WorldWideScience

Sample records for based energy efficient

  1. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  2. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Measurement of energy efficiency based on economic foundations

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2015-01-01

    Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as ‘true’ energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

  4. Promoting Behavior-Based Energy Efficiency in Military Housing

    Energy Technology Data Exchange (ETDEWEB)

    AH McMakin; EL Malone; RE Lundgren

    1999-09-07

    The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps agencies reduce the cost of doing business through energy efficiency, water conservation, and the use of solar and other renewable energy. As a large energy user, the U.S. military has been one of the government sectors of focus. Several military installations have shown substantial energy savings in past years. Most of these efficiency projects, however, have focused primarily on physical upgrades, technologies, and purchasing habits. Furthermost projects have focused on administrative and operational areas of energy use. Military residential housing, in particular, has received little formal attention for energy efficiency involving behaviors of the residents themselves. Behavior-based change is a challenging, but potentially fruitful area for energy conservation programs. However, behavioral change involves links with values, social networks and organizations, and new ways of thinking about living patterns. This handbook attempts to fill a gap by offering guidance for promoting such efforts.

  5. Energy-efficiency based classification of the manufacturing workstation

    Science.gov (United States)

    Frumuşanu, G.; Afteni, C.; Badea, N.; Epureanu, A.

    2017-08-01

    EU Directive 92/75/EC established for the first time an energy consumption labelling scheme, further implemented by several other directives. As consequence, nowadays many products (e.g. home appliances, tyres, light bulbs, houses) have an EU Energy Label when offered for sale or rent. Several energy consumption models of manufacturing equipments have been also developed. This paper proposes an energy efficiency - based classification of the manufacturing workstation, aiming to characterize its energetic behaviour. The concept of energy efficiency of the manufacturing workstation is defined. On this base, a classification methodology has been developed. It refers to specific criteria and their evaluation modalities, together to the definition & delimitation of energy efficiency classes. The energy class position is defined after the amount of energy needed by the workstation in the middle point of its operating domain, while its extension is determined by the value of the first coefficient from the Taylor series that approximates the dependence between the energy consume and the chosen parameter of the working regime. The main domain of interest for this classification looks to be the optimization of the manufacturing activities planning and programming. A case-study regarding an actual lathe classification from energy efficiency point of view, based on two different approaches (analytical and numerical) is also included.

  6. Chunk-Based Energy Efficient Resource Allocation in OFDMA Systems

    Directory of Open Access Journals (Sweden)

    Yong Li

    2013-01-01

    Full Text Available Energy efficiency (EE capacity analysis of the chunk-based resource allocation is presented by considering the minimum spectrum efficiency (SE constraint in downlink multiuser orthogonal frequency division multiplexing (OFDM systems. Considering the minimum SE requirement, an optimization problem to maximize EE with limited transmit power is formulated over frequency selective channels. Based on this model, a low-complexity energy efficient resource allocation is proposed. The effects of system parameters, such as the average channel gain-to-noise ratio (CNR and the number of subcarriers per chunk, are evaluated. Numerical results demonstrate the effectiveness of the proposed scheme for balancing the EE and SE.

  7. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  8. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  9. Energy efficient process planning based on numerical simulations

    OpenAIRE

    Neugebauer, Reimund; Hochmuth, C.; Schmidt, G.; Dix, M.

    2011-01-01

    The main goal of energy-efficient manufacturing is to generate products with maximum value-added at minimum energy consumption. To this end, in metal cutting processes, it is necessary to reduce the specific cutting energy while, at the same time, precision requirements have to be ensured. Precision is critical in metal cutting processes because they often constitute the final stages of metalworking chains. This paper presents a method for the planning of energy-efficient machining processes ...

  10. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  11. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  12. Cluster chain based energy efficient routing protocol for moblie WSN

    Directory of Open Access Journals (Sweden)

    WU Ziyu

    2016-04-01

    Full Text Available With the ubiquitous smart devices acting as mobile sensor nodes in the wireless sensor networks(WSNs to sense and transmit physical information,routing protocols should be designed to accommodate the mobility issues,in addition to conventional considerations on energy efficiency.However,due to frequent topology change,traditional routing schemes cannot perform well.Moreover,existence of mobile nodes poses new challenges on energy dissipation and packet loss.In this paper,a novel routing scheme called cluster chain based routing protocol(CCBRP is proposed,which employs a combination of cluster and chain structure to accomplish data collection and transmission and thereafter selects qualified cluster heads as chain leaders to transmit data to the sink.Furthermore,node mobility is handled based on periodical membership update of mobile nodes.Simulation results demonstrate that CCBRP has a good performance in terms of network lifetime and packet delivery,also strikes a better balance between successful packet reception and energy consumption.

  13. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  14. Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China

    Directory of Open Access Journals (Sweden)

    Peihao Lai

    2016-04-01

    Full Text Available By adopting an energy-input based directional distance function, we calculated the shadow price of four types of energy (i.e., coal, oil, gas and electricity among 30 areas in China from 1998 to 2012. Moreover, a macro-energy efficiency index in China was estimated and divided into intra-provincial technical efficiency, allocation efficiency of energy input structure and inter-provincial energy allocation efficiency. It shows that total energy efficiency has decreased in recent years, where intra-provincial energy technical efficiency drops markedly and extensive mode of energy consumption rises. However, energy structure and allocation improves slowly. Meanwhile, lacking an integrated energy market leads to the loss of energy efficiency. Further improvement of market allocation and structure adjustment play a pivotal role in the increase of energy efficiency.

  15. Energy efficiency in France (1990-2000). Report based on the ODYSSEE data base on energy efficiency indicators and the MURE data base on energy efficiency policy measures with the support from SAVE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This report presents an analysis of energy efficiency trends in France on the basis of energy efficiency indicators extracted from the Odyssee data base, maintained and updated in the framework of the SAVE program. This analysis focuses on the period 1990-2000. It also examines the policies and measures implemented in the field of energy efficiency, with a focus on the years 2000-2001. The full list and description of the policy measures are presented in detail in an annex. They are extracted from the MURE data base updated within the SAVE program. (author)

  16. SAVE - energy efficiency in Germany 1990-2000. Report based on the ODYSSEE data base on energy efficiency indicators and the MURE data base on energy efficiency policy measures with the support from SAVE. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Schlomann, B.

    2002-03-01

    This reports presents an analysis of energy efficiency trends in Germany on the basis of energy efficiency indicators extracted from the ODYSSEE data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2000. The year 1990 could however not be considered for all indicators, because most of the economic and some energy consumption data for Germany are only available since 1991. The analysis also examines the policies and measures implemented in the field of energy efficiency, with a focus on the latest years until February 2002. All these measures are extracted from the MURE data base also updated within the SAVE programme. The report starts with a review on data collection and the recent trends in the general context of energy efficiency, i. e. economic and energy consumption development, energy and environmental policy and energy price trends (Chapter 2). Afterwards, the energy efficiency trends are described both at the level of the whole economy and at sectoral level (Chapter 3). In Chapter 4 the development in one sector - transport - is described more detailed. For the other sectors (industry, residential, tertiary) Annex 2 presents a selection of commented graphs that show the trends for the main indicators. An overview of the most important measures in the field of energy efficiency policy in the end-use sectors in Germany is given in Annex 1. A more detailed description of the most recent measures is presented in Annex 3. (orig.)

  17. ADAPTIVE GOSSIP BASED PROTOCOL FOR ENERGY EFFICIENT MOBILE ADHOC NETWORK

    Directory of Open Access Journals (Sweden)

    S. Rajeswari

    2012-03-01

    Full Text Available In Gossip Sleep Protocol, network performance is enhanced based on energy resource. But energy conservation is achieved with the reduced throughput. In this paper, it has been proposed a new Protocol for Mobile Ad hoc Network to achieve reliability with energy conservation. Based on the probability (p values, the value of sleep nodes is fixed initially. The probability value can be adaptively adjusted by Remote Activated Switch during the transmission process. The adaptiveness of gossiping probability is determined by the Packet Delivery Ratio. For performance comparison, we have taken Routing overhead, Packet Delivery Ratio, Number of dropped packets and Energy consumption with the increasing number of forwarding nodes. We used UDP based traffic models to analyze the performance of this protocol. We analyzed TCP based traffic models for average end to end delay. We have used the NS-2 simulator.

  18. Rule Induction-Based Knowledge Discovery for Energy Efficiency

    OpenAIRE

    Chen, Qipeng; Fan, Zhong; Kaleshi, Dritan; Armour, Simon M D

    2015-01-01

    Rule induction is a practical approach to knowledge discovery. Provided that a problem is developed, rule induction is able to return the knowledge that addresses the goal of this problem as if-then rules. The primary goals of knowledge discovery are for prediction and description. The rule format knowledge representation is easily understandable so as to enable users to make decisions. This paper presents the potential of rule induction for energy efficiency. In particular, three rule induct...

  19. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  20. Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2014-03-01

    Full Text Available Improving energy efficiency has been widely regarded as one of the most cost-effective ways to improve sustainability and mitigate climate change. This paper presents a sequential slack-based efficiency measure (SSBM application to model total-factor energy efficiency with undesirable outputs. This approach simultaneously takes into account the sequential environmental technology, total input slacks, and undesirable outputs for energy efficiency analysis. We conduct an empirical analysis of energy efficiency incorporating greenhouse gas emissions of Korean power companies during 2007–2011. The results indicate that most of the power companies are not performing at high energy efficiency. Sequential technology has a significant effect on the energy efficiency measurements. Some policy suggestions based on the empirical results are also presented.

  1. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  2. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  3. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  4. Group-based Motion Detection for Energy-Efficient Localisation

    Directory of Open Access Journals (Sweden)

    Alban Cotillon

    2012-10-01

    Full Text Available Long-term outdoor localization remains challenging due to the high energy profiles of GPS modules. Duty cycling the GPS module combined with inertial sensors can improve energy consumption. However, inertial sensors that are kept active all the time can also drain mobile node batteries. This paper proposes duty cycling strategies for inertial sensors to maintain a target position accuracy and node lifetime. We present a method for duty cycling motion sensors according to features of movement events, and evaluate its energy and accuracy profile for an empirical data trace of cattle movement. We further introduce the concept of group-based duty cycling, where nodes that cluster together can share the burden of motion detection to reduce their duty cycles. Our evaluation shows that both variants of motion sensor duty cycling yield up to 78% improvement in overall node power consumption, and that the group-based method yields an additional 20% power reduction during periods of low mobility.

  5. Adaptive and energy efficient SMA-based handling systems

    Science.gov (United States)

    Motzki, P.; Kunze, J.; Holz, B.; York, A.; Seelecke, S.

    2015-04-01

    Shape Memory Alloys (SMA's) are known as actuators with very high energy density. This fact allows for the construction of very light weight and energy-efficient systems. In the field of material handling and automated assembly process, the avoidance of big moments of inertia in robots and kinematic units is essential. High inertial forces require bigger and stronger robot actuators and thus higher energy consumption and costs. For material handling in assembly processes, many different individual grippers for various work piece geometries are used. If one robot has to handle different work pieces, the gripper has to be exchanged and the assembly process is interrupted, which results in higher costs. In this paper, the advantages of using high energy density Shape Memory Alloy actuators in applications of material-handling and gripping-technology are explored. In particular, light-weight SMA actuated prototypes of an adaptive end-effector and a vacuum-gripper are constructed via rapid-prototyping and evaluated. The adaptive end-effector can change its configuration according to the work piece geometry and allows the handling of multiple different shaped objects without exchanging gripper tooling. SMA wires are used to move four independent arms, each arm adds one degree of freedom to the kinematic unit. At the tips of these end-effector arms, SMA-activated suction cups can be installed. The suction cup prototypes are developed separately. The flexible membranes of these suction cups are pulled up by SMA wires and thus a vacuum is created between the membrane and the work piece surface. The self-sensing ability of the SMA wires are used in both prototypes for monitoring their actuation.

  6. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  7. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  8. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2013-12-01

    Full Text Available Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA was used as an initial tool to compare the three geometries’ stiffness (K, output open-circuit voltage (Vave, and average normal strain in the piezoelectric transducer (εave that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3, has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle.

  9. Energy Efficiency

    OpenAIRE

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas; Tsakiris, Aristeidis

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government of South Africa, the Inter-American Development Bank (IDB), the United Nations Environment Programme (UNEP) and the World Bank Group. A large share of the research for this report was conducted on a v...

  10. The evaluation model of the enterprise energy efficiency based on DPSR.

    Science.gov (United States)

    Wei, Jin-Yu; Zhao, Xiao-Yu; Sun, Xue-Shan

    2017-05-08

    The reasonable evaluation of the enterprise energy efficiency is an important work in order to reduce the energy consumption. In this paper, an effective energy efficiency evaluation index system is proposed based on DPSR (Driving forces-Pressure-State-Response) with the consideration of the actual situation of enterprises. This index system which covers multi-dimensional indexes of the enterprise energy efficiency can reveal the complete causal chain which includes the "driver forces" and "pressure" of the enterprise energy efficiency "state" caused by the internal and external environment, and the ultimate enterprise energy-saving "response" measures. Furthermore, the ANP (Analytic Network Process) and cloud model are used to calculate the weight of each index and evaluate the energy efficiency level. The analysis of BL Company verifies the feasibility of this index system and also provides an effective way to improve the energy efficiency at last.

  11. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure

    International Nuclear Information System (INIS)

    Choi, Yongrok; Zhang, Ning; Zhou, P.

    2012-01-01

    Highlights: ► We employ a slacks-based DEA model to estimate the energy efficiency and shadow prices of CO 2 emissions in China. ► The empirical study shows that China was not performing CO 2 -efficiently. ► The average of estimated shadow prices of CO 2 emissions is about $7.2. -- Abstract: This paper uses nonparametric efficiency analysis technique to estimate the energy efficiency, potential emission reductions and marginal abatement costs of energy-related CO 2 emissions in China. We employ a non-radial slacks-based data envelopment analysis (DEA) model for estimating the potential reductions and efficiency of CO 2 emissions for China. The dual model of the slacks-based DEA model is then used to estimate the marginal abatement costs of CO 2 emissions. An empirical study based on China’s panel data (2001–2010) is carried out and some policy implications are also discussed.

  12. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  13. Energy Provider: Delivered Energy Efficiency: A global stock-taking based on case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    In 2011 the IEA and the Regulatory Assistance Project (RAP) took on a work programme focused on the role of energy providers in delivering energy efficiency to end-users. This work was part of the IEA’s contribution to the PEPDEE Task Group, which falls under the umbrella of the International Partnership on Energy Efficiency Cooperation (IPEEC). In addition to organizing regional dialogues between governments, regulators, and energy providers, the PEPDEE work stream conducted global stock-takings of regulatory mechanisms adopted by governments to obligate or encourage energy providers to delivery energy savings and the energy savings activities of energy providers. For its part the IEA conducted a global review of energy provider-delivered energy savings programmes. The IEA reached out to energy providers to identify the energy savings activities they engaged in. Some 250 energy saving activities were considered, and 41 detailed case studies spanning 18 countries were developed. Geographic balance was a major consideration, and much effort was expended identifying energy provider-delivered energy savings case studies from around the world. Taken together these case studies represent over USD 1 billion in annual spending, or about 8% of estimated energy provider spending on energy efficiency.

  14. A method to identify energy efficiency measures for factory systems based on qualitative modeling

    CERN Document Server

    Krones, Manuela

    2017-01-01

    Manuela Krones develops a method that supports factory planners in generating energy-efficient planning solutions. The method provides qualitative description concepts for factory planning tasks and energy efficiency knowledge as well as an algorithm-based linkage between these measures and the respective planning tasks. Its application is guided by a procedure model which allows a general applicability in the manufacturing sector. The results contain energy efficiency measures that are suitable for a specific planning task and reveal the roles of various actors for the measures’ implementation. Contents Driving Concerns for and Barriers against Energy Efficiency Approaches to Increase Energy Efficiency in Factories Socio-Technical Description of Factory Planning Tasks Description of Energy Efficiency Measures Case Studies on Welding Processes and Logistics Systems Target Groups Lecturers and Students of Industrial Engineering, Production Engineering, Environmental Engineering, Mechanical Engineering Practi...

  15. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data

    International Nuclear Information System (INIS)

    Song, Ma-Lin; Zhang, Lin-Ling; Liu, Wei; Fisher, Ron

    2013-01-01

    Highlights: ► The BRICS’ economies have flourished with increasingly energy consumptions. ► The analyses and comparison of energy efficiency are conducted among the BRICS. ► As a whole, there is low energy efficiency but a growing trend of BRICS. ► The BRICS should adopt relevant energy policies based on their own conditions. - Abstract: As a representative of many emerging economies, BRICS’ economies have been greatly developed in recent years. Meanwhile, the proportion of energy consumption of BRICS to the whole world consumption has increased. Therefore, it is significant to analyze and compare the energy efficiency among them. This paper firstly utilizes a Super-SBM model to measure and calculate the energy efficiency of BRICS, then analyzes their present status and development trend. Further, Bootstrap is applied to modify the values based on DEA derived from small sample data, and finally the relationship between energy efficiency and carbon emissions is measured. Results show that energy efficiency of BRICS as a whole is low but has a quickly increasing trend. Also, the relationship between energy efficiency and carbon emissions vary from country to country because of their different energy structures. The governments of BRICS should make some relevant energy policies according to their own conditions

  16. Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure

    International Nuclear Information System (INIS)

    Cui, Qiang; Li, Ye; Yu, Chen-lu; Wei, Yi-Ming

    2016-01-01

    The fast growing Revenue Passenger Kilometers and the relatively lagged energy supply of aviation industry impels the airlines to improve energy efficiency. In this paper, we focus on evaluating and analyzing influencing factors for airline energy efficiency. Number of employees and aviation kerosene are chosen as the inputs. Revenue Ton Kilometers, Revenue Passenger Kilometers and total business income are the outputs. Capital stock is selected as the dynamic factor. A new model, Virtual Frontier Dynamic Slacks Based Measure, is proposed to calculate the energy efficiencies of 21 airlines from 2008 to 2012. We verify two important properties to manifest the advantages of the new model. Then a regression is run to analyze the influencing factors of airline energy efficiency. The main findings are: 1. The overall energy efficiency of Malaysia Airlines is the highest during 2008–2012.2. Per capita Gross Domestic Product, the average service age of fleet size and average haul distance have significant impacts on the efficiency score. 3. The difference between full-service carriers and low-cost carriers has no significant effects on airline energy efficiency. - Highlights: • A Virtual Frontier Dynamic Slacks Based Measure is developed. • 21 airlines' energy efficiencies are evaluated. • Malaysia Airlines has the highest overall energy efficiency. • Three explanatory variables have significant impacts.

  17. Energy Efficiency: An Experiential-Based Energy Unit for Youth Ages 13-18

    Science.gov (United States)

    Poorman, Myken D.; Webster, Nicole

    2010-01-01

    Not all 16 year olds can buy hybrid cars to help save gas emissions, but they can learn new, easy ways to save energy. Youth are more likely to develop a greater sense of positive impact on the environment if they learn easy and creative ways to use energy more efficiently at a young age. Through the use of practical applications, youth can begin…

  18. GDI based full adders for energy efficient arithmetic applications

    Directory of Open Access Journals (Sweden)

    Mohan Shoba

    2016-03-01

    Full Text Available Addition is a vital arithmetic operation and acts as a building block for synthesizing all other operations. A high-performance adder is one of the key components in the design of application specific integrated circuits. In this paper, three low power full adders are designed with full swing AND, OR and XOR gates to alleviate threshold voltage problem which is commonly encountered in Gate Diffusion Input (GDI logic. This problem usually does not allow the full adder circuits to operate without additional inverters. However, the three full adders are successfully realized using full swing gates with the significant improvement in their performance. The performance of the proposed designs is compared with the other full adder designs, namely CMOS, CPL, hybrid and GDI through SPICE simulations using 45 nm technology models. Simulation results reveal that proposed designs have lower energy consumption among all the conventional designs taken for comparison.

  19. Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure

    International Nuclear Information System (INIS)

    Xu, Xin; Cui, Qiang

    2017-01-01

    This paper focuses on evaluating airline energy efficiency, which is firstly divided into four stages: Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage. The new four-stage network structure of airline energy efficiency is a modification of existing models. A new approach, integrated with Network Epsilon-based Measure and Network Slacks-based Measure, is applied to assess the overall energy efficiency and divisional efficiency of 19 international airlines from 2008 to 2014. The influencing factors of airline energy efficiency are analyzed through the regression analysis. The results indicate the followings: 1. The integrated model can identify the benchmarking airlines in the overall system and stages. 2. Most airlines' energy efficiencies keep steady during the period, except for some sharply fluctuations. The efficiency decreases mainly centralized in the year 2008–2011, affected by the financial crisis in the USA. 3. The average age of fleet is positively correlated with the overall energy efficiency, and each divisional efficiency has different significant influencing factors. - Highlights: • An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure is developed. • 19 airlines' energy efficiencies are evaluated. • Garuda Indonesia has the highest overall energy efficiency.

  20. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs

    International Nuclear Information System (INIS)

    Shi, G.-M.; Bi Jun; Wang Jinnan

    2010-01-01

    Data envelopment analysis (DEA) has recently become a popular method in measuring energy efficiency at the macro-economy level. However, previous studies are limited in that they failed to consider the issues of undesirable outputs and minimisation of energy consumption. Thus, this study considers both factors in measuring Chinese industrial energy efficiency and investigates the maximum energy-saving potential in 28 administrative regions in China. The results show that industries in the east area have the best average energy efficiency for the period 2000-2006, followed by the central area. Further, after comparing the industrial energy overall efficiency, pure technical efficiency (IEPTE), and scale efficiency of the 28 administrative regions examined, the study finds that in most regions of this study, the two main reasons causing the wastage of a large amount of energy during the industrial production process are that the industrial structure of most regions still relies on the massive use of energy in order to support the industrial-based economy and the IEPTE is too low. Based on these findings, this paper correspondingly proposes some policies to improve regional industrial energy efficiency.

  1. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  2. Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.

    Science.gov (United States)

    Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia

    2015-04-09

    Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).

  3. Cross-Layer Cluster-Based Energy-Efficient Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aboobeker Sidhik Koyamparambil Mammu

    2015-04-01

    Full Text Available Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs. One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs and a cluster head (CH. The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH and hybrid energy-efficient distributed clustering (HEED.

  4. Economic and environmental impacts of community-based residential building energy efficiency investment

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Morrison, Drew; Hallinan, Kevin P.; Brecha, Robert J.

    2014-01-01

    A systematic framework for evaluating the local economic and environmental impacts of investment in building energy efficiency is developed. Historical residential building energy data, community-wide economic input–output data, and emission intensity data are utilized. The aim of this study is to show the comprehensive insights and connection among achieving variable target reductions for a residential building energy use, economic and environmental impacts. Central to this approach for the building energy reduction goal is the creation of individual energy models for each building based upon historical energy data and available building data. From these models, savings estimates and cost implications can be estimated for various conservation measures. A ‘worst to first’ (WF) energy efficient investment strategy is adopted to optimize the level of various direct, indirect, and induced economic impacts on the local community. This evaluation helps to illumine opportunities to establish specific energy reduction targets having greatest economic impact in the community. From an environmental perspective, short term economy-wide CO 2 emissions increase because of the increased community-wide economic activities spurred by the production and installation of energy efficiency measures, however the resulting energy savings provide continuous CO 2 reduction for various target savings. - Highlights: • WF energy efficient strategy helps to optimize various level of economic impacts. • Greatest community benefits are achieved from specific energy reduction targets. • Community-wide economic impacts vary for different energy conservation measures

  5. Energy Efficiency Experiments on Samsung Exynos 5 Heterogeneous Multicore using OmpSs Task Based Programming

    OpenAIRE

    Holmgren, Rune

    2015-01-01

    This thesis explore the energy efficiency of task based programming with OpenMP SuperScalar (OmpSs) on the heterogeneous Samsung Exynos 5422 system on a chip. The system features small energy efficient cores, large high performance cores and a GPGPU, and OmpSs tasks were run on all three different processors. Experiments running a genetic algorithm and a Cholesky decomposition were used to gather results. The option of running applications on the energy efficient cores, on the high perfo...

  6. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  7. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    Science.gov (United States)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  8. Energy efficiency of a photovoltaic cell based thin films CZTS by ...

    African Journals Online (AJOL)

    Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. ... use of natural resources, the use of renewable energy including solar photovoltaic ... η for typical structures of ZnO / i- ZnO / CdS / CZTS and ITO / ZnO / CdS / CZTS.

  9. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  10. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    Directory of Open Access Journals (Sweden)

    Srinivas Kanakala

    2014-01-01

    Full Text Available In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing protocol to further reduce the energy consumption. The proposed energy-efficient coding-aware cluster based routing protocol (ECCRP scheme applies network coding at cluster heads to reduce number of transmissions. We also modify the queue management procedure of COPE protocol to further improve coding opportunities. We also use an energy efficient scheme while selecting the cluster head. It helps to increase the life time of the network. We evaluate the performance of proposed energy efficient cluster based protocol using simulation. Simulation results show that the proposed ECCRP algorithm reduces energy consumption and increases life time of the network.

  11. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Aye, Goodness C.; Barros, Carlos Pestana; Gupta, Rangan; Wanke, Peter

    2015-01-01

    This paper presents an efficiency assessment of selected OECD countries using a Slacks Based Model with undesirable or bad outputs (SBM-Undesirable). In this research, SBM-Undesirable is used first in a two-stage approach to assess the relative efficiency of OECD countries using the most frequent indicators adopted by the literature on energy efficiency. Besides, in the second stage, GLMM–MCMC methods are combined with SBM-Undesirable results as part of an attempt to produce a model for energy performance with effective predictive ability. The results reveal different impacts of contextual variables, such as economic blocks and capital–labor ratio, on energy efficiency levels. - Highlights: • We analyze the energy efficiency of selected OECD countries. • SBM-Undesirable and MCMC–GLMM are combined for this purpose. • Find that efficiency levels are high but declining over time. • Analysis with contextual variables shows varying efficiency levels across groups. • Capital-intensive countries are more energy efficient than labor-intensive countries.

  12. Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schleich, Joachim; Ravivanpong, Ployplearn

    2012-01-01

    This paper empirically investigates factors driving the adoption of energy-efficiency measures by small and medium-sized enterprises (SMEs). Our analyses are based on cross-sectional data from SMEs which participated in a German energy audit program between 2008 and 2010. In general, our findings appear robust to alternative model specifications and are consistent with the theoretical and still scarce empirical literature on barriers to energy-efficiency in SMEs. More specifically, high investment costs, which are captured by subjective and objective proxies, appear to impede the adoption of energy-efficiency measures, even if these measures are deemed profitable. Similarly, we find that lack of capital slows the adoption of energy-efficiency measures, primarily for larger investments. Hence, investment subsidies or soft loans (for larger investments) may help accelerating the diffusion of energy-efficiency measures in SMEs. Other barriers were not found to be statistically significant. Finally, our findings provide evidence that the quality of energy audits affects the adoption of energy-efficiency measures. Hence, effective regulation should involve quality standards for energy audits, templates for audit reports or mandatory monitoring of energy audits. - Highlights: ► We empirically analyze barriers to the adoption of energy-efficiency measures in SMEs. ► We focus on firms participating in the German energy audit program for SMEs. ► The program overcomes information related barriers. ► High investment costs still impede the adoption even for profitable measures. ► Low audit quality also impedes the adoption of profitable measures.

  13. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    OpenAIRE

    Srinivas Kanakala; Venugopal Reddy Ananthula; Prashanthi Vempaty

    2014-01-01

    In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing proto...

  14. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  15. Energy efficiency in Germany 2000. Analysis based on the ODYSSEE database from the SAVE project 'Cross-country comparison on energy efficiency indicators'. Final report

    International Nuclear Information System (INIS)

    Eichhammer, W.; Schlomann, B.

    2001-02-01

    The German national report for the SAVE project 'Cross-country Comparison on Energy Efficiency Indicators' represents the recent energy efficiency trends in Germany based on the indicators extracted from the ODYSSEE database. For the second time, the 2000 country report only includes the development of energy consumption and efficiency in Germany after the unification, i.e. for the period 1991 to 1999. The year 1990 unfortunately could not be considered because most of the economic and energy consumption data for Germany (especially the revised National Accounts) are only available since 1991. The results for Western Germany since 1970 are described in the former country reports (Eichhammer et al., 1998). The report starts with a review on data collection and the recent trends in the general context of energy efficiency, i.e. economic and energy consumption development, energy and environmental policy and energy price trends. Afterwards, the energy efficiency trends are described both at the level of the whole economy (Chapter 3) and at sectoral level (Chapter 4 to 8). (orig.)

  16. Energy efficient ventilation based on demand humidity control. Demonstration project with 49 apartments in Soenderborg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The aim of the project is to demonstrate how the overall energy consumption in apartment buildings can be reduced through a combination of: 1) Energy efficient ventilation based on demand humidity control; 2) Energy efficient design of the building shell including passive solar and seasonally flexible sunspaces; 3) Use of low temperature heating system. The 3 blocks in the project, each with 16 apartments, are furnished with 3 different ventilation systems: 1) Standard exhaust system according to building codes; 2) Ventilation system with humidity control. Each room is furnished with an air inlet valve controlled by a processor, which monitors the humidity; 3) Standard ventilation system with heat recovery. (au)

  17. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  18. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  19. Energy Efficient Multiresource Allocation of Virtual Machine Based on PSO in Cloud Data Center

    Directory of Open Access Journals (Sweden)

    An-ping Xiong

    2014-01-01

    Full Text Available Presently, massive energy consumption in cloud data center tends to be an escalating threat to the environment. To reduce energy consumption in cloud data center, an energy efficient virtual machine allocation algorithm is proposed in this paper based on a proposed energy efficient multiresource allocation model and the particle swarm optimization (PSO method. In this algorithm, the fitness function of PSO is defined as the total Euclidean distance to determine the optimal point between resource utilization and energy consumption. This algorithm can avoid falling into local optima which is common in traditional heuristic algorithms. Compared to traditional heuristic algorithms MBFD and MBFH, our algorithm shows significantly energy savings in cloud data center and also makes the utilization of system resources reasonable at the same time.

  20. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  1. Measurement and decomposition of energy efficiency of Northeast China-based on super efficiency DEA model and Malmquist index.

    Science.gov (United States)

    Ma, Xiaojun; Liu, Yan; Wei, Xiaoxue; Li, Yifan; Zheng, Mengchen; Li, Yudong; Cheng, Chaochao; Wu, Yumei; Liu, Zhaonan; Yu, Yuanbo

    2017-08-01

    Nowadays, environment problem has become the international hot issue. Experts and scholars pay more and more attention to the energy efficiency. Unlike most studies, which analyze the changes of TFEE in inter-provincial or regional cities, TFEE is calculated with the ratio of target energy value and actual energy input based on data in cities of prefecture levels, which would be more accurate. Many researches regard TFP as TFEE to do analysis from the provincial perspective. This paper is intended to calculate more reliably by super efficiency DEA, observe the changes of TFEE, and analyze its relation with TFP, and it proves that TFP is not equal to TFEE. Additionally, the internal influences of the TFEE are obtained via the Malmquist index decomposition. The external influences of the TFFE are analyzed afterward based on the Tobit models. Analysis results demonstrate that Heilongjiang has the highest TFEE followed by Jilin, and Liaoning has the lowest TFEE. Eventually, some policy suggestions are proposed for the influences of energy efficiency and study results.

  2. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  3. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  4. Development of a Framework for a Lean based Water and Energy Efficiency Assessment Tool

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2015-07-01

    Full Text Available The manufacturing industry of South Africa is the sector consuming the largest portion of the total energy consumption and second largest portion of total water consumption per annum nationally. With a significant increase in electrical energy cost in recent years, together with the reserve energy margin dropping below the minimum level required for sustainable operation of energy utilities, energy efficiency improvement is becoming imperative for organisational success as well as national economical sustainability. This paper explores selected Lean manufacturing principles and its positive effect on energy and water efficiency. Although the implementation of Lean manufacturing techniques naturally leads to the improvement of energy and water intensity, the author believes that there is even greater potential in the development of a Lean based tool which will specifically focus on the improvement of energy and water efficiency. For this purpose the value stream mapping tool was chosen as the foundation. This paper continues to explain the process undergone to develop standardised energy and water specific waste categories to be used in conjunction with the traditional Lean wastes. The study concludes by detailing the development of the tool, together with its framework for implementation and a brief discussion on the forecasting model incorporated.

  5. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  6. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  7. A Hybrid Node Scheduling Approach Based on Energy Efficient Chain Routing for WSN

    Directory of Open Access Journals (Sweden)

    Yimei Kang

    2014-04-01

    Full Text Available Energy efficiency is usually a significant goal in wireless sensor networks (WSNs. In this work, an energy efficient chain (EEC data routing approach is first presented. The coverage and connectivity of WSNs are discussed based on EEC. A hybrid node scheduling approach is then proposed. It includes sleep scheduling for cyclically monitoring regions of interest in time-driven modes and wakeup scheduling for tracking emergency events in event-driven modes. A failure rate is introduced to the sleep scheduling to improve the reliability of the system. A wakeup sensor threshold and a sleep time threshold are introduced in the wakeup scheduling to reduce the consumption of energy to the possible extent. The results of the simulation show that the proposed algorithm can extend the effective lifetime of the network to twice that of PEAS. In addition, the proposed methods are computing efficient because they are very simple to implement.

  8. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...

  9. gTBS: A green Task-Based Sensing for energy efficient Wireless Sensor Networks

    KAUST Repository

    Al-Halafi, Abdullah

    2016-09-08

    Wireless sensor networks (WSN) are widely used to sense and measure physical conditions for different purposes and within different regions. However due to the limited lifetime of the sensor\\'s energy source, many efforts are made to design energy efficient WSN. As a result, many techniques were presented in the literature such as power adaptation, sleep and wake-up, and scheduling in order to enhance WSN lifetime. These techniques where presented separately and shown to achieve some gain in terms of energy efficiency. In this paper, we present an energy efficient cross layer design for WSN that we named \\'green Task-Based Sensing\\' (gTBS) scheme. The gTBS design is a task based sensing scheme that not only prevents wasting power in unnecessary signaling, but also utilizes several techniques for achieving reliable and energy efficient WSN. The proposed gTBS combines the power adaptation with a sleep and wake-up technique that allows inactive nodes to sleep. Also, it adopts a gradient-oriented unicast approach to overcome the synchronization problem, minimize network traffic hurdles, and significantly reduce the overall power consumption of the network. We implement the gTBS on a testbed and we show that it reduces the power consumption by a factor of 20%-55% compared to traditional TBS. It also reduces the delay by 54%-145% and improves the delivery ratio by 24%-73%. © 2016 IEEE.

  10. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  11. Wireless-Uplinks-Based Energy-Efficient Scheduling in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available Mobile cloud computing (MCC combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs. In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of energy-efficient scheduling for wireless uplink in MCC. By introducing Lyapunov optimization, we first propose a scheduling algorithm that can dynamically choose channel to transmit data based on queue backlog and channel statistics. Then, we show that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in a channel-aware MCC system. Simulation results show that the proposed scheduling algorithm can reduce the time average energy consumption for offloading compared to the existing algorithm.

  12. Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex.

    Science.gov (United States)

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Bin, Zhengyang; Zhang, Deqiang; Duan, Lian

    2016-02-17

    Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Förster energy transfer from the interface exciplex. A bipolar host, (3'-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1'-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. Moreover, a highest EQE of 27% was obtained at the dopant concentration as low as 3 wt % for a device with interface exciplex, which is favorable for reducing the cost of fabrication. We believe that our work may shed light on future development of ideal OLEDs with high efficiency, long-lifetime, low roll-off and low cost simultaneously.

  13. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  14. Setting up GHG-based energy efficiency targets in buildings: The Ecolabel

    International Nuclear Information System (INIS)

    José Vinagre Díaz, Juan; Richard Wilby, Mark; Belén Rodríguez González, Ana

    2013-01-01

    The European Union has recently updated the regulations for energy performance of buildings and on the certification of energy-related products. The world is in the process of constructing policy frameworks to underwrite carbon emission reduction targets, best exemplified by the Kyoto Protocol. This requires complex technical and economical concepts to be presented in an understandable, transparent, and justifiable format. A building's energy efficiency was traditionally determined based on its annual consumption relative to some average performance level. Emissions are calculated as a derivative of consumptions and their aggregated values allow verification of the level of fulfillment of the objectives. Here we take a different approach: considering that the greenhouse gas emissions (GHG) objectives must be achieved; hence, we fix the efficiency standard based on emissions objectives, and then derive the corresponding reference values of consumption. Accordingly, we propose a certification scheme for energy efficiency in buildings based on targets of GHG emissions levels. This proposed framework includes both a label, namely the Ecolabel, and a fiche showing a set of indices and complementary information. The Ecolabel is designed to provide a flexible, evolvable, simple to use at the point of application, and transparent framework. - Highlights: • In this paper we consider the interaction between greenhouse gas emission reduction targets and building energy efficiency. • Specifically we propose an ‘‘Ecolabel” for buildings that is a GHG emissions liability index, which forms a labeling process. • The label follows the Kyoto Protocol philosophy and translates national GHG targets to targets for each and every building. • The approach provides both a new form of efficiency rating on which emissions reduction policy can be based

  15. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  16. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  17. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Directory of Open Access Journals (Sweden)

    Milad Bagherian Khosroshahy

    Full Text Available Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts. Keywords: Quantum-dot cellular automata (QCA, Majority gate, Random access memory (RAM, Energy efficiency

  18. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  19. A Comfort-Aware Energy Efficient HVAC System Based on the Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    O. Tsakiridis

    2016-01-01

    Full Text Available A proactive heating method is presented aiming at reducing the energy consumption in a HVAC system while maintaining the thermal comfort of the occupants. The proposed technique fuses time predictions for the zones’ temperatures, based on a deterministic subspace identification method, and zones’ occupancy predictions, based on a mobility model, in a decision scheme that is capable of regulating the balance between the total energy consumed and the total discomfort cost. Simulation results for various occupation-mobility models demonstrate the efficiency of the proposed technique.

  20. Dual-Level Game-Based Energy Efficiency and Fairness for Green Cellular Networks

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2016-01-01

    Full Text Available In the recent decades, cellular networks have revolutionized the way of next generation communication networks. However, due to the global climate change, reducing the energy consumption of cellular infrastructures is an important and urgent problem. In this study, we propose a novel two-level cooperative game framework for improving the energy efficiency and fairness in cellular networks. For the energy efficiency, base stations (BSs constantly monitor the current traffic load and cooperate with each other to maximize the energy saving. For the energy fairness, renewable energy can be shared dynamically while ensuring the fairness among BSs. To achieve an excellent cellular network performance, the concepts of the Raiffa Bargaining Solution and Jain’s fairness are extended and practically applied to our dual-level cooperative game model. Through system level simulations, the proposed scheme is evaluated and compared with other existing schemes. The simulation results show that our two-level game approach outperforms the existing schemes in providing a better fair-efficient system performance.

  1. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  2. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  3. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2011-01-01

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  4. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  5. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  6. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  7. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    Directory of Open Access Journals (Sweden)

    Kan Luo

    2018-01-01

    Full Text Available Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS- based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM, block sparse Bayesian learning (BSBL method, and discrete cosine transform (DCT basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  8. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    Science.gov (United States)

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  9. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  10. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shelly Salim

    2016-06-01

    Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  11. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  12. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  13. HSTL IO Standard Based Energy Efficient Multiplier Design using Nikhilam Navatashcaramam Dashatah on 28nm FPGA

    DEFF Research Database (Denmark)

    Madhok, Shivani; Pandey, Bishwajeet; Kaur, Amanpreet

    2015-01-01

    standards. Frequency scaling is one of the best energy efficient techniques for FPGA based VLSI design and is used in this paper. At the end we can conclude that we can conclude that there is 23-40% saving of total power dissipation by using SSTL IO standard at 25 degree Celsius. The main reason for power...... consumption is leakage power at different IO Standards and at different frequencies. In this research work only FPGA work has been performed not ultra scale FPGA....

  14. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  15. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  16. Energy efficiency assessment methods and tools evaluation. Bolling Air Force Base. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    McMordie, K.L.; Richman, E.E.; Keller, J.M.; Dixon, D.R.

    1995-05-01

    The goal of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools, software, and procedures used to identify and evaluate energy-efficiency technologies and improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy use efficiency. To assist in procurement of energy-efficiency measures, FEMP helps federal agencies devise and implement performance contracting and utility demand-side management strategies. Pacific Northwest Laboratory (PNL) supports the FEMP mission of energy systems modernization. Under this charter, the Laboratory and its contractors work with federal facility energy managers to assess and implement energy-efficiency improvements at federal facilities nationwide.

  17. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  18. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  19. Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation

    Science.gov (United States)

    Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah

    2018-03-01

    To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.

  20. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  1. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  2. Graphene Based Ultra-Capacitors for Safer, More Efficient Energy Storage

    Science.gov (United States)

    Roberson, Luke B.; Mackey, Paul J.; Zide, Carson J.

    2016-01-01

    Current power storage methods must be continuously improved in order to keep up with the increasingly competitive electronics industry. This technological advancement is also essential for the continuation of deep space exploration. Today's energy storage industry relies heavily on the use of dangerous and corrosive chemicals such as lithium and phosphoric acid. These chemicals can prove hazardous to the user if the device is ruptured. Similarly they can damage the environment if they are disposed of improperly. A safer, more efficient alternative is needed across a wide range of NASA missions. One solution would a solid-state carbon based energy storage device. Carbon is a safer, less environmentally hazardous alternative to current energy storage materials. Using the amorphous carbon nanostructure, graphene, this idea of a safer portable energy is possible. Graphene was electrochemically produced in the lab and several coin cell devices were built this summer to create a working prototype of a solid-state graphene battery.

  3. Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach

    International Nuclear Information System (INIS)

    Zhang, Chuan; Romagnoli, Alessandro; Zhou, Li; Kraft, Markus

    2017-01-01

    Highlights: •An intelligent energy management system for Eco-Industrial Park (EIP) is proposed. •An explicit domain ontology for EIP energy management is designed. •Ontology-based approach can increase knowledge interoperability within EIP. •Ontology-based approach can allow self-optimization without human intervention in EIP. •The proposed system harbours huge potential in the future scenario of Internet of Things. -- Abstract: An ontology-based approach for Eco-Industrial Park (EIP) knowledge management is proposed in this paper. The designed ontology in this study is formalized conceptualization of EIP. Based on such an ontological representation, a Knowledge-Based System (KBS) for EIP energy management named J-Park Simulator (JPS) is developed. By applying JPS to the solution of EIP waste heat utilization problem, the results of this study show that ontology is a powerful tool for knowledge management of complex systems such as EIP. The ontology-based approach can increase knowledge interoperability between different companies in EIP. The ontology-based approach can also allow intelligent decision making by using disparate data from remote databases, which implies the possibility of self-optimization without human intervention scenario of Internet of Things (IoT). It is shown through this study that KBS can bridge the communication gaps between different companies in EIP, sequentially more potential Industrial Symbiosis (IS) links can be established to improve the overall energy efficiency of the whole EIP.

  4. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  5. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  6. Development of Energy Efficiency Design Map based on acoustic resonance frequency of suction muffler in compressor

    International Nuclear Information System (INIS)

    Oh, Seungjae; Wang, Semyung; Cho, Sungman

    2015-01-01

    Highlights: • Development of Energy Efficiency Design Map. • Experimental validation of Energy Efficiency Design Map. • Suggestion regarding the Acoustically Supercharged Energy Efficiency. • Sensitivity analysis of the Energy Efficiency Ratio with respect to acoustic pressure. • Suggestion regarding the hybrid coupling method for acoustic analysis in compressor. - Abstract: The volumetric efficiency of the Internal Combustion (IC) engine and compressor can be increased by properly adjusting the acoustic resonance frequency of the suction muffler or the suction valve timing without any additional equipment or power source. This effect is known as acoustic supercharging. However, the energy efficiency has become more important than the volumetric efficiency because of the energy shortage issue and factors influencing consumers’ purchasing decisions. Therefore, methods for increasing the energy efficiency using the acoustic effect in the suction part of IC engine and compressor should be considered. In this study, a systematic method for improving the energy efficiency using the acoustic effect in the suction part of the compressor used in refrigerators and air conditioners was developed for the first time. This effect is named as the Acoustically Supercharged Energy Efficiency (ASEE). For the ASEE, first, a hybrid coupling method was suggested for the acoustical analysis in the suction part of the compressor. Next, an Energy Efficiency Design Map (EEDM) was proposed. This can serve as a design guide for suction mufflers in terms of the energy efficiency. Finally, sensitivity analyses of the Energy Efficiency Ratio (EER) and total massflow rate with respect to the acoustic pressure were conducted to identify the relationship between the acoustic pressure and the suction valve motion. This provides the physical background for the EEDM

  7. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  8. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  9. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Science.gov (United States)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  10. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  11. SmartCell: An Energy Efficient Coarse-Grained Reconfigurable Architecture for Stream-Based Applications

    Directory of Open Access Journals (Sweden)

    Liang Cao

    2009-01-01

    Full Text Available This paper presents SmartCell, a novel coarse-grained reconfigurable architecture, which tiles a large number of processor elements with reconfigurable interconnection fabrics on a single chip. SmartCell is able to provide high performance and energy efficient processing for stream-based applications. It can be configured to operate in various modes, such as SIMD, MIMD, and systolic array. This paper describes the SmartCell architecture design, including processing element, reconfigurable interconnection fabrics, instruction and control process, and configuration scheme. The SmartCell prototype with 64 PEs is implemented using 0.13  m CMOS standard cell technology. The core area is about 8.5  , and the power consumption is about 1.6 mW/MHz. The performance is evaluated through a set of benchmark applications, and then compared with FPGA, ASIC, and two well-known reconfigurable architectures including RaPiD and Montium. The results show that the SmartCell can bridge the performance and flexibility gap between ASIC and FPGA. It is also about 8% and 69% more energy efficient than Montium and RaPiD systems for evaluated benchmarks. Meanwhile, SmartCell can achieve 4 and 2 times more throughput gains when comparing with Montium and RaPiD, respectively. It is concluded that SmartCell system is a promising reconfigurable and energy efficient architecture for stream processing.

  12. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  13. Energy efficiency of growing ram lambs fed concentrate-based diets with different roughage sources.

    Science.gov (United States)

    Galvani, D B; Pires, A V; Susin, I; Gouvêa, V N; Berndt, A; Chagas, L J; Dórea, J R R; Abdalla, A L; Tedeschi, L O

    2014-01-01

    Poor-quality roughages are widely used as fiber sources in concentrate-based diets for ruminants. Because roughage quality is associated with the efficiency of energy use in forage-based diets, the objective of this study was to determine whether differing the roughage source in concentrate-based diets could change the energy requirements of growing lambs. Eighty-four 1/2 Dorper × 1/2 Santa Inês ram lambs (18.0 ± 3.3 kg BW) were individually penned and divided into 2 groups according to primary source of dietary roughage: low-quality roughage (LQR; sugarcane bagasse) or medium-quality roughage (MQR; coastcross hay). Diets were formulated to be isonitrogenous (2.6% N) and to meet 20% of physically effective NDF. After a 10-d ad libitum adaptation period, 7 lambs from each group were randomly selected and slaughtered (baseline). Twenty-one lambs in each diet group were fed ad libitum and slaughtered at 25, 35, or 45 kg BW. The remaining 28 lambs (14 from each diet group) were submitted to 1 of 2 levels of feed restriction: 70% or 50% of the ad libitum intake. Retentions of body fat, N, and energy were determined. Additionally, 6 ram lambs (44.3 ± 5.6 kg BW) were kept in metabolic cages and used in a 6 × 6 Latin square experiment designed to establish the ME content of the 2 diets at the 3 levels of DM intake. There was no effect of intake level on diet ME content, but it was greater in the diet with LQR than in the diet with MQR (3.18 vs. 2.94 Mcal/kg, respectively; P energy concentrations (kcal/kg of empty BW) because of a larger visceral fat deposition (P source of forage in a concentrate-based diet for growing lambs did not change NEm and the efficiency of ME use for maintenance, which averaged 71.6 kcal/kg(0.75) of shrunk BW and 0.63, respectively. On the other hand, the greater nonfibrous carbohydrate content of the diet with LQR resulted in a 17% better efficiency of ME use for gain (P energy retention as fat (P < 0.01). This increased nutritional

  14. Counter-Based Broadcast Scheme Considering Reachability, Network Density, and Energy Efficiency for Wireless Sensor Networks.

    Science.gov (United States)

    Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun

    2018-01-04

    A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.

  15. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  16. Study on route division for ship energy efficiency optimization based on big environment data

    NARCIS (Netherlands)

    Wang, K.; Yan, Xinping; Yuan, Yupeng; Jiang, X.; Lodewijks, G.; Negenborn, R.R.; Ma, Weiming

    2017-01-01

    In the case of the global energy crisis and the higher sound of energy saving and emission reduction, how to take effective management measures of ship energy efficiency to achieve the goal of energy saving and emission reduction, put forward a new challenge for the development of shipping

  17. An Energy-Efficient Cluster-Based Vehicle Detection on Road Network Using Intention Numeration Method

    Directory of Open Access Journals (Sweden)

    Deepa Devasenapathy

    2015-01-01

    Full Text Available The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  18. An energy-efficient cluster-based vehicle detection on road network using intention numeration method.

    Science.gov (United States)

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  19. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Low-temperature drying is important for heat-sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The

  1. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Science.gov (United States)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  2. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Science.gov (United States)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  3. CONCEPTUAL BASES OF THE ENERGY EFFICIENT SYSTEM OF MANAGEMENT OF COMBINED UNITS OF WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Shtepa

    2016-01-01

    Full Text Available A critical analysis of the shortcomings of the existing water purification systems is conducted. In order to ensure environmental safety and energy savings it is proposed to use the combined units, including physical, chemical, physical-and-chemical and biological methods. The attention is driven to the fact that the most effective way to maintain current water purification is an adaptive control system. The shortcomings of the management of water treatment units were revealed and it was proposed to produce their synthesis based on the mathematical apparatus of artificial intelligence systems. Taking into account the requirements of the environmental safety and the need in the energy savings, the energy efficiency criteria of combined system functioning has been developed. At an industrial plant (slaughterhouse wastewater treatment the compliance of the production conditions of the criterion has been undertaken that confirmed the criterion relevance and usefulness as applied to the synthesis of energy-efficient control systems. A synthetic control system combined the water treatment plants. Having based on the preliminary research and analysis of the current work in the subject area the architecture of a control system of combined water treatment units that use intelligent technology was developed. The key functional of the unit – information-analytical subsystem of the formation control actions including: multilayer perceptrons self-organization Kohonen network, fuzzy cognitive map. The basic difference between the developed design and its analogues is the ability to adjust the settings of equipment adaptively on the basis of processing sensor data, information on the price of consumables, volley discharges of pollutants, a sudden change in the flow and other force majeure. Adjustment of the parameters of the control system is carried out with the use of experimental and analytical data stored in the knowledge base of technological

  4. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    Science.gov (United States)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  5. Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Sascha Desmettre

    2016-10-01

    Full Text Available Risk analysis and management currently have a strong presence in financial institutions, where high performance and energy efficiency are key requirements for acceleration systems, especially when it comes to intraday analysis. In this regard, we approach the estimation of the widely-employed portfolio risk metrics value-at-risk (VaR and conditional value-at-risk (cVaR by means of nested Monte Carlo (MC simulations. We do so by combining theory and software/hardware implementation. This allows us for the first time to investigate their performance on heterogeneous compute systems and across different compute platforms, namely central processing unit (CPU, many integrated core (MIC architecture XeonPhi, graphics processing unit (GPU, and field-programmable gate array (FPGA. To this end, the OpenCL framework is employed to generate portable code, and the size of the simulations is scaled in order to evaluate variations in performance. Furthermore, we assess different parallelization schemes, and the targeted platforms are evaluated and compared in terms of runtime and energy efficiency. Our implementation also allowed us to derive a new algorithmic optimization regarding the generation of the required random number sequences. Moreover, we provide specific guidelines on how to properly handle these sequences in portable code, and on how to efficiently implement nested MC-based VaR and cVaR simulations on heterogeneous compute systems.

  6. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  7. Model-based and model-free “plug-and-play” building energy efficient control

    International Nuclear Information System (INIS)

    Baldi, Simone; Michailidis, Iakovos; Ravanis, Christos; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • “Plug-and-play” Building Optimization and Control (BOC) driven by building data. • Ability to handle the large-scale and complex nature of the BOC problem. • Adaptation to learn the optimal BOC policy when no building model is available. • Comparisons with rule-based and advanced BOC strategies. • Simulation and real-life experiments in a ten-office building. - Abstract: Considerable research efforts in Building Optimization and Control (BOC) have been directed toward the development of “plug-and-play” BOC systems that can achieve energy efficiency without compromising thermal comfort and without the need of qualified personnel engaged in a tedious and time-consuming manual fine-tuning phase. In this paper, we report on how a recently introduced Parametrized Cognitive Adaptive Optimization – abbreviated as PCAO – can be used toward the design of both model-based and model-free “plug-and-play” BOC systems, with minimum human effort required to accomplish the design. In the model-based case, PCAO assesses the performance of its control strategy via a simulation model of the building dynamics; in the model-free case, PCAO optimizes its control strategy without relying on any model of the building dynamics. Extensive simulation and real-life experiments performed on a 10-office building demonstrate the effectiveness of the PCAO–BOC system in providing significant energy efficiency and improved thermal comfort. The mechanisms embedded within PCAO render it capable of automatically and quickly learning an efficient BOC strategy either in the presence of complex nonlinear simulation models of the building dynamics (model-based) or when no model for the building dynamics is available (model-free). Comparative studies with alternative state-of-the-art BOC systems show the effectiveness of the PCAO–BOC solution

  8. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-05-01

    Full Text Available Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k-means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  9. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Osama Moh’d Alia

    2014-01-01

    Full Text Available Energy conservation in wireless sensor networks (WSNs is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network’s lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  10. A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.

    Science.gov (United States)

    Alia, Osama Moh'd

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  11. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060

  12. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Li, Zhenjia; Li, Shuyuan; Lin, Shouying

    2017-05-04

    Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k -means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  13. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.

  14. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Science.gov (United States)

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  15. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  16. An Energy-Efficient Virtualization-Based Secure Platform for Protecting Sensitive User Data

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Lim

    2017-07-01

    Full Text Available Currently, the exchange cycles of various computers, smartphones, tablets, and others have become shorter, because new high-performance devices continue to roll out rapidly. However, existing legacy devices are not old-fashioned or obsolete to use. From the perspective of sustainable information technology (IT, energy-efficient virtualization can apply a way to increase reusability for special customized devices and enhance the security of existing legacy devices. It means that the virtualization can customize a specially designed purpose using the guest domain from obsolete devices. Thus, this could be a computing scheme that keeps energy supplies and demands in balance for future sustainable IT. Moreover, energy-efficient virtualization can be the long-term and self-sustainable solution such as cloud computing, big data and so forth. By separating the domain of the host device based on virtualization, the guest OS on the segmented domain can be used as a Trusted Execution Environment to perform security features. In this paper, we introduce a secure platform to protect sensitive user data by domain isolation utilizing virtualization. The sensitive user data on our secure platform can protect against the infringement of personal information by malicious attacks. This study is an effective solution in terms of sustainability by recycling them for special purposes or enhancing the security of existing devices.

  17. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    Science.gov (United States)

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  18. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  19. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  20. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  1. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  2. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  3. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  4. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  5. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  6. An Energy Efficient Stable Election-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weiwei Yuan

    2013-10-01

    Full Text Available Sensor nodes usually have limited energy supply and they are impractical to recharge. How to balance traffic load in sensors in order to increase network lifetime is a very challenging research issue. Many clustering algorithms have been proposed recently for wireless sensor networks (WSNs. However, sensor networks with one fixed sink node often suffer from a hot spots problem since nodes near sinks have more traffic burden to forward during a multi-hop transmission process. The use of mobile sinks has been shown to be an effective technique to enhance network performance features such as latency, energy efficiency, network lifetime, etc. In this paper, a modified Stable Election Protocol (SEP, which employs a mobile sink, has been proposed for WSNs with non-uniform node distribution. The decision of selecting cluster heads by the sink is based on the minimization of the associated additional energy and residual energy at each node. Besides, the cluster head selects the shortest path to reach the sink between the direct approach and the indirect approach with the use of the nearest cluster head. Simulation results demonstrate that our algorithm has better performance than traditional routing algorithms, such as LEACH and SEP.

  7. Technical efficiency of economic systems of EU-15 countries based on energy consumption

    International Nuclear Information System (INIS)

    Bampatsou, Christina; Papadopoulos, Savas; Zervas, Efthimios

    2013-01-01

    In the present study, Data Envelopment Analysis is used to determine the Technical Efficiency index of EU-15 countries from 1980 to 2008, using cross-country comparison. Technical Efficiency index represents the capacity of an economy to produce a higher level of Gross Domestic Product for a given level of total energy input. The level of the Technical Efficiency index is determined from the energy mix (fossil fuels, non-fossil fuels, nuclear energy) of each country and depends on the maximization level of the production of the Gross Domestic Product of the economic system, without waste of energy resources. The current study is applied in the case of the EU15 countries. Its scope is to highlight the differentiations of country classifications before and after the integration of nuclear energy in the energy mix of each country. The main result is that the integration of nuclear energy as an additional input in the energy mixture affects negatively the Technical Efficiency of countries. Also, when an economy achieves a decrease of the energy consumption produced from fossil fuels, and a better exploitation of renewable energy sources, clearly improves its capacity to produce more output with the given levels of inputs. - Highlights: ► Technical efficiency index of EU-15 countries is determined through the DEA method. ► Level of the TE index is determined from the energy mix used in each country. ► TE level depends on the maximization level of GDP without waste of energy resources. ► Capacity of an economy to produce more GDP for a given energy input is determined. ► TE differentiation before and after the integration of nuclear energy is performed

  8. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  9. New concept of electrical drives for paper and board machines based on energy efficiency principles

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2006-01-01

    Full Text Available In this paper, it is described how the reconstruction of the facility of paper machine has been conducted, at the press and drying part of the machine in June 2001, as well as the expansion of the Paper Machine with the "third coating" introducing, that has been done in July 2002, in the board factory "Umka". The existing old drive of the press and the drive of drying groups were established as a Line Shaft Drive, 76 m long. The novel drive is developed on the basis of conventional squirrel cage induction motor application, with frequency converter. The system control is carried out with the programmable controller, and the communication between controllers, converters, and control boards is accomplished trough profibus. Reconstruction of the coating part of the machine, during technological reconstruction of this part of the machine, was being conducted with a purpose to improve performance of the machine by adding device for spreading "third coating". The demands for the power facility were to replace existing facility with the new one, based on energy efficiency principles and to provide adequate facility for new technological sections. Also, new part of the facility had to be connected with the remaining part of the machine, i.e. with the press and drying part, which have been reconstructed in 2001. It has to be stressed that energy efficiency principles means to realize new, modernized drive with better performances and greater capacity for the as small as possible amount of increased installed power of separate drives. In the paper are also, graphically presented achieved energy savings results, based on measurements performed on separate parts of paper machine, before and after reconstruction. .

  10. LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Vishal Sharma

    2018-03-01

    Full Text Available Urban networks aim at facilitating users for better experience and services through smart platforms such as the Intelligent Transportation System (ITS. ITS focuses on information acquisition, sensing, contrivance control, data processing and forwarding to ground devices via user-specific application-interfaces. The utility of ITS is further improved via the Internet of Things (IoT, which supports “Connectivity to All”. One of the key applications of IoT-ITS is urban surveillance. Current surveillance in IoT-ITS is performed via fixed infrastructure-based sensing applications which consume an excessive amount of energy leading to several overheads and failures in the network. Such issues can be overcome by the utilization of on-demand nodes, such as drones, etc. However, drones-assisted surveillance requires efficient communication setup as drones are battery operated and any extemporaneous maneuver during monitoring may result in loss of drone or complete failure of the network. The novelty in terms of network layout can be procured by the utilization of drones with LoRaWAN, which is the protocol designated for Low-Power Wide Area Networks (LPWAN. However, even this architectural novelty alone cannot ascertain the formation of fail-safe, highly resilient, low-overhead, and non-redundant network, which is additionally the problem considered in this paper. To resolve such problem, this paper uses drones as LoRaWAN gateway and proposes a communication strategy based on the area stress, resilient factor, and energy consumption that avail in the efficient localization, improved coverage and energy-efficient surveillance with lower overheads, lower redundancy, and almost zero-isolations. The proposed approach is numerically simulated and the results show that the proposed approach can conserve a maximum of 39.2% and a minimum of 12.6% of the total network energy along with an improvement in the area stress between 89.7% and 53.0% for varying

  11. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  12. Energy-efficient VCSEL-based multiGigabit IR-UWB over Fiber with Airlink Transmission System

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Pham, Tien Thang; Jensen, Jesper Bevensee

    2010-01-01

    We propose VCSEL based impulse-radio ultrawideband technology for energy efficient high-speed wireless networks; with full passive signal distribution, from the central office to the home with high-speed wireless connection to the final user.......We propose VCSEL based impulse-radio ultrawideband technology for energy efficient high-speed wireless networks; with full passive signal distribution, from the central office to the home with high-speed wireless connection to the final user....

  13. ENERGY EFFICIENCY OF A PHOTOVOLTAIC CELL BASED THIN FILMS CZTS BY SCAPS

    Directory of Open Access Journals (Sweden)

    C. Mebarkiaa

    2016-05-01

    Full Text Available In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS looks promising. Cu2ZnSnS4 (CZTS is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV [01] with a large absorption coefficient over 104 cm-1. Indeed, the performance of these cells exceeded 30% in recent years.In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS and thus evaluate the electrical efficiency η for typical structures of ZnO / i- ZnO / CdS / CZTS and ITO / ZnO / CdS / CZTS. Furthermore, the influence of the change of CdS by ZnSe buffer layer was treated in this paper.

  14. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  15. Energy efficiency in Germany 1998. Analysis based on the ODYSSEE datebase from the SAVE project 'Cross-country comparison on energy efficiency indicators'. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Mannsbart, W.; Schlomann, B.

    1999-04-01

    For some indicators, longer time series back to the 1970s are useful, too. These data are, however, only included in the ODYSSEE database for the former West Germany (in the following called ex-FRG). Therefore, for some important indicators the long-term development since the 1970s will also be given in this report using data for the ex-FRG. The report starts with a review on data collection and the recent trends in the general context of energy efficiency, i.e. economic and energy consumption development, energy and environmental policy and energy price trends. Afterwards, the energy efficiency trends are described both at the level of the whole economy (Chapter 3) and at sectoral level (Chapter 4 to 8). The annex not only includes some further data remarks but also a special case study for Germany about the development of energy efficiency in the industrial sector and the link to causal factors (Annex 4). (orig.)

  16. Energy and spectrum efficiency in rural areas based on cognitive radio technology

    CSIR Research Space (South Africa)

    Masonta, MT

    2009-09-01

    Full Text Available spectrum scarcity in the most energy efficient manner. In this paper, researchers present the proposed work to be carried out as part of a doctoral thesis to address the spectrum scarcity and transmission power in energy constrained rural areas....

  17. An assessment of energy efficiency based on environmental constraints and its influencing factors in China.

    Science.gov (United States)

    Chen, Yao; Xu, Jing-Ting

    2018-05-03

    The super-efficiency directional distance function (DDF) with data envelopment analysis (DEA) model (SEDDF-DEA) is more facilitative than to increase traditional method as a rise of energy efficiency in China, which is currently important energy development from Asia-pacific region countries. SEDDF-DEA is promoted as sustained total-factor energy efficiency (TFEE), value added outputs, and Malmquist-Luenberger productivity index (MLPI) to otherwise thorny environmental energy productivity problems with environmental constraint to concrete the means of regression model. This paper assesses the energy efficiency under environmental constraints using panel data covering the years of 2000-2015 in China. Considering the environmental constraints, the results showed that the average TFEE of the whole country followed an upward trend after 2006. The average MLPI score for the whole country increased by 10.57% during 2005-2010, which was mainly due to the progress made in developing and applying environmental technologies. The TFEE of the whole nation was promoted by the accumulation of capital stock, while it was suppressed by excessive production in secondary industries and foreign investment. The primary challenge for the northeast of China is to strengthen industrial transformation and upgrade traditional industries, as well as adjusting the economy and energy structure. The eastern and central regions of the country need to exploit clean- or low-energy industry to improve inefficiencies due to excessive consumption. The western region of China needs to implement renewable energy strategies to promote regional development.

  18. Cyber physical systems based on cloud computing and internet of things for energy efficiency

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Suciu, Victor; Cretu, Alexandru; Fratu, Octavian

    2016-12-01

    Cyber Physical Systems (CPS) and energy efficiency play a major role in the context of industry expansion. Management practices for improving efficiency in the field of energy consumption became a priority of many major industries who are inefficient in terms of exploitation costs. The effort of adopting energy management means in an organization is quite challenging due to the lack of resources and expertise. One major problem consists in the lack of knowledge for energy management and practices. This paper aims to present authors' concept in creating a Cyber Physical Energy System (CPES) that will change organizations' way of consuming energy, by making them aware of their use. The presented concept will consider the security of the whole system and the easy integration with the existing electric network infrastructure.

  19. Advertisement-Based Energy Efficient Medium Access Protocols for Wireless Sensor Networks

    Science.gov (United States)

    Ray, Surjya Sarathi

    One of the main challenges that prevents the large-scale deployment of Wireless Sensor Networks (WSNs) is providing the applications with the required quality of service (QoS) given the sensor nodes' limited energy supplies. WSNs are an important tool in supporting applications ranging from environmental and industrial monitoring, to battlefield surveillance and traffic control, among others. Most of these applications require sensors to function for long periods of time without human intervention and without battery replacement. Therefore, energy conservation is one of the main goals for protocols for WSNs. Energy conservation can be performed in different layers of the protocol stack. In particular, as the medium access control (MAC) layer can access and control the radio directly, large energy savings is possible through intelligent MAC protocol design. To maximize the network lifetime, MAC protocols for WSNs aim to minimize idle listening of the sensor nodes, packet collisions, and overhearing. Several approaches such as duty cycling and low power listening have been proposed at the MAC layer to achieve energy efficiency. In this thesis, I explore the possibility of further energy savings through the advertisement of data packets in the MAC layer. In the first part of my research, I propose Advertisement-MAC or ADV-MAC, a new MAC protocol for WSNs that utilizes the concept of advertising for data contention. This technique lets nodes listen dynamically to any desired transmission and sleep during transmissions not of interest. This minimizes the energy lost in idle listening and overhearing while maintaining an adaptive duty cycle to handle variable loads. Additionally, ADV-MAC enables energy efficient MAC-level multicasting. An analytical model for the packet delivery ratio and the energy consumption of the protocol is also proposed. The analytical model is verified with simulations and is used to choose an optimal value of the advertisement period

  20. Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off

    Directory of Open Access Journals (Sweden)

    Woongsup Lee

    2016-01-01

    Full Text Available Recently, energy efficiency (EE of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs simultaneously send packets to the same mobile station (MS. Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.

  1. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    Science.gov (United States)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  2. FORMING OF THE SUSTAINABLE SUPPLY CHAINS BASED ON INCREASING OF THEIR INTEGRATED ENERGY EFFICIENCY

    Directory of Open Access Journals (Sweden)

    SHVETS V. J.

    2016-03-01

    Full Text Available Purpose. Key challenges and barriers of mining machinery enterprises in the context of forming sustainable supply chains in the mining industry are specified. Methodology. The algorithm of forming the industrial relations, which are carried out by the enterprises of mining machinery in order to increase the sustainable development of a mining industry, is offered. Conclusions.. Modern supply chains are confronted with dynamic trends and developments that are hard to predict. In order to respond to these changes and remain competitive advantage, companies should be able to identify and understand new sustainability issues in their branches. It is established that in the conditions of globalization of the market and the general orientation of Ukraine’s economy to the European principles of development, for mining machinery enterprises a proof of the commitment and observance of requirements of energy efficiency, i.e. energy saving, energy safety and social energy responsibility are very important. Supply channels should increase not only energy efficiency, economic and production stability of the company, but also strengthen the stability of all participants in the production chain, as well as other stakeholders (business partners, customers, investors, local communities, etc.. Originality. The interrelation of an indicator of energy efficiency in forming sustainable supply chain in a mining industry is established. Practical value. Using the principles of sustainable development in the forming of value chains will improve energy efficiency of industry in general; provide a competitive advantage to entry into the global production chains in terms of European integration of Ukraine.

  3. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  4. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  5. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks.

    Science.gov (United States)

    Rani, Shalli; Talwar, Rajneesh; Malhotra, Jyoteesh; Ahmed, Syed Hassan; Sarkar, Mahasweta; Song, Houbing

    2015-11-12

    One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT.

  6. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks

    Science.gov (United States)

    Rani, Shalli; Talwar, Rajneesh; Malhotra, Jyoteesh; Ahmed, Syed Hassan; Sarkar, Mahasweta; Song, Houbing

    2015-01-01

    One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT. PMID:26569260

  7. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shalli Rani

    2015-11-01

    Full Text Available One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1 a hierarchical network design; (2 a model for the energy efficient IoT; (3 a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT.

  8. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  9. Using Field Data for Energy Efficiency Based on Maintenance and Operational Optimisation. A Step towards PHM in Process Plants

    Directory of Open Access Journals (Sweden)

    Micaela Demichela

    2018-03-01

    Full Text Available Energy saving is an important issue for any industrial sector; in particular, for the process industry, it can help to minimize both energy costs and environmental impact. Maintenance optimization and operational procedures can offer margins to increase energy efficiency in process plants, even if they are seldom explicitly taken into account in the predictive models guiding the energy saving policies. To ensure that the plant achieves the desired performance, maintenance operations and maintenance results should be monitored, and the connection between the inputs and the outcomes of the maintenance process, in terms of total contribution to manufacturing performance, should be explicit. In this study, a model for the energy efficiency analysis was developed, based on cost and benefits balance. It is aimed at supporting the decision making in terms of technical and operational solutions for energy efficiency, through the optimization of maintenance interventions and operational procedures. A case study is here described: the effects on energy efficiency of technical and operational optimization measures for bituminous materials production process equipment. The idea of the Conservation Supply Curve (CSC was used to capture both the cost effectiveness of the measures and the energy efficiency effectiveness. The optimization was thus based on the energy consumption data registered on-site: data collection and modelling of the relevant data were used as a base to implement a prognostic and health management (PHM policy in the company. Based on the results from the analysis, efficiency measures for the industrial case study were proposed, also in relation to maintenance optimization and operating procedures. In the end, the impacts of the implementation of energy saving measures on the performance of the system, in terms of technical and economic feasibility, were demonstrated. The results showed that maintenance optimization could help in reaching

  10. Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Dong, JunGen; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Highlights: •An improved environment DEA cross-model method is proposed. •Energy and environment efficiency analysis framework of complex chemical processes is obtained. •This proposed method is efficient in energy-saving and emission reduction of complex chemical processes. -- Abstract: The complex chemical process is a high pollution and high energy consumption industrial process. Therefore, it is very important to analyze and evaluate the energy and environment efficiency of the complex chemical process. Data Envelopment Analysis (DEA) is used to evaluate the relative effectiveness of decision-making units (DMUs). However, the traditional DEA method usually cannot genuinely distinguish the effective and inefficient DMU due to its extreme or unreasonable weight distribution of input and output variables. Therefore, this paper proposes an energy and environment efficiency analysis method based on an improved environment DEA cross-model (DEACM) method. The inputs of the complex chemical process are divided into energy and non-energy inputs. Meanwhile, the outputs are divided into desirable and undesirable outputs. And then the energy and environment performance index (EEPI) based on the cross evaluation is used to represent the overall performance of each DMU. Moreover, the improvement direction of energy-saving and carbon emission reduction of each inefficiency DMU is quantitatively obtained based on the self-evaluation model of the improved environment DEACM. The results show that the improved environment DEACM method has a better effective discrimination than the original DEA method by analyzing the energy and environment efficiency of the ethylene production process in complex chemical processes, and it can obtain the potential of energy-saving and carbon emission reduction of ethylene plants, especially the improvement direction of inefficient DMUs to improve energy efficiency and reduce carbon emission.

  11. The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Northwestern Univ., Evanston, IL (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liang, Jiaqi [Northwestern Univ., Evanston, IL (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ma, XiaoHui [Northwestern Univ., Evanston, IL (United States); Hendrix, Valerie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Benjamin [Northwestern Univ., Evanston, IL (United States); Mantha, Pradeep [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-06-03

    The energy use of data centers is a topic that has received much attention, given that data centers currently account for 1-2% of global electricity use. However, cloud computing holds great potential to reduce data center energy demand moving forward, due to both large reductions in total servers through consolidation and large increases in facility efficiencies compared to traditional local data centers. However, analyzing the net energy implications of shifts to the cloud can be very difficult, because data center services can affect many different components of society’s economic and energy systems.

  12. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings

    Directory of Open Access Journals (Sweden)

    Claes G. Granqvist

    2016-12-01

    Full Text Available Today’s advances in materials science and technology can lead to better buildings with improved energy efficiency and indoor conditions. Particular attention should be directed towards windows and glass facades—jointly known as “glazings”—since current practices often lead to huge energy expenditures related to excessive inflow or outflow of energy which need to be balanced by energy-intensive cooling or heating. This review article outlines recent progress in thermochromics, i.e., it deals with materials whose optical properties are strongly dependent on temperature. In particular, we discuss oxide-based thin surface coatings (thin films and nanoparticle composites which can be deposited onto glass and are able to regulate the throughput of solar energy while the luminous (visible properties remain more or less unaltered. Another implementation embodies lamination materials incorporating thermochromic (TC nanoparticles. The thin films and nanocomposites are based on vanadium dioxide (VO2, which is able to change its properties within a narrow temperature range in the vicinity of room temperature and either reflects or absorbs infrared light at elevated temperatures, whereas the reflectance or absorptance is much smaller at lower temperatures. The review outlines the state of the art for these thin films and nanocomposites with particular attention to recent developments that have taken place in laboratories worldwide. Specifically, we first set the scene by discussing environmental challenges and their relationship with TC glazings. Then enters VO2 and we present its key properties in thin-film form and as nanoparticles. The next part of the article gives perspectives on the manufacturing of these films and particles. We point out that the properties of pure VO2 may not be fully adequate for buildings and we elaborate how additives, antireflection layers, nanostructuring and protective over-coatings can be employed to yield improved

  13. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  14. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  15. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  16. Energy-Efficient Data Gathering Scheme Based on Broadcast Transmissions in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Soobin Lee

    2013-01-01

    previous works have proposed ideas that reduce the energy consumption of the network by exploiting the spatial correlation between sensed information. In this paper, we propose a distributed data compression framework that exploits the broadcasting characteristic of the wireless medium to improve energy efficiency. We analyze the performance of the proposed framework numerically and compare it with the performance of previous works using simulation. The proposed scheme performs better when the sensing information is correlated.

  17. Energy Efficient Microlith-Based Catalytic Reactor and Recuperator for Air Quality Control Applications

    Science.gov (United States)

    Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Precision Combustion, Inc. (PCI) and NASA’s Marshall Space Flight Center (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI’s patented Microlith technology to meet the requirements of future extended human spaceflight explorations. Previous efforts focused on integrating PCI’s HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight. Significant improvement was demonstrated over traditional approaches of integrating the HTCO with an external recuperative heat exchanger. While the critical target performance metrics were achieved, the thermal effectiveness of PCI’s recuperator remained a potential area of improvement to further reduce the energy requirements of the integrated system. Using the same material combinations and an improved recuperator design, the redesigned prototype has experimentally demonstrated 20 – 30% reduction (flow dependent) in steady state power consumption compared to the earlier prototype without compromising the destruction efficiency of methane and volatile organic compounds (VOCs). Moreover, design modifications and improvements allow our redesigned prototype to be more easily manufactured compared to traditional brazed plate-fin recuperator designs. The redesigned prototype was delivered to MSFC for validation testing. Here, we report and discuss the performance of the improved prototype HTCO unit with a high efficiency recuperative heat exchanger based on testing at PCI and MSFC. The device is expected to provide a reliable and robust means of disposing of trace levels of methane and VOCs by oxidizing them into carbon dioxide and water in order to maintain clean air in enclosed spaces, such as crewed spacecraft cabins.

  18. Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks – Tabuk Flood Monitoring System Case Study

    Directory of Open Access Journals (Sweden)

    Ammar Babiker

    2017-10-01

    Full Text Available Energy efficiency has been considered as the most important issue in wireless sensor networks. As in many applications, wireless sensors are scattered in a wide harsh area, where the battery replacement or charging will be quite difficult and it is the most important challenge. Therefore, the design of energy saving mechanism becomes mandatory in most recent research. In this paper, a new energy efficient clustered routing protocol is proposed: the proposed protocol is based on analyzing the data collected from the sensors in a base-station. Based on this analysis the cluster head will be selected as the one with the most useful data. Then, a variable time slot is specified to each sensor to minimize the transmission of repetitive and un-useful data. The proposed protocol Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks (DCRP was compared with the famous energy efficient LEACH protocol and also with one of the recent energy efficient routing protocols named Position Responsive Routing Protocol (PRRP. DCRP has been used in monitoring the floods in Tabuk area –Saudi Arabia. It shows comparatively better results.

  19. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    Science.gov (United States)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  20. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  1. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  2. Energy-Efficient Cluster-Based Service Discovery in Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.; Hartel, Pieter H.

    We propose an energy-efficient service discovery protocol for wireless sensor networks. Our solution exploits a cluster overlay, where the clusterhead nodes form a distributed service registry. A service lookup results in visiting only the clusterhead nodes. We aim for minimizing the communication

  3. Energy-Efficient Cluster-Based Service Discovery in Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.; Hartel, Pieter H.

    2006-01-01

    We propose an energy-efficient service discovery protocol for wireless sensor networks. Our solution exploits a cluster overlay, where the clusterhead nodes form a distributed service registry. A service lookup results in visiting only the clusterhead nodes. We aim for minimizing the communication

  4. Ambient Temperature Based Thermal Aware Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Saini, Rishita; Bansal, Neha; Bansal, Meenakshi

    2015-01-01

    Thermal aware design is currently gaining importance in VLSI research domain. In this work, we are going to design thermal aware energy efficient ROM on Virtex-5 FPGA. Ambient Temperature, airflow, and heat sink profile play a significant role in thermal aware hardware design life cycle. Ambient...

  5. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Directory of Open Access Journals (Sweden)

    Qyyum Muhammad Abdul

    2017-01-01

    Full Text Available This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG. A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD model was used to simulate the vortex tube with nitrogen (N2 as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  6. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  7. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  8. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  9. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    Science.gov (United States)

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity. © 2012 Acoustical Society of America.

  10. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  11. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  12. How can we tackle energy efficiency in IoT based smart buildings?

    Science.gov (United States)

    Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A

    2014-05-30

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.

  13. How can We Tackle Energy Efficiency in IoT BasedSmart Buildings?

    Directory of Open Access Journals (Sweden)

    M. Victoria Moreno

    2014-05-01

    Full Text Available Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.

  14. How can We Tackle Energy Efficiency in IoT Based Smart Buildings?

    Science.gov (United States)

    Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.

    2014-01-01

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040

  15. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    G. Rohini

    2016-01-01

    Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  16. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    Science.gov (United States)

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  17. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  18. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  19. Energy efficient smartphone-based activity recognition using fixed-point arithmetic

    OpenAIRE

    Anguita, Davide; Ghio, Alessandro; Oneto, Luca; Llanas Parra, Francesc Xavier; Reyes Ortiz, Jorge Luis

    2013-01-01

    In this paper we propose a novel energy efficient approach for the recognition of human activities using smartphones as wearable sensing devices, targeting assisted living applications such as remote patient activity monitoring for the disabled and the elderly. The method exploits fixed-point arithmetic to propose a modified multiclass Support Vector Machine (SVM) learning algorithm, allowing to better pre- serve the smartphone battery lifetime with respect to the conventional flo...

  20. Mobility based energy efficient and multi-sink algorithms for consumer home networks

    OpenAIRE

    Wang, Jin; Yin, Yue; Zhang, Jianwei; Lee, Sungyoung; Sherratt, R. Simon

    2013-01-01

    With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an importa...

  1. Wireless-Uplinks-Based Energy-Efficient Scheduling in Mobile Cloud Computing

    OpenAIRE

    Xing Liu; Chaowei Yuan; Zhen Yang; Enda Peng

    2015-01-01

    Mobile cloud computing (MCC) combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs). In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of ener...

  2. Improving health and energy efficiency through community-based housing interventions.

    Science.gov (United States)

    Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff

    2011-12-01

    Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.

  3. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  4. A new cooperative MIMO scheme based on SM for energy-efficiency improvement in wireless sensor network.

    Science.gov (United States)

    Peng, Yuyang; Choi, Jaeho

    2014-01-01

    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.

  5. Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model

    International Nuclear Information System (INIS)

    Bi, Gong-Bing; Song, Wen; Zhou, P.; Liang, Liang

    2014-01-01

    Data envelopment analysis (DEA) has gained much popularity in performance measurement of power industry. This paper presents a slack-based measure approach to investigating the relationship between fossil fuel consumption and the environmental regulation of China's thermal power generation. We first calculate the total-factor energy efficiency without considering environmental constraints. An environmental performance indicator is proposed through decomposing the total-factor energy efficiency. The proposed approach is then employed to examine whether environmental regulation affects the energy efficiency of China's thermal power generation. We find that the environmental efficiency plays a significant role in affecting energy performance of China's thermal generation sector. Decreasing the discharge of major pollutants can improve both energy performance and environmental efficiency. Besides, we also have three main findings: (1) The energy efficiency and environmental efficiency were relatively low. (2) The energy and environmental efficiency scores show great variations among provinces. (3) Both energy efficiency and environmental efficiency are of obvious geographical characteristics. According to our findings, we suggest some policy implications. - Highlights: • We assess the energy efficiency and the environmental efficiency of China's thermal power generation simultaneously. • The energy efficiency and the environmental efficiency were relatively low during 2007–2009. • The energy efficiency and environmental efficiency show obvious geographic characters. • The environmental performance of a DMU plays a decisive role in the energy performance

  6. A model-based combinatorial optimisation approach for energy-efficient processing of microalgae

    NARCIS (Netherlands)

    Slegers, P.M.; Koetzier, B.J.; Fasaei, F.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2014-01-01

    The analyses of algae biorefinery performance are commonly based on fixed performance data for each processing step. In this work, we demonstrate a model-based combinatorial approach to derive the design-specific upstream energy consumption and biodiesel yield in the production of biodiesel from

  7. Romania. Regular Review 2006. Part 1. Trends in energy and energy efficiency policies, instruments and actors. Part 2. Indicators on Energy, Energy Efficiency, Economy and Environment. Based on national sources of data

    International Nuclear Information System (INIS)

    2006-01-01

    Although Romania has the largest oil and gas resources in Central Europe, it is nonetheless a net importer of hydrocarbons, and the efficient use of energy along the entire energy chain from production to consumption has been a consistent feature of Romanian policy in recent years. Romania's national energy strategy foresees an annual reduction of the energy intensity of the national economy of approximately 3%. Energy efficiency measures have concentrated on the industrial and residential sectors, where there is the clearest scope for improvements. Programmes for the services and transport sectors are now also being developed. As Romania prepares for accession to the European Union, the PEEREA review of Romania's energy efficiency policies and programmes provides a detailed overview of the transposition of the relevant parts of the EU acquis, as well as an insight into particular challenges for Romania - such as the modernisation of the district heating network, which accounts for a third of the country's heat and hot water demand

  8. Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

    KAUST Repository

    Choi, Yun Seok

    2017-05-26

    Full waveform inversion (FWI) using an energy-based objective function has the potential to provide long wavelength model information even without low frequency in the data. However, without the back-propagation method (adjoint-state method), its implementation is impractical for the model size of general seismic survey. We derive the gradient of the energy-based objective function using the back-propagation method to make its FWI feasible. We also raise the energy signal to the power of a small positive number to properly handle the energy signal imbalance as a function of offset. Examples demonstrate that the proposed FWI algorithm provides a convergent long wavelength structure model even without low-frequency information, which can be used as a good starting model for the subsequent conventional FWI.

  9. Clock Gating Based Energy Efficient and Thermal Aware Design of Latin Unicode Reader for Natural Language Processing on FPGA

    DEFF Research Database (Denmark)

    Singh, Ritu; Kalia, Kartik; Minver, M. H.

    2016-01-01

    Abstract-In this paper we have aimed to design an energy efficient and thermally aware Latin Unicode Reader. Our design is based on 28nm FPGA (Kintex-7) and 40nm FPGA (Artix-7). In order to test the portability of our design, we are operating our design with respective frequency of different mobile...

  10. Clock Gating Based Energy Efficient and Thermal Aware Design for Vedic Equation Solver on 28nm and 40nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Bishwajeet; Pandey, Sujeet; Sharma, Shivani

    2016-01-01

    In this paper, we are integrating clock gating in design of energy efficient equation solver circuits based on Vedic mathematics. Clock gating is one of the best energy efficient techniques. The Sutra 'SunyamSamyasamuccaye' says thatif sum of numerator and sum of denominator is same then we can e......, 94.54% for 1800MHz, and 94.02% for 2.2GHz, when we use gated clock instead of un gated one on 40nm FPGA and temperature is 329.85K. Power consumption in 28nm FPGA is less than 40nm FPGA....

  11. Selected emissions and efficiencies of energy systems based on logging and sawmill residues

    International Nuclear Information System (INIS)

    Maelkki, Helena; Virtanen, Yrjoe

    2003-01-01

    Bioenergy has an important role in the implementation of the Kyoto agreement in Finland. The main sources of wood residues for energy production are logging areas and sawmills. The use of forest chips can be of great significance in reducing carbon dioxide emissions by replacing fossil fuels. Increasing the use of forest chips has environmental benefits, but it also includes possible environmental disadvantages. Therefore, system research is needed to assess the forest chip utilisation prospects for their environmental quality to secure sustainable forest management. Life-cycle methodology was developed and applied to assess environmental burdens and impacts of the logging and sawmill residues throughout the whole fuel chain from the forest to energy production. According to the study, the energy efficiencies of the forest chip systems are quite high. Net CO 2 emissions of the systems are low owing to the low input of external primary energy required to operate the systems. Although wood energy is renewable, it has many similarities with fossil fuels, e.g. as the emissions of the conversion phase are significant

  12. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  13. Monitoring-based HVAC commissioning of an existing office building for energy efficiency

    International Nuclear Information System (INIS)

    Wang, Liping; Greenberg, Steve; Fiegel, John; Rubalcava, Alma; Earni, Shankar; Pang, Xiufeng; Yin, Rongxin; Woodworth, Spencer; Hernandez-Maldonado, Jorge

    2013-01-01

    Highlights: ► Demonstrated monitoring-based HVAC commissioning using an existing office building. ► Diagnosed various types of faulty operation in the HVAC system by trend data analyses. ► Identified a list of energy saving measures for the HVAC system. ► Quantified energy saving potential for each commissioning measure using calibrated energy simulation model. ► Achieved an actual energy saving of 10% after the implementations of cost-effective measures. -- Abstract: The performance of Heating, Ventilation and Air Conditioning (HVAC) systems may fail to satisfy design expectations due to improper equipment installation, equipment degradation, sensor failures, or incorrect control sequences. Commissioning identifies and implements cost-effective operational and maintenance measures in buildings to bring them up to the design intent or optimum operation. An existing office building is used as a case study to demonstrate the process of commissioning. Building energy benchmarking tools are applied to evaluate the energy performance for screening opportunities at the whole building level. A large natural gas saving potential was indicated by the building benchmarking results. Faulty operations in the HVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend data analyses and functional testing. The energy saving potential for each commissioning measure is quantified with a calibrated building simulation model. An actual energy saving of 10% was realized after the implementations of cost-effective measures.

  14. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2016-07-01

    Full Text Available Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM. Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  15. Feasibility study and energy efficiency estimation of geothermal power station based on medium enthalpy water

    Directory of Open Access Journals (Sweden)

    Borsukiewicz-Gozdur Aleksandra

    2007-01-01

    Full Text Available In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 °C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 °C, Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .

  16. Verification of electricity savings through energy-efficient train management - Energy data base for traction units - Annex 5; Verifizierung der Stromeinsparung durch energieeffizientes Zugsmanagement - Anhang 5: Energiedatenbank Traktion

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Lerjen, M.; Menth, S. [emkamatik GmbH, Wettingen (Switzerland); Luethi, M. [Swiss Federal Insitute of Technology (ETHZ), Institute for Transport Planning and Systems (IVT), Zuerich (Switzerland); Tuchschmid, M. [SBB AG, BahnUmwelt-Center, 3000 Bern (Switzerland)

    2009-11-15

    This appendix to a final report for the Swiss Federal Office of Energy (SFOE) takes a look at how various data sources on the energy consumption of the SBB's traction units can be combined into an energy-data basis. In this way, the considerable amount of work previously involved in combining and correlating data can be avoided. The aims being followed in the realisation of the traction data base are examined and discussed. The data base will provide the basis for the manual detail analysis of energy consumption within the framework of the overall efforts to save electricity using efficient train management.

  17. Statistical Delay QoS Provisioning for Energy-Efficient Spectrum-Sharing Based Wireless Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-01-01

    Full Text Available In this paper, we develop the statistical delay quality-of-service (QoS provisioning framework for the energy-efficient spectrum-sharing based wireless ad hoc sensor network (WAHSN, which is characterized by the delay-bound violation probability. Based on the established delay QoS provisioning framework, we formulate the nonconvex optimization problem which aims at maximizing the average energy efficiency of the sensor node in the WAHSN while meeting PU’s statistical delay QoS requirement as well as satisfying sensor node’s average transmission rate, average transmitting power, and peak transmitting power constraints. By employing the theories of fractional programming, convex hull, and probabilistic transmission, we convert the original fractional-structured nonconvex problem to the additively structured parametric convex problem and obtain the optimal power allocation strategy under the given parameter via Lagrangian method. Finally, we derive the optimal average energy efficiency and corresponding optimal power allocation scheme by employing the Dinkelbach method. Simulation results show that our derived optimal power allocation strategy can be dynamically adjusted based on PU’s delay QoS requirement as well as the channel conditions. The impact of PU’s delay QoS requirement on sensor node’s energy efficiency is also illustrated.

  18. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  19. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  20. Energy-efficient Trust-based Aggregation in Wireless Sensor Networks

    NARCIS (Netherlands)

    Taghikhaki, Zahra; Meratnia, Nirvana; Havinga, Paul J.M.

    2011-01-01

    Wireless sensor networks (WSNs) are often deployed in unattended and noise-prone environments and suffer from energy constraints that limit the quality and quantity of data transmission. Every decision made based on the low quality and low quantity data may have drastic consequence. Therefore,

  1. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  2. Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes

    International Nuclear Information System (INIS)

    Khan, Mohd Shariq; Lee, Sanggyu; Rangaiah, G.P.; Lee, Moonyong

    2013-01-01

    Highlights: • Practical method for finding optimum refrigerant composition is proposed for LNG plant. • Knowledge of boiling point differences in refrigerant component is employed. • Implementation of process knowledge notably makes LNG process energy efficient. • Optimization of LNG plant is more transparent using process knowledge. - Abstract: Mixed refrigerant (MR) systems are used in many industrial applications because of their high energy efficiency, compact design and energy-efficient heat transfer compared to other processes operating with pure refrigerants. The performance of MR systems depends strongly on the optimum refrigerant composition, which is difficult to obtain. This paper proposes a simple and practical method for selecting the appropriate refrigerant composition, which was inspired by (i) knowledge of the boiling point difference in MR components, and (ii) their specific refrigeration effect in bringing a MR system close to reversible operation. A feasibility plot and composite curves were used for full enforcement of the approach temperature. The proposed knowledge-based optimization approach was described and applied to a single MR and a propane precooled MR system for natural gas liquefaction. Maximization of the heat exchanger exergy efficiency was considered as the optimization objective to achieve an energy efficient design goal. Several case studies on single MR and propane precooled MR processes were performed to show the effectiveness of the proposed method. The application of the proposed method is not restricted to liquefiers, and can be applied to any refrigerator and cryogenic cooler where a MR is involved

  3. Energy-Efficient Neuromorphic Classifiers.

    Science.gov (United States)

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  4. Empirical Study on Total Factor Productive Energy Efficiency in Beijing-Tianjin-Hebei Region-Analysis based on Malmquist Index and Window Model

    Science.gov (United States)

    Xu, Qiang; Ding, Shuai; An, Jingwen

    2017-12-01

    This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.

  5. Energy efficient lighting

    International Nuclear Information System (INIS)

    Aslam, M.

    1992-01-01

    The main sources of Pakistan's energy supply are oil, natural gas, coal, hydro power, nuclear power and liquefied petroleum gas. At present 75 % of total energy delivered is met through oil and gas. The limited resources and financial constraints have proved to be stumbling block in the way of prosperity and economics stability. Lighting is a conspicuous consumer of energy and thus an easy prey for saving drives which is indeed a very promising target for energy saving. (A.B.)

  6. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    Science.gov (United States)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  7. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  8. Energy Efficient Televisions

    DEFF Research Database (Denmark)

    Andersen, Rikke Dorothea; Remmen, Arne

    The EuP Directive sets the frame for implementing ecodesign requirements for energy-using and energy-related products. The aim of the Directive is to achieve a high level of protection for the environment by reducing the potential environmental impact of energy-related products. The focus...

  9. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  10. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  11. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  12. Energy efficiency information systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    It is well known that different cultures and countries are receptive in different ways to information transfer. Modern information technology, including computers, videos, and telecommunications, can provide a very useful tool for the dissemination of information. At the same time, however, the use of new media involves many new and varied challenges. It is important therefore that the new dissemination methods are developed and utilised in the most effective way depending on the subjects distinctive character, needs and traditions. This workshop was designed to gather experts from all the CADDET member countries, to share knowledge, experiences and ideas about the use of new methods of information exchange and training in the field of energy efficiency. The workshop was divided into four plenary sessions: dissemination of information on energy efficient technologies; training technologies and effective learning; computer-based training tools on energy efficiency; databases and network resources. Two discussion groups followed the plenary sessions, to concentrate on: different aspects of information exchange; and different aspects of state-of-the-art training tools. The workshop was attended by 44 participants from 17 countries, and included 14 speakers

  13. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  14. CoCMA: Energy-Efficient Coverage Control in Cluster-Based Wireless Sensor Networks Using a Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yung-Chung Wang

    2009-06-01

    Full Text Available Deployment of wireless sensor networks (WSNs has drawn much attention in recent years. Given the limited energy for sensor nodes, it is critical to implement WSNs with energy efficiency designs. Sensing coverage in networks, on the other hand, may degrade gradually over time after WSNs are activated. For mission-critical applications, therefore, energy-efficient coverage control should be taken into consideration to support the quality of service (QoS of WSNs. Usually, coverage-controlling strategies present some challenging problems: (1 resolving the conflicts while determining which nodes should be turned off to conserve energy; (2 designing an optimal wake-up scheme that avoids awakening more nodes than necessary. In this paper, we implement an energy-efficient coverage control in cluster-based WSNs using a Memetic Algorithm (MA-based approach, entitled CoCMA, to resolve the challenging problems. The CoCMA contains two optimization strategies: a MA-based schedule for sensor nodes and a wake-up scheme, which are responsible to prolong the network lifetime while maintaining coverage preservation. The MA-based schedule is applied to a given WSN to avoid unnecessary energy consumption caused by the redundant nodes. During the network operation, the wake-up scheme awakens sleeping sensor nodes to recover coverage hole caused by dead nodes. The performance evaluation of the proposed CoCMA was conducted on a cluster-based WSN (CWSN under either a random or a uniform deployment of sensor nodes. Simulation results show that the performance yielded by the combination of MA and wake-up scheme is better than that in some existing approaches. Furthermore, CoCMA is able to activate fewer sensor nodes to monitor the required sensing area.

  15. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  16. Energy efficient wireless sensor networks by using a fuzzy-based solution

    Science.gov (United States)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  17. SSTL I/O Standard Based Environment Friendly Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Bansal, Neha; Bansal, Meenakshi; Saini, Rishita

    2014-01-01

    are operating ROM with the highest operating frequency of 4th generation i7 processor to test the compatibility of this design with the latest hardware in use. When there is no demand of peak performance, then we can save 74.5% clock power, 75% signal power, and 30.83% I/O power by operating our device with 1......Stub Series Terminated Logic (SSTL) is an Input/output standard. It is used to match the impedance of line, port and device of our design under consideration. Therefore, selection of energy efficient SSTL I/O standard among available different class of SSTL logic family in FPGA, plays a vital role...

  18. Kazakhstan. Regular Review 2006. Part 1. Trends in energy and energy efficiency policies, instruments and actors. Part 2. Indicators on Energy, Energy Efficiency, Economy and Environment. Based on IEA data

    International Nuclear Information System (INIS)

    2006-01-01

    Kazakhstan is one of the ten largest countries in the world with very important and large energy and mineral resources and also possesses significant renewable energy resources. Energy policy objectives are presented throughout a number of documents (strategies, concepts etc.). One of the most crucial is the Development Strategy of Kazakhstan until 2030, which focuses on energy as one of the priority areas and determines the necessity of a 'rapid increase of production and export of oil and gas in order to receive revenues that would contribute to sustained economic growth and an improvement of the living standard of the people'. 'Strategy 2030' is the strategy of the development of the fuel and energy sector of the country and has been developed for both the period until 2015 and the period up to 2030. This document contains sections concerning energy efficiency and energy saving. Kazakhstan has a substantial electric power industry - third largest in the former Soviet Union after Russia and Ukraine with installed capacity of around 18500 MW. The goal and the basic priorities of the development of the sector are presented in the 'Programme for the Development of the Electricity Sector up to 2030'. The Ministry of Energy and Mineral Resources of the Republic of Kazakhstan ensures the implementation of the state policy, including the sphere of energy saving. Among the functions of the Ministry is the elaboration of programmes of the energy sector strategic development as a constituent part of the development strategy of the Republic of Kazakhstan, implementation of the strategy and organisation of the implementation of the state energy saving policy. The main objective of the Committee for State Energy Supervision under the Ministry of Energy and Mineral Resources of the Republic of Kazakhstan is supervision and control of the reliability, security and efficiency of energy generation, transmission, distribution and consumption. The special State Energy Saving

  19. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage

    OpenAIRE

    Gramajo, German; Shankar, Praveen

    2017-01-01

    A path planning strategy for a search and coverage mission for a small UAV that maximizes the area covered based on stored energy and maneuverability constraints is presented. The proposed formulation has a high level of autonomy, without requiring an exact choice of optimization parameters, and is appropriate for real-time implementation. The computed trajectory maximizes spatial coverage while closely satisfying terminal constraints on the position of the vehicle and minimizing the time of ...

  20. A Sleep-Awake Scheme Based on CoAP for Energy-Efficiency in Internet of Things

    Directory of Open Access Journals (Sweden)

    Wenquan Jin

    2017-11-01

    Full Text Available Internet Engineering Task Force (IETF have developed Constrained Application Protocol (CoAP to enable communication between sensor or actuator nodes in constrained environments, such as small amount of memory, and low power. IETF CoAP and HTTP are used to monitor or control environments in Internet of Things (IoT and Machine-to-Machine (M2M. In this paper, we present a sleep-awake scheme based on CoAP for energy efficiency in Internet of Things. This scheme supports to increase energy efficiency of IoT nodes using CoAP protocol. We have slightly modified the IoT middleware to improve CoAP protocol to conserve energy in the IoT nodes. Also, the IoT middleware includes some functionality of the CoRE Resource Directory (RD and the Message Queue (MQ broker with IoT nodes to synchronize sleepy status.

  1. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  2. Switzerland. Regular Review 2006. Part 1. Trends in energy and energy efficiency policies, instruments and actors. Part 2. Indicators on Energy, Energy Efficiency, Economy and Environment. Based on national data

    International Nuclear Information System (INIS)

    2006-01-01

    Swiss energy policy is characterised by a number of specific factors, which are: (1) the federal structure of the country and its direct democracy; (2) the subsidiarity principle, which calls for state regulation as a last resort after private initiatives have failed; (3) its economic structure with a dominant services sector and little heavy industry; and finally (4) the growing influence of EU policymaking. Energy policy is a split responsibility between the federal state and the twenty-six cantons. Federal energy policymaking has been strengthened in recent years (in matters such as standards and labels), chiefly by means of the 1998 Energy Law and its subsequent amendments. In other domains such as buildings, cantons have clung to their prerogatives and merely consented to harmonised regulations and standards. In many instances, the federal state sets a minimum standard (like e.g. for feed-in tariffs), leaving it to cantons to pursue more generous policies. A sizeable portion of the federal SwissEnergy programme is allocated to co-financing cantonal programmes and projects. The efficiency of energy policies and programmes has improved over the last few years owing to stricter monitoring and harmonisation, but large disparities among cantonal policies prevail. Some indicators, such as per capita energy efficiency spending, highlight the scope for action in laggard cantons. Under Swiss direct democracy, any law, even those passed by parliament, may be subjected to a popular verdict. This has happened to seven energy-related items since 2000, including pro-renewable proposals, which were defeated. This underscores the importance of communication of energy policy matters. According to polls, Swiss people tend to have become less concerned with environmental issues in recent years. But climate change, as it manifests itself in receding glaciers, devastating floods and landslides, has sharpened the public's receptiveness for the cause of sustainable energy. This

  3. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  4. Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks

    KAUST Repository

    Dhaini, Ahmad R.; Ho, Pin-Han; Shen, Gangxiang; Shihada, Basem

    2014-01-01

    Next-generation passive optical network (PON) has been considered in the past few years as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue in its operations. In this paper, we propose a novel sleep-time sizing and scheduling framework for the implementation of green bandwidth allocation (GBA) in TDMA-PONs. The proposed framework leverages the batch-mode transmission feature of GBA to minimize the overhead due to frequent ONU on-off transitions. The optimal sleeping time sequence of each ONU is determined in every cycle without violating the maximum delay requirement. With multiple ONUs possibly accessing the shared media simultaneously, a collision may occur. To address this problem, we propose a new sleep-time sizing mechanism, namely Sort-And-Shift (SAS), in which the ONUs are sorted according to their expected transmission start times, and their sleep times are shifted to resolve any possible collision while ensuring maximum energy saving. Results show the effectiveness of the proposed framework and highlight the merits of our solutions.

  5. Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks

    KAUST Repository

    Dhaini, Ahmad R.

    2014-06-01

    Next-generation passive optical network (PON) has been considered in the past few years as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue in its operations. In this paper, we propose a novel sleep-time sizing and scheduling framework for the implementation of green bandwidth allocation (GBA) in TDMA-PONs. The proposed framework leverages the batch-mode transmission feature of GBA to minimize the overhead due to frequent ONU on-off transitions. The optimal sleeping time sequence of each ONU is determined in every cycle without violating the maximum delay requirement. With multiple ONUs possibly accessing the shared media simultaneously, a collision may occur. To address this problem, we propose a new sleep-time sizing mechanism, namely Sort-And-Shift (SAS), in which the ONUs are sorted according to their expected transmission start times, and their sleep times are shifted to resolve any possible collision while ensuring maximum energy saving. Results show the effectiveness of the proposed framework and highlight the merits of our solutions.

  6. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  7. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  8. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  9. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model

    Directory of Open Access Journals (Sweden)

    Changhong Zhao

    2018-01-01

    Full Text Available The Belt and Road Initiative (BRI is showing its great influence and leadership on the international energy cooperation. Based on the three-stage DEA model, total-factor energy efficiency (TFEE in 35 BRI countries in 2015 was measured in this article. It shows that the three-stage DEA model could eliminate errors of environment variable and random, which made the result better than traditional DEA model. When environment variable errors and random errors were eliminated, the mean value of TFEE was declined. It demonstrated that TFEE of the whole sample group was overestimated because of external environment impacts and random errors. The TFEE indicators of high-income countries like South Korea, Singapore, Israel and Turkey are 1, which is in the efficiency frontier. The TFEE indicators of Russia, Saudi Arabia, Poland and China are over 0.8. And the indicators of Uzbekistan, Ukraine, South Africa and Bulgaria are in a low level. The potential of energy-saving and emissions reduction is great in countries with low TFEE indicators. Because of the gap in energy efficiency, it is necessary to distinguish different countries in the energy technology options, development planning and regulation in BRI countries.

  10. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  11. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  12. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  13. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  14. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  15. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  16. OPEX Savings Based on Energy Efficient Strategies in NREN Core Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Kleist, Josva

    2014-01-01

    wavelengths and new circuits are established based on a predefined dimensioning plan. However, because of the continuous increase in the overall traffic demand (estimated to be between 30 % and 60 % per year [1] ) as well as due to the more and more heterogeneous behavior of the incoming requests...... in core optical networks. One proposal is to define differ ent operational states for the optoelectronic components – OFF, IDLE and ON – which correspond to different levels of energy consumption. Another solution is to use advanced transponder architectures (i.e. elastic or flexible transponders...

  17. Priorities for energy efficiency measures in agriculture

    NARCIS (Netherlands)

    Visser, de C.L.M.

    2013-01-01

    This report provides research gaps and priorities for energy efficiency measures in agriculture across Europe, based on the analysis of the Coordination and Support Action AGREE (Agriculture & Energy Efficiency) funded by the 7th research framework of the EU (www.agree.aua.gr). The analysis from

  18. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis

    International Nuclear Information System (INIS)

    Wang, H.; Zhou, P.; Zhou, D.Q.

    2013-01-01

    Improving energy efficiency and productivity is one of the most cost-effective ways for achieving the sustainable development target in China. This paper employs non-radial directional distance function approach to empirically investigate energy efficiency and energy productivity by including CO 2 emissions as an undesirable output. Three production scenarios, namely energy conservation (EC), energy conservation and emission reduction (ECER), and energy conservation, emission reduction and economic growth (ECEREG), are specified to assess China's energy efficiency and productivity growth during the period of Eleventh Five-Year Plan. Our empirical results show that there exist substantial differences in China's total-factor energy efficiency and productivity under different scenarios. Under the ECEREG scenario, the national average total-factor energy efficiency score was 0.6306 in 2005–2010, while the national average total-factor energy productivity increased by 0.27% annually during the period. The main driving force for energy productivity growth in China was energy technological change rather than energy efficiency change. - Highlights: • China's regional energy efficiency and productivity in 2005–2010 are evaluated. • Three production scenarios are considered. • Non-radial directional distance function with CO 2 emissions is employed. • Technological change is the main driver for China's energy productivity growth

  19. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage

    Directory of Open Access Journals (Sweden)

    German Gramajo

    2017-01-01

    Full Text Available A path planning strategy for a search and coverage mission for a small UAV that maximizes the area covered based on stored energy and maneuverability constraints is presented. The proposed formulation has a high level of autonomy, without requiring an exact choice of optimization parameters, and is appropriate for real-time implementation. The computed trajectory maximizes spatial coverage while closely satisfying terminal constraints on the position of the vehicle and minimizing the time of flight. Comparisons of this formulation to a path planning algorithm based on those with time constraint show equivalent coverage performance but improvement in prediction of overall mission duration and accuracy of the terminal position of the vehicle.

  20. Phase Change Insulation for Energy Efficiency Based on Wax-Halloysite Composites

    International Nuclear Information System (INIS)

    Zhao, Yafei; Thapa, Suvhashis; Weiss, Leland; Lvov, Yuri

    2014-01-01

    Phase change materials (PCMs) have gained extensive attention in thermal energy storage. Wax can be used as a PCM in solar storage but it has low thermal conductivity. Introducing 10% halloysite admixed into wax yields a novel composite (wax-halloysite) which has a thermal conductivity of 0.5 W/mK. To increase the base conductivity, graphite and carbon nanotubes were added into the PCM composite improving its thermal energy storage. Thermal conductivity of wax-halloysite-graphite (45/45/10%) composite showed increased conductivity of 1.4 W/mK (3 times higher than the base wax-halloysite composite). Wax- halloysite-graphite-carbon nanotubes (45/45/5/5%) composite showed conductivity of 0.85 W/mK while maintaining the original shape perfectly until 91 °C (above the original wax melting point). Thermal conductivity can be further increased with higher doping of carbon nanotubes. This new composites are promising heat storage material due to good thermal stability, high thermal/electricity conductivity and ability to preserve its shape during phase transitions

  1. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  2. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  4. Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing

    Directory of Open Access Journals (Sweden)

    Ramu Seva

    2017-11-01

    Full Text Available The high performance of FPGA (Field Programmable Gate Array in image processing applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability of a large amount of internal memories. Lately, the Stochastic Computing (SC paradigm has been found to be significantly advantageous in certain application domains including image processing because of its lower hardware complexity and power consumption. However, its viability is deemed to be limited due to its serial bitstream processing and excessive run-time requirement for convergence. To address these issues, a novel approach is proposed in this work where an energy-efficient implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number Generators (QSNGs and parallel stochastic bitstream processing, which are well suited to leverage FPGA’s reconfigurability and abundant internal memory resources. The proposed approach has been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel implementations of conventional stochastic computation using the well-known SC edge detection and multiplication circuits. Results prove that by using this approach, execution time, as well as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit and multiplication circuit, respectively.

  5. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  6. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.

    Science.gov (United States)

    Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis

    2017-10-10

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  7. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Dimitrios Amaxilatis

    2017-10-01

    Full Text Available Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT ecosystem (including web-based, mobile, social and sensing elements tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones, different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  8. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  9. Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2013-06-01

    Full Text Available Several alternatives of microalgal metabolites extraction and transformation are being studied for achieving the total utilization of this energy crop of great interest worldwide. Microalgae oil extraction is a key stage in microalgal biodiesel production chains and their efficiency affects significantly the global process efficiency. In this study, a comparison of five oil extraction methods in lab-scale was made taking as additional parameters, besides extraction efficiency, the costs of method performing, energy requirements, and toxicity of solvents used, in order to elucidate the convenience of their incorporation to a microalgae-based topology of biorefinery. Methods analyzed were Solvent extraction assisted with high speed homogenization (SHE, Continuous reflux solvent extraction (CSE, Hexane based extraction (HBE, Cyclohexane based extraction (CBE and Ethanol-hexane extraction (EHE, for this evaluation were used the microalgae strains Nannochloropsis sp., Guinardia sp., Closterium sp., Amphiprora sp. and Navicula sp., obtained from a Colombian microalgae bioprospecting. In addition, morphological response of strains to oil extraction methods was also evaluated by optic microscopy. Results shows that although there is not a unique oil extraction method which excels in all parameters evaluated, CSE, SHE and HBE appears as promising alternatives, while HBE method is shown as the more convenient for using in lab-scale and potentially scalable for implementation in a microalgae based biorefinery

  10. A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids

    Directory of Open Access Journals (Sweden)

    Saeed Ahmed

    2017-01-01

    Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.

  11. Input/output Buffer based Vedic Multiplier Design for Thermal Aware Energy Efficient Digital Signal Processing on 28nm FPGA

    DEFF Research Database (Denmark)

    Goswami, Kavita; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2016-01-01

    Multiplier is used for multiplication of a signal and a constant in digital signal processing (DSP). 28nm technology based Vedic multiplier is implemented with use of VHDL HDL, Xilinx ISE, Kintex-7 FPGA and XPower Analyzer. Vedic multiplier gain speed improvements by parallelizing the generation...... Programmable Gate Array (FPGA) in order to reduce the development cost. The development cost for Application Specific Integrated Circuits (ASICs) are high in compare to FPGA. Selection of the most energy efficient IO standards in place of signal gating is the main design methodology for design of energy...... efficient Vedic multiplier.There is 68.51%, 69.86%, 74.65%, and 78.39% contraction in total power of Vedic multiplier on 28nm Kintex-7 FPGA, when we use HSTL_II in place of HSTL_II_DCI_18 at 56.7oC, 53.5oC, 40oC and 21oC respectively....

  12. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  13. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  14. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  15. Energy efficiency in Germany. Analysis based on the ODYSSEE database from the SAVE project 'Cross-country comparison on energy efficiency indicators'. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Mannsbart, W.; Schlomann, B.

    1998-03-01

    The most important change in the German data situation compared to the last national report in October 1995 was the adjustment of the national statistical system to the unified Germany including eastern Germany (in the following referred to as Germany). Therefore, the existing time series for western Germany (in the following referred to as ex-FRG) had not only to be updated, but German data had to be included in the ODYSSEE database, too. It is intended to improve in the future the quality of the data further and to extend the data through reasonable estimates as far as justified (improvement of the data for the ex-FRG up to 1994, completion and verification of the data for Germany in 1990/1991). It is clear that the re-unification (in combination with the change in 1995 of the national industrial energy consumption statistics to a classification which is compatible with the European NACE Rev. 1 classification) poses considerable difficulties for the Energy Efficiency Indicators (EEI) approach, in which longer time series improve the reliability of the results. The German reunification shows therefore the limitations of the approach which encounters difficulties in periods of rapid changes. It is, however, not a principle argument against the methodology. The difficulty stems rather from the fact that in periods of radical changes, statistical systems simply may break down for some time, and cannot be reconstructed afterwards. Fortunately, the German re-unification is exceptional within the European Union. However, in the case of the inclusion of Eastern European accession countries (PHARE countries) in the EEI approach, the same type of difficulties will occur, though to a lesser degree, because the changes were less radical, and because there was not a complete break in statistics. (orig.)

  16. Energy Efficiency Governance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The purpose of this report is to help EE practitioners, government officials and stakeholders to establish the most effective EE governance structures, given their specific country context. It also aims to provide readers with relevant and accessible information to support the development of comprehensive and effective governance mechanisms. The International Energy Agency (IEA) conducted a global review of many elements of EE governance,including legal frameworks, institutional frameworks, funding mechanisms, co-ordination mechanisms and accountability arrangements, such as evaluation and oversight. The research tools included a survey of over 500 EE experts in 110 countries, follow-up interviews of over 120 experts in 27 countries and extensive desk study and literature searches on good EE governance.

  17. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  18. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  19. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach

    Directory of Open Access Journals (Sweden)

    Hyunseung Choo

    2009-03-01

    Full Text Available Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs. They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR that efficiently forwards (or relays data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  20. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    Science.gov (United States)

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  1. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  2. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  3. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  4. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  5. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    Science.gov (United States)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  6. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  7. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering.

    Science.gov (United States)

    Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen

    2018-05-08

    Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.

  8. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  9. Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring.

    Science.gov (United States)

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2014-08-22

    In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  10. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring

    Directory of Open Access Journals (Sweden)

    Sadik K. Gharghan

    2014-08-01

    Full Text Available In a wireless sensor network (WSN, saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  11. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  12. Energy efficiency in the foreground

    International Nuclear Information System (INIS)

    Baettig, I.

    2006-01-01

    In this interview with Eberhard Jochem, professor at the Centre for Energy Policy and Economics at the Federal Institute of Science and Technology (ETH) in Zurich, Switzerland, several energy-relevant topics are discussed. These include high oil prices, possible power shortages and binding commitments in the climate-protection area. The question is asked, how, in consideration of such general conditions, energy use and energy supply should develop in Switzerland. Options for increasing efficiency or the tapping of new energy sources is discussed, as is Switzerland's increasing energy consumption. The '2000 Watt' concept being worked on at the ETH and the activities needed for its realisation are discussed. The effects of this concept on economical and business development are discussed. The potential of renewable forms of energy and the possibility of building combined gas and steam power stations are looked at. Ways of promoting renewable energy and questions concerning the extent of the state intervention in the energy business are considered

  13. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  14. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    Interest has been renewed in bio-ethanol products for their contributions in moderating oil crises. So far, most research on bio-ethanol in China is based on pilot-level experimental studies. But this work only discloses information regarding material balances and reached yields without any further energy analysis. This paper aims to assess the energy efficiency of the cassava-based fuel ethanol (KFE) product from southwest China. For the purpose of a life cycle study of the KFE product as replacement transportation fuel, the study chose a 'vehicle fueled by cassava-based E10 (a blend of 10% ethanol and 90% gasoline by volume)' as the subject and accordingly defined the scope of this study. Then, the life cycle model of the KFE product concerning energetically relevant in- and outputs was built. Due to variations in data collected, as well as some estimates and assumptions used in this study, the Monte Carlo method was introduced to develop the statistical dispersion of calculated outputs of the assessing model. Assessment results show that, within the boundary of this study, KFE has a positive net energy value, with an energy ratio of around 0.70 MJ/MJ, which means 7 MJ into the processing for each MJ of KFE output

  15. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  16. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  17. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  18. Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance

    Directory of Open Access Journals (Sweden)

    Pål Börjesson

    2015-06-01

    Full Text Available The production of biogas from six agricultural crops was analysed regarding energy efficiency and greenhouse gas (GHG performance for vehicle fuel from a field-to-tank perspective, with focus on critical parameters and on calculation methods. The energy efficiency varied from 35% to 44%, expressed as primary energy input per energy unit vehicle gas produced. The GHG reduction varied from 70% to 120%, compared with fossil liquid fuels, when the GHG credit of the digestate produced was included through system expansion according to the calculation methodology in the ISO 14044 standard of life cycle assessment. Ley crop-based biogas systems led to the highest GHG reduction, due to the significant soil carbon accumulation, followed by maize, wheat, hemp, triticale and sugar beet. Critical parameters are biogenic nitrous oxide emissions from crop cultivation, for which specific emission factors for digestate are missing today, and methane leakage from biogas production. The GHG benefits were reduced and the interrelation between the crops changed, when the GHG calculations were instead based on the methodology stated in the EU Renewable Energy Directive, where crop contribution to soil carbon accumulation is disregarded. All systems could still reach a 60% GHG reduction, due to the improved agricultural management when digestate replaces mineral fertilisers.

  19. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  20. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  1. Energy Efficiency and Network Performance: A Reality Check in SDN-Based 5G Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Ochoa-Aday

    2017-12-01

    Full Text Available The increasing power consumption and related environmental implications currently generated by large data networks have become a major concern over the last decade. Given the drastic traffic increase expected in 5G dense environments, the energy consumption problem becomes even more concerning and challenging. In this context, Software-Defined Networks (SDN, a key technology enabler for 5G systems, can be seen as an attractive solution. In these programmable networks, an energy-aware solution could be easily implemented leveraging the capabilities provided by control and data plane separation. This paper investigates the impact of energy-aware routing on network performance. To that end, we propose a novel energy-aware mechanism that reduces the number of active links in SDN with multiple controllers, considering in-band control traffic. The proposed strategy exploits knowledge of the network topology combined with traffic engineering techniques to reduce the overall power consumption. Therefore, two heuristic algorithms are designed: a static network configuration and a dynamic energy-aware routing. Significant values of switched-off links are reached in the simulations where real topologies and demands data are used. Moreover, the obtained results confirm that crucial network parameters such as control traffic delay, data path latency, link utilization and Ternary Content Addressable Memory (TCAM occupation are affected by the performance-agnostic energy-aware model.

  2. gTBS: A green Task-Based Sensing for energy efficient Wireless Sensor Networks

    KAUST Repository

    Al-Halafi, Abdullah; Sboui, Lokman; Naous, Rawan; Shihada, Basem

    2016-01-01

    efficient WSN. As a result, many techniques were presented in the literature such as power adaptation, sleep and wake-up, and scheduling in order to enhance WSN lifetime. These techniques where presented separately and shown to achieve some gain in terms

  3. An Energy Efficient Adaptive Wireless Link for Farms based on IoT technologies

    DEFF Research Database (Denmark)

    Blaszczyk, tomasz; Lynggaard, Per

    2016-01-01

    There is a huge demand for automation infrastructures that increase the efficiency and the commercial potential for the agricultural sector. One approach to achieve these objectives is deploying Internet of Things including its embedded wireless sensor network platform. However, deploying wireles...

  4. An Energy Efficient Adaptive Wireless Link for Farms based on IoT technologies

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Lynggaard, P.

    2015-01-01

    There is a huge demand for automation infrastructures that increase the efficiency and the commercial potential for the agricultural sector. One approach to achieve these objectives is deploying Internet of Things including its embedded wireless sensor network platform. However, deploying wireles...

  5. Effective user interface designs to increase energy-efficient behavior in a Rasch-based energy recommender system

    NARCIS (Netherlands)

    Starke, A.D.; Willemsen, M.C.; Snijders, C.C.P.

    People often struggle to find appropriate energy-saving measures to take in the household. Although recommender studies show that tailoring a system's interaction method to the domain knowledge of the user can increase energy savings, they did not actually tailor the conservation advice itself. We

  6. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  7. Science-based design of stable quantum dots for energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohwer, Lauren E. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Ping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    II-VI quantum dots, such as CdSe and CdTe, are attractive as downconversion materials for solid-state lighting, because of their narrow linewidth, tunable emission. However, for these materials to have acceptable quantum yields (QYs) requires that they be coated with a II-VI shell material whose valence band offset serves to confine the hole to the core. Confinement prevents the hole from accessing surface traps that lead to nonradiative decay of the exciton. Examples of such hole-confined core/shell QDs include CdTe/CdSe and CdSe/CdS. Unfortunately, the shell can also cause problems due to lattice mismatch, which ranges from 4-6% for systems of interest. This lattice mismatch can create significant interface energies at the heterojunction and places the core under radial compression and the shell under tangential tension. At elevated temperatures (~240°C) interfacial diffusion can relax these stresses, as can surface reconstruction, which can expose the core, creating hole traps. But such high temperatures favor the hexagonal Wurtzite structure, which has lower QY than the cubic zinc blende structure, which can be synthesized at lower temperatures, ~140°C. In the absence of alloying the core/shell structure can become metastable, or even unstable, if the shell is too thick. This can cause result in an irregular shell or even island growth. But if the shell is too thin thermallyactivated transport of the hole to surface traps can occur. In our LDRD we have developed a fundamental atomistic modeling capability, based on Stillinger-Weber and Bond-Order potentials we developed for the entire II-VI class. These pseudo-potentials have enabled us to conduct large-scale atomistic simulations that have led to the computation of phase diagrams of II-VI QDs. These phase diagrams demonstrate that at elevated temperatures the zinc blende phase of CdTe with CdSe grown on it epitaxially becomes thermodynamically unstable due to alloying. This is accompanied by a loss of hole

  8. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  9. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  10. Energy Efficient Drivepower: An Overview.

    Energy Technology Data Exchange (ETDEWEB)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  11. Production of Magnesium-Based Thermoelectric-Sheet Materials for Efficient Energy Harvesting

    National Research Council Canada - National Science Library

    Aizawa, Tatsuhiko

    2008-01-01

    In the first-year of projects related to MURI-program, Mg-Si-Ge-Sn system is found to be a suitable TE-material target for improvement of specific figure-of-merit to be used as the candidate energy harvesting material...

  12. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  13. A Micro grid design for a kind of household energy efficiency management system based on high permeability

    Science.gov (United States)

    Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang

    2017-05-01

    After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.

  14. Energy efficiency standards and innovation

    Science.gov (United States)

    Morrison, Geoff

    2015-01-01

    Van Buskirk et al (2014 Environ. Res. Lett. 9 114010) demonstrate that the purchase price, lifecycle cost and price of improving efficiency (i.e. the incremental price of efficiency gain) decline at an accelerated rate following the adoption of the first energy efficiency standards for five consumer products. The authors show these trends using an experience curve framework (i.e. price/cost versus cumulative production). While the paper does not draw a causal link between standards and declining prices, they provide suggestive evidence using markets in the US and Europe. Below, I discuss the potential implications of the work.

  15. Energy-efficient STDP-based learning circuits with memristor synapses

    Science.gov (United States)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  16. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  17. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  18. Efficient, LON-based energy information management system; Effektives Energie-Informations-Management-System auf LON-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, A.; Kalla, H. [Weidmueller GmbH, Paderborn (Germany)

    1999-08-01

    In these days of globalisation and increasing competition, intelligent concepts have become indispensable. The decentralized energy information management system offered by Weidmueller stores consumption data in a database that makes consumption transparent both to the utility and its customers. [Deutsch] Die Maerkte werden globaler, der Wettbewerb immer haerter. Wer hier als Energielieferant `im Rennen` bleiben will, muss intelligente, zukunftsweisende Konzepte zusammen mit seinen Kunden erarbeiten. Das dezentrale Energie-Informations-Management-System von Weidmueller erfasst dazu die Verbrauchsdaten, die wiederum die Datenbasis mit entsprechender Verbrauchstransparenz sowohl fuer den Energieversorger als auch fuer den Kunden bilden. (orig.)

  19. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  20. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    Science.gov (United States)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  1. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  2. Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe – An analysis based on transnational modeling and case studies for nine European regions

    International Nuclear Information System (INIS)

    Boie, Inga; Fernandes, Camila; Frías, Pablo; Klobasa, Marian

    2014-01-01

    As a result of the current international climate change strategy, the European Commission has agreed on ambitious targets to reduce CO 2 emissions by more than 80% until 2050 as compared to 1990 levels and to increase the share of renewable energy and improve energy efficiency by 20% until 2020. Under this framework, renewable energy generation has increased considerably in the EU and it is expected to keep growing in the future years. This paper presents long-term strategies for transmission infrastructure development to integrate increasing amounts of renewable generation in the time horizon of 2030–2050. These are part of the outcomes of the SUSPLAN project, which focuses on four possible future renewable deployment scenarios in different European regions taking into account the corresponding infrastructure needs, especially electricity and gas grids, both on regional and transnational level. The main objective of the project is the development of guidelines for the integration of renewable energy into future energy infrastructures while taking account of national and regional characteristics. Therefore, the analysis is based on a two-track approach: A transnational modeling exercise (“top-down”) and in-depth case studies for nine representative European regions (“bottom-up”). - Highlights: • We present the main outcomes of the SUSPLAN EU project. • It assesses long-term energy infrastructure needs to integrate RES in Europe. • Regional and transnational analyses are performed for 4 RES scenarios until 2050. • Major barriers to the integration of RES into energy infrastructure are identified. • Efficient strategies to mitigate these barriers are proposed

  3. Stable and efficient nitrogen-containing-carbon based electrocatalysts for reactions in energy conversion systems.

    Science.gov (United States)

    Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2018-05-17

    High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. EYES -- Energy Efficient Sensor Networks

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Etalle, Sandro; Karl, Holger; Petrioli, Chiara; Zorzi, Michele; Kip, Harry; Lentsch, Thomas; Conti, M.; Giordano, S.; Gregori, E.; Olariu, S.

    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to

  5. A New Energy-Efficient Data Transmission Scheme Based on DSC and Virtual MIMO for Wireless Sensor Network

    OpenAIRE

    Li, Na; Zhang, Liwen; Li, Bing

    2015-01-01

    Energy efficiency in wireless sensor network (WSN) is one of the primary performance parameters. For improving the energy efficiency of WSN, we introduce distributed source coding (DSC) and virtual multiple-input multiple-output (MIMO) into wireless sensor network and then propose a new data transmission scheme called DSC-MIMO. DSC-MIMO compresses the source data using distributed source coding before transmitting, which is different from the existing communication schemes. Data compression c...

  6. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  7. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  8. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  9. France's action plan for energy efficiency

    International Nuclear Information System (INIS)

    2011-01-01

    This report first presents the French strategy for energy efficiency which is notably based on several commitments and an energy conservation policy. The second part describes the various policies and measures which have been implemented in France for different sectors: energy demand, housing and office building, transports, industry, exemplary State and local communities, agriculture, wastes, public information and sensitization. Several large appendices complete this report. They address assessment methods, policies and measures, and a European directive

  10. Optimizing Gas Generator Efficiency in a Forward Operating Base Using an Energy Management System

    Science.gov (United States)

    2013-06-01

    Bus Battery Chargers Routers Security Systems Laptops Radios Flat Panel Displays LED Lighting Fluorescent Lighting "Generator 2" 15kW Non...custom printed circuit board (PCB), field- programmable gate array (FPGA) development board and signal processing board. The battery pack is visible...source selection decisions are based upon system states such as load demand, generator capacity, and battery bank SoC. A simple RC circuit was used to

  11. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222 Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  12. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    in size of the target solute was investigated using the same separation process and IL entrainer to obtain the same product purity. The proposed methodology has been evaluated through a case study of binary alcoholic aqueous azeotropic separation: water+ethanol and water+isopropanol.......A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, water...

  13. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    Science.gov (United States)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general

  14. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  15. An energy efficient and high speed architecture for convolution computing based on binary resistive random access memory

    Science.gov (United States)

    Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.

  16. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen

    2017-01-01

    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  17. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  18. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  19. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  20. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  1. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  2. Energy-efficient neuromorphic classifiers

    OpenAIRE

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2015-01-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. Neuromorphic engineering promises extremely low energy consumptions, comparable to those of the nervous system. However, until now the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, rendering el...

  3. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali [Argonne National Laboratory

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse

  4. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  5. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  6. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable [[Page 6784

  7. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  8. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  9. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  10. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  11. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  12. An IMS-Based Middleware Solution for Energy-Efficient and Cost-Effective Mobile Multimedia Services

    Science.gov (United States)

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca

    Mobile multimedia services have recently become of extreme industrial relevance due to the advances in both wireless client devices and multimedia communications. That has motivated important standardization efforts, such as the IP Multimedia Subsystem (IMS) to support session control, mobility, and interoperability in all-IP next generation networks. Notwithstanding the central role of IMS in novel mobile multimedia, the potential of IMS-based service composition for the development of new classes of ready-to-use, energy-efficient, and cost-effective services is still widely unexplored. The paper proposes an original solution for the dynamic and standard-compliant redirection of incoming voice calls towards WiFi-equipped smart phones. The primary design guideline is to reduce energy consumption and service costs for the final user by automatically switching from the 3G to the WiFi infrastructure whenever possible. The proposal is fully compliant with the IMS standard and exploits the recently released IMS presence service to update device location and current communication opportunities. The reported experimental results point out that our solution, in a simple way and with full compliance with state-of-the-art industrially-accepted standards, can significantly increase battery lifetime without negative effects on call initiation delay.

  13. 'Normal' markets, market imperfections and energy efficiency

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Howarth, R.B.

    1994-01-01

    The conventional distinction between 'economic' and 'engineering' approaches to energy analysis obscures key methodological issues concerning the measurement of the costs and benefits of policies to promote the adoption of energy-efficient technologies. The engineering approach is in fact based upon firm economic foundations: the principle of lifecycle cost minimization that arises directly from the theory of rational investment. Thus, evidence that so-called 'market barriers' impede the adoption of cost-effective energy-efficient technologies implies the existence of market failures as defined in the context of microeconomic theory. A widely held view that the engineering view lacks economic justification, is based on the fallacy that markets are 'normally' efficient. (author)

  14. Energy efficient home in Lebanon

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the study is to present new methods or new products that could save money while improving the environment in Lebanon. Cost of energy is on the increase and is predicted to increase even more in the future. Environmental issues and awareness are gaining momentum in Lebanon. With electricity production directly linked to power plants that represent about 30% of the air pollution which is also linked to health related issues. There is an intermediate need to introduce more energy efficient products in the construction industry which require less energy to operate or could be linked indirectly to energy. In this context, cost-benefit analysis of heating, light, painting, energy consumption and energy lamp burning hours in addition to fuel burner, gas and electric heater in buildings are presented in tables. Finally, there is a lack of awareness on the positive impact on the environment reflected in the saving of natural resources, reducing pollution and creation of a better living environment

  15. Model-based energy efficiency monitoring of gas-fired furnaces; Modellgestuetztes Energieeffizienz-Monitoring an Industriefeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Gose, Sven; Schult, Stefan; Sternberg, Jost [SAACKE GmbH, Bremen (Germany)

    2011-09-15

    This paper first describes the losses and the saving potential of heat generation plants and contrasts the usual characteristic numbers for assessing the energy efficiency. As these numbers describe a discontinuous process often only insufficiently, the characteristic number ''fuel efficiency'' is introduced. This number can only be calculated through a continuous monitoring system. The benefits of such a monitoring system are demonstrated by an example. (orig.)

  16. Autonomy-oriented mechanisms for efficient energy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiming; Shi, Benyun

    2010-09-15

    Due to the uneven geographical availability of energy resources, it is essential for the energy suppliers and consumers in different countries/regions to most efficiently, economically, as well as reliably distribute energy resources. In this paper, starting from a specific energy distribution problem, we present a decentralized behavior-based paradigm that draws on the methodology of autonomy-oriented computing. The goal is twofold: (i) to characterize the underlying mechanism of the energy distribution systems, (ii) to provide scalable solutions for efficient energy distribution. We conjecture that efficient energy trading markets can emerge from appropriate behavior-based mechanisms, which can autonomously improve energy distribution efficiency.

  17. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  18. Energy-efficient cooking methods

    Energy Technology Data Exchange (ETDEWEB)

    De, Dilip K. [Department of Physics, University of Jos, P.M.B. 2084, Jos, Plateau State (Nigeria); Muwa Shawhatsu, N. [Department of Physics, Federal University of Technology, Yola, P.M.B. 2076, Yola, Adamawa State (Nigeria); De, N.N. [Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019 (United States); Ikechukwu Ajaeroh, M. [Department of Physics, University of Abuja, Abuja (Nigeria)

    2013-02-15

    Energy-efficient new cooking techniques have been developed in this research. Using a stove with 649{+-}20 W of power, the minimum heat, specific heat of transformation, and on-stove time required to completely cook 1 kg of dry beans (with water and other ingredients) and 1 kg of raw potato are found to be: 710 {+-}kJ, 613 {+-}kJ, and 1,144{+-}10 s, respectively, for beans and 287{+-}12 kJ, 200{+-}9 kJ, and 466{+-}10 s for Irish potato. Extensive researches show that these figures are, to date, the lowest amount of heat ever used to cook beans and potato and less than half the energy used in conventional cooking with a pressure cooker. The efficiency of the stove was estimated to be 52.5{+-}2 %. Discussion is made to further improve the efficiency in cooking with normal stove and solar cooker and to save food nutrients further. Our method of cooking when applied globally is expected to contribute to the clean development management (CDM) potential. The approximate values of the minimum and maximum CDM potentials are estimated to be 7.5 x 10{sup 11} and 2.2 x 10{sup 13} kg of carbon credit annually. The precise estimation CDM potential of our cooking method will be reported later.

  19. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  20. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  1. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  2. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  3. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  4. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  5. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  6. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  7. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  8. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  9. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  10. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  11. Formation of the Integral Ecological Quality Index of the Technological Processes in Machine Building Based on Their Energy Efficiency

    Science.gov (United States)

    Egorov, Sergey B.; Kapitanov, Alexey V.; Mitrofanov, Vladimir G.; Shvartsburg, Leonid E.; Ivanova, Natalia A.; Ryabov, Sergey A.

    2016-01-01

    The aim of article is to provide development of a unified assessment methodology in relation to various technological processes and the actual conditions of their implementation. To carry the energy efficiency analysis of the technological processes through comparison of the established power and the power consumed by the actual technological…

  12. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  13. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  14. How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars. Part 2. Forecasting effects of feebates based on energy-efficiency

    International Nuclear Information System (INIS)

    Haan, Peter de; Mueller, Michel G.; Scholz, Roland W.

    2009-01-01

    In this paper, we simulate the car market in order to forecast the effects of feebate systems based on an energy-labeling scheme using categories A to G. Very fuel-efficient (A) cars receive a cash incentive, highly inefficient (G) cars pay additional fees. Consumers have different price elasticities and behavioral options to react to feebates. They can switch to a smaller sized car, but as energy-efficiency varies widely within size segments, they can also stick to the preferred size class and choose a more efficient (smaller) engine. In addition, previously owned cars influence the next car to be chosen. We use an agent-based microsimulation approach particularly suited to predict environmental and market effects of feebates. Heteorogeneous agents choose from a choice set drawn from a detailed fleet of new cars. Incentives of EUR2000 for A-labeled cars induce an additional rated CO 2 emission decrease of new car registrations between 3.4% and 4.3%, with CO 2 abatement costs between EUR6 and EUR13 per ton, and otherwise little undesired market disturbance. The risk of rebound effects is estimated to be low. After adopting the frequencies of consumer segments to a given country, the model presented is applicable to all European car markets. (author)

  15. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  16. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  17. A framework to characterize energy efficiency measures

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; De Donatis, Alessio

    2014-01-01

    Highlights: • A novel framework to characterize energy efficiency measures is proposed. • It allows a greater knowledge sharing, facilitating the adoption of the best measures. • It supports policy-makers in developing drivers for industrial energy efficiency. - Abstract: The need to increase the diffusion of energy efficiency measures (EEMs) is of crucial importance to achieve a consistent reduction of energy consumption and green house gases (GHG) emissions. A clear comprehension of the characteristics of such EEMs could assist in gathering and capitalizing all the information needed by industrial firms in selecting and adopting technologies, as well as by policy-makers in designing appropriate policies for their diffusion. Therefore, in this study, starting from a literature review of the studies analyzing the attributes of EEMs, we aim at providing an innovative and comprehensive framework to characterize such measures, based on 17 attributes grouped according to six categories, such as: economic, energy, environmental, production-related, implementation-related and the possible interaction with other systems. We applied this scheme to an extensive range of EEMs in cross-cutting technologies, i.e. motors, compressed air, lighting and HVAC systems. The analysis provides a relevant contribution firstly to the structuring and the sharing of knowledge on EEMs and hence to the comprehension of the barriers currently hindering their adoption; secondly, it provides a structured basis for the analysis of the drivers that policy-makers should develop in order to promote industrial energy efficiency

  18. Using Leaf Chlorophyll to Parameterize Light-Use-Efficiency Within a Thermal-Based Carbon, Water and Energy Exchange Model

    Science.gov (United States)

    Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew

    2010-01-01

    Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio

  19. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Yin, Yarui; Chen, Yong

    2017-07-01

    In order to address the problem of optimizing the spectrum resources and power consumption in elastic optical networks (EONs), we investigate the potential gains by jointly employing the light-tree splitting and traffic grooming for multicast requests. An energy-efficient multicast traffic grooming strategy based on light-tree splitting (EED-MTGS-LS) is proposed in this paper. Firstly, we design a traffic pre-processing mechanism to decide the multicast requests' routing order, which considers the request's bandwidth requirement and physical hops synthetically. Then, by dividing a light-tree to some sub-light-trees and grooming the request to these sub-light-trees, the light-tree sharing ratios of multicast requests can be improved. What's more, a priority scheduling vector is constructed, which aims to improve the success rate of spectrum assignment for grooming requests. Finally, a grooming strategy is designed to optimize the total power consumption by reducing the use of transponders and IP routers during routing. Simulation results show that the proposed strategy can significantly improve the spectrum utilization and save the power consumption.

  20. A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis

    International Nuclear Information System (INIS)

    Rabaza, Ovidio; Gómez-Lorente, Daniel; Pérez-Ocón, Francisco; Peña-García, Antonio

    2016-01-01

    In this study, new relationships between the energy efficiency of street lighting systems, street width, and luminaire height were derived from the analysis of a large sample of outputs, generated with a software application widely used for lighting design. The result was a quadratic polynomial that perfectly fit the relationships obtained and whose coefficients characterize each type of luminaire. This greatly simplifies the design of lighting facilities because it only uses one equation, but at the same time, takes all necessary variables into account. The procedure maximized the energy efficiency of the street lighting systems, as far as conditions allowed, and greatly facilitated the calculation of the parameters of a basic lighting installation, according to CIE (International Commission on Illumination) recommendations. - Highlights: • New parameter relationships for efficient public lighting design were obtained. • A second-order polynomial simplifies the design of the lighting facilities using only one equation. • The procedure guarantees the maximization of energy efficiency of street lighting systems. • The results have been successfully tested with a well-known and reliable free software.

  1. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  2. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  3. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  4. Energy Efficient Evolution of Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben

    2011-01-01

    options for how to evolve their networks, allowing them to carry the expected increase in traffic. The best solution is generally selected based on two main criteria, performance and cost. However, pushed by a variety of environmental and energy challenges, MNOs are now also showing interest...... in understanding the impact that different options can have on the energy consumption of their networks. This paper investigates the possible energy gains of evolving a mobile network through a joint pico deployment and macro upgrade solution over a period of 8 years. Besides the network energy consumption, energy...... efficiency in Mbps/kWh is also analyzed. Furthermore, a cost analysis is carried out, to give a more complete picture of the different options being considered. Focusing on the last year of the evolution analysis, results show that deploying more pico sites reduces the energy consumption of the network...

  5. Management of efficient use of energy and energy efficiency markets in Europe

    International Nuclear Information System (INIS)

    Lutz, Wolfang F.

    1999-01-01

    The present paper is based on the study S ystematization of European Legal, regulatory, and Institutional Frameworks for the Efficient Use of Energy , conducted in the framework of the project entitled Building up the Institutional and Regulatory Design to Consolidate Modernization of Energy Policies in the Countries of Latin America: Efficient Use of energy, implemented by the United Nations Economic Commission for Latin America and the Caribbean, in cooperation with the Synergy Programme of the European Commission of the Directorate General of Energy. (The author)

  6. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  7. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  8. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  9. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  10. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  11. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  12. From theory based policy evaluation to SMART Policy Design: Lessons learned from 20 ex-post evaluations of energy efficiency instruments

    International Nuclear Information System (INIS)

    Harmelink, Mirjam; Harmsen, Robert; Nilsson, Lars

    2007-01-01

    This article presents the results of an in-depth ex-post analysis of 20 energy efficiency policy instruments applied across different sectors and countries. Within the AID-EE project, we reconstructed and analysed the implementation process of energy efficiency policy instruments with the aim to identify key factors behind successes and failures. The analysis was performed using a uniform methodology called 'theory based policy evaluation'. With this method the whole implementation process is assessed with the aim to identify: (i) the main hurdles in each step of the implementation process, (ii) key success factors for different types of instruments and (iii) the key indicators that need to be monitored to enable a sound evaluation of the energy efficiency instruments. Our analysis shows that: Energy efficiency policies often lack quantitative targets and clear timeframes; Often policy instruments have multiple and/or unclear objectives; The need for monitoring information does often not have priority in the design phase; For most instruments, monitoring information is collected on a regular basis. However, this information is often insufficient to determine the impact on energy saving, cost-effectiveness and target achievement of an instrument; Monitoring and verification of actual energy savings have a relatively low priority for most of the analyzed instruments. There is no such thing as the 'best' policy instrument. However, typical circumstances in which to apply different types of instruments and generic characteristics that determine success or failure can be identified. Based on the assessments and the experience from applying theory based policy evaluation ex-post, we suggest that this should already be used in the policy formulation and design phase of instruments. We conclude that making policy theory an integral and mandated part of the policy process would facilitate more efficient and effective energy efficiency instruments

  13. Energy and bandwidth-efficient wireless transmission

    CERN Document Server

    Gao, Wei

    2017-01-01

    This book introduces key modulation and predistortion techniques for approaching energy and spectrum-efficient transmission for wireless communication systems. The book presents a combination of theoretical principles, practical implementations, and actual tests. It focuses on spectrum-efficient modulation and energy-efficient transmission techniques in the portable wireless communication systems, and introduces currently developed and designed RF transceivers in the latest wireless markets. Most materials, design examples, and design strategies used are based on the author’s two decades of work in the digital communication fields, especially in the areas of the digital modulations, demodulations, digital signal processing, and linearization of power amplifiers. The applications of these practical products and equipment cover the satellite communications on earth station systems, microwave communication systems, 2G GSM and 3G WCDMA mobile communication systems, and 802.11 WLAN systems.

  14. Energy efficient elevators and escalators

    Energy Technology Data Exchange (ETDEWEB)

    Patrao, Carlos; Fong, Joao; Almeida, Anibal de (Dep. Electrical Engineering, Univ. of Coimbra, Coimbra (Portugal)); Rivet, Luc

    2009-07-01

    Elevators and escalators are the crucial element that makes it practical to live and work several floors above ground - more than 4,3 million units are installed in Europe. Due to ageing of the European population the installation of elevators in single family houses is experiencing a significant growth, as well as equipping existing buildings. Elevators use about 4% of the electricity in tertiary sector buildings. High untapped saving potentials exist with respect to energy-efficient technologies, investment decisions and behavioural approaches, in these sectors. This paper presents preliminary results from the IEE project E4, whose overall objective is the improvement of the energy performance of elevators and escalators, in tertiary sector buildings and in multi family residential buildings. The project is characterizing people conveyors electricity consumption in the tertiary sector and in residential buildings in the EU. The installed park is characterised by a survey among elevators national associations in each country. An assessment of the barriers has been made in the first phase of the project and will be presented. Monitoring campaigns in elevators and escalators are being conducted in each country according to a common developed methodology. More than fifty elevators and escalators will be audited. This will allow the collection of load curves (start up, travel up and down, travel full and empty), including the characterization of standby consumption. Standby consumption of an elevator can represent up to 80% of the total energy consumed per year, and can be drastically reduced. This paper presents the preliminary results of the first ten audits performed in Portugal by Isr-UC.

  15. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  16. Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low-power ARM-based cluster

    Science.gov (United States)

    Göddeke, Dominik; Komatitsch, Dimitri; Geveler, Markus; Ribbrock, Dirk; Rajovic, Nikola; Puzovic, Nikola; Ramirez, Alex

    2013-03-01

    Power consumption and energy efficiency are becoming critical aspects in the design and operation of large scale HPC facilities, and it is unanimously recognised that future exascale supercomputers will be strongly constrained by their power requirements. At current electricity costs, operating an HPC system over its lifetime can already be on par with the initial deployment cost. These power consumption constraints, and the benefits a more energy-efficient HPC platform may have on other societal areas, have motivated the HPC research community to investigate the use of energy-efficient technologies originally developed for the embedded and especially mobile markets. However, lower power does not always mean lower energy consumption, since execution time often also increases. In order to achieve competitive performance, applications then need to efficiently exploit a larger number of processors. In this article, we discuss how applications can efficiently exploit this new class of low-power architectures to achieve competitive performance. We evaluate if they can benefit from the increased energy efficiency that the architecture is supposed to achieve. The applications that we consider cover three different classes of numerical solution methods for partial differential equations, namely a low-order finite element multigrid solver for huge sparse linear systems of equations, a Lattice-Boltzmann code for fluid simulation, and a high-order spectral element method for acoustic or seismic wave propagation modelling. We evaluate weak and strong scalability on a cluster of 96 ARM Cortex-A9 dual-core processors and demonstrate that the ARM-based cluster can be more efficient in terms of energy to solution when executing the three applications compared to an x86-based reference machine.

  17. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  18. Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?

    International Nuclear Information System (INIS)

    Gómez-Calvet, Roberto; Conesa, David; Gómez-Calvet, Ana Rosa; Tortosa-Ausina, Emili

    2014-01-01

    Highlights: • We analyze the efficiency of electricity and derived heat generation in the European Union (EU). • We consider both desirable and undesirable outputs. • In our specifications both directional distance functions and slacks-based measure models are used. • Results show remarkable efficiency differences among EU countries. • This would call for further intensification of harmonization environmental policies in the EU. - Abstract: Over the last few years concerns have increased about the energy mix in many countries. These concerns have been of greater magnitude for countries with a common energy regulation such as European Union (EU) member states. An important aspect to take into account when choosing a given energy mix is the efficiency involved in its generation. In this context, the present study analyzes the efficiency with which electricity and derived heat was produced in 25 EU member states over the last decade. This analysis considers not only the inputs and outputs involved but, more importantly, which undesirable by-products were generated during the production process, a relevant issue for EU climate policy. To this end, two nonparametric frontier models are applied: first, a Directional Distance Function (DDF), based on Briec’s (1997) [16] proposal and, second, a modified version of Tone’s (2001) [51] Slacks-Based Measure (SBM) model, both of which are especially appropriate in this particular context due to their treatment of undesirable outputs. Results are partly innovative since, with few exceptions, applications on this issue are relatively scarce. From a policy implications’ point of view, our achievements are also interesting because they reveal remarkable efficiency differences among EU countries: those countries from the latest EU enlargements account for the lowest efficiencies, with large opportunities for improvement in CO 2 abatement and primary energy saving. Results also show stable efficiencies along the

  19. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  20. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  1. Health, Energy Efficiency and Climate Change

    Science.gov (United States)

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  2. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    Science.gov (United States)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  3. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  4. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  5. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  6. Energy Efficient Payload Aggregation in WSNs

    Directory of Open Access Journals (Sweden)

    Ákos MILÁNKOVICH

    2015-06-01

    Full Text Available Creating wireless sensor networks requires a different approach than traditional communication networks because energy efficiency plays a key role in sensor networks, which consist of devices without external power. The amount of energy used determines the lifetime of these devices. In most cases data packets are less sensitive to delay, thus can be aggregated, making it possible to gather more useful information reducing the energy required to transmit information. This article discusses the energy efficiency of different Forward Error Correction algorithms and presents a method to calculate the optimal amount of aggregation of the data packets in terms of power consumption, while taking into account the Bit Error Rate characteristics of the wireless channel. The contribution of this paper is a general method to improve the energy efficiency of wireless sensor networks by using the optimal amount of aggregation in case of different Forward Error Correction codes and channel characteristics. The presented results can be applied to any packet-based wireless protocol.

  7. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  8. Highly efficient separation of surfactant stabilized water-in-oil emulsion based on surface energy gradient and flame retardancy.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Miao, Xinrui; Wen, Ni; Zhou, Qiannan; Deng, Wenli

    2018-06-15

    Surface energy gradient would generate an imbalance force to drive tiny water droplets in dry air from the hydrophilic bumps to superhydrophobic domains, which has found on the Stenocara beetle's back. Inspired by this phenomenon, we introduced a pristine superhydrophilic filter paper on the lower surface energy superhydrophobic filter paper. ZnSn(OH) 6 particles and polydimethylsiloxane were mixed to prepare the superhydrophobic coating, and the coating was spray-coated on the poly(dialkyldimethylammonium chloride) covered filter paper to separate the span 80 stabilized water-in-isooctane emulsion. A pristine filter paper was added on the superhydrophobic filter paper to fabricate another membrane for separation. The results revealed that with a pristine filter paper, the membrane performed higher efficiency and more recyclability, and it could separate the emulsions with higher surfactant concentrations. The stabilized water droplets passed the superamphiphilic surface, and hindered by the superhydrophobic surface, generating a surface energy gradient for better separation. In addition, the superhydrophobic membrane could be protected from fire to some degree due to the introduced ZnSn(OH) 6 particles with excellent flame retardancy. This easy and efficient approach via simply bringing in pristine superhydrophilic membrane has great potential applications for water-in-oil emulsion separation or oil purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  10. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  11. Computer Architecture for Energy Efficient SFQ

    Science.gov (United States)

    2014-08-27

    IBM Corporation (T.J. Watson Research Laboratory) 1101 Kitchawan Road Yorktown Heights, NY 10598 -0000 2 ABSTRACT Number of Papers published in peer...accomplished during this ARO-sponsored project at IBM Research to identify and model an energy efficient SFQ-based computer architecture. The... IBM Windsor Blue (WB), illustrated schematically in Figure 2. The basic building block of WB is a "tile" comprised of a 64-bit arithmetic logic unit

  12. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  13. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  14. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  15. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  16. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  17. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang; Liu, Jia; Yang, Wulin; Logan, Bruce E.

    2015-01-01

    addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized

  18. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  19. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  20. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  1. Benefits for whom? Energy efficiency within the efficient market

    International Nuclear Information System (INIS)

    Chello, Dario

    2015-01-01

    How should the lack of an efficient energy market affect the design of energy efficiency policies and their implementation? What the consequences of an inefficient energy market on end users’ behaviour? This article tries to give an answer to such questions, by considering the decision making of domestic users following a few fundamental concepts of behavioural economics. The mechanism of price formation in the market, with particular reference to the internal energy market in Europe, will be examined and we will show that price remains the inflexible attribute in making an energy choice. Then, some conclusions will be addressed to policy makers on how to overcome the barriers illustrated.

  2. Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique.

    Science.gov (United States)

    Hu, Xiaofeng; Cao, Pan; Zhang, Liang; Jiang, Lipeng; Su, Yikai

    2014-06-02

    We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

  3. Energy efficiency practices among road freight hauliers

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Stenholm, Pekka; Tapio, Petri; McKinnon, Alan

    2012-01-01

    The reduction of greenhouse gases (GHG) is a highly prevalent public policy goal among European Union member countries. In the new White Paper on transport, the role of road freight transports in this is strongly emphasized. This far, however, the efficiency practices utilised in logistics firms are less studied. Drawing from policy goals and new survey data on 295 road transport firms our results show that hauliers are aware of the possible energy efficiency actions but lack the knowledge and resources to fully utilize them. Energy efficiency seems also to be unimportant for many shippers, so there are no incentives for hauliers to improve it. Examples from various countries show that clear energy efficiency improvements can be achieved with active cooperation between hauliers, shippers and policy makers. Such cooperation can be developed in Finland through the sectoral energy efficiency agreements. The novelty and the utility of these results allow scholars to answer important open questions in the national-level determinants of enhancing energy efficiency practices among road freight hauliers, and contribute to our understanding of how these can be fostered in public policies. - Highlights: ► Hauliers still monitor their fuel consumption with unsophisticated methods. ► Larger hauliers are more active in energy efficiency related issues than smaller ones. ► Hauliers are aware of energy efficiency actions, but lack knowledge of implementation. ► Finnish energy efficiency agreement provides a good framework for public policies. ► Companies that monitor and improve energy efficiency may gain competitive advantage.

  4. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  5. Speech for the defense of energy efficiency

    International Nuclear Information System (INIS)

    Escande, Ph.; Laforce, M.

    2006-01-01

    This article reprints an interview of C. Mandil, executive director of IEA who comments some of the recent energy policy events: the recent mergers between European energy companies and the competition on energy markets, the role and share of nuclear energy and renewable energies in the energy mix, the Russian gas affair and the energy efficiency in Russia, the oil prices and the Iranian threat of exports disruption, the peak oil and the decay of petroleum production, the energy efficiency in China, the global warming and the Kyoto protocol. (J.S.)

  6. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  7. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  8. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  9. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  10. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  11. Barriers to electric energy efficiency in Ghana

    Science.gov (United States)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  12. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  11. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  12. Southwest Energy Efficiency Project (SWEEP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Howard [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States); Meyers, Jim [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States)

    2018-01-29

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  13. Energy efficiency, market failures, and government policy

    International Nuclear Information System (INIS)

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described

  14. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  15. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  16. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  17. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  18. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  19. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  20. National Action Plan for Energy Efficiency Report

    Energy Technology Data Exchange (ETDEWEB)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  1. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    OpenAIRE

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical d...

  2. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  3. Buildings energy efficiency in the Southeast

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  4. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  5. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  6. Efficient Energy-Storage Concept

    Science.gov (United States)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  7. ESTIMATION OF LONG-TERM INVESTMENT PROJECTS WITH ENERGY-EFFICIENT SOLUTIONS BASED ON LIFE CYCLE COSTS INDICATOR

    Directory of Open Access Journals (Sweden)

    Bazhenov Viktor Ivanovich

    2015-09-01

    Full Text Available The starting stage of the tender procedures in Russia with the participation of foreign suppliers dictates the feasibility of the developments for economical methods directed to comparison of technical solutions on the construction field. The article describes the example of practical Life Cycle Cost (LCC evaluations under respect of Present Value (PV determination. These create a possibility for investor to estimate long-term projects (indicated as 25 years as commercially profitable, taking into account inflation rate, interest rate, real discount rate (indicated as 5 %. For economic analysis air-blower station of WWTP was selected as a significant energy consumer. Technical variants for the comparison of blower types are: 1 - multistage without control, 2 - multistage with VFD control, 3 - single stage double vane control. The result of LCC estimation shows the last variant as most attractive or cost-effective for investments with economy of 17,2 % (variant 1 and 21,0 % (variant 2 under adopted duty conditions and evaluations of capital costs (Cic + Cin with annual expenditure related (Ce+Co+Cm. The adopted duty conditions include daily and seasonal fluctuations of air flow. This was the reason for the adopted energy consumption as, kW∙h: 2158 (variant 1,1743...2201 (variant 2, 1058...1951 (variant 3. The article refers to Europump guide tables in order to simplify sophisticated factors search (Cp /Cn, df, which can be useful for economical analyses in Russia. Example of evaluations connected with energy-efficient solutions is given, but this reference involves the use of materials for the cases with resource savings, such as all types of fuel. In conclusion follows the assent to use LCC indicator jointly with the method of determining discounted cash flows, that will satisfy the investor’s need for interest source due to technical and economical comparisons.

  8. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  9. A study on electric bicycle energy efficiency

    Directory of Open Access Journals (Sweden)

    Ivan EVTIMOV

    2015-09-01

    Full Text Available The paper presents a construction of an experimental electric bicycle for evaluation of the energy efficiency. The bicycle is equipped with onboard computer which can store the information about motion and energy consumption. The result concerning power, energy consumption, recharging during brake process, etc. are given. Energy consumption for 3 typical city routes is studied.

  10. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  11. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  12. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  13. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  14. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  15. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  16. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  17. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  18. Energy efficient idler for belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.K.; Chattopadhyay, A. [Indian School of Mines Univ., Dhanbad (India). Dept. of Mechanical Engineering and Mining; Soni, R.; Bhattnagar, M.

    2009-07-01

    In today's economic and legal environment, energy efficiency has become more important than ever. This paper proposes a new design of idler rollers for belt conveyors that could help to them even more efficient by reducing their energy consumption and also their CO{sub 2} footprint. (orig.)

  19. Energy efficiency: From regional to global cooperation

    International Nuclear Information System (INIS)

    Brendow, K.

    1994-01-01

    In developing, reforming and emerging countries in particular, institutional hurdles have hindered the introduction of energy efficient technology. The author develops the theme from two U.N. projects: A new institutional accessibility to supra-regional cooperation could provide an important stimulus for future worldwide cooperation in the field of energy efficiency. (orig.) [de

  20. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...