WorldWideScience

Sample records for based energy storage

  1. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  2. Graphene-Based Systems for Energy Storage

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  3. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  4. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  5. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  6. Toward flexible polymer and paper-based energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, Leif [Department of Materials Chemistry, The Aangstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Nystroem, Gustav; Mihranyan, Albert; Stroemme, Maria [Nanotechnology and Functional Materials, Department of Engineering Sciences, The Aangstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Graphene-Based Carbon Materials for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2013-01-01

    Full Text Available Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.

  8. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  9. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  10. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  11. Graphene-Based Systems for Enhanced Energy Storage

    Directory of Open Access Journals (Sweden)

    Amplianitis Aris

    2017-01-01

    Full Text Available Extensive global research efforts have focused on the exploitation of graphene for enhanced energy storage. Novel graphene-based composite material electrodes have been developed, in many cases with reports of outstanding performance. However, the development of these composites involve extremely complex and costly procedures/methods whose scalability and eventual commercial exploitation is extremely hard [1]. Within the present activity the use of graphene nanotechnology is exploited to manufacture electrodes for supercapacitors. The goal however is to achieve electrodes with increased specific energy density (compared to the currently commercially available products using proven and simple manufacturing procedures that can easily be scaled-up and offer competitive products. The roadmap was developed under the framework of European Space Agency highlighting the main advantages brought up from this technology. The activity is separated in three parallel routes; the development and test planning of small–scale production of graphene based materials via the tape casting technology, the establishment of a reliable and low cost industrial production process (scale-up for these materials and the development and testing of an energy storage demonstrator that shall incorporate the novel electrodes and exhibit their favorable characteristics in energy storage applications for use in space.

  12. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  14. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  15. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  16. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  17. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  18. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  19. MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications

    KAUST Repository

    Chen, Wei

    2013-11-01

    Nanostructured materials provide new and exciting approaches to the development of supercapacitor electrodes for high-performance electrochemical energy storage applications. One of the biggest challenges in materials science and engineering, however, is to prepare the nanomaterials with desirable characteristics and to engineer the structures in proper ways. This dissertation presents the successful preparation and application of very promising materials in the area of supercapacitor energy storage, including manganese dioxide and its composites, polyaniline and activated carbons. Attention has been paid to understanding their growth process and performance in supercapacitor devices. The morphological and electrochemical cycling effects, which contribute to the understanding of the energy storage mechanism of MnO2 based supercapacitors is thoroughly investigated. In addition, MnO2 based binary (MnO2-carbon nanocoils, MnO2-graphene) and ternary (MnO2-carbon nanotube-graphene) nanocomposites, as well as two novel electrodes (MnO2-carbon nanotube-textile and MnO2-carbon nanotube-sponge) have been studied as supercapacitor electrode materials, showing much improved electrochemical storage performance with good energy and power densities. Furthermore, a general chemical route was introduced to synthesize different conducting polymers and activated carbons by taking the MnO2 nanostructures as reactive templates. The electrochemical behaviors of the polyaniline and activated nanocarbon supercapacitors demonstrate the morphology-dependent enhancement of capacitance. Excellent energy and power densities were obtained from the template-derived polyaniline and activated carbon based supercapacitors, indicating the success of our proposed chemical route toward the preparation of high performance supercapacitor materials. The work discussed in this dissertation conclusively showed the significance of the preparation of desirable nanomaterials and the design of effective

  20. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  1. Lyapunov based control of hybrid energy storage system in electric vehicles

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...

  2. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  3. Graphene Based Ultra-Capacitors for Safer, More Efficient Energy Storage

    Science.gov (United States)

    Roberson, Luke B.; Mackey, Paul J.; Zide, Carson J.

    2016-01-01

    Current power storage methods must be continuously improved in order to keep up with the increasingly competitive electronics industry. This technological advancement is also essential for the continuation of deep space exploration. Today's energy storage industry relies heavily on the use of dangerous and corrosive chemicals such as lithium and phosphoric acid. These chemicals can prove hazardous to the user if the device is ruptured. Similarly they can damage the environment if they are disposed of improperly. A safer, more efficient alternative is needed across a wide range of NASA missions. One solution would a solid-state carbon based energy storage device. Carbon is a safer, less environmentally hazardous alternative to current energy storage materials. Using the amorphous carbon nanostructure, graphene, this idea of a safer portable energy is possible. Graphene was electrochemically produced in the lab and several coin cell devices were built this summer to create a working prototype of a solid-state graphene battery.

  4. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  5. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  6. Tool for optimal design and operation of hydrogen storage based autonomous energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Oberschachtsiek, B.; Lemken, D. [ZBT - Duisburg (Germany); Stark, M.; Krost, G. [Duisburg-Essen Univ. (Germany)

    2010-07-01

    Decentralized small scale electricity generation based on renewable energy sources usually necessitates decoupling of volatile power generation and consumption by means of energy storage. Hydrogen has proven as an eligible storage medium for mid- and long-term range, which - when indicated - can be reasonably complemented by accumulator short term storage. The selection of appropriate system components - sources, storage devices and the appertaining peripherals - is a demanding task which affords a high degree of freedom but, on the other hand, has to account for various operational dependencies and restrictions of system components, as well as for conduct of load and generation. An innovative tool facilitates the configuration and dimensioning of renewable energy based power supply systems with hydrogen storage paths, and allows for applying appropriate operation strategies. This tool accounts for the characteristics and performances of relevant power sources, loads, and types of energy storage, and also regards safety rules the energy system has to comply with. In particular, the tool is addressing small, detached and autonomous supply systems. (orig.)

  7. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  8. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  10. Comparing energy storage options for renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The paper investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage......Increasing penetrations of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilizing storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This paper takes its point of departure in an all...

  11. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  12. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  13. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  14. The hybrid energy storages based on batteries and ultracapacitors for contact microwelding

    Directory of Open Access Journals (Sweden)

    Bondarenko Yu. V.

    2014-08-01

    Full Text Available Micro resistance welding is an effective way to reliably join small-scale parts. It is widely used in electronics and instrument-making. The important particularities of micro resistance welding are pulse character of energy consumption, non-linear load and special form of current pulses. So, these particularities of welding process cause negative influence on the mains. One of the known ways to avoid it is to use autonomous power supplies for micro resistance welding machines. The important task for building autonomous power supplies is to choose effective energy storages, which have high capacity and small internal resistance, and which are capable to be charged and deliver energy to load very quickly. The solution of this task is seen in using hybrid energy storages, which include accumulators and ultracapacitors. The accumulators are able to provide high energy capacitance and the ultracapacitors are able to provide fast energy delivery. The possibility of application of hybrid energy storages, based on accumulator batteries and ultracapacitors, in micro resistance welding machines is confirmed with computer simulation. Two variants of hybrid energy storages are proposed. These hybrid energy storages have high power and dynamic characteristics, which are sufficient to generate current pulses for welding according to necessary settings.

  15. Performance analysis of a novel energy storage system based on liquid carbon dioxide

    International Nuclear Information System (INIS)

    Wang, Mingkun; Zhao, Pan; Wu, Yi; Dai, Yiping

    2015-01-01

    Due to the intermittence and fluctuation of wind resource, the increasing penetration level of wind power will bring huge challenges to maintain the stability of power system. Integrating compressed air energy storage (CAES) system with wind farms can weaken this negative effect. However CAES system needs large caverns or mines to store compressed air, which is restricted in application. In this paper, a novel energy storage system based on liquid carbon dioxide is presented. The mathematical models of compressed liquid-carbon dioxide energy storage system are developed. The parametric analysis is conducted to examine the effect of some key thermodynamic parameters on the system performance. Compared with AA-CAES, the liquid carbon dioxide energy storage system has advantages such as a high energy density, high EVR. Moreover, the round trip efficiency of this system can reach about 56.64%, which is acceptable in consideration of the storage volume. Therefore, this proposed system has a good potential for storing wind power in large scale and offers an attractive solution to the challenges of the increasing penetration level of wind power. - Highlights: • A novel energy storage system based on liquid carbon dioxide is presented. • The effects of some key parameters on the system performance are studied. • The operation optimization is conducted by genetic algorithm. • Comparative analysis of AA-CAES and liquid carbon dioxide system is studied.

  16. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  17. Flexible Graphene-based Energy Storage Devices for Space Application Project

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  18. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  19. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.

    Science.gov (United States)

    Salunkhe, Rahul R; Lee, Ying-Hui; Chang, Kuo-Hsin; Li, Jing-Mei; Simon, Patrice; Tang, Jing; Torad, Nagy L; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-10-20

    Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  1. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  2. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  3. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  4. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  5. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Hayward, J.; Maisonnier, D.

    2007-01-01

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWh e with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  6. Battery energy storage market feasibility study

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  7. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy storage

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-01

    The papers on energy storage problems, given to the United Nations Conference on New Sources of Energy, Rome, 1961, are reviewed. Many aspects of the subject are discussed: comparisons between the costs of storing energy in batteries and in fuel cells; the use, efficiency and expected improvement of fuel cells; the principles involved in the chemical conversion of solar energy to chemical energy; the use of metal hydride fuel cells; the chemical conversion and storage of concentrated solar energy for which the solar furnace is used for photochemical reactions. Finally, the general costs of storing energy in any form and delivering it are analyzed with particular reference to storage batteries and fuel cells.

  9. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  10. Peak reduction for commercial buildings using energy storage

    Science.gov (United States)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  11. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  12. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  13. 78 FR 4143 - Energy Storage Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-01-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-752-000] Energy Storage... Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Energy Storage Holdings, LLC's application for market-based rate authority, with an accompanying rate schedule...

  14. Concrete thermal energy storage for steam generation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  15. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    Science.gov (United States)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  16. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  17. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    Science.gov (United States)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  18. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  19. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  20. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  1. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  2. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  3. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  4. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  5. Energy storage deployment and innovation for the clean energy transition

    Science.gov (United States)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  6. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  7. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  8. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  9. Storage of energies - Translating potential into actions

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Petitot, Pauline; Dejeu, Mathieu; De Santis, Audrey

    2015-01-01

    In this set of articles, a first one evokes issues discussed during a colloquium held in Paris by the European association for storage of energy, the possibilities mentioned about energy storage development in the French bill project for energy transition, and the importance of non-interconnected areas in the development of energy storage. A second article proposes an overview of developments and advances in energy storage in California which adopted suitable laws. The German situation is then briefly described: needs are still to be defined and a road map has been published in 2014, as technologies are expensive and the legal framework is still complex. The next article outlines the conditions of development of the power-to-gas sector (as a process of valorisation of excess electricity). An article gives an overview of technological developments in the field of electrochemical energy storage (batteries). The results of the PEPS study (a study on the potential of energy storage) in Europe are commented. An interview with a member of the French BRGM (Bureau of Mines) outlines the major role which underground storage could play in energy transition. The Seti project for an intelligent thermal energy storage and a better use of renewable energies is then presented. An article comments how to use foodstuff cold to make consumption cut-offs. A last article comments how superconductors could be used in the future for batteries. Few examples are briefly presented: a molten salt-based storage by Areva, a local production of green hydrogen in France, an innovating project of solar energy storage in Switzerland, and the Toucan solar plant in French Guyana

  10. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  11. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  12. MRI device – alternative for electrical energy storage

    Directory of Open Access Journals (Sweden)

    Molokáč, Š.

    2008-01-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically difficult process. Such a process is marked by the energy losses, as the conversion of electrical energy into another form, is most frequently for example mechanical, and then back to the primary electrical form. Though, the superconducting magnetic energy storage (SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. Magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the application of superconducting magnet. After its rejection from operation, there is possibility of using such devices for energy storage purposes. Additionally, such a technology of storage is also ecological.

  13. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  14. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Pan, Lehua; Cai, Zuansi; Li, Cai; Li, Yi

    2017-01-01

    Highlights: •One wellbore-reservoir numerical model was built to study the impact of ATES on CAESA. •With high injection temperature, the joint of ATES can improve CAESA performance. •The considerable utilization of geothermal occurs only at the beginning of operations. •Combination of CAESA and ATES can be achieved in common aquifers. -- Abstract: Different from conventional compressed air energy storage (CAES) systems, the advanced adiabatic compressed air energy storage (AA-CAES) system can store the compression heat which can be used to reheat air during the electricity generation stage. Thus, AA-CAES system can achieve a higher energy storage efficiency. Similar to the AA-CAES system, a compressed air energy storage in aquifers (CAESA) system, which is integrated with an aquifer thermal energy storage (ATES) could possibly achieve the same objective. In order to investigate the impact of ATES on the performance of CAESA, different injection air temperature schemes are designed and analyzed by using numerical simulations. Key parameters relative to energy recovery efficiencies of the different injection schemes, such as pressure distribution and temperature variation within the aquifers as well as energy flow rate in the injection well, are also investigated in this study. The simulations show that, although different injection schemes have a similar overall energy recovery efficiency (∼97%) as well as a thermal energy recovery efficiency (∼79.2%), the higher injection air temperature has a higher energy storage capability. Our results show the total energy storage for the injection air temperature at 80 °C is about 10% greater than the base model scheme at 40 °C. Sensitivity analysis reveal that permeability of the reservoir boundary could have significant impact on the system performance. However, other hydrodynamic and thermodynamic properties, such as the storage reservoir permeability, thermal conductivity, rock grain specific heat and rock

  16. Technical and economic analysis on grid-connected wind farm based on hybrid energy storage system and distributed generators

    Science.gov (United States)

    Zhang, Xinhua; Zhou, Zhongkang; Chen, Xiaochun; Song, Jishuang; Shi, Maolin

    2017-05-01

    system is proposed based on NaS battery and lithium ion battery, that the former is the main large scale energy storage technology world-widely used and developed and the latter is a flexible way to have both power and energy capacities. The hybrid energy storage system, which takes advantage of the two complementary technologies to provide large power and energy capacities, is chosen to do an evaluation of econom ical-environmental based on critical excess electricity production (CEEP), CO2 emission, annual total costs calculated on the specific given condition using Energy PLAN software. The result shows that hybrid storage system has strengths in environmental benefits and also can absorb more discarded wind power than single storage system and is a potential way to push forward the application of wind power and even other types of renewable energy resources.

  17. The Design of Distributed Micro Grid Energy Storage System

    Science.gov (United States)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  18. Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.

    Science.gov (United States)

    Kopka, Ryszard

    2017-12-22

    In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.

  19. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  20. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  1. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    Science.gov (United States)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  2. Battery energy storage market feasibility study -- Expanded report

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  3. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  4. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  5. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  6. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  7. Hydrogen-based energy storage unit for stand alone PV systems

    International Nuclear Information System (INIS)

    Labbe, J.

    2006-12-01

    Stand alone systems supplied only by a photovoltaic generator need an energy storage unit to be fully self sufficient. Lead acid batteries are commonly used to store energy because of their low cost, despite several operational constraints. A hydrogen-based energy storage unit (HESU) could be another candidate, including an electrolyser, a fuel cell and a hydrogen tank. However many efforts still need to be carried out for this technology to reach an industrial stage. In particular, market outlets must be clearly identified. The study of small stationary applications (few kW) is performed by numerical simulations. A simulator is developed in the Matlab/Simulink environment. It is mainly composed of a photovoltaic field and a storage unit (lead acid batteries, HESU, or hybrid storage HESU/batteries). The system component sizing is achieved in order to ensure the complete system autonomy over a whole year of operation. The simulator is tested with 160 load profiles (1 kW as a yearly mean value) and three locations (Algeria, France and Norway). Two coefficients are set in order to quantify the correlation between the power consumption of the end user and the renewable resource availability at both daily and yearly scales. Among the tested cases, a limit value of the yearly correlation coefficient came out, enabling to recommend the use of the most adapted storage to a considered case. There are cases for which using HESU instead of lead acid batteries can increase the system efficiency, decrease the size of the photovoltaic field and improve the exploitation of the renewable resource. In addition, hybridization of HESU with batteries always leads to system enhancements regarding its sizing and performance, with an efficiency increase by 10 to 40 % depending on the considered location. The good agreement between the simulation data and field data gathered on real systems enabled the validation of the models used in this study. (author)

  8. Battery energy storage market feasibility study - Expanded report

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  9. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  10. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  12. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    International Nuclear Information System (INIS)

    Cau, Giorgio; Cocco, Daniele; Petrollese, Mario; Knudsen Kær, Søren; Milan, Christian

    2014-01-01

    Highlights: • Energy management strategy for hybrid stand-alone power plant with hydrogen storage. • Optimal scheduling of storage devices to minimize the utilization costs. • A scenario tree method is used to manage uncertainties of weather and load forecasts. • A reduction of operational costs and energy losses is achieved. - Abstract: This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal scheduling of storage devices is carried out to maximize the benefits of available renewable resources by operating the photovoltaic systems and the wind turbine at their maximum power points and by minimizing the overall utilization costs. Unlike conventional EMS based on the state-of-charge (SOC) of batteries, the proposed EMS takes into account the uncertainty due to the intermittent nature of renewable resources and electricity demand. In particular, the uncertainties are evaluated with a stochastic approach through the construction of different scenarios with corresponding probabilities. The EMS is defined by minimizing the utilization costs of the energy storage equipment. The weather conditions recorded in four different weeks between April and December are used as case studies to test the proposed EMS and the results obtained are compared with a conventional EMS based on the state-of-charge of batteries. The results show a reduction of utilization costs of about 15% in comparison to conventional SOC-based EMS and an increase of the average energy storage efficiency

  13. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  14. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  15. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  16. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  17. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    Science.gov (United States)

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  18. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  19. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    Science.gov (United States)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  20. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  1. The future cost of electrical energy storage based on experience rates

    Science.gov (United States)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  2. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  3. Bioinspired fractal electrodes for solar energy storages.

    Science.gov (United States)

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  4. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  5. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  6. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  7. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  8. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using MRI devices for the energy storage purposes

    Directory of Open Access Journals (Sweden)

    Štefan Molokáč

    2007-04-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically a difficult process. Such a process is connected with energy losses, as most frequently it is the conversion of electrical energy into another form, for example mechanical, and then back to the primal electrical form. Though, the SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. The magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the basis of superconducting magnet. After its rejection from operation, (basically caused only by its „software fustiness“ and not by functional faults, there is a possibility of using such devices for the energy storage purposes. Additionally, such a technology of storage is also ecological. A research project is running at the Faculty of Mining, Ecology, Process Control and Geotechnologies (F BERG, the Department of Business and Management, in the field of using rejected MRI for energy storage purposes.

  10. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  11. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  12. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  13. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  14. Kinetic energy storage of off-peak electricity

    International Nuclear Information System (INIS)

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  15. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  16. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  17. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  18. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  20. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  1. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, F.; Donadei, S.

    2011-05-15

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, cold winter supply, peak shaving, seasonal swing, load management and energy trading. Today the electric power industry benefits from the extreme high energy density of fossil and nuclear fuels. This is one important reason why e.g. the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% compared to 20% for natural gas. Along with the changeover to renewable wind-and to a lesser extent PV-based electricity production this 'outsourcing' of storage services to fossil and nuclear fuels will decline. One important way out will be grid scale energy storage in geological formations. The present discussion, research projects and plans for balancing short term wind and solar power fluctuations focus primarily on the installation of Compressed Air Energy Storages (CAES) if the capacity of existing pumped hydro plants cannot be expanded, e.g. because of environmental issues or lack of suitable topography. Because of their small energy density, these storage options are, however, generally less suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power, wind flaws or even seasonal fluctuations. One important way out are large underground hydrogen storages which provide a much higher energy density because of chemical energy bond. Underground hydrogen storage is state of the art since many years in Great Britain and in the USA for the (petro-) chemical industry. (Author)

  2. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, Fritz; Donadei, Sabine [KBB Underground Technologies GmbH, Hannover (Germany)

    2009-07-01

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, peak shaving, seasonal balancing, etc. Today the electric power industry benefits from the extreme high energy density of fossil fuels. This is one important reason why the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% related to natural gas. Along with the changeover to renewable wind based electricity production this ''outsourcing'' of storage services to fossil fuels will decline. One important way out will be grid scale energy storage. The present discussion for balancing short term wind and solar power fluctuations focuses primarily on the installation of Compressed Air Energy Storages (CAES) in addition to existing pumped hydro plants. Because of their small energy density, these storage options are, however, generally not suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power or even seasonal fluctuations. Underground hydrogen storages, however, provide a much higher energy density because of chemical energy bond - standard practice since many years. The first part of the article describes the present status and performance of grid scale energy storages in geological formations, mainly salt caverns. It is followed by a compilation of generally suitable locations in Europe and particularly Germany. The second part deals with first results of preliminary investigations in possibilities and limits of offshore CAES power stations. (orig.)

  3. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  4. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  5. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  6. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  8. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  9. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    Science.gov (United States)

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  10. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  11. 4th international renewable energy storage conference (IRES 2009)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    ) Renewable power (to) methane solution for renewable power integration and energy storage (M. Sterner); (20) Multi-source energy storage system integrated in buildings (MESSIB) (J. Gravalos); (21) Heat storage technologies for buildings with high solar fractions (H.Kerskes); (22) Solar combisystems and storage: The way to achieve high solar fraction (G. Tanguy); (23) LCA of 100% solar fraction thermal supply to a Swiss apartment building using water-based sensible heat storage (A. Simons); (24) WKSP Evaluation and optimisation of UTES systems of energy efficient office buildings (M.N. Fisch); (25) High-temperature storage for solar tower power plants (S. Zunft); (25) The power matching city field test (R. Kamphuis); (26) Smart energy storage: The sol-ion project (M. Lippert); (27) Wind diesel hybrid systems, engines to support wind power (C. Dommermuth); (28) BYD Energy storage system (C. Beck); (29) Zebra battery (M. Vona); (30) Grid-connected storage systems workshop (P. Malbranche); (31) Testing grid connected storage systems (M. Perrin); (32) Electrical storage applications and characteristics (P. Noegaard).

  12. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  13. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Hongyan Gao

    2017-11-01

    Full Text Available Iron cobalt oxides, such as typical FeCo2O4 and CoFe2O4, are two spinel structured transitional metal oxide materials with excellent electrochemical performance. As the electrodes, they have been widely applied in the current energy storage and conversion processes such as supercapacitors, Lithium-ion batteries and fuel cells. Based on synthesis approaches and controlled conditions, these two materials exhibited broad morphologies and nanostructures and thus distinct electrochemical performance. Some of them have shown promising applications as electrodes in energy storage and conversion. The incorporation with other materials to form composites further improved their performance. This review briefly summarized the recent applications of FeCo2O4 and CoFe2O4 in energy storage and conversion, current understandings on mechanisms and especially the relevance of morphologies and structures and composites to electrochemical performance. Some recommendations were finally put forward addressing current issues and future prospects on electrodes of FeCo2O4 and CoFe2O4 based materials in energy storage and conversion, implying there was still space to further optimize their performance.

  14. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    Science.gov (United States)

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  15. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  16. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  17. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    Science.gov (United States)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  18. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  19. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  20. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  1. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  2. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    Science.gov (United States)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage

  3. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  4. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    Science.gov (United States)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  5. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.

    Science.gov (United States)

    Mansø, Mads; Petersen, Anne Ugleholdt; Wang, Zhihang; Erhart, Paul; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2018-05-16

    Molecular photoswitches can be used for solar thermal energy storage by photoisomerization into high-energy, meta-stable isomers; we present a molecular design strategy leading to photoswitches with high energy densities and long storage times. High measured energy densities of up to 559 kJ kg -1 (155 Wh kg -1 ), long storage lifetimes up to 48.5 days, and high quantum yields of conversion of up to 94% per subunit are demonstrated in norbornadiene/quadricyclane (NBD/QC) photo-/thermoswitch couples incorporated into dimeric and trimeric structures. By changing the linker unit between the NBD units, we can at the same time fine-tune light-harvesting and energy densities of the dimers and trimers so that they exceed those of their monomeric analogs. These new oligomers thereby meet several of the criteria to be met for an optimum molecule to ultimately enter actual devices being able to undergo closed cycles of solar light-harvesting, energy storage, and heat release.

  7. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  8. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  9. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  10. Energy storage in Canada - Embassy report

    International Nuclear Information System (INIS)

    Quennehen, Sylvain

    2014-09-01

    After having outlined what is at stake in energy storage in the world (brief presentation of storage methods, overview of world electricity production and its storage challenges), and given an overview of the Canadian energy sector, this report gives an overview of the Canadian key and particularly innovating actors: main organisations, scientific research (in the fields of advanced batteries, of fuel cells, and of thermal storage), industrial sector (leaders in electricity production, in the electric or hybrid automotive sector and in the field of portable electronic devices, in the Li-ion battery sector, and in the hydrogen fuel cell sector, innovating actors in other energy storage methods). The author then discusses the innovation momentum in Canada: examples of energy storage projects by public organisations (CNRC, RNC), industrial projects in energy projects, investment dynamics

  11. Research on Improved VSG Control Algorithm Based on Capacity-Limited Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanfeng Ma

    2018-03-01

    Full Text Available A large scale of renewable energy employing grid connected electronic inverters fail to contribute inertia or damping to power systems, and, therefore, may bring negative effects to the stability of power system. As a solution, an advanced Virtual Synchronous Generator (VSG control technology based on Hamilton approach is introduced in this paper firstly to support the frequency and enhance the suitability and robustness of the system. The charge and discharge process of power storage devices forms the virtual inertia and damping of VSG, and, therefore, limits on storage capacity may change the coefficients of VSG. To provide a method in keeping system output in an acceptable level with the capacity restriction in a transient period, an energy control algorithm is designed for VSG adaptive control. Finally, simulations are conducted in DIgSILENT to demonstrate the correctness of the algorithm. The demonstration shows: (1 the proposed control model aims at better system robustness and stability; and (2 the model performs in the environment closer to practical engineering by fitting the operation state of storage system.

  12. Multielectron-Transfer-based Rechargeable Energy Storage of Two-Dimensional Coordination Frameworks with Non-Innocent Ligands.

    Science.gov (United States)

    Wada, Keisuke; Sakaushi, Ken; Sasaki, Sono; Nishihara, Hiroshi

    2018-04-19

    The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal-organic framework (MOF) analogues consisting of two-dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF-based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density-functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  14. Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction

    DEFF Research Database (Denmark)

    Krajačić, Goran; Duić, Neven; Zmijarević, Zlatko

    2011-01-01

    Energy, Buildings as Positive Power Plants, Energy Storage and Smart grids in combination with Plug-in Vehicles. All these pillars must be supported by the use of smart energy storage. The results of previous research has shown that in order to increase security, efficiency and viability, there is need...... for energy storage, in primary or secondary form, in order to transfer energy surplus from period of excess to the period when there is a lack. The problem of today’s storage systems is that they increase the cost of already expensive, distributed and renewable energy sources. That makes the large scale use...... of storage systems even less economically viable in market circumstances, despite economics of scale. The paper shows results of an energy planning methodology applied to several cases where use of smart energy storage system helps integration of energy flows, transformations and energy demand...

  15. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  16. Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures

    International Nuclear Information System (INIS)

    Krishnan, Venkat; Das, Trishna

    2015-01-01

    This paper presents a framework for optimally allocating storage technologies in a power system. This decision support tool helps in quantitatively answering the questions on “where to and how much to install” considering the profits from arbitrage opportunities in a co-optimized electricity market. The developed framework is illustrated on a modified IEEE (Institute of Electrical and Electronics Engineers) 24 bus RTS (Reliability Test System), and the framework finds the optimal allocation solution and the revenues storage earns at each of these locations. Bulk energy storage, CAES (compressed air energy storage) is used as the representative storage technology, and the benefits of optimally allocated storage integration onto the grid are compared with transmission expansion solution. The paper also discusses about system-level indicators to identify candidate locations for economical storage ventures, which are derived based on the optimal storage allocation solution; and applies the market price based storage venture indicators on MISO (Mid-continental Independent System Operator) and PJM (Pennsylvania-New Jersey-Maryland Interconnection) electricity markets. - Highlights: • Storage optimal allocation framework based on high-fidelity storage dispatch model. • Storage with transmission addresses energy and ancillary issues under high renewables. • Bulk storage earns higher revenues from co-optimization (∼10× energy only market). • Grid offers distributed opportunities for investing in a strategic mix of storage. • Storage opportunities depend on cross-arbitrage, as seen from MISO (Mid-continental Independent System Operator) and PJM (Pennsylvania-New Jersey-Maryland Interconnection) markets

  17. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  18. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  19. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  20. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  1. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  2. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  3. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  4. Energy Storage Publications | Transportation Research | NREL

    Science.gov (United States)

    , California. 23 pp.; NREL Report No. PR-5400-60290. Optimal Sizing of Energy Storage and Photovoltaic Power (11) 2017 pp. 1095-1118. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System Prediction Model for Grid-Connected Li-ion Battery Energy Storage System - Preprint Paper Source: Smith

  5. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  6. Grid regulation services for energy storage devices based on grid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Grid regulation services for energy storage devices based on grid frequency

    Science.gov (United States)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  9. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  10. Energy Storage Economics

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation provides an overview on energy storage economics including recent market trends, battery terminology and concepts, value streams, challenges, and an example of how photovoltaics and storage can be used to lower demand charges. It also provides an overview of the REopt Lite web tool inputs and outputs.

  11. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  12. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  13. Study of Aquifer Thermal Energy Storage

    Science.gov (United States)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  14. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  15. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High Performance and Economic Supercapacitors for Energy Storage Based on Carbon Nanomaterials

    Science.gov (United States)

    Samuilov, Vladimir; Farshid, Behzad; Frenkel, Alexander; Sensor CAT at Stony Brook Team

    2015-03-01

    We designed and manufactured very inexpensive prototypes of supercapacitors for energy storage based on carbon nanomaterials comprised of: reduced graphene oxide (RGOs) and carbon nanotubes (CNTs) as electrodes filled with polymer gel electrolytes. The electrochemical properties of supercapacitors made using these materials were compared and analyzed. A significant tradeoff between the energy density and the power density was determined; RGO electrodes demonstrated the highest energy density, while composite RGO/CNT electrodes showed the highest power density. The thickness of the RGO electrode was varied to determine its effect on the power density of the supercapacitor and results showed that with decreasing electrode thickness power density would increase. The specific capacitances of over 600 F/g were observed.

  17. Fiber-shaped energy harvesting and storage devices

    CERN Document Server

    Peng, Huisheng

    2015-01-01

    This comprehensive book covers flexible fiber-shaped devices in the area of energy conversion and storage. The first part of the book introduces recently developed materials, particularly, various nanomaterials and composite materials based on nanostructured carbon such as carbon nanotubes and graphene, metals and polymers for the construction of fiber electrodes. The second part of the book focuses on two typical twisted and coaxial architectures of fiber-shaped devices for energy conversion and storage. The emphasis is placed on dye-sensitized solar cells, polymer solar cells, lithium-ion b

  18. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  19. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  20. Hybrid Hydro Renewable Energy Storage Model

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  1. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  2. Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source

    International Nuclear Information System (INIS)

    Raza, Syed Shabbar; Janajreh, Isam; Ghenai, Chaouki

    2014-01-01

    Highlights: • Three renewable energy storage options considered: lead acid and lithium polymer batteries and fuel cell. • Hydrogen fuel cell system is the most feasible energy storage option for the long term energy storage. • Sustainability index approach is a novel method used to quantify the qualitative properties of the system. - Abstract: The sustainability index is an adaptive, multicriteria and novel technique that is used to compare different energy storage systems for their sustainability. This innovative concept utilizes both qualitative and quantitative results to measure sustainability through an index based approach. This report aims to compare three different energy storage options for an intermittent renewable energy source. The three energy storage options are lead acid batteries, lithium polymer batteries and fuel cell systems, that are selected due to their availability and the geographical constrain of using other energy storage options. The renewable energy source used is solar photovoltaic (PV). Several technical, economic and environmental factors have been discussed elaborately which would help us to evaluate the merits of the energy storage system for long term storage. Finally, a novel sustainability index has been proposed which quantifies the qualitative and quantitative aspects of the factors discussed, and thus helps us choose the ideal energy storage system for our scenario. A weighted sum approach is used to quantify each factor according to their importance. After a detailed analysis of the three energy storage systems through the sustainability index approach, the most feasible energy storage option was found to be fuel cell systems which can provide a long term energy storage option and also environmental friendly

  3. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  4. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.

    Science.gov (United States)

    Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2017-07-12

    Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

  5. Determination of Optimum Performance Strategy of Energy Storage in Power System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Ranjbari

    2016-06-01

    Full Text Available Determination of optimal capacity for today energy storages has been specially noticed. The delay in increasing storage production capacity is one of the applications for energy storage supplies in which utilization from energy storage supplies along with improvement in the power status at peak hours of consumption may postpone the demand for installation of a new power plant module. In this essay, the optimal capacity of energy storage is determined in order to reduce exploitation costs by second-order non linear programming. This method expresses this problem with a target quadratic function based on the produced power of units and capacity of energy storage supply. The requirements have been modeled as linear equality and inequality equations. The related constraints for produced power and incremental and decremental power ratio in generators have been considered as well.

  6. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  7. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  8. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  9. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  10. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  11. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  12. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  13. Thermodynamic analysis of a liquid air energy storage system

    International Nuclear Information System (INIS)

    Guizzi, Giuseppe Leo; Manno, Michele; Tolomei, Ludovica Maria; Vitali, Ruggero Maria

    2015-01-01

    The rapid increase in the share of electricity generation from renewable energy sources is having a profound impact on the power sector; one of the most relevant effects of this trend is the increased importance of energy storage systems, which can be used to smooth out peaks and troughs of production from renewable energy sources. Besides their role in balancing the electric grid, energy storage systems may provide also several other useful services, such as price arbitrage, stabilizing conventional generation, etc.; therefore, it is not surprising that many research projects are under way in order to explore the potentials of new technologies for electric energy storage. This paper presents a thermodynamic analysis of a cryogenic energy storage system, based on air liquefaction and storage in an insulated vessel. This technology is attractive thanks to its independence from geographical constraints and because it can be scaled up easily to grid-scale ratings, but it is affected by a low round-trip efficiency due to the energy intensive process of air liquefaction. The present work aims to assess the efficiency of such a system and to identify if and how it can achieve an acceptable round-trip efficiency (in the order of 50–60%).

  14. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  15. Hydropower Storage May be the Key to Sustainable Energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2009-01-01

    An analysis of future energy needs and sources should avoid utopias, clearly evaluate the needs, and quantify the potential, cost and impacts of possible solutions. Before mid century, the world will use three times the energy resources it presently requires. Most should be from renewable sources, and mainly through electricity. As the main renewable electricity sources are intermittent, some energy storage will be necessary: onshore or offshore pumped storage plants based on well proven technologies are a relevant cost-effective solution. Further needs that evolve as the century progresses might be met from solar energy or new nuclear solutions. Beyond their impact on climate change, large investments in various renewable energies and relevant storage may well be economically justified in most countries. This would also reduce the huge risk of conflict for fossil fuel control

  16. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  17. Energy Storage Characteristic Analysis of Voltage Sags Compensation for UPQC Based on MMC for Medium Voltage Distribution System

    Directory of Open Access Journals (Sweden)

    Yongchun Yang

    2018-04-01

    Full Text Available The modular multilevel converter (MMC, as a new type of voltage source converter, is increasingly used because it is a distributed storage system. There are many advantages of using the topological structure of the MMC on a unified power quality controller (UPQC, and voltage sag mitigation is an important use of the MMC energy storage system for the power quality compensation process. In this paper, based on the analysis of the topology of the MMC, the essence of energy conversion in a UPQC of voltage sag compensation is analyzed; then, the energy storage characteristics are calculated and analyzed to determine the performance index of voltage sag compensation; in addition, the simulation method is used to verify the voltage sag compensation characteristics of the UPQC; finally, an industrial prototype of the UPQC based on an MMC for 10 kV of medium voltage distribution network has been developed, and the basic functions of UPQC have been tested.

  18. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure.

    Science.gov (United States)

    Shitanda, Isao; Momiyama, Misaki; Watanabe, Naoto; Tanaka, Tomohiro; Tsujimura, Seiya; Hoshi, Yoshinao; Itagaki, Masayuki

    2017-10-01

    A novel paper-based biofuel cell with a series/parallel array structure has been fabricated, in which the cell voltage and output power can easily be adjusted as required by printing. The output of the fabricated 4-series/4-parallel biofuel cell reached 0.97±0.02 mW at 1.4 V, which is the highest output power reported to date for a paper-based biofuel cell. This work contributes to the development of flexible, wearable energy storage device.

  19. Superconducting magnetic energy storage, possibilities and limitations

    International Nuclear Information System (INIS)

    Bace, M.; Knapp, V.

    1981-01-01

    Energy storage is of great importance for the exploitation of new energy sources as well as for the better utilisation of conventional ones. Several proposals in recent years have suggested that superconducting magnets could be used as energy storage in large electricity networks. It is a purpose of this note to point out that the requirements which have to be met by energy storage in a large electricity network place serious limitation on the possible use of superconducting energy storage. (author)

  20. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented

  2. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  3. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    International Nuclear Information System (INIS)

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  4. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  5. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  6. Energy storage: a review of recent literature

    International Nuclear Information System (INIS)

    Tatone, O.S.

    1981-12-01

    Recent literature on the technological and economic status of reversible energy storage has been reviewed. A broad range of research and development activities have been pursued between 1975 and the present. Most of this work has concentrated on improving technical and economic performance of previously known storage technologies. Hydraulic pumped storage with both reservoirs above ground and compressed air storage (1 plant) are the only methods that have been adopted by electric utilities. The need for electrical energy storage in Canada has not been acute because of the large proportion of hydraulic generation which incorporates some storge and, in most cases, can readily be used for load-following. Residential heat storage in ceramic room heaters has been used in Europe for several years. For Canadian climatic and market conditions larger, central heating units would be required. Residential heat storage depends upon utilities offering time-of-use rates and none in Canada do so at present. Most seasonal storage concepts depend upon storage of low-grade heat for district heating. The cost of energy storage is highly dependent upon annual energy throughput and hence favours smaller capacity systems operating on frequent charge/discharge cycles over long-term storage. Capital costs of energy storage methods from the literature, expressed in constant dollars, are compared graphically and tentative investment costs are presented for several storage methods

  7. Robust energy storage scheduling for imbalance reduction of strategically formed energy balancing groups

    International Nuclear Information System (INIS)

    Chakraborty, Shantanu; Okabe, Toshiya

    2016-01-01

    Imbalance (on-line energy gap between contracted supply and actual demand, and associated cost) reduction is going to be a crucial service for a Power Producer and Supplier (PPS) in the deregulated energy market. PPS requires forward market interactions to procure energy as precisely as possible in order to reduce imbalance energy. This paper presents, 1) (off-line) an effective demand aggregation based strategy for creating a number of balancing groups that leads to higher predictability of group-wise aggregated demand, 2) (on-line) a robust energy storage scheduling that minimizes the imbalance energy and cost of a particular balancing group considering the demand prediction uncertainty. The group formation is performed by a Probabilistic Programming approach using Bayesian Markov Chain Monte Carlo (MCMC) method after applied on the historical demand statistics. Apart from the group formation, the aggregation strategy (with the help of Bayesian Inference) also clears out the upper-limit of the required storage capacity for a formed group, fraction of which is to be utilized in on-line operation. For on-line operation, a robust energy storage scheduling method is proposed that minimizes expected imbalance energy and cost (a non-linear function of imbalance energy) while incorporating the demand uncertainty of a particular group. The proposed methods are applied on the real apartment buildings' demand data in Tokyo, Japan. Simulation results are presented to verify the effectiveness of the proposed methods. - Highlights: • Strategic method for intelligent energy balancing group formation using Bayesian MCMC. • Stochastic programming based robust and online energy storage (battery) scheduling. • Imbalance cost (regulation) and energy reduction of a balancing group. • Imbalance cost reduction of 80% attainable by considerably lower battery capacity.

  8. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  9. Design and installation manual for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M [eds.

    1979-02-01

    The purpose for this manual is to provide information on the design and installation of thermal energy storage in solar heating systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating system, and stand-alone domestic hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  10. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  11. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  12. Power Management of MEMS-Based Storage Devices for Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2008-01-01

    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical,

  13. Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper introduces a management model for optimal scheduling of a multi-carrier energy hub. In the proposed hub, three types of assets are considered: dispersed generating systems (DGs) such as micro-combined heat and power (mCHP) units, storage devices such as battery-based electrical storage...... systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem....... In this regard, optimal operating points of DG units as well as ESSs are calculated based on a cost-effective strategy. Degradation cost of ESSs is also taken into consideration for short-term scheduling. Simulation results demonstrate that including well-planned energy storage options together with optimal...

  14. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  15. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  16. Energy Management Strategy for Grid-tied Microgrids considering the Energy Storage Efficiency

    DEFF Research Database (Denmark)

    Wu, Ji; Xing, Xiaowen; Liu, Xingtao

    2018-01-01

    developed based on the scheduled power. Experiments are conducted to verify the relationship between battery energy storage efficiency and charging/discharging current of the lithium-ion battery. Moreover, the proposed energy management strategy is validated by the hardware-in-the-loop (HIL) experiments...

  17. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  18. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  19. Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material

    Directory of Open Access Journals (Sweden)

    Martin Haemmerle

    2017-03-01

    Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.

  20. Research opportunities in salt hydrates for thermal energy storage

    Science.gov (United States)

    Braunstein, J.

    1983-11-01

    The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.

  1. Flywheel Energy Storage Drive System for Wind Applications

    Directory of Open Access Journals (Sweden)

    Marius Constantin Georgescu

    2014-09-01

    Full Text Available This paper presents a wind small power plant with a Smart Storage Modular Structure (SSMS, as follows: a Short Time Storage Module (STSM based on a flywheel with Induction Motor (IM and a Medium/Long Time Storage Module (MLTSM based on a Vanadium Redox flow Battery (VRB. To control the speed and torque of the IM are used a nonlinear sensorless solution and a direct torque solution which have been compared. Now, the author proposes to replace the IM by a dc motor with permanent magnet energy injection. In this aim, are accomplished some laboratory tests.

  2. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  3. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  4. Energy storage. A varying potential with respect to the envisaged case

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2013-01-01

    This article comments the content of a report on the potential of energy storage which indicates that we'll take benefit of some services brought by energy storage by 2030. This study was based on three scenarios regarding the energy mix (the RTE' Median and New scenarios, and the ADEME's scenario) which assign from 36 to 56 per cent to renewable energies in the installed power. The study discussed the impact of the share of intermittent energy on the French grid adaptation in terms of flexibility. It also studied different situations to take geographical situations and constraints into account. These situations are studied with respect to storage problematic (peak consumption smoothing, peak production, and so on). The economic benefit of storage is assessed for these different situations

  5. Energy storage. The actual challenge for tomorrow

    International Nuclear Information System (INIS)

    Combe, Matthieu; Danielo, Olivier

    2016-09-01

    As methods of energy production are now diversified and efficient, the challenge is now their integration into the grid, and their storage. Thus, this publication first proposes a set of articles which address perspectives and realisations (or projects) related to energy storage: the challenge of modernisation of Pump Storage Power plants (PSP), the possibilities provided by power-to-gas technology to store electricity, the possibilities provided by coupling of CO 2 storage and geothermal energy. Other aspects concern electric power storage at the back end of the supply chain: the Corri-door project of 200 terminals for fast electric charging (for electric vehicles), the emergence of the domestic battery as storage mean in different counties. More prospective projects are also evoked: the use of hot water in Hawaii to store photovoltaic solar electricity and inspired projects by ENGIE and EDF, the perspective of energy storage on miniaturised chips, and a three-wheel light vehicle (Moe) using solar energy and developed by the Evovelo startup

  6. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  7. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Razaq, Aamir; Sjoedin, Martin; Stroemme, Maria; Mihranyan, Albert [Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala (Sweden); Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden); Nyholm, Leif [Department of Chemistry, Angstroem Laboratory, Uppsala (Sweden)

    2012-04-15

    Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 {mu}m-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g{sup -1} (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s{sup -1}, whereas cell capacitances of {proportional_to}60-70 F g{sup -1} (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm{sup -2}) when charged to 0.6 V using current densities as high as 31 A g{sup -1} based on the PPy weight (i.e., 99 mA cm{sup -2}). Energy and power densities of 1.75 Wh kg{sup -1} and 2.7 kW kg{sup -1}, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g{sup -1} (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction

    Directory of Open Access Journals (Sweden)

    Changbin Hu

    2015-02-01

    Full Text Available According to the topological structure of wind-storage-load complementation microgrids, this paper proposes a method for energy coordinative optimization which focuses on improvement of the economic benefits of microgrids in the prediction framework. First of all, the external characteristic mathematical model of distributed generation (DG units including wind turbines and storage batteries are established according to the requirements of the actual constraints. Meanwhile, using the minimum consumption costs from the external grid as the objective function, a grey prediction model with residual modification is introduced to output the predictive wind turbine power and load at specific periods. Second, based on the basic framework of receding horizon optimization, an intelligent genetic algorithm (GA is applied to figure out the optimum solution in the predictive horizon for the complex non-linear coordination control model of microgrids. The optimum results of the GA are compared with the receding solution of mixed integer linear programming (MILP. The obtained results show that the method is a viable approach for energy coordinative optimization of microgrid systems for energy flow and reasonable schedule. The effectiveness and feasibility of the proposed method is verified by examples.

  9. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  10. The economics of energy storage in 14 deregulated power markets

    International Nuclear Information System (INIS)

    Figueiredo, F.C.; Flynn, P.C.; Cabral, E.A.

    2006-01-01

    In regulated power markets, electricity is stored to better utilize existing generation and to defer costly investment in generation. The justification is a reduction in the overall regulated price of power compared to the alternative investment in new primary generation. However, any storage of electrical power also involves a capital investment and incurs the cost of inefficiency. In deregulated energy markets, the sale of electricity or ancillary services from pumped storage can be evaluated based on each individual project. The economic basis for power storage is that power is purchased during periods of low price and resold during periods of high price. This study used historical power price data from 14 deregulated markets around the world to evaluate the economic incentive to use pumped storage for electrical energy. Each market was shown to have a unique average diurnal power price profile that results in a unique price spread for pumped storage. The diurnal price pattern and efficiency of storage was used to assess the net income potential from energy sales from pumped storage for each market. The markets were ranked in terms of the incentive to invest in pumped energy storage as well as on available revenue, and on potential return on investment. An optimal operating profile was illustrated in detail based on historical price patterns for one of the markets. The net income potential was then combined with the capital and operating cost of pumped storage. The adequacy of return on investment for pumped storage was analyzed by two different methods. The differences between markets stem from different diurnal power price patterns that reflect the generation mix, market design and participant behaviours. 17 refs., 7 tabs., 7 figs., 1 appendix

  11. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  12. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  13. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  14. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  15. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  16. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  17. Economic Aspects of Innovations in Energy Storage

    OpenAIRE

    Strielkowski, Wadim; Lisin, Evgeny

    2017-01-01

    Energy storage is emerging as a potential method for addressing global energy system challenges across many different application areas. However, there are technical and non-technical barriers to the widespread deployment of energy storage devices. With regard to the above, it seems crucial to identify innovation processes, mechanisms and systems (in a broad sense) that can allow energy storage to help meet energy system challenges, and also deliver industrial growth from technology developme...

  18. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  19. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  20. Engineered Nanomaterials for Energy Harvesting and Storage Applications

    Science.gov (United States)

    Gullapalli, Hemtej

    Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.

  1. Sharing economy as a new business model for energy storage systems

    International Nuclear Information System (INIS)

    Lombardi, P.; Schwabe, F.

    2017-01-01

    Highlights: • Sharing economy as new business model for Energy Storage Operators. • More attractiveness of Battery Storage Systems. • Optimal Dimensioning of Battery Storage Systems for sharing economy application. - Abstract: Energy storage systems (ESS) are the candidate solution to integrate the high amount of electric power generated by volatile renewable energy sources into the electric grid. However, even though the investment costs of some ESS technologies have decreased over the last few years, few business models seem to be attractive for investors. In most of these models, ESS are applied only for one use case, such as primary control reserve. In this study, a business model based on the sharing economy principle has been developed and analyzed. In this model, the energy storage operator offers its storage system to different kinds of customers. Each customer uses the ESS for their single use case. A set of different use cases has been identified to make the operation of the ESS profitable (e.g. peak shaving, self-consumption and day-ahead market participation). Different kinds of stationary batteries (lithium-ion, sodium-sulfur and vanadium redox-flow) have been considered as energy storage technologies, which differ both in their investment costs and their technical properties, such as round-trip efficiency. The simulation of the business model developed showed that a sharing economy-based model may increase the profitability of operating a battery storage system compared to the single use case business model. Additionally, larger battery dimensions regarding power and capacity were found to be profitable and resulted in an increased revenue stream.

  2. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  3. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    applications. Furthermore, this solution can interconnect a DC and AC grid with bidirectional power flow, where both of them can receive or generate excess power to the third source integrated in each converter sub-module. This particularity enables the converter usage as a high voltage UPS system......This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  4. Electricity storage. The problematic of alternative energies

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre

    2013-01-01

    After having evoked the increasing share of renewable energies in electricity production in Europe and the associated investments, the author outlines the main problems associated with renewable energy: their intermittency, and the fact that they are submitted to quick and important variations which must be managed by the grid. He also evokes economic and financial problems (high taxes in Germany and in France, mandatory purchase mechanisms leading to absurd situations and having consequences on the electricity market). The author discusses the issue of energy storage: storage is expensive and its cost will increase that of the produced energy. However, storage can be interesting if its cost is covered by the income generated by the provided services. Some solutions already exist: pumped-storage power station (PSPS), remotely controlled electric-storage water heaters. The author presents and comments the services which storage can provide: smoothing, spare energy supply, and supply quality. He outlines the importance of a technical-economic analysis for the choice of the best storage solution, but also the need to change the business model

  5. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  6. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce

  7. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  8. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  9. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  10. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  11. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  12. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  13. The Role of Energy Storages in Energy Independent Croatia

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2009-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped Hydro and Heat Pumps in combination with Heat Storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro- plant may facilitate more than 10% wind power in the electricity system. In future research more precise...

  14. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  15. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  16. The energy challenge of a post-fossil world: Seasonal energy storage

    International Nuclear Information System (INIS)

    Forsberg, C.

    2009-01-01

    Fossil fuels are an energy source and an energy storage system. The demand for electricity and heat varies daily, weekly, and seasonally with seasonal variations often varying by a factor of two or more. The variable demand is met by fossil fuels because 1) fossil fuels are inexpensive to store in coal piles, oil tanks, and underground natural gas storage facilities and 2) the capital cost of the equipment to burn fossil fuels and convert the energy to heat or electricity is small relative to the cost of the fossil fuels. Concerns about climate change may limit the conventional use of fossil fuels. The alternative low-carbon energy production systems (nuclear, fossil fuels with carbon dioxide sequestration, wind, and solar) are capital-intensive energy sources with low operating costs. To obtain favorable economics these technologies must operate at full capacity; but, their output does not match energy demand. We have energy alternatives to fossil fuels but no replacements for the energy storage capabilities or fossil fuels. Proposed strategies and technologies to address the grand storage challenge (including seasonal storage of electricity) are described. The options suggest a nuclear-renewable future to address seasonal energy storage needs in a low-carbon world.

  17. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  18. Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study – Informal vertical community Torre David, Caracas – Venezuela

    International Nuclear Information System (INIS)

    Fonseca, Jimeno A.; Schlueter, Arno

    2013-01-01

    This paper analyzes the concept of a decentralized power system based on wind energy and a pumped hydro storage system in a tall building. The system reacts to the current paradigm of power outage in Latin American countries caused by infrastructure limitations and climate change, while it fosters the penetration of renewable energy sources (RES) for a more diversified and secure electricity supply. An explicit methodology describes the assessment of technical, operational and economic potentials in a specific urban setting in Caracas/Venezuela. The suitability, applicability and the impacts generated by such power system are furthermore discussed at economic, social and technical level. - Highlights: ► We have modeled an innovative pico pumped hydro-storage system and wind power system for tall buildings. ► We conducted technical, economic and social analysis on these energy supply and storage alternatives. ► The energy storage system can achieve efficiencies within 30% and 35%. ► The energy storage is realistic and economic sensible in comparison to other solutions. ► The impacts of such a system in the current living conditions and safety issues of the building are minimum

  19. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  20. Panorama 2013 - Mass storage of energy

    International Nuclear Information System (INIS)

    Ponsot-Jacquin, Catherine; Bertrand, Jean-Fabrice

    2012-10-01

    It is universally apparent that environmental and energy transition must evolve in order to meet the needs of a growing world population while still heeding environmental constraints. This change over time will be based on a sustainable energy mix, and consequently the use of renewable energy sources is likely to intensify over the coming decades in respond to rising demand for electricity worldwide. The International Energy Agency (IEA) predicts that 40% of electricity will come from renewable sources by 2050. Some of these renewable forms of energy generate power on an irregular and intermittent basis, and energy storage offers one solution for deploying these intermittent energy sources more widely as part of an efficient smart grid. (authors)

  1. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  2. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method.

    Science.gov (United States)

    He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.

  3. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  4. Optimal Power Flow in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Levron, Yoash; Guerrero, Josep M.; Beck, Yuval

    2013-01-01

    Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...

  5. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  6. New concept for energy storage: Microwave-induced carbon gasification with CO2

    International Nuclear Information System (INIS)

    Bermúdez, J.M.; Ruisánchez, E.; Arenillas, A.; Moreno, A.H.; Menéndez, J.A.

    2014-01-01

    Highlights: • A new system for energy storage based in microwave-induced gasification is proposed. • From the carbonaceous materials tested, charcoal yielded the best results. • The systems achieved energy efficiencies of about 45% without any optimization. • The system is competitive in terms of efficiency with some conventional systems. - Abstract: Energy storage is a topic of great importance for the development of renewable energy, since it appears to be the only solution to the problem of intermittency of production, inherent to such technologies. In this paper, a new technology for energy storage, based on microwave-induced CO 2 gasification of carbon materials is proposed. The tests carried out in this study on different carbon materials showed that charcoal consumes the least amount of energy. Two microwave heating mechanisms, a single-mode oven and a multimode device, were evaluated with the latter proving itself to be the more efficient in terms of energy consumption and recovery. The initial results obtained showed that this technology is able to achieve energy efficiencies of 45% at laboratory scale with every indication that these results can be improved upon to make this approach highly competitive against other energy storage technologies

  7. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  8. Advanced high-temperature thermal energy storage media for industrial applications

    Science.gov (United States)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  9. Modelling and experimental study of low temperature energy storage reactor using cementitious material

    International Nuclear Information System (INIS)

    Ndiaye, Khadim; Ginestet, Stéphane; Cyr, Martin

    2017-01-01

    Highlights: • Numerical study of a thermochemical reactor using a cementitious material for TES. • Development and test of an original prototype based on this original material. • Comparison of the experimental and numerical results. • Energy balance of the experimental setup (charging and discharging phases). - Abstract: Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Most adsorbent materials are capable of storing heat, in a large range of temperature. Ettringite, the main product of the hydration of sulfoaluminate binders, has the advantage of high energy storage density at low temperature, around 60 °C. The objective of this study is, first, to predict the behaviour of the ettringite based material in a thermochemical reactor during the heat storage process, by heat storage modelling, and then to perform experimental validation by tests on a prototype. A model based on the energy and mass balance in the cementitious material was developed and simulated in MatLab software, and was able to predict the spatiotemporal behaviour of the storage system. This helped to build a thermochemical reactor prototype for heat storage tests in both the charging and discharging phases. Thus experimental tests validated the numerical model and served as proof of concept.

  10. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  11. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  12. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method

    Science.gov (United States)

    He, Qing; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742

  13. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  14. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  15. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  16. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  17. Effective energy storage from a triboelectric nanogenerator.

    Science.gov (United States)

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-03-11

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

  18. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  19. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  20. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  1. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    OpenAIRE

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-01-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from “purely” sensible to “hybrid” sensible/ thermochemical one, via coating...

  2. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  3. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach

    International Nuclear Information System (INIS)

    Mueller, Simon C.; Sandner, Philipp G.; Welpe, Isabell M.

    2015-01-01

    important patents and organizations for relevant candidate technologies. Our study underlines that electrochemical storage, and in particular lithium-based technologies, will play an increasingly important role in future energy systems

  4. Compressed Air Energy Storage System Control and Performance Assessment Using Energy Harvested Index

    Directory of Open Access Journals (Sweden)

    Hanif SedighNejad

    2014-01-01

    Full Text Available In this paper a new concept for control and performance assessment of compressed air energy storage (CAES systems in a hybrid energy system is introduced. The proposed criterion, based on the concept of energy harvest index (HEI, measures the capability of a storage system to capture renewable energy. The overall efficiency of the CAES system and optimum control and design from the technical and economic point of view is presented. A possible application of this idea is an isolated community with significant wind energy resource. A case study reveals the usefulness of the proposed criterion in design, control and implementation of a small CAES system in a hybrid power system (HPM for an isolated community. Energy harvested index and its effectiveness in increasing the wind penetration rate in the total energy production is discussed.

  5. Energy Sharing for Interconnected Microgrids with a Battery Storage System and Renewable Energy Sources Based on the Alternating Direction Method of Multipliers

    Directory of Open Access Journals (Sweden)

    Nian Liu

    2018-04-01

    Full Text Available In order to facilitate the local sharing of renewable energy, an energy sharing management method of multiple microgrids (MGs with a battery energy storage system (BESS and renewable energy sources (RESs is developed. First, a virtual entity named the energy sharing provider (ESP, which acts as an agent for MGs, is introduced to minimize the power loss cost. Second, a distributed optimal model and a two-level iterative algorithm for the MGs and ESP are proposed, which minimize the total operation cost including purchasing electricity cost, energy storage cost and power loss cost. Based on the energy sharing framework, considering the local objectives of MGs and the objective of ESP, the optimal scheduling can be achieved through the bidirectional interaction between MGs and ESP. During the optimization, the shared information between MGs and ESP is limited to expected exchange power, which protects the privacy of MGs and ESP. Finally, the effectiveness of the proposed model and algorithm in different scenarios is verified through a case study.

  6. MEMS-Based Storage Devices : Integration in Energy-Constrained Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.

    2009-01-01

    The digital era in which we are living today requires our increasing awareness of energy efficiency to reduce the negative effects on our lovely environment. We, people, are increasingly dealing with digital contents to facilitate our deals, which increases the demand for larger storage capacities

  7. Nanocarbons for advanced energy storage

    CERN Document Server

    Feng, Xinliang

    2015-01-01

    This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit

  8. Optimal Investment Planning of Bulk Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Dina Khastieva

    2018-02-01

    Full Text Available Many countries have the ambition to increase the share of renewable sources in electricity generation. However, continuously varying renewable sources, such as wind power or solar energy, require that the power system can manage the variability and uncertainty of the power generation. One solution to increase flexibility of the system is to use various forms of energy storage, which can provide flexibility to the system at different time ranges and smooth the effect of variability of the renewable generation. In this paper, we investigate three questions connected to investment planning of energy storage systems. First, how the existing flexibility in the system will affect the need for energy storage investments. Second, how presence of energy storage will affect renewable generation expansion and affect electricity prices. Third, who should be responsible for energy storage investments planning. This paper proposes to assess these questions through two different mathematical models. The first model is designed for centralized investment planning and the second model deals with a decentralized investment approach where a single independent profit maximizing utility is responsible for energy storage investments. The models have been applied in various case studies with different generation mixes and flexibility levels. The results show that energy storage system is beneficial for power system operation. However, additional regulation should be considered to achieve optimal investment and allocation of energy storage.

  9. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2017-11-01

    Full Text Available Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV, and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept.

  10. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011

  11. Energy storage, to make the wager to believe

    International Nuclear Information System (INIS)

    Signoret, Stephane; Guilhem, Jean; De Santis, Audrey; Kim, Caroline; Petitot, Pauline; Mary, Olivier

    2016-01-01

    After having evoked some examples and studies (an assessment of the costs of energy storage, an industrial perspective for sodium-ion batteries, the development of an energy recovery system for road transport), a first article discusses the importance of a right definition of energy storage, of its functions and development framework (how to store, where to store, at which price, in which context). A second article evokes the installation of Forsee Power (a leader in battery assembly) in France. A third article discusses how to couple renewable energies and local energy storage. While evoking the example of the LMP battery by Bollore, a fourth article outline the common benefits of high capacity batteries used in electric vehicles as well as in domestic applications or renewable energy supply schemes. The fifth article proposes an overview of researches for the improvement of energy storage solutions (study of battery ageing, use of super-capacitors, thermal storage in industry, a hybrid storage of renewable energy in overseas districts, use of nano-silicon to improve anodes, improvement of oxygen supply in fuel cells, development of very porous silicon layers for anodes). The sixth article discusses the development of a process by Babcok and the Cnim Group for a massive storage of energy by thermal accumulation for electric or thermal energy producers. The seventh and last article notices that the IRENA (International renewable energy Agency) outlined the role of energy storage for the development of rural areas and of islands which are disconnected from the grid

  12. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  13. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  14. Designing lead-free antiferroelectrics for energy storage

    Science.gov (United States)

    Xu, Bin; Íñiguez, Jorge; Bellaiche, L.

    2017-01-01

    Dielectric capacitors, although presenting faster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited in applications due to their low energy density. Antiferroelectric (AFE) compounds, however, show great promise due to their atypical polarization-versus-electric field curves. Here we report our first-principles-based theoretical predictions that Bi1−xRxFeO3 systems (R being a lanthanide, Nd in this work) can potentially allow high energy densities (100–150 J cm−3) and efficiencies (80–88%) for electric fields that may be within the range of feasibility upon experimental advances (2–3 MV cm−1). In addition, a simple model is derived to describe the energy density and efficiency of a general AFE material, providing a framework to assess the effect on the storage properties of variations in doping, electric field magnitude and direction, epitaxial strain, temperature and so on, which can facilitate future search of AFE materials for energy storage. PMID:28555655

  15. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    Science.gov (United States)

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    Science.gov (United States)

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  17. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.; Matson, Nance; Sohn, Michael D.; Rose, Cody M.; Dudley, Junqiao Han; Goli, Sasank; Kiliccote, Sila; Cappers, Peter; MacDonald, Jason; Denholm, Paul; Hummon, Marissa; Jorgenson, Jennie; Palchak, David; Starke, Michael; Alkadi, Nasr; Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jaci; Kirby, Brendan; O' Malley, Mark

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  18. Magnetic energy storage devices for small scale applications

    International Nuclear Information System (INIS)

    Kumar, B.

    1992-01-01

    This paper covers basic principles of magnetic energy storage, structure requirements and limitations, configurations of inductors, attributes of high-T c superconducting materials including thermal instabilities, a relative comparison with the state-of-the-art high energy density power sources, and refrigeration requirements. Based on these fundamental considerations, the design parameters of a micro superconducting magnetic energy unit for Air Force applications is presented and discussed

  19. Graphene-based energy devices

    CERN Document Server

    Yusoff, A Rashid bin Mohd

    2015-01-01

    This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic f

  20. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    Science.gov (United States)

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  1. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....

  2. Pulsed Power Supply Based on Magnetic Energy Storage for Non-Destructive High Field Magnets

    Science.gov (United States)

    Aubert, G.; Defoug, S.; Joss, W.; Sala, P.; Dubois, M.; Kuchinsk, V.

    2004-11-01

    The first test results of a recently built pulsed power supply based on magnetic energy storage will be described. The system consists of the 16 kV shock alternator with a short-circuit power of 3600 MVA of the VOLTA Testing Center of the Schneider Electric SA company, a step-down transformer with a ratio of 1/24, a three-phase diode bridge designed for a current rising exponentially to 120 kA, and a big, 10 ton, heavy, 10 mH aluminum storage coil. The system is designed to store 72 MJ, normal operation will be at 50 MJ, and will work with voltages up to 20 kV. A transfer of 20% of the stored energy into the high field coil should be possible. Special making switches and interrupters have been developed to switch the high currents in a very short time. For safety and redundancy two independent monitoring systems control the energy transfer. A sequencing control system operates the switches on the ac side and protective switches on the dc side, a specially developed real-time control-monitoring system checks several currents and voltages and commands the dc circuit breakers and making switches.

  3. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...

  4. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  5. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  6. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  7. Dependability of wind energy generators with short-term energy storage.

    Science.gov (United States)

    Sørensen, B

    1976-11-26

    Power fluctuations and power duration curves for wind energy generators, including energy storage facilities of a certain capacity, are compared to those of typical nuclear reactors. A storage system capable of delivering the yearly average power output for about 10 hours already makes the dependability of the wind energy system comparable to that of a typical nuclear plant.

  8. Low temperature thermal energy storage: a state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Baylin, F.

    1979-07-01

    The preliminary version of an analysis of activities in research, development, and demonstration of low temperature thermal energy storage (TES) technologies having applications in renewable energy systems is presented. Three major categories of thermal storage devices are considered: sensible heat; phase change materials (PCM); and reversible thermochemical reactions. Both short-term and annual thermal energy storage technologies based on prinicples of sensible heat are discussed. Storage media considered are water, earth, and rocks. Annual storage technologies include solar ponds, aquifers, and large tanks or beds of water, earth, or rocks. PCM storage devices considered employ salt hydrates and organic compounds. The sole application of reversible chemical reactions outlined is for the chemical heat pump. All program processes from basic research through commercialization efforts are investigated. Nongovernment-funded industrial programs and foreign efforts are outlined as well. Data describing low temperature TES activities are presented also as project descriptions. Projects for all these programs are grouped into seven categories: short-term sensible heat storage; annual sensible heat storage; PCM storage; heat transfer and exchange; industrial waste heat recovery and storage; reversible chemical reaction storage; and models, economic analyses, and support studies. Summary information about yearly funding and brief descriptions of project goals and accomplishments are included.

  9. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  10. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2016-01-01

    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  11. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  12. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  13. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions

    Science.gov (United States)

    Wendel, C. H.; Kazempoor, P.; Braun, R. J.

    2015-02-01

    Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.

  14. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    OpenAIRE

    Ozel, Omur; Shahzad, Khurram; Ulukus, Sennur

    2013-01-01

    We consider data transmission with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while the battery has unlimited space. The transmitter can choose to store the harvested energy in the SC or in the battery. The energy is drained from the SC and the battery simultaneously. In this setting, we consider the offline throughput maximization problem ...

  15. A Novel Method for Fast Configuration of Energy Storage Capacity in Stand-Alone and Grid-Connected Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available In this paper, a novel method is proposed and applied to quickly calculate the capacity of energy storage for stand-alone and grid-connected wind energy systems, according to the discrete Fourier transform theory. Based on practical wind resource data and power data, which are derived from the American Wind Energy Technology Center and HOMER software separately, the energy storage capacity of a stand-alone wind energy system is investigated and calculated. Moreover, by applying the practical wind power data from a wind farm in Fujian Province, the energy storage capacity for a grid-connected wind system is discussed in this paper. This method can also be applied to determine the storage capacity of a stand-alone solar energy system with practical photovoltaic power data.

  16. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  17. Multiagent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane Antônio Alves; Dragicevic, Tomislav

    2017-01-01

    In this paper, a multiagent-based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an ac microgrid. The proposal uses frequency scheduling instead of adaptive droop gain to regulate the active power. Each DES unit...

  18. Structure requirements for magnetic energy storage devices

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Huang, X.

    1993-01-01

    Large variety of large and small magnetic energy storage systems have been designed and analyzed in the last 20 years. Cryoresistive and superconductive energy storage (SMES) magnets have been considered for applications such as load leveling for electric utilities, pulsed storage for electromagnetic launchers and accelerator devices, and space borne superconductive energy storage systems. Large SMES are supported by a combination of cold and warm structure while small SMES are supported only by cold structure. In this article we provide analytical and numerical tools to estimate the structure requirements as function of the stored energy and configuration. Large and small solenoidal and toroidal geometries are used. Considerations for both warm and cold structure are discussed. Latest design concepts for both large and small units are included. (orig.)

  19. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  20. ENERGY STAR Certified Data Center Storage

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage

  1. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid....... Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed...

  2. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  3. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  4. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  5. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  6. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  7. Distributed energy storage systems on the basis of electric-vehicle fleets

    Science.gov (United States)

    Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.

    2015-01-01

    Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).

  8. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  9. Optimal sizing and control strategy of isolated grid with wind power and energy storage system

    International Nuclear Information System (INIS)

    Luo, Yi; Shi, Lin; Tu, Guangyu

    2014-01-01

    Highlights: • An energy storage sizing scheme for wind powered isolated grid is developed. • A bi-level control strategy for wind-battery isolated grid is proposed. • The energy storage type selection method for Nan’ao island grid is presented. • The sizing method and the control strategy are verified based on the Nan’ao island. • The wind-battery demonstration system has great benefit for remote areas. - Abstract: Integrating renewable energy and energy storage system provides a prospective way for power supply of remote areas. Focused on the isolated grids comprising renewable energy generation and energy storage, an energy storage sizing method for taking account of the reliability requirement and a bi-level control strategy of the isolated grids are presented in this paper. Based on comparative analysis of current energy storage characteristics and practicability, Sodium–sulfur battery is recommended for power balance control in the isolated grids. The optimal size of the energy storage system is determined by genetic algorithm and sequential simulation. The annualized cost considering the compensation cost of curtailed wind power and load is minimized when the reliability requirement can be satisfied. The sizing method emphasizes the tradeoff between energy storage size and reliability of power supply. The bi-level control strategy is designed as upper level wide area power balance control in dispatch timescale and lower level battery energy storage system V/f control in real-time range for isolated operation. The mixed timescale simulation results of Nan’ao Island grid verify the effectiveness of the proposed sizing method and control strategy

  10. An adaptive short-term prediction scheme for wind energy storage management

    International Nuclear Information System (INIS)

    Blonbou, Ruddy; Monjoly, Stephanie; Dorville, Jean-Francois

    2011-01-01

    Research highlights: → We develop a real time algorithm for grid-connected wind energy storage management. → The method aims to guarantee, with ±5% error margin, the power sent to the grid. → Dynamic scheduling of energy storage is based on short-term energy prediction. → Accurate predictions reduce the need in storage capacity. -- Abstract: Efficient forecasting scheme that includes some information on the likelihood of the forecast and based on a better knowledge of the wind variations characteristics along with their influence on power output variation is of key importance for the optimal integration of wind energy in island's power system. In the Guadeloupean archipelago (French West-Indies), with a total wind power capacity of 25 MW; wind energy can represent up to 5% of the instantaneous electricity production. At this level, wind energy contribution can be equivalent to the current network primary control reserve, which causes balancing difficult. The share of wind energy is due to grow even further since the objective is set to reach 118 MW by 2020. It is an absolute evidence for the network operator that due to security concerns of the electrical grid, the share of wind generation should not increase unless solutions are found to solve the prediction problem. The University of French West-Indies and Guyana has developed a short-term wind energy prediction scheme that uses artificial neural networks and adaptive learning procedures based on Bayesian approach and Gaussian approximation. This paper reports the results of the evaluation of the proposed approach; the improvement with respect to the simple persistent prediction model was globally good. A discussion on how such a tool combined with energy storage capacity could help to smooth the wind power variation and improve the wind energy penetration rate into island utility network is also proposed.

  11. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  12. Preparatory study of energy storage systems

    International Nuclear Information System (INIS)

    Stortelder, B.J.M.

    1993-01-01

    Based on a literature survey, information from other institutes and interviews with KEMA-experts a state of the art is given of small-scale, medium-scale and large-scale energy storage systems. The results of the survey can be used to optimize the electric power supply. Attention is paid to the criteria capacity, efficiency, dynamic performance, economic aspects and the environmental impacts

  13. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  14. Economic evaluation of innovative storage technologies in energy systems with a high share of renewable energies

    International Nuclear Information System (INIS)

    Kondziella, Hendrik

    2017-01-01

    This work addresses the question of whether the ongoing transformation to a low-carbon energy system in Germany will also create market opportunities for innovative market participants, in particular for storage operators. The economic effects that occur in energy systems with high levels of variable renewable energy (vEE) can be measured by their integration costs. Scientific research into the additional storage and flexibility needs of such an energy system often addresses imbalances in the system balance sheet. The respective methods are, however, based on different assumptions and framework conditions, so that the results can only be compared with one another to a limited extent. The hourly fluctuating wholesale price on the electricity exchange is an important indicator to signal the need for flexibility. Many analyzes use historical or predicted pricing time series to evaluate storage options. However, while the feedback of the operation of an energy storage on the market prices is left out. Therefore, a method is developed in this work to estimate the impact of an increasing market volume of storage and other flexibility options on spot market prices. The influence of storage use on electricity demand and spot market prices in 2020 and 2030 is examined. The scenarios to be defined for the electricity market are model-based and evaluated. To answer the question, techno-economic models, e.g. The MICOES power market model for power plant deployment planning, the DeSiflex model for smoothing residual load through integrated flexibility options and the Arturflex model for estimating arbitrage gains through the use of flexibility options on the spot market. [de

  15. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.

    Science.gov (United States)

    Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong

    2017-09-06

    A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO 3 ·H 2 O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm 2 C -1 ). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm 2 ) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.

  16. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    Kangas, M.T.; Lund, P.D.

    1994-01-01

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  17. Ruthenium based redox flow battery for solar energy storage

    International Nuclear Information System (INIS)

    Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung; Saleem, Muhammad

    2011-01-01

    Research highlights: → Undivided redox flow battery employing porous graphite felt electrodes was used. → Ruthenium acetylacetonate dissolved in acetonitrile was the electrolyte. → Charge/discharge conditions were determined for both 0.02 M and 0.1 M electrolytes. → Optimum power output of 0.180 W was also determined for 0.1 M electrolyte. → 55% voltage efficiency was obtained when battery was full of electrolytes. -- Abstract: The technical performance for the operation of a stand alone redox flow battery system for solar energy storage is presented. An undivided reactor configuration has been employed along with porous graphite felt electrodes and ruthenium acetylacetonate as electrolyte in acetonitrile solvent. Limiting current densities are determined for concentrations of 0.02 M and 0.1 M ruthenium acetylacetonate. Based on these, operating conditions for 0.02 M ruthenium acetylacetonate are determined as charging current density of 7 mA/cm 2 , charge electrolyte superficial velocity of 0.0072 cm/s (through the porous electrodes), discharge current density of 2 mA/cm 2 and discharge electrolyte superficial velocity of 0.0045 cm/s. An optimum power output of 35 mW is also obtained upon discharge at 2.1 mA/cm 2 . With an increase in the concentration of ruthenium species from 0.02 M to 0.1 M, the current densities and power output are higher by a factor of five approximately (at same superficial velocities) due to higher mass transport phenomenon. Moreover at 0.02 M concentration the voltage efficiency is better for battery full of electrolytes prior to charging (52.1%) in comparison to an empty battery (40.5%) due to better mass transport phenomenon. Voltage efficiencies are higher as expected at concentrations of 0.1 M ruthenium acetylacetonate (55% when battery is full of electrolytes and 48% when empty) showing that the all-ruthenium redox flow battery has some promise for future applications in solar energy storage. Some improvements for the

  18. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  19. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    Science.gov (United States)

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  20. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  1. A GIS-based 3D online information system for underground energy storage in northern Germany

    Science.gov (United States)

    Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann

    2015-04-01

    We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of

  2. Experimental investigation on an innovative resorption system for energy storage and upgrade

    International Nuclear Information System (INIS)

    Jiang, Long; Wang, Liwei; Wang, Ruzhu; Zhu, Fangqi; Lu, Yiji; Roskilly, Anthony Paul

    2017-01-01

    Highlights: • A resorption thermal energy storage system is established and investigated for energy upgrade. • The highest heat release temperature is 155 °C. • The maximum thermal storage density is about 662 kJ/kg. • The energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. - Abstract: Progress of efficient thermal energy storage (TES) has become a key technology for the development of energy conversion system. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attentions due to its advantages of high energy density, little heat loss and flexible working modes. Based on STES, this paper presents an innovative resorption sorption energy storage (RTES), and the experimental system is established and investigated for energy storage and upgrade. 4.8 kg and 3.9 kg MnCl 2 and CaCl 2 composite sorbents are separately filled in the sorption reactor, and expanded natural graphite treated with sulfuric acid (ENG-TSA) is integrated as the matrix for heat transfer intensification. It is indicated that the highest energy storage density are 662 kJ/kg and 596 kJ/kg when heat input temperature is 125 °C and heat release temperature are 130 °C and 135 °C, respectively. For different heat input and release temperature, the energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%, respectively. The novel RTES system verifies the feasibility for energy storage and upgrade, which shows the great potential for low grade heat utilization especially for industrial process.

  3. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research Inst., Durham, NC (United States); Muto, Andrew [Southern Research Inst., Durham, NC (United States)

    2017-08-30

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precision Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat

  4. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  5. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system

    International Nuclear Information System (INIS)

    Yao, Erren; Wang, Huanran; Wang, Ligang; Xi, Guang; Maréchal, François

    2017-01-01

    Highlights: • A novel tri-generation based compressed air energy storage system. • Trade-off between efficiency and cost to highlight the best compromise solution. • Components with largest irreversibility and potential improvements highlighted. - Abstract: Compressed air energy storage technologies can improve the supply capacity and stability of the electricity grid, particularly when fluctuating renewable energies are massively connected. While incorporating the combined cooling, heating and power systems into compressed air energy storage could achieve stable operation as well as efficient energy utilization. In this paper, a novel combined cooling, heating and power based compressed air energy storage system is proposed. The system combines a gas engine, supplemental heat exchangers and an ammonia-water absorption refrigeration system. The design trade-off between the thermodynamic and economic objectives, i.e., the overall exergy efficiency and the total specific cost of product, is investigated by an evolutionary multi-objective algorithm for the proposed combined system. It is found that, with an increase in the exergy efficiency, the total product unit cost is less affected in the beginning, while rises substantially afterwards. The best trade-off solution is selected with an overall exergy efficiency of 53.04% and a total product unit cost of 20.54 cent/kWh, respectively. The variation of decision variables with the exergy efficiency indicates that the compressor, turbine and heat exchanger preheating the inlet air of turbine are the key equipment to cost-effectively pursuit a higher exergy efficiency. It is also revealed by an exergoeconomic analysis that, for the best trade-off solution, the investment costs of the compressor and the two heat exchangers recovering compression heat and heating up compressed air for expansion should be reduced (particularly the latter), while the thermodynamic performance of the gas engine need to be improved

  6. Stationary flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gilhaus, A; Hau, E; Gassner, G; Huss, G; Schauberger, H

    1981-01-01

    The aim of this system study is to find out industrial applications of stationary flywheel energy accumulators. The economic value for the consumer and the effects on the power supply grid are investigated. Up to now, stationary flywheel energy accumulators have only been used in a small range. The main reason for thinking of the application in a wider range was the hope that those could be used economically for lowering the maximum output demand of the power supply grid. The possible savings in energy costs, however, proved to be too small for paying back the investment costs. Further benefits are necessary for advantageous application. As to overall economy, compensation of short time maximum power output seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combustion with wind energy converters need further investigation.

  7. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance.

    Science.gov (United States)

    Zhao, Lei; Liu, Qing; Gao, Jing; Zhang, Shujun; Li, Jing-Feng

    2017-08-01

    Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O 3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm -3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm -1 versus 175 kV cm -1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exergy efficient production, storage and distribution of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sandnes, Bjoernar

    2003-07-01

    There are two main themes in this thesis. 1) Exergy efficient utilization of solar energy, where the introduction of alternative technologies such as photovoltaic/thermal collectors and phase change energy storage in a low temperature solar system is investigated. 2) The possibility of storing thermal energy in supercooled liquids is investigated. The introductory chapters introduce the concept of exergy, and focus on the use of solar heat as an inherently low quality source for covering low quality demands associated with space heating and hot water. The different stages of solar energy production, storage, and distribution of heat is discussed, with emphasis on exergy relevant issues. With the low temperature solar heating system as background, the introduction of some additional technologies that are investigated. A section of this thesis presents a study of a small scale PV/T collector as a possible component in a low temperature system. In another section the instrumentation that has been built for studies of full-size PV and thermal systems is described, and the possibility of using the PV unit outputs as parameters for controlling the thermal system operation is briefly discussed. It is suggested that the design of the PV/T unit in terms of whether priority should be given to electricity or heat production should be based on how consumption of high quality auxiliary energy is minimized, and not on adding up the combined exergy which is being produced. Solar combisystems require larger heat storage capacities compared to the more common solar hot water systems. Increased volumetric heat storage capacity can be achieved by latent heat storage systems where thermal energy is stored as heat of fusion in phase change materials (PCMs). A section presents a study where spherically encapsulated PCM is incorporated in a solar heat store. Solar combisystems are often complex, and have a relatively large number of interacting components. Another section describes a

  9. EPR ohmic heating energy storage

    International Nuclear Information System (INIS)

    Heck, F.M.; Stillwagon, R.E.; King, E.I.

    1977-01-01

    The Ohmic Heating (OH) Systems for all the Experimental Power Reactor (EPR) designs to date have all used temporary energy storage to assist in providing the OH current charge required to build up the plasma current. The energies involved (0.8 x 10 9 J to 1.9 x 10 9 J) are so large as to make capacitor storage impractical. Two alternative approaches are homopolar dc generators and ac generators. Either of these can be designed for pulse duty and can be made to function in a manner similar to a capacitor in the OH circuit and are therefore potential temporary energy storage devices for OH systems for large tokamaks. This study compared total OH system costs using homopolar and ac generators to determine their relative merits. The total system costs were not significantly different for either type of machine. The added flexibility and the lower maintenance of the ac machine system make it the more attractive approach

  10. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  11. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  13. Efficient Energy-Storage Concept

    Science.gov (United States)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  14. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  15. Research for superconducting energy storage patterns and its practical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.H., E-mail: lindehua_cn@yahoo.com.cn [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Wang, X.Q. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 (China)

    2013-10-15

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  16. Research for superconducting energy storage patterns and its practical countermeasures

    International Nuclear Information System (INIS)

    Lin, D.H.; Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L.; Wang, X.Q.

    2013-01-01

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage

  17. Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; BAI Xiaomin; XU Jing

    2012-01-01

    Large-scale integration of wind power and solar photovoltaic (PV) power in an electric grid can result in a high operating risk due to their randomness and intermi- ttency. Energy storage (ES) can be used to coordinate with them to reduce this risk by improving supply continuity. It is therefore important to evaluate the reliability benefits of systems consist of wind power, solar photovoltaic power and energy storage. The objective of this paper is to evaluate how the parameters such as the capacity and characteristics of ES and the configuration of a hybrid generation system (HGS) affect the system adequacy based on the sequential Monte Carlo approach.

  18. Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav

    2015-01-01

    system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...

  19. Renewable sea energies - The industrial Meccano is underway. Environment: in the jungle of stationary energy storage

    International Nuclear Information System (INIS)

    Lescuyer, Thibault

    2015-01-01

    A first article proposes an overview of the current developments in the field of renewable sea energies where floating wing turbines, wave energy, sea current energy, or sea thermal energy seem to be promising solutions but are still at a pre-industrial stage of development. The article presents different projects and comments their successes and failures. Some innovating and important actors are briefly presented: STX France, DCNS, IDEOL, Nenuphar and EOLR. A second article comments the situation of the energy stationary storage sector which still requires viable economic models and more innovations. Different technologies and projects and the involved actors are evoked: plants of energy transfer by pumping (STEP), hydrogen-based electrochemical storage, and lithium-ion batteries

  20. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  1. Maui energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  2. Energy Management System with Equalization Algorithm for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Hernández, Adriana Carolina Luna; Vasquez, Juan Carlos

    2015-01-01

    This paper presents a centralized strategy for equalizing the state of charge of distributed energy storage systems in an islanded DC microgrid. The proposed strategy is based on a simple algorithm called equalization algorithm, which modifies the charge or discharge rate by weighting the virtual...... results of a low voltage DC microgrid are presented in order to verify the performance of the proposed approach....

  3. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  4. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Karaipekli, Ali

    2012-01-01

    In this study, fatty acid esters-based composite phase change materials (PCMs) for thermal energy storage were prepared by blending erythritol tetrapalmitate (ETP) and erythritol tetrastearate (ETS) with diatomite and expanded perlite (EP). The maximum incorporation percentage for ETP and ETS into diatomite and EP was found to be 57 wt% and 62 wt%, respectively without melted PCM seepage from the composites. The morphologies and compatibilities of the composite PCMs were structurally characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT–IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by differential scanning calorimetry (DSC) analysis. The DSC analyses results indicated that the composite PCMs were good candidates for building applications in terms of their large latent heat values and suitable phase change temperatures. The thermal cycling test including 1000 melting and freezing cycling showed that composite PCMs had good thermal reliability and chemical stability. TG analysis revealed that the composite PCMs had good thermal durability above their working temperature ranges. Moreover, in order to improve the thermal conductivity of the composite PCMs, the expanded graphite (EG) was added to them at different mass fractions (2%, 5%, and 10%). The best results were obtained for the composite PCMs including 5wt% EG content in terms of the increase in thermal conductivity values and the decrease amount in latent heat capacity. The improvement in thermal conductivity values of ETP/Diatomite, ETS/Diatomite, ETP/EP and ETS/EP were found to be about 68%, 57%, 73% and 75%, respectively. Highlights: ► Fatty acid esters-based composite PCMs were prepared by blending ETP and ETS with diatomite and expanded perlite. ► The composite PCMs were characterized by using SEM, FT–IR, DSC and TG analysis methods. ► The DSC results indicated that the composites PCMs had good thermal

  5. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  6. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  7. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  8. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  9. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  10. Magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1980-01-01

    The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off-shoot of this last work is a new program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work

  11. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  12. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  13. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  14. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  15. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  16. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  17. Special file on the storage of energies

    International Nuclear Information System (INIS)

    Signoret, Stephane; Kim, Caroline; Bohlinger, Philippe; Petitot, Pauline; Mary, Olivier; Guilhem, Jean

    2017-01-01

    After brief presentations of current research and industrial activities, a first article comments the new impetus of storage technologies and projects due to regulatory and legal evolutions associated with the French law on energy transition. Self-consumption and flexibility systems in distribution networks are practical factors of this evolution. Benefits provided by energy storage are notably outlined. The next articles present several examples: a decentralised heat storage in Brest, a flywheel plant by Levisys. An article then discusses the technological and commercial aspects of the battle in this sector for the French majors (EDF, Engie, Total). An article comments the emergence and development of a range of solutions for energy storage in case of self-consumption. The next article briefly presents the Elsa project (financed by the EU) which gives a second life to electric vehicle batteries by developing an energy storage and control solution for professionals. A system developed by French researchers is briefly presented: it aims at producing electricity, at storing it, and at using it to supply isolated autonomous systems. The idea developed in a published study is then discussed: to use electric vehicle batteries to store the intermittent energy produced by renewable sources. The last article comments the integration by Enedis of intelligent devices into the grid

  18. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  19. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  20. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  1. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  2. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

    2010-02-01

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  3. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  4. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  6. Two energy storage alternatives for a solar-powered sustainable single floor desert home

    KAUST Repository

    Serag-Eldin, M. A.

    2010-09-30

    This paper is concerned with the thermodynamic analysis of a totally solarpowered desert home. The home is air-conditioned and provides all modern comforts and facilities. It features closely spaced, roof mounted photovoltaic modules, which collect the solar energy driving the whole energy system. During the day time, the modules form an elevated horizontal surface above the roof, shielding it from direct solar radiation. After sunset, the photovoltaic modules are flipped vertically upwards to expose the roof to the sky, thus enhancing night-time cooling. Two methods of energy storage are proposed and compared, one using solely battery storage of electrical output, and the other employing a combination of cold water storage and battery storage. The analysis is based on detailed dynamic heat transfer calculations for the entire building envelope, coupled with a solar radiation model, and followed by energy balances. The results reveal that indeed it is feasible to employ solar energy as the only source of energy to power the home, and that each storage system has its own merits and shortcomings. © 2010 WIT Press.

  7. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  8. Compressed Air Energy Storage in Denmark

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    is analysed with regard to the Danish energy system. In Denmark, wind power supplies 20% of the electricity demand and 50% is produced by combined heat and power (CHP). The operation of CAES requires high electricity price volatility. However, in the Nordic region, large hydro capacities have so far kept......Compressed air energy storage system (CAES) is a technology which can be used for integrating more fluctuating renewable energy sources into the electricity supply system. On a utility scale, CAES has a high feasibility potential compared to other storage technologies. Here, the technology...

  9. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  10. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  11. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented...

  12. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices

    Science.gov (United States)

    Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.

    2011-03-01

    The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

  13. Identification of energy storage rate components. Theoretical and experimental approach

    International Nuclear Information System (INIS)

    Oliferuk, W; Maj, M

    2010-01-01

    The subject of the present paper is decomposition of energy storage rate into terms related to different mode of deformation. The stored energy is the change in internal energy due to plastic deformation after specimen unloading. Hence, this energy describes the state of the cold-worked material. Whereas, the ratio of the stored energy increment to the appropriate increment of plastic work is the measure of energy conversion process. This ratio is called the energy storage rate. Experimental results show that the energy storage rate is dependent on plastic strain. This dependence is influenced by different microscopic deformation mechanisms. It has been shown that the energy storage rate can be presented as a sum of particular components. Each of them is related to the separate internal microscopic mechanism. Two of the components are identified. One of them is the storage rate of statistically stored dislocation energy related to uniform deformation. Another one is connected with non-uniform deformation at the grain level. It is the storage rate of the long range stresses energy and geometrically necessary dislocation energy. The maximum of energy storage rate, that appeared at initial stage of plastic deformation is discussed in terms of internal micro-stresses.

  14. Heat storage. Role in the energy system of the future

    International Nuclear Information System (INIS)

    Hauer, Andreas; Woerner, Antje; Kranz, Stefan; Schumacher, Patrick; Gschwander, Stefan; Appen, Jan von; Hidalgo, Diego; Gross, Bodo; Grashof, Katherina

    2015-01-01

    For the implementation of the energy transition in Germany can contribute in a variety of applications thermal energy storage. Both at the integration of renewable energy sources, as well as in increasing the energy efficiency in the building sector and industry can utilize heat and cold storage great potential. For this diverse storage technologies are available. In Germany numerous research and development projects are running currently, covering the broad possibilities of thermal energy storage. [de

  15. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage

    Institute of Scientific and Technical Information of China (English)

    Zhong-Shuai Wu; Xinliang Feng; Hui-Ming Cheng

    2014-01-01

    The current development trend towards miniaturized portable electronic devices has signiicantly increased the demand for ultrathin, lexible and sustainable on-chip micro-supercapacitors that have enormous potential to complement, or even to replace, micro-bateries and electrolytic capacitors. In this regard,graphene-based micro-supercapacitors with a planar geometry are promising micro-electrochemical energy-storage devices that can take full advantage of planar coniguration and unique features of graphene.his review summarizes the latest advances in on-chip graphene-based planar interdigital micro-supercapacitors, from the history of their development, representative graphene-based materials(graphene sheets, graphene quantum dots and graphene hybrids) for their manufacture, typical microfabrication strategies(photolithography techniques, electrochemical methods, laser writing, etc.),electrolyte(aqueous, organic, ionic and gel), to device coniguration(symmetric and asymmetric). Finally,the perspectives and possible development directions of future graphene-based micro-supercapacitors are briely discussed.

  16. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  17. Review of Phase Change Materials Based on Energy Storage System with Applications

    Science.gov (United States)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  18. Optimal Capacity Estimation Method of the Energy Storage Mounted on a Wireless Railway Train for Energy-Sustainable Transportation

    Directory of Open Access Journals (Sweden)

    Jaewon Kim

    2018-04-01

    Full Text Available Although electric railway systems have gone through many technological innovations in their electrical, mechanical and structural engineering since the energy paradigm conversion to electrical energy, the conventional feeding system based on the catenary contact is still being applied. In order to solve the problems of the contact-based feeding system that arise and to build up the energy-sustainable electric railway system simultaneously, this paper considers the wireless railway train (WRT, which is fed by storages mounted on the board without catenary contact during driving and charged at a platform during a stop. In order to maximize the energy improvement of WRTs’ operation, the optimal power and storage capacity estimation method considering the increased weight of the additional storage devices is proposed. Through case studies of the electrical and topographical conditions of the actual operating railway route, compared with the electrical performance of the existing railway trains, it is verified that the application of WRTs leads to facility capacity margin enlargement through the peak power reduction, and cost-effectiveness improvement through the reduction of catenary loss and driving energy.

  19. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  20. Possible application of dam lake as a seasonal solar energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayshi, Hiroaki; Murata, Hideto; Nishijima, Keiichi [Kanazawa Inst. of Technology, Dep. of Managerial Engineering, Ishikawa (Japan)

    1996-12-31

    For promoting efficient use of energy, a new concept is required that society can choose to make a positive approach toward a solar energy based rural community which maximizes harmony with nature. This basic concept uses a water lake as a thermal energy storage. Thermocline measurements were made at the Uchikawa Dam Lake located in Kanazawa, Ishikawa, Japan to evaluate several kind of exergy contents as a new energy supply potential. The data indicated that the system could be developed with full potential as a seasonal energy storage to be used for mostly regional cooling. This concept seems interesting to invite internationally an energy efficient society to be employed in LDCs as well as in developed countries. (author) 12 figs., 2 tabs., 7 refs.

  1. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  2. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun

    2016-01-01

    Highlights: • Sepiolite-based phase change material nanocomposites were prepared. • An easy direct impregnation process was used. • This paper is one of the first study about sepiolite-based phase change material nanocomposites. • Influence of PCM type on thermal properties of nanocomposites was reported. - Abstract: This paper is one of the first study about the preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage applications. Sepiolite is an important natural fibrous raw material. Nanoscale fibrous tubular structure of sepiolite becomes important in nanocomposite preparation. In this study, sepiolite/paraffin and sepiolite/decanoic acid nanocomposites were manufactured by the direct impregnation method. By the preparation of nanocomposites, PCM move in tubular channels of sepiolite, phase changing occurs in these tubes and surface area increases like as in microencapsulation. The structure and properties of nanocomposites PCMs (CPCM) have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The SEM results prove the successful preparation of phase change material/sepiolite nanocomposites and point out that the fibers of sepiolite is modified with phase change materials in the nanocomposite. The phase change enthalpies of melting and freezing were about 62.08 J/g and −62.05 J/g for sepiolite/paraffin nanocomposites and 35.69 J/g and −34.55 J/g for sepiolite/decanoic acid nanocomposites, respectively. The results show that PCM/sepiolite nanocomposites were prepared successfully and their properties are very suitable for thermal energy storage applications.

  3. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  4. A Bilevel Model for Participation of a Storage System in Energy and Reserve Markets

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Jalal; Zareipour, Hamidreza

    2017-01-01

    We develop a decision-making tool based on a bilevel complementarity model for a merchant price-maker energy storage system to determine the most beneficial trading actions in pool-based markets, including day-ahead (as joint energy and reserve markets) and balancing settlements. The uncertainty...... of net load deviation in real-time is incorporated into the model using a set of scenarios generated from the available forecast in the day-ahead. The objective of this energy storage system is to maximize its expected profit. The day-ahead products of energy storage system include energy as well...... system into clearing process of multiple markets and enables such a facility to possibly affect the outcomes of those markets to its own benefit through strategic price and quantity offers. The validity of the proposed approach is evaluated using a numerical study....

  5. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan; Yu, Wenhua; France, David M.

    2016-08-01

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermal diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.

  6. Value of electrical energy storage: a comparison between commercial and system level benefits

    OpenAIRE

    Dunbar, Anna

    2016-01-01

    There is a drive to transform the electricity industry in the UK from one based largely on fossil fuels to one based on low or zero carbon sources. The challenge of this transition, enabling a secure and sustainable electricity industry at an acceptable cost to consumers, has been dubbed the Energy Trilemma. Grid-connected electrical energy storage presents a potential solution to this challenge. However, the benefits of storage are split across different sectors of the electri...

  7. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  8. Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2011-01-01

    The system-level consideration of inter- mittent renewable energy sources and small-scale en- ergy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Non-controllability and energy-constraints are still considered contingent cases...... in market-based operation. The design of operation strategies for up to 100 % renewable energy systems requires an explicit consideration of non-dispatchable generation and stor- age capacities, as well as the evaluation of operational performance in terms of energy eciency, reliability, environmental...... impact and cost. By abstracting from technology-dependent and physical unit properties, the modeling framework presented and extended in this pa- per allows the modeling of a technologically diverse unit portfolio with a unied approach, whilst establishing the feasibility of energy-storage consideration...

  9. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  11. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Central unresolved issues in thermal energy storage for building heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  13. Energy storage device based on flywheel, power converters and Simulink real-time

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kedra, Bartosz; Malkowski, Robert

    2017-01-01

    by Gdansk University of Technology in Poland. Paper is divided into four sections. First section of the paper provides introductory information on the Energy Storage Device and its capabilities. In the second section of the paper concept of the unit is presented. Requirements for the unit are described...... as well as proposed and introduced functions are listed. Implementation details are given in third section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink realtime features...

  14. Energy storage. Stakes, technical solutions and valorization opportunities

    International Nuclear Information System (INIS)

    2012-03-01

    As a key factor to allow the continuous growth of renewable energies, energy storage technologies are now more than ever in the spotlight. In order to grasp the stakes, understand the technology diversity, learn relevant orders of magnitudes and comprehend the close intricacy of energy storage with energy and environmental issues, ENEA has published a detailed and well-documented publication on the subject

  15. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    Science.gov (United States)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  16. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  17. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  18. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  19. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  20. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage.

    Science.gov (United States)

    Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei

    2016-12-01

    Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.

  1. Engineering radical polymer electrodes for electrochemical energy storage

    Science.gov (United States)

    Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.

    2017-06-01

    In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.

  2. Feed-in tariffs for promotion of energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Krajacic, Goran, E-mail: Goran.Krajacic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Duic, Neven, E-mail: Neven.Duic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Instituto Superior Tecnico, Lisbon (Portugal); Tsikalakis, Antonis, E-mail: atsikal@corfu.power.ece.ntua.g [National Technical University of Athens, Athens (Greece); Zoulias, Manos, E-mail: mzoulias@cres.g [Centre for Renewable Energy Sources and Savings (CRES), Pikermi (Greece); Caralis, George, E-mail: gcaralis@central.ntua.g [National Technical University of Athens, Athens (Greece); Panteri, Eirini, E-mail: panteri@rae.g [Regulatory Authority for Energy (RAE), Athens (Greece); Carvalho, Maria da Graca, E-mail: mariadagraca.carvalho@europarl.europa.e [Instituto Superior Tecnico, Lisbon (Portugal)

    2011-03-15

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: {yields} Feed-in tariffs will promote development and use of energy storage technologies. {yields} Energy storage effectively increases RES penetration. {yields} Pumped Hydro Storage: an efficient solution for RES integration in islands. {yields} Remuneration of Batteries and Inverters as a service can increase RES Penetration. {yields} Desalination, apart from water can help in more efficient RES integration.

  3. Energy storage on board of railway vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.; Scholten, J. [Bombardier Transportation, Mannheim (Germany)

    2004-07-01

    The proposed energy storage on board of a Railway vehicle leads to a big step in the reduction of consumed energy. Up to 30% energy saving are expected in a light rail vehicle, at the same time reducing the peak power demand drastically. In addition, with the energy storage an operation without catenary could become reality, which was successfully demonstrated with the prototype light rail vehicle driving with switched off pantograph. This prototype vehicle is in passenger operation since September 2003, the implemented software is optimised on energy savings and first experience is very promising. (authors)

  4. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    Science.gov (United States)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  5. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  6. Aquifer thermal energy storage in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Iihola, H; Ala-Peijari, T; Seppaenen, H

    1988-01-01

    The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100/sup 0/C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, 'Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.

  7. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  8. Managing Wind-based Electricity Generation and Storage

    Science.gov (United States)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  9. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  10. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Directory of Open Access Journals (Sweden)

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  11. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  12. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  13. Considerations on the need for electricity storage requirements: Power versus energy

    International Nuclear Information System (INIS)

    Belderbos, Andreas; Virag, Ana; D’haeseleer, William; Delarue, Erik

    2017-01-01

    Highlights: • General storage principles are analyzed. • Storage units have different limitations (power versus energy). • Storage power and energy are required, dependent on residual profile. • Relationship between residual profile and optimal storage portfolio is derived. • Broadly applicable rules regarding optimal storage investments are presented. - Abstract: Different storage technologies enable an increasing share of variable renewable generation in the electricity system by reducing the temporal mismatch between generation and demand. Two storage ratings are essential to time-shift delivery of electricity to loads: electric power, or instantaneous electricity flow [W], and electric energy, or power integrated over time [Wh]. An optimal storage portfolio is likely composed of multiple technologies, each having specific power and energy ratings. This paper derives and explains the link between the shape of the time-varying demand and generation profiles and the amount of desirably installed storage capacity, both energy and power. An analysis is performed for individual storage technologies first, showing a link between the necessary power and energy capacity and the demand and generation profile. Then combinations of storage technologies are analyzed to reveal their mutual interaction in a storage portfolio. Results show an increase in desirability for storage technologies with low cost power ratings when the mismatch between generation and demand occurs in daily to weekly cycles. Storage technologies with low cost energy ratings are preferred when this mismatch occurs in monthly to seasonal cycles. The findings of this work can help energy system planners and policy makers to explain results from generation expansion planning studies and to isolate the storage benefits accountable to temporal arbitrage in broader electricity storage studies.

  14. Using energy storage for strategic advantage in competitive electricity markets

    International Nuclear Information System (INIS)

    Hurwitch, J.W.; Symons, P.

    1998-01-01

    Energy storage products are emerging for use in power quality, electric transmission and distribution, and renewable energy applications. Despite this emergence into high-value markets, widespread market penetration will only occur when the value of the services that energy storage products can deliver are clearly delineated. The emergence of competitive electricity markets will more clearly define the flexible benefits of energy storage devices. This paper presents a summary of the ESA's position of the status of energy storage technologies, the market barriers, and steps the ESA is undertaking to reduce these barriers. (author)

  15. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  16. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  17. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  18. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  19. Conference on storage in the service of energy transition

    International Nuclear Information System (INIS)

    Leuthold, Matthias; Marchal, David; Sitte, Ralf; Kairies, Kai-Philipp; Guerrier, Pierre; Netzel, Niklas; Radvanyi, Etienne; Lenck, Thorsten

    2016-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on energy storage supporting the energy transition in France and in Germany. In the framework of this French-German exchange of experience, about 140 participants met together to debate about the answer of future storage technologies to the electric power system needs and to the optimum integration of renewable energies at different levels of the power transmission and distribution grid. This document brings together the available presentations (slides) made during this event: 1 - Storage Technologies, Status and Perspectives (Matthias Leuthold); 2 - Which electricity storage needs for 2030, 2050 in France? (David Marchal); 3 - Storage in context of the German 'Energiewende' (Ralf Sitte); 4 - Battery Storage for residential PV Systems: Grid relieving effects (Kai-Philipp Kairies); 5 - Battery Storage for residential PV Systems: Technologies and Market Trends (Kai-Philipp Kairies); 6 - Pumped hydro-stations to ensure a decentralized and flexible storage to integrate the best way RES in the electric system (Pierre Guerrier); 7 - RRKW Feldheim - Primary Frequency Control in a wind feed-in grid (Niklas Netzel); 8 - Smoothing an intermittent generation: interest of generation forecast and storage global management (Etienne Radvanyi); 9 - Power-to-gas after 2030 - A cost-benefit analysis (Thorsten Lenck)

  20. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  1. Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

    OpenAIRE

    Shane D. Inder; Mehrdad Khamooshi

    2017-01-01

    Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored fo...

  2. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  3. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  4. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    International Nuclear Information System (INIS)

    Troendle, Tobias Wolfgang

    2014-01-01

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  5. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Tanaka, Toshikatsu

    1996-01-01

    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  6. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-03-22

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage. This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials. This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of

  7. An intertemporal decision framework for electrochemical energy storage management

    Science.gov (United States)

    He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.

    2018-05-01

    Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.

  8. Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dulout, Jeremy; Alonso, Corinne

    2017-01-01

    of energy storage units requires certain performance measures and constraints, which has to be well considered in design phase and embedded in control and management strategies. This chapter mainly focuses on these aspects and provides a general framework for optimal design and operation management......-scale integration of renewables into the grid environment. Energy storage options can also be used for economic operation of energy systems to cut down system’s operating cost. By utilizing ESSs, it is very possible to store energy in off-peak hours with lower cost and energize the grid during peak load intervals...... at supply/demand side which is helpful for load levelling or peak shaving purposes. Last but not least, ESSs can provide frequency regulation services in offgrid locations where there is a strong need to meet the power balance in different operating conditions. Each of the abovementioned applications...

  9. Determinants of the energy storage capacity of electric vehicles; Determinanten des Energiespeicherpotentials von Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, S.; Westermann, D. [Technische Univ. Ilmenau (Germany). FG EEV; Agsten, M. [Fraunhofer IOSB, Ilmenau (Germany). Institutsteil Angewandte Systemtechnik (AST)

    2012-07-01

    Future power systems have to meet the challenge of uncontrollable, decentralized generation through increasing renewable. Utilize energy storage to harmonize the load with fluctuating generation is an option. On the other hand in today's markets large scale energy storage systems are hard to find. The reason is assumed in the high costs. Electric vehicle utilization with smart charging could be an alternative solution, due to the secondary use of the electric vehicles battery when not used for driving. This paper will describe the electric vehicle storage capability which determinants influence the storage potential Therefore a model based approach will be provided, which is based on the experiences of a field test (''MINI-E-Berlin powered by Vattenfall''). (orig.)

  10. Electric energy storage systems in a market-based economy. Comparison of emerging and traditional technologies

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, M. Parsa; Haghifam, M.R.; Yousefi, G.R.

    2009-01-01

    Unlike markets for storable commodities, electricity markets depend on the real-time balance of supply and demand. Although much of the present-day grid operate effectively without storage technologies, cost-effective ways of storing electrical energy can make the grid more efficient and reliable. This work addresses an economic comparison between emerging and traditional Electric Energy Storage (EES) technologies in a competitive electricity market. In order to achieve this goal, an appropriate Self-Scheduling (SS) approach must first be developed for each of them to determine their maximum potential of expected profit among multi-markets such as energy and ancillary service markets. Then, these technologies are economically analyzed using Internal Rate of Return (IRR) index. Finally, the amounts of needed financial supports are determined for choosing the emerging technologies when an investor would like to invest on EES technologies. Among available EES technologies, we consider NaS battery (Natrium Sulfur battery) and pumped-storage plants as emerging and traditional technologies, respectively. (author)

  11. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  12. An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-02-01

    Full Text Available Battery energy storage systems (BESSs with proportional-integral (PI control methods have been widely studied in microgrids (MGs. However, the performance of PI control methods might be unsatisfactory for BESSs due to the nonlinear characteristics of the system. To overcome this problem, an energy-based (EB control method is applied to control the converter of a BESS in this study. The EB method is a robust nonlinear control method based on passivity theory with good performance in both transient and steady states. The detailed design process of the EB method in the BESS by adopting an interconnection and damping assignment (IDA strategy is described. The design process comprises three steps: the construction of the port-controlled Hamiltonian model, the determination of the equilibrium point and the solution of the undetermined matrix. In addition, integral action is combined to eliminate the steady state error generated by the model mismatch. To establish the correctness and validity of the proposed method, we implement several case simulation studies based on a test MG system and compare the control performance of the EB and PI methods carefully. The case simulation results demonstrate that the EB method has better tracking and anti-disturbance performance compared with the classic PI method. Moreover, the proposed EB method shows stronger robustness to the uncertainty of system parameters.

  13. Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage

    International Nuclear Information System (INIS)

    Li, Yanan; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2017-01-01

    Highlights: •An integration strategy was presented to construct Ni 3 S 2 based hierarchical composite. •Nanowhisker Ni 3 S 2 were densely integrated onto halloysite nanotubes. •The well-designed electrode exhibits remarkable capacitance and cycling stability. •This strategy provides good reference to electrode materials design for energy storage -- Abstract: Cost-effective and robust energy storage systems have attracted great attention for portable electronic devices. Three-dimensional electrodes can effectively enhance the charge transfer, increase the mechanical stability and thus improve the electrochemical performance upon continuous charge-discharge. The earth abundant halloysite nanotubes (HNTs) have shown immense potential in constructing nanoarchitectural composites. Here, we first demonstrate the development of hybrid composite of nickel sulfide (Ni 3 S 2 ) and HNTs with glucose as binders for efficient energy storage in supercapacitor. The surface sulfhydrylation of HNTs and glucose-assisted hydrothermal reaction are crucial for the preparation of well-structured composite. Due to the synergistic effect between components, the Ni 3 S 2 /HNTs@HS composite electrode delivers a capacity of 450.4C g −1 and high retention of 82.6% over 2000 cycles in three-electrode supercapacitors. Moreover, the Ni 3 S 2 /HNTs@HS//Whatman paper//Ni 3 S 2 /HNTs@HS two-electrode symmetric supercapacitor exhibits a maximum potential window of 1.3 V, with a capacity of 250C g −1 and performance loss of only 18.2% over 2000 cycling at 1 A g −1 . A maximum energy density of 79.6 Wh kg −1 is achieved at a power density of 1.03 kW kg −1 . Such excellent energy storage performance suggests the great potential of Ni 3 S 2 /HNTs@HS for high-efficiency energy storage systems.

  14. Crosstalk compensation in analysis of energy storage devices

    Science.gov (United States)

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  15. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  16. LiH thermal energy storage device

    Science.gov (United States)

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  17. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  19. Energy storage financing :

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Richard

    2016-08-01

    Project financing is emerging as the linchpin for the future health, direction, and momentum of the energy storage industry. Market leaders have so far relied on selffunding or captive lending arrangements to fund projects. New lenders are proceeding hesitantly as they lack a full understanding of the technology, business, and credit risks involved in this rapidly changing market. The U.S. Department of Energy is poised to play a critical role in expanding access to capital by reducing the barriers to entry for new lenders, and providing trusted analytical benchmarks to better judge and price the risk in systematic ways.

  20. Is inexpensive natural gas hindering the grid energy storage industry?

    International Nuclear Information System (INIS)

    Hittinger, Eric; Lueken, Roger

    2015-01-01

    Grid energy storage is a maturing technology and forecasts of the industry's growth have been promising. However, recent years have realized little growth in actual deployments of grid-level storage and several high-profile storage companies and projects have failed. We hypothesize that falling natural gas prices have significantly reduced the potential profit from many U.S. energy storage projects since 2009 and quantify that effect. We use engineering–economic models to calculate the monthly revenue to energy storage devices providing frequency regulation and energy arbitrage in several electricity markets and compare that revenue to prevailing natural gas prices. We find that flywheel devices providing frequency regulation were profitable in months when natural gas prices were above $7/mcf, but face difficulties at current prices (around $4/mcf). For energy arbitrage alone, we find that the breakeven capital cost for large-scale storage was around $300/kWh in several key locations in 2004–2008, but is around $100/kWh in the same locations today. Though cost and performance improvements have been continually decreasing the effective cost of energy services from storage, fundamental market signals indicating the need for energy storage are at or near 10-year lows for both energy arbitrage and frequency regulation. - Highlights: • We use engineering–economic models to determine breakeven capital cost of storage. • Two applications are examined: frequency regulation and energy arbitrage. • For both services, potential revenue has decreased significantly since 2008. • We show a high correlation of revenue with natural gas price. • We demonstrate a causal relationship using the PHORUM grid modeling software.

  1. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  2. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  3. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.

  4. Regenesys utility scale energy storage. Overview report of combined energy storage and renewable generation

    International Nuclear Information System (INIS)

    2004-01-01

    The first part of the paper briefly discusses the advantages and disadvantages of various forms of renewable energy sources with respect to the United Kingdom. It discusses the intermittent nature of wind and solar power and the less intermittent nature of hydro power and energy from biomass. The need to store energy generated, particularly from the intermittent sources, is discussed with special reference to electric batteries and pumped storage. If the energy cannot be stored and delivered when required, then the commercial viability of the source will be adversely affected - the economics and how this fits with NETA are discussed briefly. The second part of the paper is an overview of some relevant literature discussing (a) how the problems of fluctuating supplies may be managed, (b) an analytical assessment of the contribution from wind farms, (c) how fluctuations in wind power can be smoothed using sodium-sulfur batteries, (d) how small generators can get together and reduce trading costs and imbalance exposure under NETA, (e) the benefits of large-scale energy storage to network management and embedded generation, (f) distribution networks, (g) embedded generation and network management issues and (h) costs and benefits of embedded generation. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions

  5. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  6. Mission and status of the US Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  7. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  8. Market potential of utility-purpose energy storage in Japan up to the year 2050

    International Nuclear Information System (INIS)

    Tanaka, T.; Kurihara, I.

    1998-01-01

    The market potential of future energy storage in power network systems in Japan is estimated by using the linear programming method under two main scenarios for the years 2030 and 2050. One is a base scenario in which the power demand and associated performances are simply extrapolated from the present to the future year of interest. The other is a modified scenario under which they are influenced by foreseeable changes in social structure and introduction of demand-side energy storage. This estimation indicates that the optimum capacity of energy storage will be about 10 to 15% of the total generation capacity. (author)

  9. World Energy Needs and Offshore Potential of hydro energy and pump storage

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-09-01

    In 2008, 6,5 Billion people have an overall income of 50.000 Billion US $, use 10 Billion oil equivalent of primary energy, partly through 15.000 TWh of electric power. Most is used by 1 Billion people from industrialized countries, with 10.000 KWh/ year per capita at a cost of 10 cents per KWh, i.e. 1.000 $/year, 3 % of their income close to 30.000 $ per year. In the second half of the Century, we may hope that 10 Billion people will reach this average income per capita; with a better energetic efficiency but a larger share of it through electricity. The world Electricity needs may well be multiplied by 5 along the century. It is possible at a reasonable cost to transport electricity along thousands of Km but this is used only now for 1 %. It is possible to store electricity after generation (pumped storage plants between 2 lakes) but it is used now for only 1 %; energy storage is usually before electricity generation (fuel storage or lakes). But these two possibilities of storage of electricity after generation and long distance transport are the key of the future utilization of renewable energies. The key problem of wind and solar electricity is the intermittent supply and the relevant need of storage along 1 or 2 days. Without storage, wind and solar energies may be used one third of time and should be associated with much more fossil fuel power for two thirds. As fossil fuel power will be limited, wind and solar should be very limited. 2) With storage, wind and solar energies may be used over 80 % of time, much more than fossil fuel. For 10.000 TWh/year of wind energy, a 2 days storage requires a 55 TWh/storage. For 30.000 TWh/year of sun energy, a 16 hours storage requires a 55 TWh/storage. As some storage may be common and as there may be storage is some solar plants, the total storage need may be 80 to 100 TWh. It may be between two lakes: - Possibly 10 to 20 TWh between 2 onshore lakes, as for 2 TWh now (100 GW x 20 hours) - Possibly 10 to 20 TWh from

  10. Energy and exergy analyses of an ice-on-coil thermal energy storage system

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Erek, Aytunç; Dincer, Ibrahim

    2011-01-01

    In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. -- Highlights: ► A comprehensive study on energy and exergy analyses of an ice-on-coil TES system. ► Determination of irreversibilities and their potential sources. ► Evaluation of both energy and exergy efficiencies and their comparisons.

  11. Privacy-preserving smart meter control strategy including energy storage losses

    OpenAIRE

    Avula, Chinni Venkata Ramana R.; Oechtering, Tobias J.; Månsson, Daniel

    2018-01-01

    Privacy-preserving smart meter control strategies proposed in the literature so far make some ideal assumptions such as instantaneous control without delay, lossless energy storage systems etc. In this paper, we present a one-step-ahead predictive control strategy using Bayesian risk to measure and control privacy leakage with an energy storage system. The controller estimates energy state using a three-circuit energy storage model to account for steady-state energy losses. With numerical exp...

  12. Storage, a stake for renewable energies integration

    International Nuclear Information System (INIS)

    Grabette, Olivier

    2013-01-01

    Development of renewable energy sources is challenging the power system operation. Balancing consumption and generation at different times, from real time up to 10 years, with an increasing part of intermittent and fatal sources should indicate a clear route to storage development Up to now on opposite situation occurs. New storage project in Europe has been stopped because of missing business model, and there is no long term economical signal showing it could change in the near future. The capability to predict with a good accuracy, and share through the European transmission system the renewable production places storage in direct competition with other sources of flexibility. However, use case of storage is not limited to energy balancing. Ancillary services, connexion cost optimization, quality of supply are among other possible services offered by storage installation. For all of those, understanding technical requirements and economical issues is an initial condition to open a favourable game area for storage. Exploring new multi-service models through demonstrators, redesigning the electricity market in Europe are key initiatives to approach a new era for storage development. It doesn't prevent innovation to improve performance and reduce cost, an essential condition to give a chance for storage solution compared to other flexibility sources. (author)

  13. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  14. Grid Scale Energy Storage (Symposium EE8)

    Science.gov (United States)

    2016-06-01

    any one of the areas 5 touched upon by speakers participated in symposium EE8, which could potentially change the energy storage landscape in an...Solid-State Supercapacitors Based on RuO2/PEDOT Hybrid Ultrathin Films Chuanfang (John) Zhang1, Thomas Higgins1, Jonathan Coleman1, Valeria...or capacitance) at the expense of electrodes transmittance. Therefore it’s very necessary to develop ultrathin films with highly pseudocapacitive

  15. The state of energy storage in electric utility systems and its effect on renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  16. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate microcapsules as energy storage particle

    Directory of Open Access Journals (Sweden)

    W.L. Wu

    Full Text Available A phase-change energy-storage material, silicone rubber (SR coated n-octadecane/poly (styrene-methyl methacrylate (SR/OD/P(St-MMA microcapsule composites, was prepared by mixing SR and OD/P(St-MMA microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TG, differential scanning calorimetry (DSC and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR, of which content was 2 phr (per hundred rubber. The enthalpy value of the composites was 67.6 J g−1 and the composites were found to have good energy storage function. Keywords: n-Octadecane, Silicone rubber, Microcapsule, Energy-storage, Composites

  17. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza [Univ. of California, Los Angeles, CA (United States); Wang, Yubo [Univ. of California, Los Angeles, CA (United States); Chu, Peter [Univ. of California, Los Angeles, CA (United States); Pota, Hemanshu R. [Univ. of California, Los Angeles, CA (United States); Gadh, Rajit [Univ. of California, Los Angeles, CA (United States)

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy of the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.

  18. Fascinating Magnetic Energy Storage Nanomaterials: A Brief Review.

    Science.gov (United States)

    Sreenivasulu, Kummari V; Srikanth, Vadali V S S

    2017-07-10

    In this brief review, the importance of nanotechnology in developing novel magnetic energy storage materials is discussed. The discussion covers recent patents on permanent magnetic materials and especially covers processing of permanent magnets (rare-earth and rare-earth free magnets), importance of rare-earth permanent magnets and necessity of rare-earth free permanent magnets. Magnetic energy storage materials are those magnetic materials which exhibit very high energy product (BH)max (where B is the magnetic induction in Gauss (G) whereas H is the applied magnetic field in Oersted (Oe)). (BH)max is the direct measure of the ability of a magnetic material to store energy. In this context, processing of magnetic energy storage composite materials constituted by soft and hard magnetic materials played a predominant role in achieving high (BH)max values due to the exchange coupling phenomenon between the soft and hard magnetic phases within the composite. Magnetic energy storage composites are normally composed of rare-earth magnetic materials as well as rare-earth free magnetic materials. Nanotechnology's influence on the enhancement of energy product due to the exchange coupling phenomenon is of great prominence and therefore discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  20. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generators under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.

  1. Efficiency of Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...... were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency...... of the storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...

  2. New kinds of energy-storing building composite PCMs for thermal energy storage

    International Nuclear Information System (INIS)

    Biçer, Alper; Sarı, Ahmet

    2013-01-01

    Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ► New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ► The BCPCMs had suitable melting temperatures and energy storage capacities. ► Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces

  3. Electric Machine Topologies in Energy Storage Systems

    OpenAIRE

    Santiago, Juan De; Oliveira, Janaina Goncalves de

    2010-01-01

    Energy storage development is essential if intermittent renewable energy generation is to increase. Pumped hydro, CAES and flywheels are environmentally friendly and economical storage alternatives that required electric motor/generators. The popularization of power electronics is relatively new and therefore the technology is still under development. There is not a clear winner when comparing technologies and therefore the optimal alternative depends on the specific requirements of the appli...

  4. Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints

    Directory of Open Access Journals (Sweden)

    M. Nazif Faqiry

    2017-11-01

    Full Text Available In a transactive energy market, distributed energy resources (DERs such as dispatchable distributed generators (DGs, electrical energy storages (EESs, distribution-scale load aggregators (LAs, and renewable energy sources (RESs have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP, is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP, which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model.

  5. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  6. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  7. Energy-efficient three-phase bidirectional converter for grid-connected storage applications

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Linares-Mena, Ana-Rosa; Velázquez, Jesús Fernández; Borge-Diez, David

    2016-01-01

    Highlights: • Storage control system developed based on AC DC three phase bidirectional converter. • Bidirectional AC DC converter for storage integration into distribution grids. • Efficiencies over 98% for values over 30% of the bidirectional converter rated power. • Sensitivity analysis of the parameters set by the transmission system operator. • Low-cost option for control and integration of new grid-connected storage systems. - Abstract: Grid connected energy storage systems are expected to play an essential role in the development of Smart Grids, providing, among other benefits, ancillary services to power grids. It is therefore crucial to design and develop control and conversion systems that represent the key instrument where intelligence for decision-making is applied, in order to validate and ensure its optimal operation as part and parcel of the electrical system. The present research describes the design and development of a battery energy storage system based on an AC-DC three-phase bidirectional converter capable of operating either in charge mode to store electrical energy, or in discharge mode to supply load demands. The design is modelled with MATLAB® Simulink® environment in order to evaluate the performance during load variations. Moreover, the assessment is complemented by a global sensitivity analysis for variations in the operating parameters set by the transmission system operator. The effectiveness of the simulation is confirmed by implementing the system and carrying out grid connection tests, obtaining efficiencies over 98% for values over the 30% of the bidirectional converter rated power.

  8. Legal and regulatory issues affecting compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  9. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  10. Required storage capacity to increase the value of renewable energy

    International Nuclear Information System (INIS)

    Nacht, T.

    2014-01-01

    The effort to achieve a more eco - friendly production of energy leads to larger shares of renewables in the electricity sector, resulting in more supply - dependency and volatility. This results in a time shift between production and consumption. In order to gain an upper hand, possibilities for transferring renewable energies from the time of production to the time when the demand occurs are researched. Energy storage systems will play a big role in this process, with pumped storage plants being the most developed and most common technology nowadays. As a first part of this thesis, the renewables in Germany are studied through the use of models on the basis of hourly measured values of the primary energy carriers for the corresponding technology. For these data series many years’ worth of measurements were considered, resulting in data for the hourly production values of the renewable energy sources. The results show a strong dependency between production and the seasons of the year. Furthermore a very small secured contribution of renewable production during times of peak load is registered, leading to the conclusion that energy storages are indeed necessary. Different strategies for the dispatch of the storage technologies pumped hydro storage, compressed air storage and hydrogen storage are developed for the region of Germany, which will be dispatched outside the energy - only market. The different strategies for the storage dispatch have the reduction of the resulting load in common, by preferably transferring renewable energy from times when it is not needed to those times with high loads. This resulting load needs to be covered by thermal power plants. The required capacities of the different storage technologies are evaluated and compared. By using pumped storage plants the increase in the value of renewables, as measured by the secure contribution during peak load hours, is determined. An analysis of different compositions of renewable production allows

  11. FY2007 NREL Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.

    2007-11-01

    The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.

  12. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  13. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  14. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  15. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    DEFF Research Database (Denmark)

    Cau, Giorgo; Cocco, Daniele; Petrollese, Mario

    2014-01-01

    This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal...

  16. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  17. Latent energy storage with salt and metal mixtures for solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  18. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  19. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  20. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...