favored in acidic condition. The sorbent was characterized using FTIR, SEM with EDAX, XRD, TGA and DSC; contact angle and heat of combustion. The experimental data were explained using Freundlich, Langmuir, D-R and Tempkin isotherms to find the best fit for the sorption process. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to understand the nature of sorption process. This work provides a potential platform for the expansion of oil removal technology. PMID:27106157

  10. Antibacterial and immunity enhancement properties of anaesthetic doses of thyme (Thymus vulgaris oil and three other anaesthetics in Sparidentax hasta and Acanthopagrus latus

    Directory of Open Access Journals (Sweden)

    I.S. Azad

    2014-04-01

    Full Text Available An effective alternative was discovered in the form of thyme oil for use as a fish anaesthetic (patent pending approval. The thyme oil along with a common aquaculture-grade commercial anaesthetic (AQUI-S, clove oil and quinaldine were investigated for their antimicrobial properties and its effect on the immune parameters of two important maricultured fish species, bluefin bream (Sparidentax hasta and yellowfin bream (Acanthopagrus latus. In vivo studies indicated that both the fish species had highly reduced bacterial load after the treatments and the in vitro antibacterial activity of the of the thyme oil was superior to that of the other treatments. The effects of anaesthetic dose of thyme oil, clove oil, quinaldine and AQUI-S were evaluated and compared. The reduction in the total viable vibrio counts in the anesthetized fish indicated that the vibrio were sensitive to the thyme oil. Also thyme oil produced higher non-specific immune enhancements.

  11. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    Science.gov (United States)

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  12. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test

    Science.gov (United States)

    Nazari, M.; Rasoulifard, M. H.; Hosseini, H.

    2016-02-01

    In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.

  13. INEEL Biotechnology for Oilfield Application--Microbial Enhanced Oil Recovery FY-03 Report

    Energy Technology Data Exchange (ETDEWEB)

    G. A. Bala; D. F. Bruhn; S. L. Fox; K. S. Noah; K. D. Schaller; E. P. Robertson; X. Xie

    2003-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Biotechnology for Oilfield Operations program supports development, engineering, and application of biotechnology for exploration and production. This continuing INEEL program also supports mitigation of detrimental field conditions. The program is consistent with the United States Department of Energy mission to ¡§promote activities and policies through its oil technology and natural gas supply programs to enhance the efficiency and environmental quality of domestic oil and natural gas exploration, recovery, processing, transport, and storage.¡¨ In addition, the program directly supports the focus areas of Reservoir Life Extension; Advanced Drilling, Completion and Stimulation Systems; Effective Environmental Protection; and Cross Cutting Areas. The program is enhanced by collaborative relationships with industry and academia. For fiscal year 2003, the program focused on production and characterization of biological surfactants from agricultural residuals and the production and application of reactive microbial polymers. This report specifically details: 1. Use of a chemostat reactor operated in batch mode for producing surfactin, with concomitant use of an antifoam to prevent surfactant loss. The program achieved production and recovery of 0.6 g/L of surfactin per 12 hr. 2. Characterization of surfactin produced from agricultural residuals with respect to its ability to mediate changes in surface tension. Conditions evaluated were salt (as NaCl) from 0 to 10% (w/v), pH from 3 to 10, temperature from 21 to 70¢XC, and combinations of these conditions. When evaluated singularly, pH below 6 and salt concentrations above 30 g/L were found to have an adverse impact on surfactin. Temperatures of 70¢XC for 95 days had no effect. When the effect of temperature was added to the pH experiment, there were no significant changes, and, again, surface tension, at any temperature, increased at pH below 6

  14. Functional palm oil-based margarine by enzymatic interesterification

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    Palm stearin, palm kernel and fish oils were blended to a various composition ratios and enzymatically interesterified by Lipozyme TL IM lipase (Thermomyces lanuginosa) using a continuous packed bed reactor. The ratio of the oils ranged from 60-90%, 10-40% and 0-10% respectively. The enzyme was a...

  15. Collagen based magnetic nanocomposites for oil removal applications

    OpenAIRE

    Palanisamy Thanikaivelan; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainabilit...

  16. Simple techniques to increase the production yield and enhance the quality of organic rice bran oils.

    Science.gov (United States)

    Srikaeo, Khongsak; Pradit, Maythawinee

    2011-01-01

    This study develops simple techniques for increasing production yield and refining of crude RBO (CRBO). It was found that pre-heating of rice bran by hot air oven to reach 60°C before being extracted by screw press machine increased the yield from 4.8 to 8.3%w/w. This paper suggested three simple steps for refining of organic CRBO: (1) filtering using filter papers (2) sedimentation by adding 4%w/v fuller's earth and (3) bleaching by running through a packed column of activated carbon. These steps significantly enhanced the qualities of RBO when compared to CRBO before treatment. It was found that the lightness of oil as indicated by color value (L*) increased from 22.8 to 28.7, gum and wax decreased from 3.6 to 1.3%w/w. However, the simple refining method had no effect on peroxide value and free fatty acid content. Moreover, it slightly induced the loss of oryzanol content from 2.8 to 2.2%w/w. PMID:21178310

  17. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    Energy Technology Data Exchange (ETDEWEB)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  18. Enhanced oil recovery in naturally fractured reservoirs in mexico, technical challenge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, Francisco; Meza P, Edgar; Moran O, Oscar [PEMEX - Petroleos Mexicanos, Mexico D.F. (Mexico)

    2008-07-01

    Unlike single porosity reservoirs, naturally fractured reservoirs have several problems to implant any additional recovery processes (secondary or enhanced) due to a great amount of oil is trapped in the matrix and the injected fluids bypass matrix through fractures because of they have a greater capacity to allow flow. So far there, there is not a complete knowledge of improved recovery processes that can be applied to naturally fractured reservoirs, there are some laboratory tests, tests pilot in fields and very few projects in execution. All this make an opportunity area to develop more investigation. Taking into account the previous limitations is possible to begin to evaluate several processes for naturally fractured reservoirs as: gas injection, chemical treatments and thermal processes, but a common process to all of them is gravity drainage which implies new considerations in operation to extract hydrocarbons of the fractured reservoirs. There are many challenges to implant additional recovery processes in naturally fractured reservoirs and we mentioned in this work, moreover we show Mexican experience in EOR processes in Naturally Fractured Reservoirs, too. (author)

  19. Investigation of CO2 Enhanced Oil Recovery Using Dimensionless Groups in Wettability Modified Chalk and Sandstone Rocks

    Directory of Open Access Journals (Sweden)

    Vahid Alipour Tabrizy

    2014-01-01

    Full Text Available The paper addresses enhanced oil recovery in chalk and sandstone rocks by CO2 injection, with different wettability, porosity, and permeability as well as injection rate and flooding conditions. Results indicate that an increase in Bond number has a positive effect on oil recovery whereas for capillary number, there is a limit in which recovery is improving. This limit is estimated when the pressure drop by viscous force is approximately equal to the threshold balance between capillary and gravity forces. A dimensionless group is proposed that combines the effect of capillarity, injection rate, permeability, and CO2 diffusion on the oil recovery. Recovery from all experiments in this study and reported data in the literature shows a satisfactory relationship with the proposed group.

  20. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery : a new economic feasibility study

    International Nuclear Information System (INIS)

    A study was conducted to investigate the economics of capturing carbon dioxide from coal-fired power plants to be subsequently used as a flooding agent for enhanced oil recovery (EOR) technologies. It was shown that the production of CO2 for EOR projects can be technically and economically feasible, particularly when the concepts of cogeneration and optimization are used to reduce steam and electricity expenditures. This is done by using low-pressure steam and waste heat from various sections of the power generation process. It was shown that recovery costs could range between $0.50 to $2.00 per mscf. This translates to a recovered oil price of in the range of $17.39 to $19.95 per bbl., suggesting that even at today's low oil prices there is room for CO2 flooding with flue gas extracted CO2. Practical implications for Saskatchewan were examined. 15 refs., 4 tabs., 7 figs

  1. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  2. SEPARATION AND ANALYSIS OF OIL BASED AEROSOLS FROM COMPRESSED AIR

    Directory of Open Access Journals (Sweden)

    N.Azhaguvel,

    2011-04-01

    Full Text Available Air braking system is one of the critical component in ensuring the safety of the commercial vehicle. Quality of air supplied to the brake system should be dry and free form impurities. Some amountof lubrication oil of the compressor will get carried along with the compressed air. Oil which was carried away will be in the form of aerosols. These oil aerosols will reduce the absorptive capacity of the desiccant of air dryer, wear out of valves of brake chamber and also erode system components. This work focus on developing a concept to remove the oil aerosols. Multiphase CFD simulation has been carried out to find the efficiency of filter in removing the oil aerosols, and pressure drop across the filter. This work also includes developing a prototype of filter and performing experimental analysis. Both the results of CFD analysis as well as the experimental analysis are matching.

  3. Studies of base catalyzed transesterification of karanja oil

    Directory of Open Access Journals (Sweden)

    Naveenji Arun, Muthukumaran Sampath, S.Siddharth, Prasaanth R.A

    2011-03-01

    Full Text Available Karanja oil methyl ester was synthesized by the transesterification of karanja oil with methanol using potassium hydroxide as catalyst. The reaction was carried out at 55°C for 1 hour. The reactants were continuously stirred with speed ranging from 250-650 rpm. The acid value of oil was found to be 18.62 mg KOH/g of oil. Influence of parameters like water content (%, oil flow rate (ml/min and effect of stirring speed (rpm were investigated by varying these parameters in 5 levels and a design for performing the experiments was developed using Minitab and Design-Expert. An approach has been made to study the pressure and velocity changes when the reactants flow through the inlet and outlet pipes. Glycerol being insoluble remained in the reactor and the conversion was found by testing the ester using Gas Chromatography and also by analyzing the acidity of the samples.

  4. Evaporation-based microfluidic production of oil-free cell-containing hydrogel particles

    OpenAIRE

    Fan, Rong; Naqvi, Kubra; Patel, Krishna; Sun, Jun; Wan, Jiandi

    2015-01-01

    We demonstrate an evaporation-based microfluidic strategy to produce oil-free cell containing hydrogel particles. Perfluoro-n-pentane, which is used as the continuous oil phase to generate cell-containing hydrogel (Extracel) particles, is removed at an elevated temperature. Human colon cancer cells (HCT116) encapsulated in the hydrogel particles show higher viability than cells encapsulated in particles that are produced via a non-evaporative oil phase. In addition, single HCT116 cells can be...

  5. Oil Spill Map for Indian Sea Region based on Bhuvan- Geographic Information System using Satellite Images

    OpenAIRE

    Vijaya kumar, L. J.; Kishore, J. K.; Kesava Rao, P.; Annadurai, M.; C. B. S. Dutt; K. Hanumantha Rao; Sasamal, S. K.; Arulraj, M.; Prasad, A. V. V.; Sita Kumari, E. V. S.; Satyanarayana, S. N.; Shenoy, H. P.

    2014-01-01

    Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analy...

  6. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach.

    Science.gov (United States)

    González, Jorge Werdin; Yeguerman, Cristhian; Marcovecchio, Diego; Delrieux, Claudio; Ferrero, Adriana; Band, Beatriz Fernández

    2016-08-01

    The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index. PMID:27062341

  7. Enhanced Student Learning with Problem Based Learning

    Science.gov (United States)

    Hollenbeck, James

    2008-01-01

    Science educators define a learning environment in which the problem drives the learning as problem based learning (PBL). Problem based learning can be a learning methodology/process or a curriculum based on its application by the teacher. This paper discusses the basic premise of Problem base learning and successful applications of such learning.…

  8. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Abdalrahman B. Fadhil

    2012-06-01

    Full Text Available Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction time were optimized. The study raveled that, 0.50% KOH w/w of oil; a 6:1 methanol to oil molar ratio; a reaction temperature of 60°C and a duration of 1h were the optimal conditions because they resulted in high biodiesel yield. Fuel properties of the products were assessed and found better than those of the parent oil. Furthermore, they met the specified limits according to the ASTM standards. Thin layer chromatography was used as a simple technique to monitor the transesterification of the oil. Blending of the optimal biodiesel sample with petro diesel using specified volume percentages was done as well. The results indicated that biodiesel had slight effect on the values of the assessed properties.

  9. Significance of oil droplets in chemically enhanced water-accommodated fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, S. [Queen' s Univ., Kingston, ON (Canada). School of Environmental Studies; Hodson, P.V.; Lee, K. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2003-07-01

    This presentation described the controversial use of chemical dispersions to treat oil spills on water. Dispersants break up the spill in order to reduce shoreline impacts, but the dispersant drives the oil into the water column in the form of droplets, thereby temporarily increasing hydrocarbon concentrations and causing negative impacts on aquatic organisms. Exposure experiments have been conducted on rainbow trout exposed to Mesa and Scotian Light Crude Oil, with and without oil droplets. The studies showed that the levels of polycyclic aromatic hydrocarbons (PAH) was higher in the trout exposed to Corexit water-accommodated fractions, compared to water-accommodated fractions. The results suggest that dispersing crude oil sustains hydrocarbon concentrations in a larger volume of water than if it were not dispersed. The oil droplets increase the partitioning of PAH into the water solution. They adhere to the gills of the fish, thereby facilitating direct uptake.

  10. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  11. Does Discovery-Based Instruction Enhance Learning?

    OpenAIRE

    Alfieri, L.; Brooks, PJ; Aldrich, NJ; Tenenbaum, HR

    2011-01-01

    Discovery learning approaches to education have recently come under scrutiny (Tobias & Duffy, 2009), with many studies indicating limitations to discovery learning practices. Therefore, 2 meta-analyses were conducted using a sample of 164 studies: The 1st examined the effects of unassisted discovery learning versus explicit instruction, and the 2nd examined the effects of enhanced and/or assisted discovery versus other types of instruction (e.g., explicit, unassisted discovery). Random effect...

  12. Synthesis and Application of Jatropha Oil based Polyurethane as Paint Coating Material

    OpenAIRE

    Zainal Alim Mas’ud; Purwantiningsih Sugita; Harjono

    2012-01-01

    Recently, the use of renewable sources in the preparation of various industrial materials has been revitalized in response to environmental concerns. Natural oils are considered to be the most important genre of renewable sources. Jatropha curcas oil (JPO) based polyol is an alternative material that may possibly replace petrochemical-based polyol for polyurethane coating material. Polyurethane was synthesized by reacting JPO-based polyol with isocyanate. To produce JPO-based polyol, JPO was ...

  13. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  14. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2015-09-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  15. Remediation of hydrocarbon contaminants in cold environments : electrokinetically enhanced bioremediation and biodegradable oil sorbents

    OpenAIRE

    Suni, Sonja

    2006-01-01

    Owing to the vast amounts of oil in the world, oil spills are common on land as well as at sea. In addition to oil products, other industrially used hydrocarbons, such as creosote, also contaminate soils. Most hydrocarbons are biodegradable. Hence, bioremediation is an attractive alternative for cleaning up hydrocarbon spills. In cold climate areas, however, biodegradation is often a slow process. The aim of this thesis was to develop efficient, cost-effective, and ecologically sound techniqu...

  16. Enhancement of the Norfloxacin Antibiotic Activity by Gaseous Contact with the Essential Oil of Croton zehntneri

    OpenAIRE

    Coutinho, HDM; Matias, EFF; Santos, KKA; Tintino, SR; Souza, CES; Guedes, GMM; Santos, FAD; Costa, JGM; Falcão-Silva, VS; Siqueira-Júnior, JP

    2010-01-01

    This is the first on the modulation of norfloxacin antibiotic activity by the volatile compounds of an essential oil. We report the chemical composition and antibiotic modifying activity of the essential oil extracted from the leaves of Croton zehntneri Pax et Hoffm (variety estragole), using the minimal inhibitory dose method and gaseous contact. The leaves of Croton zehntneri Pax et Hoffm (Euphorbiaceae) were subjected to hydrodistillation, and the essential oil extracted was examined with ...

  17. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  18. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  19. Visual display of reservoir parameters affecting enhanced oil recovery. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.

    1996-03-01

    The purpose of this project is to provide a detailed example, based on a field trial, of how to evaluate a field for enhanced oil recovery (EOR) operations utilizing data typically available in a field that has undergone primary development. The approach will utilize readily available, affordable computer software and analytical services. For example, the GeoGraphix Exploration System software package was acquired, installed on a PC in the Subsurface Laboratory at Michigan Technological University, and is currently in use. The USGS Digital Land Grid and National Geophysical Data Center`s Gravity Data CDROM were acquired and installed on GeoGraphix. Microsoft Access databases are being developed to archive analytical data and digitized log traces. Data tables for geochemical and petrographic data, well logs, well header information, well production data, formation tops, and fault trace data have been completed. A new effort was initiated during the last quarter of 1995. The surface geological maps of the southern San Joaquin Valley were digitized and loaded into the computer drafting program Canvas where they were edited combined into one large map and colored. When completed, the integrated map will be printed in large format on the HP650C color plotter.

  20. Potentials of polyacrylamide-sodium carboxymethyl cellulose graft polymer as flooding material in enhanced crude oil recovery

    International Nuclear Information System (INIS)

    Cellulose-based derivatives have been used in drilling fluids as viscosifiers and fluid loss reducers for many years. But more recently due to evident advantages, such as technology and relative ease of large-scale production of cellulose derivatives as powders or granules and the generally non-toxic nature of cellulose ethers, research efforts have been intensified to optimize their possible applications as polymer flooding materials in enhanced oil recovery. Consequently, this paper addresses the synthesis and characterization of polyacrylamide-sodium carboxymethyl cellulose graft polymer produced from locally available cellulose materials. Notable improvement was achieved in the specific viscosity of the graft polymer when compared with the unmodified sodium carboxymethyl cellulose (NaCMC). For a 1% (wt%) solution at 25 deg. c and a shear rate of 200s/sup -1/-1, NaCMC has a viscosity of 74.6 centipose while the graft polymer recorded a viscosity of 154 centipose. The influence of mono and multivalent cations such as sodium, calcium and aluminum ions on the viscosity of the graft polymer solution was relatively minimal, suggesting improvement in the so-called salt tolerance or cation compatibility. (author)