WorldWideScience

Sample records for based emitter materials

  1. Quasi-coherent thermal emitter based on refractory plasmonic materials

    CERN Document Server

    Liu, Jingjing; Lagutchev, Alexei; Kildishev, Alexander; Malis, Oana; Boltasseva, Alexandra; Shalaev, Vladimir M

    2015-01-01

    The thermal emission of refractory plasmonic metamaterial - a titanium nitride 1D grating - is studied at high operating temperature (540 {\\deg}C). By choosing a refractory material, we fabricate thermal gratings with high brightness that are emitting mid-infrared radiation centered around 3 $\\mu$m. We demonstrate experimentally that the thermal excitation of plasmon-polariton on the surface of the grating produces a well-collimated beam with a spatial coherence length of 32{\\lambda} (angular divergence of 1.8{\\deg}) which is quasi-monochromatic with a full width at half maximum of 70 nm. These experimental results show good agreement with a numerical model based on a two-dimensional full-wave analysis in frequency domain.

  2. Quasi-coherent thermal emitter based on refractory plasmonic materials

    DEFF Research Database (Denmark)

    Liu, Jingjing; Guler, Urcan; Lagutchev, Alexei;

    2015-01-01

    The thermal emission of refractory plasmonic metamaterial - a titanium nitride 1D grating - is studied at high operating temperature (540 degrees C). By choosing a refractory material, we fabricate thermal gratings with high brightness that are emitting mid-infrared radiation centered around 3 mu m....... We demonstrate experimentally that the thermal excitation of plasmon-polariton on the surface of the grating produces a well-collimated beam with a spatial coherence length of 32 lambda (angular divergence of 1.8 degrees) which is quasi-monochromatic with a full width at half maximum of 70 nm. These...

  3. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  4. Rare earth boride electron emitter materials fabrication and evaluation

    Science.gov (United States)

    Swanson, L. W.; Davis, P. R.; Gesley, M. A.

    1982-03-01

    Techniques were developed for routine preparation of single crystal rods of LaB6, CeB6 and PrB6 by arc float zone refining. Single crystal, oriented samples were prepared from these rods and mounted as cathodes for testing. Several mounting systems were used, and flat, pointed cone and truncated cone thermionic cathodes were studied. Pointed field emitters of LaB6(100) were also investigated. Variation of thermionic emitted current density and thermal stability of materials were studied as functions of rare earth element, bulk stoichiometry and crystal orientation. Life tests were performed on several different LaB6(100) cathodes. One such cathode operated for over 3000 hours at approximately 10 A/sq cm emitted current density with no serious physical degradation. Surface properties of the materials were investigated by various surface analysis techniques.

  5. Thermal emittance measurements on candidate refractory materials for application in nuclear space power systems

    International Nuclear Information System (INIS)

    The development of a highly efficient General Purpose Heat Source (GPHS) space power system requires that all of the available thermal energy from the GPHS modules be utilized in the most thermally efficient manner. This includes defining the heat transfer/thermal gradient profile between the surface of the GPHS's and the surface of the energy converter's hot end whose geometry is dependent on the converter technology selected. Control of the radiant heat transfer between these two surfaces is done by regulating how efficiently the selected converter's hot end surface can reject heat compared to a perfect blackbody, i.e. its infrared emittance. Several refractory materials of interest including niobium-1% zirconium, molybdenum-44.5% rhenium and L-605 (a cobalt-based alloy) were subjected to various surface treatments (grit blasting with either SiC or WC particulates) and heat treatments (up to 1198 K for up to 3000 hours). Room temperature infrared emittance values were then obtained using two different infrared reflectometers. Grit blasting with either SiC or WC tended to increase the emittance of flat or curved L-605 coupons by ∼0.2-0.3 independent of heat treatment. Heat treating L-605 coupons under 773 K for up to 2000 hours had only a slight effect on their emittance, while heat treating L-605 coupons at 973 K for over 150 hours appeared to significantly increase their emittance. For the temperatures and times studied here, the emittance values obtained on niobium-1% zirconium and molybdenum-44.5% rhenium coupons were independent of heat treat times and temperatures (except for the niobium-1% zirconium coupon that was heat treated at 1198 K for 150 hours)

  6. Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    Directory of Open Access Journals (Sweden)

    Song Yinglin

    2009-01-01

    Full Text Available Abstract A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures.

  7. Auger Emitter Based Radiotherapy- A Possible New Treatment for Cancer

    DEFF Research Database (Denmark)

    Fredericia, Pil; Groesser, Torsten; Severin, Gregory;

    2014-01-01

    damage produced by Low-LET radiation used in current radiotherapy (2-3) Considerable efforts have been made in the past twenty years to develop Auger emitter-based radiotherapy However, previous studies lack precise measurement of RBE, which is the fundamental factor defining the relationship between...

  8. Large area InN terahertz emitters based on the lateral photo-Dember effect

    International Nuclear Information System (INIS)

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room for improvement by optimizing the masking structures

  9. Resonantly enhanced thermal emitters based on nanophotonic structures

    OpenAIRE

    O'Regan, Bryan J.

    2015-01-01

    The manipulation of photons, especially the control of spontaneous emission, has become a core area of photonics research in the 21st century. One of the key challenges is the control of the broadband emission profile of thermal emitters. Recently, attention has focused on resonant nanophotonic structures to control the thermal emission with most of the work concentrating on the mid-infrared wavelength range and/or based on metallic nanostructures. However, the realisation of a high temperatu...

  10. Influence of cathode material on emission characteristics of field emitters for microelectronics devices

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo; Tsuji, Hiroshi; Gotoh, Yashuhito [Kyoto Univ. (Japan)] [and others

    1993-03-01

    In order to find out the cathode material suitable to vacuum microelectronics devices, dependence of cathode material of field emitters was investigated with respect to the emission characteristics. Since the field emitters for vacuum microelectronics devices are fabricated by thin film processes, the characteristics of the electron emission from deposited materials should be examined. In the present study, a dozen materials were deposited onto the tungsten needle fabricated by well-controlled electrochemical etching. Measurement of the emission was performed at the pressure of 10{sup -9} Torr range. The current-voltage characteristics and the stability measurements revealed that the gold emitters indicated excellent properties: stable and high current at low extraction voltage. The effective surface work function and the effective emission area were evaluated from the Fowler-Nordheim theory, assuming that the emission area rapidly decreases with reducing the apex radius. From this analysis, it is clarified that the gold emitter had the lowest effective work function among the examined emitters. The results can be interpreted as that in order to obtain stable emission characteristics, materials with inert surface should be selected. 13 refs., 6 figs., 1 tab.

  11. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  12. The development of corannulene-based blue emitters.

    Science.gov (United States)

    Mack, James; Vogel, Philip; Jones, Derek; Kaval, Necati; Sutton, Art

    2007-08-01

    Novel blue emitters were synthesized based on the fullerene fragment corannulene. 1,2- bis(corannulenylethynyl)benzene and 1,4-bis(corannulenylethynyl)benzene were designed, synthesized, and shown to exhibit significant red shifts in their absorption spectra as compared to that of the parent corannulene. Photoluminescence studies show both 1,2- bis(corannulenylethynyl)benzene and 1,4- bis(corannulenylethynyl)benzene gives enhanced blue luminescence compared to the parent corannulene structure. 1,4-bis(corannulenylethynyl)benzene was observed to give intense blue luminescence when excited at 400 nm. DFT and TD-DFT calculations were performed and shown to be consistent with the observed experimental results.

  13. Properties of nanolasers based on few discrete emitters

    DEFF Research Database (Denmark)

    Lund, Anders Mølbjerg; Nielsen, Per Kær; Lorke, Michael;

    2012-01-01

    emitters and 100 photon states the density matrix has more than 2.5 × 106 elements. We have been able to simplify the problem significantly by adiabatically eliminating the photon-assisted polarizations and the correlations between emitters and cavity [3]. This results in a set of rate equations...

  14. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    Science.gov (United States)

    Wu, Chihhui; Neuner, Burton, III; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve; Shvets, Gennady

    2012-02-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley-Queisser limit for emitter temperatures above Te = 1200 K, and achieves an efficiency as high as 41% for Te = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented.

  15. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    Science.gov (United States)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity-backed slot antenna, I demonstrate a record rate enhancement for a solid state emitter of 320x. In addition, the nanoscale devices (30nm x 250nm) have a quantum yield comparable to an unprocessed WSe2 monolayer. Such a fast, efficient, nano-emitter not only has the ability to reduce power consumption in

  16. Emitter Design and Numerical Simulation Based on the Extenics Theory

    Directory of Open Access Journals (Sweden)

    Jiang Fan

    2014-05-01

    Full Text Available In order to improve the performance of emitter, the extenics theory is introduced, whose divergent thinking is used to resolve the conflict of anti-clogging and energy dissipation and a new structure is proposed. The wide triangular areas are designed to reduce the flow rate behind of the each orifice and be easy to precipitation of impurities. The orifices are set to gradually decrease water kinetic energy and the flow channel is designed to be dismantle. The numerical simulation technology is used to analyze the internal flow field of emitter, the flow field results show that the improved emitter has great effect of energy dissipation and anti-clogging. As the same time, the structure of emitter is optimized and L1 = 31 mm, L2 = 21 mm, L3 = 8 mm and L4 = 5 mm are the optimization size values.

  17. Lambertian thermal emitter based on plasmonic enhanced absorption.

    Science.gov (United States)

    Wang, Chih-Ming; Tsai, Din Ping

    2016-08-01

    In this paper, a narrow band thermal emission at 10 μm is demonstrated using a one dimensional metasurface. The proposed metasurface structure provides magnetic resonance mode that enhances the phonon absorption of SiO2. The proposed metasurface thermal emitter shows a Lambertian distribution. Additionally, 5.8-folds enhancement of emissivity is achieved by optimizing the cavity thickness of the metasurfaces. This type of thermal emitter will be useful for IR sensing applications. PMID:27505801

  18. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array.

    Science.gov (United States)

    Gu, Wei; Tang, Guihua; Tao, Wenquan

    2015-11-30

    A 2D pyramidal metamaterial-based nano-structure is proposed as a wavelength-selective Thermophotovoltaic (TPV) emitter. Rigorous coupled-wave analysis complemented with normal field method is used to predict the emittance as well as the electromagnetic field and Poynting vector distributions. The proposed emitter is shown to be wavelength-selective, polarization-insensitive, and direction-insensitive in emittance. The mechanisms supporting the emittance close to 1.0 in the wavelength range of 0.3-2.0 μm are elucidated by the distribution of electromagnetic field and Poynting vectors in the proposed structure. Finally, thermal stability and radiant heat-to-electricity TPV efficiency for a realistic InGaAsSb TPV system are discussed.

  19. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    CERN Document Server

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  20. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    International Nuclear Information System (INIS)

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers

  1. Dynamical Properties of Nanolasers Based on Few Discrete Emitters

    DEFF Research Database (Denmark)

    Lund, Anders Mølbjerg; Nielsen, Per Kær; Lorke, Michael;

    2013-01-01

    analytically express the response of the nanolaser to a modulation of the pumping rate. These results are compared with the modulation response obtained directly from the master equation using a novel method. We show that contrary to conventional semiconductor lasers, the nanolaser is typically over-damped and...... displays a dip in the modulation bandwidth as the two-level systems become inverted. Both these features can be traced back to the use of discrete emitters that are incoherently pumped....

  2. Low Emittance Gun Project based on Field Emission

    CERN Document Server

    Ganter, Romain; Dehler, M; Gobrecht, Jens; Gough, Chris; Ingold, Gerhard; Leemann, Simon C; Shing-Bruce-Li, Kevin; Paraliev, Martin; Pedrozzi, Marco; Raguin, Jean Yves; Rivkin, Leonid; Schlott, Volker; Sehr, Harald; Streun, Andreas; Wrulich, Albin F; Zelenika, Sasa

    2004-01-01

    The design of an electron gun capable of producing beam emittance one order of magnitude lower than current technology would reduce considerably the cost and size of a free electron laser emitting at 0.1nm. Field emitter arrays (FEAs) including a gate and a focusing layer are an attractive technology for such high brightness sources. Electrons are extracted from micrometric tips thanks to voltage pulses between gate and tips. The focusing layer should then reduce the initial divergence of each emitted beamlets. This FEA will be inserted in a high gradient diode configuration coupled with a radiofrequency structure. In the diode part very high electric field pulses (several hundreds of MV/m) will limit the degradation of emittance due to space charge effect. This first acceleration will be obtained with high voltage pulses (typically a megavolt in a few hundred of nanoseconds) synchronized with the low voltage pulses applied to the FEA (typically one hundred of volts in one nanosecond at frequency below kilohe...

  3. Multi-function radar emitter identification based on stochastic syntax-directed translation schema

    Institute of Scientific and Technical Information of China (English)

    Liu Haijun Diao; Yu Hongqi; Sun Zhaolin; Jietao

    2014-01-01

    To cope with the problem of emitter identification caused by the radar words’ uncer-tainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema (SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm. The results show that even under the condition of the defective radar words distorted by noise, the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.

  4. Sparsity-based AOA Estimation for Emitter Localization

    Directory of Open Access Journals (Sweden)

    Lingwen Zhang

    2012-08-01

    Full Text Available Angle of arrival (AOA is able to achieve high accuracy when the antenna arrays are deployed much closer to the emitter. However, spatial resolution problem still exists. This paper presents a novel AOA estimation method called sparsity angle sensing (SAS to improve the resolution. It integrates compressive sensing theorem into the parameter estimation formula. Traditional approaches for AOA estimation such as beamforming (BF, minimum variance distortionless response (MVDR, multiple signal classification (MUSIC are compared with SAS, and simulation results are discussed. It is shown that SAS method outperforms the other three methods in spatial resolution and robustness.  

  5. Spectral reflectance and emittance of particulate materials. I - Theory. II - Application and results

    Science.gov (United States)

    Emslie, A. G.; Aronson, J. R.

    1973-01-01

    The sizes, shapes, and complex refractive indices of particles are calculated in a study of the IR spectral reflectance of a semiinfinite medium composed of irregular particles of different materials. Geometric optics techniques with corrections for additional absorption due to particle edges and asperities is used in scattering and absorption calculations for particles larger than the wavelength. A Lorentz-Lorenz model is used to derive the averaged complex index of the medium, assuming that its individual particles are ellipsoids. Experimental results obtained on a Michelson interferometer for the spectral emittance of particulate mineral materials are compared with theoretical results. Good agreement between the experimental and theoretical results suggests the applicability, in remote IR spectroscopy, of the theoretical concepts applied in this study.

  6. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement

    Science.gov (United States)

    Huang, Wei-Lun; Hsiao, Hui-Hsin; Tang, Ming-Ru; Lee, Si-Chen

    2016-08-01

    This paper presents a triple-wavelength infrared plasmonic thermal emitter using a periodic arrangement of hybrid dielectric materials within a tri-layer metal/dielectric/metal structure. The proposed arrangement makes it possible to sustain multiple resonance of localized surface plasmons (LSP), thereby providing an additional degree of freedom by which to vary the resonant wavelengths in the medium infrared region. Variations in the effective refractive index due to the different modal distribution within dielectric gratings results in multiple LSP resonances, and the resonant wavelengths can be easily tuned by altering the compositions of hybrid dielectric materials. The measured dispersion relation diagram and the finite difference time domain simulation indicated that the resonances were localized. They also indicate that the magnetic fields generated by the multiple LSP modes exhibit distribution patterns similar to that of a standing wave in the periodic arrangement of the hybrid dielectric layer, each of which presents an emission peak corresponding to a different modal order.

  7. High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    James Kolodzey; Guang-Chi Xuan; Peng-Cheng Lv; Nathan Sustersic; Xin Ma

    2014-01-01

    Electrically pumped high power terahertz (THz) emitters that operated above room temperature in a pulse mode were fabricated from nitrogen-doped n-type 6H-SiC. The emission spectra had peaks centered on 5 THz and 12 THz (20 meV and 50 meV) that were attributed to radiative transitions of excitons bound to nitrogen donor impurities. Due to the relatively deep binding energies of the nitrogen donors, above 100 meV, and the high thermal conductivity of the SiC substrates, the THz output power and operating temperature were significantly higher than previous dopant based emitters. With peak applied currents of a few amperes, and a top surface area of 1 mm2, the device emitted up to 0.5 mW at liquid nitrogen temperature (77 K), and tens of microwatts up to 333 K. This result is the highest temperature of THz emission reported from impurity-based emitters.

  8. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  9. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm2 emission current) to emit a 1 mA/cm2 current at 3 V/μm and 100 mA/cm2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼105 cd/m2 with high efficiency of ∼100 lm/w.

  10. Experimental and numerical investigations of Si-based photonic crystals with ordered Ge quantum dots emitters

    International Nuclear Information System (INIS)

    ) method. In a novel approach a small imaginary refractive index was artificially assigned to the QD emitters to produce absorption in photonic crystal. In the simulations the photonic crystal was illuminated with plane waves. The calculated absorption then depends on the in-coupling of the plane waves and the guided waves inside the photonic crystal. Using the fact that all materials are reciprocal, the calculated mode spectra in absorption can be interpreted in terms of QD emission. The artificially introduced complex refractive index was either distributed homogenously over a layer to simulate randomly distributed emitters, or in a periodic pattern for the simulation of ordered emitters. Both the simulations and the experiments show that the local position of the emitters inside a photonic crystal can result in different photoluminescence enhancements and radiation patterns. Thus, combining the narrow spectral range of QD emission with high local electric field on certain locations in the unit cell of the photonic crystal can be exploited to tailor the enhancement of spontaneous emission and the far field radiation pattern. (author)

  11. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    BACKGROUND. Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. AIM. To discuss practical precautions for handling beta emitters...... on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure....

  12. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes.

    Science.gov (United States)

    Mori, Tatsuya; Yamauchi, Yohei; Honda, Satoshi; Maki, Hideyuki

    2014-06-11

    The integration of high-speed light emitters on silicon chips is an important issue that must be resolved in order to realize on-chip or interchip optical interconnects. Here, we demonstrate the first electrically driven ultrafast carbon nanotube (CNT) light emitter based on blackbody radiation with a response speed (1-10 Gbps) that is more than 10(6) times higher than that of conventional incandescent emitters and is either higher than or comparable to that of light-emitting diodes or laser diodes. This high-speed response is explained by the extremely fast temperature response of the CNT film, which is dominated by the small heat capacity of the CNT film and its high heat dissipation to the substrate. Moreover, we experimentally demonstrate 140 ps width pulsed light generation and real-time optical communication. This CNT-based emitter with the advantages of ultrafast response speeds, a small footprint, and integration on silicon can enable novel architectures for optical interconnects, photonic, and optoelectronic integrated circuits. PMID:24796644

  13. Design and test of a new facility for assessing spectral normal emittance of solid materials at high temperature

    Science.gov (United States)

    Mercatelli, L.; Meucci, M.; Sani, E.

    2016-02-01

    The measurement of spectral emittance is a key topic in the study of new compositions, depositions and mechanical machining of materials for solar absorption and for renewable energies. In this work we report on the realization and testing of a new experimental facility for the measurement of directional spectral emittance which provides emittance spectral information in a controlled environment at medium-high temperatures up to 1300 K. The device is composed by a vacuum chamber with electrical heater optically connected with a visible and an FT-IR spectrometer. A split mirror permits to calibrate the system as it directs toward the detector the signal deriving from a calibrated blackbody. A ZnSe window allows to measure normal radiance in 0.6-17 μm spectral range. In this device the first test were carried out comparing the results obtained for HfC and TaB2 ultra-refractory ceramic samples to previous monochromatic measurements performed in a research solar furnace, obtaining a good agreement. Then, in order to confirm the reliability of the acquired spectral emittance curve, we compared it to that calculated from the room temperature spectrum in 2.5-17 μm spectral range, showing a similar spectral trend.

  14. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters

    Science.gov (United States)

    Nguyen, Duc Dung; Tai, Nyan-Hwa; Chen, Szu-Ying; Chueh, Yu-Lun

    2012-01-01

    We report a versatile synthetic process based on rapid heating and cooling chemical vapor deposition for the growth of carbon nanotube (CNT)-graphene hybrid materials where the thickness of graphene and density of CNTs are properly controlled. Graphene films are demonstrated as an efficient barrier layer for preventing poisoning of iron nanoparticles, which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of 2.15 kΩ sq-1 with a transmittance of 85.6% (at 550 nm), while a CNT-graphene hybrid film shows an improved sheet resistance of 420 Ω sq-1 with an optical transmittance of 72.9%. Moreover, CNT-graphene films are demonstrated as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 V μm-1, respectively. The development of CNT-graphene films with a wide range of tunable properties presented in this study shows promising applications in flexible opto-electronic, energy, and sensor devices.

  15. Preparation and tunneling characteristics of MOS structures for Si-based IR light emitters

    Energy Technology Data Exchange (ETDEWEB)

    Suckow, Stephan [IHP/BTU Joint Lab., Cottbus (Germany); Kittler, Martin; Seifert, Winfried; Arguirov, Tzanimir [IHP/BTU Joint Lab., Cottbus (Germany); IHP, Frankfurt (Oder) (Germany); Schmidt, Manfred; Stegemann, Bert; Angermann, Heike [Hahn-Meitner-Institut Berlin (Germany)

    2008-07-01

    Si based light emitters, such as MOS structures based on dislocation networks, are attractive candidates for the generation of electroluminescence in the IR spectral range to be applied e.g. in optical on-chip interconnects. In the present work the preparation of an appropriate MOS structure that facilitates efficient charge carrier injection is explored and its charge carrier tunneling and recombination characteristics are analyzed. In this respect MOS structures with ultra-thin tunnel oxides fabricated by wet-chemical oxidation of Si wafers and thermally deposited Ti contacts turned out to produce the most efficient and reliable results. Moreover, electroluminescence measurements revealed an anomalous temperature behavior of band-to-band recombination with enhanced intensity at higher temperature (300 K). As photoluminescence intensity inversely increases with decreasing temperature, this effect is clearly correlated to efficient minority charge carrier injection via the MOS contact and points towards an application as room temperature IR light emitter.

  16. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  17. Dependence of the modulation response of quantum dot based nanocavity devices on the number of emitters

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...... of the modulation response in such devices on the number of emitters coupled to the cavity mode. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)...

  18. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation

    Science.gov (United States)

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-03-01

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6–19.6 g/m3 at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m3 to 19.6 g/m3. A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control.

  19. 3D-FEM electrical–thermal–mechanical analysis and experiment of Si-based MEMS infrared emitters

    Science.gov (United States)

    Wang, Xiang; Wang, Na; Chen, Ran-Bin; San, Hai-Sheng; Chen, Xu-Yuan

    2016-11-01

    Designs, simulations, and fabrications of silicon-based MEMS infrared (IR) emitters for gas sensing application are presented. A 3D finite element method (3D-FEM) was used to analyze the coupled electrical–thermal–mechanical properties of a bridge hotplate structure (BHS) IR emitter and closed hotplate structure (CHS) IR emitter using Joule heating and thermal expansion models of COMSOL™. The IR absorptions of n- and p-silicon were calculated for the design of self-heating structure. The BHS and CHS IR emitters were fabricated synchronously using micro-electromechanical systems technology for a direct performance comparison. Both types of IR emitters were characterized by electrical and optical measurements. The experimental results show that BHS IR emitters have higher radiation density, lower power consumption, and faster frequency-response than CHS IR emitters due to the use of a thermal isolation structure and self-heating structure. Meanwhile, the simulated results agree well with the corresponding measured results, which indicate that the 3D-FEM-model is effective and can be used in the optimal design of electro-thermal devices.

  20. Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres.

    Science.gov (United States)

    Dyachenko, P N; do Rosário, J J; Leib, E W; Petrov, A Yu; Störmer, M; Weller, H; Vossmeyer, T; Schneider, G A; Eich, M

    2015-09-21

    We report on a band edge absorber/emitter design for high-temperature applications based on an unstructured tungsten substrate and a monolayer of ceramic microspheres. The absorber was fabricated as a monolayer of ZrO(2) microparticles on a tungsten layer with a HfO(2) nanocoating. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. The absorption properties were found to be stable up to 1000°C. PMID:26406752

  1. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  2. Tesla transformer based 500 kv pulser for low emittance test stand at Paul Scherrer Institute

    CERN Document Server

    Paraliev, M; Ivkovic, S

    2011-01-01

    For the Low Emittance Gun (LEG) project at Paul Scherrer Institute a stable and reliable high voltage pulsed generator was needed in order to study low emittance beams generation and transport. The system had to provide variable asymmetric voltage pulse up to -500 kV with amplitude stability better than 1.2 part per thousand (ppt). The pulse should be applied to the cathode of variable gap accelerating diode providing voltage gradients up to more than 100 MV/m. A broad bandwidth electrical connection to the cathode is necessary in order to deliver fast cathode gating signal. The design of the pulser is presented as well as the optimization and implementation of some critical components in the system. A detailed electrical model of the pulsed generator was created in order to optimize and study its electrical behavior. The measured waveforms are compared to the simulated ones and output amplitude stability is discussed. Different electrode materials and surface treatments were studied to ensure breakdown free ...

  3. Towards silicon based light emitter utilising the radiation from dislocation networks

    International Nuclear Information System (INIS)

    On-chip optical interconnects require a CMOS-compatible electrically pumped Si-based light emitter at about 1.5 μm. Dislocations in silicon offer a recombination centre for light emission at the desired energy. Here we report on the radiative properties of dislocation networks, created in a well controllable manner at a certain depth of silicon wafers. Dislocation networks, created by ion implantation and annealing, misfit dislocation in SiGe buffers and a novel concept of dislocations created by misoriented direct bonded Si wafers are discussed. We demonstrate that under a specific misorientation a dislocation network with efficient room temperature D1 (1.55 μm) emission might be generated

  4. Radiative damping and synchronization in a graphene-based terahertz emitter

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, A. S., E-mail: andrey.moskalenko@physik.uni-augsburg.de; Mikhailov, S. A., E-mail: sergey.mikhailov@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, D-86135 Augsburg (Germany)

    2014-05-28

    We investigate the collective electron dynamics in a recently proposed graphene-based terahertz emitter under the influence of the radiative damping effect, which is included self-consistently in a molecular dynamics approach. We show that under appropriate conditions synchronization of the dynamics of single electrons takes place, leading to a rise of the oscillating component of the charge current. The synchronization time depends dramatically on the applied dc electric field and electron scattering rate and is roughly inversely proportional to the radiative damping rate that is determined by the carrier concentration and the geometrical parameters of the device. The emission spectra in the synchronized state, determined by the oscillating current component, are analyzed. The effective generation of higher harmonics for large values of the radiative damping strength is demonstrated.

  5. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    Directory of Open Access Journals (Sweden)

    J. M. Wang

    2015-03-01

    Full Text Available An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX; and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25% contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by

  6. High efficiency light source using solid-state emitter and down-conversion material

    Science.gov (United States)

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  7. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  8. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  9. Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals

    Institute of Scientific and Technical Information of China (English)

    ZHANGGexiang; JINWeidong; HULaizhao

    2005-01-01

    Radar emitter signal recognition plays an important role in electronic intelligence and electronic support measure systems. To enhance accurate recognition rate of advanced radar emitter signals to meet the requirement of modern electronic warfare, Resemblance coefficient (RC) approach is proposed to extract features from radar emitter signals with different intrapulse modulation laws. Definition of RC is given. Properties and advantages of RC are analyzed. Feature extraction algorithm using RC is described in detail. The noise-suppression performances of RC features are also analyzed. Subsequently, neural networks are used to design classifiers. Because RC contains the change and distribution information of amplitude, phase and frequency of radar emitter signals, RC can reflect the intrapulse modulation laws effectively. The results of theoretical analysis and simulation experiments show that RC features have good characteristic of not being sensitive to noise. 9 radar emitter signals are chosen to make the experiment of RC feature extraction and automatic recognition. A large number of experimental results show that good accurate recognition rate can be achieved using the proposed approach. It is proved to be a valid and practical approach.

  10. Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.

    2016-08-16

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  11. Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond

    Science.gov (United States)

    Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)

    2016-01-01

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  12. Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    CERN Document Server

    Gonzalez-Ballestero, C; Vidal, F J Garcia; Gonzalez-Tudela, A

    2016-01-01

    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.

  13. A Base-Emitter Self-Aligned Multi-Finger Si1-xGex/Si Power Heterojunction Bipolar Transistor

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-Lai; YAO Fei; SHI Wen-Hua; CHENG Bu-Wen; WANG Hong-Jie; YU Jin-Zhong; WANG Qi-Ming

    2007-01-01

    With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-finger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880μm2) is fabricated with 2μm double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10V and the collector-base junction breakdown voltage BVcBo is 16 V with collector doping concentration of 1 × 1017 cm-3 and thickness of 400nm. The device exhibited a maximum oscillation frequency fmax of 35.5 GHz and a cut-off frequency fT of 24.9 GHz at a dc bias point of Ic = 70 mA and the voltage between collector and emitter is VCE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0dBm to 21 dBm.A maximum output power of 29.9dBm (about 977mW) is obtained at an input power of 18.5dBm with a gain of 11.47dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, fmax and fT are improved by about 83.9% and 38.3%, respectively.

  14. Simultaneous improvement of emission color, singlet-triplet energy gap, and quantum efficiency of blue thermally activated delayed fluorescent emitters using a 1-carbazolylcarbazole based donor.

    Science.gov (United States)

    Kim, Mounggon; Choi, Jeong Min; Lee, Jun Yeob

    2016-08-21

    Blue thermally activated delayed fluorescent (TADF) emitters having 1-carbazolylcarbazole based donor moieties were developed to resolve the low quantum efficiency and large singlet-triplet energy splitting issues of the linker free TADF emitters. Investigation of the 1-carbazolylcarbazole derived donors as the donor units of two blue TADF emitters in comparison with 3-carbazolylcarbazole demonstrated that the 1-carbazolylcarbazole based donors increased the triplet energy, decreased the singlet-triplet energy gap, blue-shifted the emission color, and enhanced the quantum efficiency of the blue TADF devices. PMID:27443818

  15. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    Science.gov (United States)

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  16. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    Science.gov (United States)

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  17. RFI emitter location techniques

    Science.gov (United States)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  18. Constraints on drivers for visible light communications emitters based on energy efficiency.

    Science.gov (United States)

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-01

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79). PMID:27137609

  19. Constraints on drivers for visible light communications emitters based on energy efficiency.

    Science.gov (United States)

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-01

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).

  20. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  1. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x109 cm-3 at an operating gas pressure in the vacuum chamber of less than 2x10-2 Pa. The device features high power efficiency, design simplicity, and compactness.

  2. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  3. 100 W/100 μm passively cooled fiber coupled diode laser at 976 nm based on multiple 100 μm single emitters

    Science.gov (United States)

    Werner, Marcel; Wessling, Christian; Hengesbach, Stefan; Traub, Martin; Hoffmann, Hans-Dieter

    2009-02-01

    We developed a high brightness fiber coupled diode laser module based on single diode lasers providing more than 60 Watts output power from a 100 micron fiber at the optimum fiber laser pump wavelength of 976 nm. The advantage of using multiple single emitters on a submount compared to using bars or mini bars is the direct fiber coupling by use of optical stacking and the fact that no beam transformation is needed. We achieved best brightness with a high fill factor, optical efficiency of more then 80% and wall-plug efficiency of more then 40%. The use of single emitters on a submount also extends the life span due to reduced failure (xn vs. x) per device (n individual emitters vs. n emitters on a bar (mini array)). Low drive current enables modulation.

  4. Continuous and reversible operation of Bi2212 based THz emitters just below Tc

    Science.gov (United States)

    Minami, Hidetoshi; Orita, Naoki; Koike, Takashi; Yamamoto, Takashi; Kadowaki, Kazuo

    2010-12-01

    Continuous and reversible operation of the THz-light emitters comprised of the intrinsic Josephson junction (iJJ) system of high-Tc superconductor BiSrCaCuO (Bi2212) is reported. This reversible emission is observed in samples made of lightly underdoped crystals when a part of the mesa device is so overheated by Joule heating that the temperature reaches Tm near but still below Tc, while the irreversible type of emission occurs at less overheated condition. The large temperature gradient in the mesa due to overheating under high bias currents seems to be responsible for the new observed reversible emission.

  5. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  6. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness. PMID:20192469

  7. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  8. Visible Spectrum Incandescent Selective Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Sonsight Inc.

    2004-04-30

    The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination

  9. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures.

    Science.gov (United States)

    Kewes, Günter; Schoengen, Max; Neitzke, Oliver; Lombardi, Pietro; Schönfeld, Rolf-Simon; Mazzamuto, Giacomo; Schell, Andreas W; Probst, Jürgen; Wolters, Janik; Löchel, Bernd; Toninelli, Costanza; Benson, Oliver

    2016-01-01

    Tremendous enhancement of light-matter interaction in plasmonic-dielectric hybrid devices allows for non-linearities at the level of single emitters and few photons, such as single photon transistors. However, constructing integrated components for such devices is technologically extremely challenging. We tackle this task by lithographically fabricating an on-chip plasmonic waveguide-structure connected to far-field in- and out-coupling ports via low-loss dielectric waveguides. We precisely describe our lithographic approach and characterize the fabricated integrated chip. We find excellent agreement with rigorous numerical simulations. Based on these findings we perform a numerical optimization and calculate concrete numbers for a plasmonic single-photon transistor. PMID:27364604

  10. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Khurgin, Jacob B. [Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-01-19

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.

  11. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    International Nuclear Information System (INIS)

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm2. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices

  12. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    International Nuclear Information System (INIS)

    Targeting of radiation damage to specific DNA sequences is the essence of antigene radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as 125I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with 125I-dCTP by the primer extension method. 125I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of 125I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of 125I with single-nucleotide resolution. It was showed that the designed 125I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed 125I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of 125I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of 125I-TFO-induced DNA damage should typically result in mutagenic gene inactivation

  13. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Panyutin, I.G.; Winters, T.A.; Feinendegen, L.E.; Neumann, R.D. [National Institutes of Health, Bethesda, MD (United States). Dept. of Nuclear Medicine

    2000-09-01

    Targeting of radiation damage to specific DNA sequences is the essence of antigen radiotherapy. This technique also provides a tool to study molecular mechanisms of DNA repair on a defined, single radio damaged site. It was achieved such sequence-specific radio damage by combining the highly localized DNA damage produced by the decay of Auger-electron-emitters such as {sup 125}I with the sequence-specific action of triplex-forming oligonucleotides (TFO). TFO complementary to polypurine-polypyrimidine regions of human genes were synthesized and labeled with {sup 125}I-dCTP by the primer extension method. {sup 125}I-TFO were delivered into cells with several delivery systems. In addition, human enzymes capable of supporting DNA single-strand-break repair were isolated and assessed for their role in the repair of this lesion. Also, the mutagenicity and repairability of {sup 125}I-TFO-induced double strand breaks (DSB) were assessed by repair of plasmid possessing a site-specific DSB lesion. Using plasmids containing target polypurine-polypyrimidine tracts, it was obtained the fine structure of sequence-specific DNA breaks produced by decay of {sup 125}I with single-nucleotide resolution. It was showed that the designed {sup 125}I-TFO in nanomolar concentrations could bind to and introduce double-strand breaks into the target sequences in situ, i.e., within isolated nuclei and intact digitonin-permeabilized cells. It was also showed {sup 125}I-TFO-induced DSB to be highly mutagenic lesions resulting in a mutation frequency of nearly 80%, with deletions comprising the majority of mutations. The results obtained demonstrate the ability of {sup 125}I-TFO to target specific sequences in their natural environment - within eukaryotic nucleus. Repair of {sup 125}I-TFO-induced DNA damage should typically result in mutagenic gene inactivation.

  14. Aberration Corrected Emittance Exchange

    CERN Document Server

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  15. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  16. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  17. Innovative Field Emitters for High-Voltage Electronic Devices

    Science.gov (United States)

    Sominski, G. G.; Sezonov, V. E.; Taradaev, E. P.; Tumareva, T. A.; Zadiranov, Yu. M.; Kornishin, S. Yu.; Stepanova, A. N.

    2015-12-01

    We describe multitip field emitters with protective coatings, which were developed in Peter the Great St. Petersburg Polytechnic University. The coatings ensure long-term operation of the emitters under high currents and technical vacuum. Innovative multi-layer emitters composed of contacting nanolayers of materials with different work functions are presented as well. The possibility by using the developed emitters in high-voltage electronic devices is demonstrated.

  18. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  19. Si-based light emitter in an integrated photonic circuit for smart biosensor applications

    Science.gov (United States)

    Germer, S.; Cherkouk, C.; Rebohle, L.; Helm, M.; Skorupa, W.

    2013-05-01

    The motivation for integrated Silicon-based optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here we present initial results in the integration and butt-coupling of a Si-based light emitting device (LED) [1-3] to a waveguide into a photonic circuit. Our first approach deals with the design, fabrication and characterization of the dielectric high contrast waveguide as an important component, beside the LED, for the development of a Si-based biodetection system. In this work we demonstrate design examples of Si3N4/SiO2-waveguides, which were calculated using MATLAB, the effective index method (EIM) and the finite element method (FEM), with a 0.45μm thick and 0.7μm wide core which shows a high confinement factor of ~74% and coupling efficiency of ~66% at 1.55μm, respectively. The fabrication was done by plasma enhanced chemical vapour deposition (PECVD), optical lithography and reactive ion etching (RIE). Additionally, we characterized the deposited layers via ellipsometry and the etched structures by scanning electron microscopy (SEM). The obtained results establish principles for Si-based LED butt-coupling to a powerful optical waveguide-based interconnect with effective light absorption and an adequate coupling efficiency.

  20. Low Emittance X-FEL Development

    CERN Document Server

    Li, K S B; Anghel, A; Bakker, R J; Böge, M; Candel, A E; Dehler, M; Ganter, R; Gough, C; Ingold, G; Leemann, S C; Pedrozzi, M; Raguin, J Y; Rivkin, L; Schlott, V; Streun, A; Wrulich, A F

    2005-01-01

    The Paul Scherrer Institute (PSI) in Switzerland currently develops a Low-Emittance electron-Gun (LEG) based on field-emitter technology [1]. The target is a normalized transverse emittance of 5 10(-8) m rad or less. Such a source is particularly interesting for FELs that target wavelengths below 0.3 nm since it permits a reduction of the required beam-energy and hence, a reduction of the construction- and operational costs of X-ray FELs. That is, for the case that this initial low emittance can be maintained throughout the accelerator. Here we present a concept for a 0.1 nm X-FEL based on LEG, which can be located close to the Swiss Light Source (SLS). Special attention goes to the maintenance of the emittance during the process of acceleration and bunch-compression, in particular in the regimes where either space-charge forces or coherent-synchrotron radiation are of importance.

  1. Materials properties data base computerization

    Science.gov (United States)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  2. Intracavity contacts for nitride based monolithic surface emitters by focused ion beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Fandrich, Malte; Dartsch, Heiko; Tessarek, Christian; Aschenbrenner, Timo; Hommel, Detlef [Institut fuer Festkoerperphysik - Halbleiterepitaxie, Universitaet Bremen (Germany)

    2010-07-01

    The realization of electrically driven nitride based vertical-cavity surface-emitting lasers (VCSELs) is challenging due to limitations in the conductivity of the distributed Bragg reflectors (DBRs). Therefore monolithic approaches are based on a doped cavity and one or two undoped DBRs. This requires the use of technologically complex intracavity contacts. The presented process yields intracavity contacts applicable to monolithically grown VCSEL structures. Initially mesas are structured by photolithography and chemical assisted ion beam etching. The precise structuring of the prestructured mesas is performed in a focused ion beam system (FIB), where the micropillars are thinned stepwise down to a diameter of 0.5-5 {mu}m. The contacting of the pillars is realized by FIB deposited metal and insulator structures. Insulator separated Pt ring-contacts connect the micropillars with large-scale contact pads. This procedure was applied to a VCSEL structure consisting of a bottom AlInN/GaN-DBR with 40 pairs, a p/n-doped 5 {lambda} GaN-cavity with embedded InGaN quantum dots and a top 10 pair AlInN/GaN-DBR. The developed contacting structure enables a current up to 15 mA through the cavity which documents the capability for the electrical operation of VCSEL devices.

  3. TPV Systems with Solar Powered Tungsten Emitters

    International Nuclear Information System (INIS)

    A solar TPV generator development and characterization are presented. A double stage sunlight concentrator ensures 4600x concentration ratio. TPV modules based on tungsten emitters and GaSb cells were designed, fabricated and tested at indoor and outdoor conditions. The performance of tungsten emitter under concentrated solar radiation was analyzed. Emitter temperatures in the range of 1400-2000 K were measured, depending on the emitter size. The light distribution in the module has been characterized, 1x1 cm GaSb TPV cells were fabricated with the use of the Zn-diffusion and LPE technologies. The cell efficiency of 19% under illumination by a tungsten emitter (27% under spectra cut-off at λ > 1820 nm) heated up to 1900-2000 K had been derived from experimentally measured PV parameters. The series connection of PV cells was ensured by the use of BeO ceramics. The possibilities of system performance improvement are discussed

  4. Lignin-Based Thermoplastic Materials.

    Science.gov (United States)

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors. PMID:27059111

  5. Lignin-Based Thermoplastic Materials.

    Science.gov (United States)

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.

  6. Graphene-based Materials

    Science.gov (United States)

    Ruoff, Rodney

    2009-03-01

    Our top-down approaches [Lu et al.] inspired physicists to obtain graphene by micromechanical exfoliation. Another approach to individual layers involves converting graphite to graphite oxide (GO) to generate aqueous colloidal suspensions of `graphene oxide'(GO') sheets. (i) Reduced GO' (RGO') sheets were embedded in polymers such as polystyrene and their dispersion/morphology studied by SEM/TEM, and the conductivity/ percolation threshold of such composites was determined; (ii) individual GO' and RGO' sheets were studied to elucidate their chemical, optical, and electrical properties, (iii) GO' and RGO' sheets were embedded in thin glass films by a sol-gel route yielding conductive/transparent films, (iii) a `paper' material of stacked GO' sheets was made and characterized, (iv) powders composed of RGO' showed exceptional promise for use in ultracapacitors, and (v) C13-labeled GO was made and the detailed chemical structure of GO was determined with SS NMR. --Lu,Yu,Huang,Ruoff, ``Tailoring graphite with the goal of achieving single sheets'', Nanotechnology, 10, 269-272 (1999). See also http://bucky-central.me.utexas.edu/publications.htm 139, 146, 150, 155, 160, 164, 166, 168, 169, 174, 179-182, 184 where collaborators are shown as coauthors.

  7. High flow air sampling for determination of alpha long half-life emitters: area monitoring of a radioactive material disposal

    International Nuclear Information System (INIS)

    The Ore Treatment Unit (UTM) is a mine and closed uranium plant, located in Caldas, Minas Gerais, Brazil. It has a radioactive material disposal composed primarily of pie II and mesothorium. It is stored in six sheds designated C-01, C-02, C-05, C-06, C-07 and C-09. This study aims to present the high flow area monitoring program and results obtained in 2009. The threshold derived from concentration in the air was 0.25 Bq m-3. The average of the activity concentrations in 2009 were: for C-01 1.17 Bq m-3; C-02 0.006 Bq m-3; C-05 1.98 Bq m-3; C-06 2.14 Bq m-3; C-07 0.34 Bq m-3 and C-09 0,025 Bq m-3. Such values indicate that the control stay is an important factor in occupational workers' control, as well as the use of EPI's and behavioral care, besides radioprotection training to allow the access to the areas. No worker, supervisor or visitor reached the limit research

  8. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  9. High-Performance Blue OLEDs Based on Phenanthroimidazole Emitters via Substitutions at the C6- and C9-Positions for Improving Exciton Utilization.

    Science.gov (United States)

    Liu, Bin; Yuan, Yi; He, Dan; Huang, De-Yue; Luo, Cheng-Yuan; Zhu, Ze-Lin; Lu, Feng; Tong, Qing-Xiao; Lee, Chun-Sing

    2016-08-16

    Donor-acceptor (D-A) molecular architecture has been shown to be an effective strategy for obtaining high-performance electroluminescent materials. In this work, two D-A molecules, Ph-BPA-BPI and Py-BPA-BPI, have been synthesized by attaching highly fluorescent phenanthrene or pyrene groups to the C6- and C9-positions of a locally excited-state emitting phenylamine-phenanthroimidazole moiety. Equipped with good physical and hybridized local and charge-transfer properties, both molecules show high performances as blue emitters in nondoped organic light-emitting devices (OLEDs). An OLED using Ph-BPA-BPI as the emitting layer exhibits deep-blue emission with CIE coordinates of (0.15, 0.08), and a maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 4.56 %, 3.60 cd A(-1) , and 3.66 lm W(-1) , respectively. On the other hand, a Py-BPA-BPI-based, sky-blue OLED delivers the best results among nondoped OLEDs with CIEy values of < 0.3 reported so far, for which a very low turn-on voltage of 2.15 V, CIE coordinates of (0.17, 0.29), and maximum CE, PE, and EQE values of 10.9 cd A(-1) , 10.5 lm W(-1) , and 5.64 %, were achieved, respectively. More importantly, both devices show little or even no efficiency roll-off and high singlet exciton-utilizing efficiencies of 36.2 % for Ph-BPA-BPI and 39.2 % for Py-BPA-BPI. PMID:27412733

  10. Monochromatic gamma emitter for low energy quanta

    CERN Document Server

    Tomova, Z R; Mironova, S A

    2004-01-01

    The possibility of creating of a monochromatic gamma emitter of low energy quanta is analyzed. The idea is based on Daning's scheme. Except for purely scientific problems the monochromator is actual for therapy of wide range of diseases.

  11. Optimizing the Emitter Layer for Higher Efficiency Solar Cell Based SiGe Using AMPS1D

    OpenAIRE

    Boukais Meriem; B. Dennai; A. Ould-Abbas

    2015-01-01

    The thin-film SiGe is considered as promising candidate to meet the outstanding need for photovoltaic applications with enhanced adsorption characteristics and improved conversion efficiency [1-6]. In this paper, we simulated a solar cell type SiGe using AMPS1D (Analysis of Microelectronic and photonic structure) developed at Pennsylvania State University, to analyze emitter layer (thickness, doping) and we studied their influence on the photovoltaic solar cell. The simulation result shows th...

  12. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  13. Infrared spectral normal emittance/emissivity comparison

    Science.gov (United States)

    Hanssen, L.; Wilthan, B.; Filtz, J.-R.; Hameury, J.; Girard, F.; Battuello, M.; Ishii, J.; Hollandt, J.; Monte, C.

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized Inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  15. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  16. Photoconductive terahertz generation from textured semiconductor materials

    Science.gov (United States)

    Collier, Christopher M.; Stirling, Trevor J.; Hristovski, Ilija R.; Krupa, Jeffrey D. A.; Holzman, Jonathan F.

    2016-03-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating—as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  17. Photoconductive terahertz generation from textured semiconductor materials.

    Science.gov (United States)

    Collier, Christopher M; Stirling, Trevor J; Hristovski, Ilija R; Krupa, Jeffrey D A; Holzman, Jonathan F

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating-as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  18. Evaluation of AlGaN-based deep ultraviolet emitter active regions by temperature dependent time-resolved photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, A.V.; Shen, H.; Wraback, M. [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD (United States); Sun, W.; Shatalov, M.; Hu, X.; Yang, J.; Bilenko, Y.; Lunev, A.; Shur, M.S.; Gaska, R. [Sensor Electronic Technology, Inc., Columbia, SC (United States); Grandusky, J.R.; Schowalter, L.J. [Crystal IS, Inc., Green Island, NY (United States); Garrett, G.A.

    2010-10-15

    Temperature dependent time-resolved photoluminescence is used to study the development of active regions for optoelectronic devices employing AlGaN nanostructures for deep-UV emission. The changing importance of dislocation versus point defects and their relationship to different forms of carrier localization are discussed. The results presented suggest that AlGaN nanostructure development for deep-UV emitters require both point defect/impurity suppression for improved efficiency and lower dislocation density for improved interface quality. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Solution processeable organic-inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs

    KAUST Repository

    Yang, Xiaohui

    2012-01-01

    Traditional materials for application in organic light emitting diodes (OLEDs) are primarily based on small molecules and polymers, with much fewer examples of intermediate molecular weight materials. Our interest lies in this intermediate molecular weight range, specifically in hybrids based on 3-dimensional silsesquioxane (SSQ) cores that represents a new class of versatile materials for application in solution processable OLEDs. We report here various SSQ based hybrids that are easily prepared in one high-yield step from the Heck coupling of commercially available 1-bromopyrene, and 1-bromo-4-heptylbenzene with octavinyl-T8-SSQ, and a mixture of octavinyl-T8-, decavinyl-T10- and dodecavinyl-T12-SSQ. The resulting materials offer numerous advantages for OLEDs including amorphous properties, high-glass-transition temperatures (T g), low polydispersity, solubility in common solvents, and high purity via column chromatography. Solution processed OLEDs prepared from the SSQ hybrids provide sky-blue emission with external quantum efficiencies and current efficiencies of 3.64% and 9.56 cd A -1 respectively. © 2012 The Royal Society of Chemistry.

  20. Emittance measurements basing on probe-slit method for a high current grid-controlled pulse electron gun

    International Nuclear Information System (INIS)

    Single slit and probe method has been used for measuring the beam emittance of an electron gun. A movable slit 0.1 mm wide is used for sampling. A probe 0.1 mm in diameter parallel to the slit and moving at a constant velocity, is used to catch the beam through the slit. Using geometrical relation, the divergence r1' and r2' of the beam through the slit can be calculated. In the device used, the distance between the slit and the probe is 59 mm, the angle resolution is 3.4 mrad, and the maximum system acceptance is 6.4 x 10-1 cm · rad. A mechanism is designed to adjust the depth of parallelism between the slit and probe in order to improve the measurement accuracy. There is a water cooled structure in the slit plate, which can bear higher beam power. With fine shielding and rational second-electron suppressor, the current of the order of 10-10 A has been clearly measured. The relative error of the measured phase plots is about 8%. The system is useful to study the effects on the emittance, of electron energy, the grid pulse voltage, cathode temperature and pulse current intensity

  1. Study of signal recognition of radar emitter based on QPSO%基于QPSO的雷达辐射源信号识别方法研究

    Institute of Scientific and Technical Information of China (English)

    郭戈; 徐佳婧; 徐璟; 魏洁

    2014-01-01

    鉴于支持向量机(SVM)方法对雷达辐射源信号具有较理想的识别结果,但对模型参数没有具体选择方法的问题,设计了一种以具有量子行为的粒子群优化(QPSO)算法为参数优化方法的SVM分类器,并提出了基于QPSO-SVM的雷达辐射源信号识别方法.QPSO-SVM分类器在采用QPSO算法对SVM进行优化改进的同时,继承了SVM分类器泛化能力强的特点,对雷达辐射源信号识别问题具有良好的适应性.实验结果表明,与其他方法相比,本文方法在保证识别准确率的同时,降低了参数选择时间.%Considering that the SVM algorithm has an ideal recognition result for radar emitter signals, but no specific selection method for the model parameters, this paper designs an SVM classifier that uses QPSO algorithm as the optimization algorithm of parameters, and proposes a scheme of signal recognition of radar emitter based on QPSO-SVM. While the QPSO-SVM classifier optimizes and improves SVM using the QPSO algorithm, the proposed classifier keeps the strong generalization capability of SVM classifier, thus having the better adaptability for the signal recognition of radar emitter. Experimental results show that this proposed method can shorten the time for parameter selection while guaranteeing the accuracy rate of recognition, compared with other algorithms.

  2. Emittance growth in linear induction accelerators

    CERN Document Server

    Ekdahl, C A; Schulze, M E; Carlson, C A; Frayer, D K; Mostrum, C; Thoma, C H

    2014-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  3. Intelligent Variable Emittance Panels Using New, ""True"" Solid Electrolyte Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work further developed a highly promising Variable Emittance technology for spacecraft thermal control based on Conducting Polymer (CP) electrochromics...

  4. Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method

    Science.gov (United States)

    Wang, Wei-Jie; Zhao, Zhen-Guo; Zhao, Yi; Zhou, Hai-Jing; Fu, Ce-Ji

    2015-09-01

    Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide (SiC) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure, such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. Project supported by the National Natural Science Foundation of China (Grant No. 51076002), the National Basis Research Program of China (Grant No. 2013CA328900), and the Key Project of Complicated Electromagnetic Environment Laboratory of CAEP, China (Grant No. 2015E0-01-1).

  5. II-VI Materials-Based High Performance Intersubband Devices

    Science.gov (United States)

    Ravikumar, Arvind Pawan

    Mid-infrared (mid-IR) light is of vital technological importance because of its application in trace-gas absorption spectroscopy, imaging, free-space communication or infrared countermeasures. Thus the ability to generate and detect mid-IR light at low cost and preferably, at room temperature is of utmost importance. High performance quantum cascade (QC) lasers - mid-IR light sources based on optical transitions in thin quantum wells, and intersubband infrared detectors - namely the quantum well infrared photodetectors (QWIPs) and quantum cascade detectors (QCDs), have rapidly advanced, due to excellent material quality of III-V materials. In spite of this tremendous success, there lie challenges such as lack of efficient short-wavelength emitters or broadband detectors - challenges that arise from intrinsic materials properties. As a central theme in this thesis, we look at a new class of materials, the II-VI based ZnCdSe/ZnCdMgSe system, to close technological gaps and develop high performance infrared light sources and detectors in the entire mid-IR regime. To that end, we first demonstrate the flexibility that the combination of II-VI materials and band structure engineering allows by developing various QWIPs, QCDs and QC emitters at different wavelengths, not easily achieved by other materials. The performance of these first-of-their-kind detectors is already comparable to existing commercial solutions. To fully realize the potential of this new material system, we also developed a room-temperature broadband infrared detector detecting between 3 and 6 mum with record responsivity. With this technology, it is now possible to monolithically integrate high performance mid-IR lasers and detectors for on-chip applications. One of the challenges with all intersubband detectors is that they do not absorb normally incident light, like most conventional detectors. In order to make intersubband detectors attractive to commercial exploration, we develop a novel method to

  6. Electrically pumped single-defect light emitters in WSe$_2$

    CERN Document Server

    Schwarz, S; Withers, F; Maguire, J K; Foster, A P; Dufferwiel, S; Hague, L; Makhonin, M N; Wilson, L R; Geim, A K; Novoselov, K S; Tartakovskii, A I

    2016-01-01

    Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe$_2$, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe$_2$ under both optical and electrical excitation. This paves the way towards the realization of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologi...

  7. Cancer from internal emitters

    International Nuclear Information System (INIS)

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of 226Ra or medical injections of 224Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes

  8. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  9. Optimizing the Emitter Layer for Higher Efficiency Solar Cell Based SiGe Using AMPS1D

    Directory of Open Access Journals (Sweden)

    Boukais Meriem

    2015-10-01

    Full Text Available The thin-film SiGe is considered as promising candidate to meet the outstanding need for photovoltaic applications with enhanced adsorption characteristics and improved conversion efficiency [1-6]. In this paper, we simulated a solar cell type SiGe using AMPS1D (Analysis of Microelectronic and photonic structure developed at Pennsylvania State University, to analyze emitter layer (thickness, doping and we studied their influence on the photovoltaic solar cell. The simulation result shows that the maximum efficiency of 16.181 % has been achieved, with short circuit current density of 32.657 mA/cm2, open circuit voltage of 0.61 V and fill factor of 0.809. The obtained results show that the proposed design can be considered as a potential candidate for high performance photovoltaic applications.

  10. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  11. Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters

    Science.gov (United States)

    Chao, T. C.; Xu, X. G.

    2001-04-01

    VIP-Man is a whole-body anatomical model newly developed at Rensselaer from the high-resolution colour images of the National Library of Medicine's Visible Human Project. This paper summarizes the use of VIP-Man and the Monte Carlo method to calculate specific absorbed fractions from internal electron emitters. A specially designed EGS4 user code, named EGS4-VLSI, was developed to use the extremely large number of image data contained in the VIP-Man. Monoenergetic and isotropic electron emitters with energies from 100 keV to 4 MeV are considered to be uniformly distributed in 26 organs. This paper presents, for the first time, results of internal electron exposures based on a realistic whole-body tomographic model. Because VIP-Man has many organs and tissues that were previously not well defined (or not available) in other models, the efforts at Rensselaer and elsewhere bring an unprecedented opportunity to significantly improve the internal dosimetry.

  12. Status of and Future Plans for the CERN Linac4 Emittance Meter based on Laser Electron-detachment and a Diamond Strip-detector

    CERN Document Server

    Bravin, E; Raich, U; Roncarolo, F; Zocca, F; Gibson, S; Kruchinin, KO; Bosco, A; Boorman, G; Griesmayer, E

    2014-01-01

    LINAC4 has started its staged commissioning at CERN. After completion it will accelerate high brightness H- beams to 160 MeV. To measure the transverse profile and emittance of the beam, a non-destructive method based on electron photo detachment is proposed, using a pulsed, fibre-coupled laser to strip electrons from the H- ions. The laser can be focused and scanned through the H- beam, acting like a conventional slit. A downstream dipole separates the neutral H0 beamlet, created by the laser interaction, from the main H- beam, so that it can be measured by a diamond stripdetector. Combining the H0 beamlet profiles with the laser position allows the transverse emittance to be reconstructed. A prototype of this instrument was tested while commissioning the LINAC4 at 3 and 12 MeV. In this paper we shall describe the experimental setup, challenges and results of the measurements, and also address the characteristics and performance of the diamond strip-detector subsystem. In addition, the proposal for a permane...

  13. PENCIL LEAD FIELD EMITTER

    OpenAIRE

    Khairnar, R.; Joag, D.

    1989-01-01

    Field electron emission from 2H and HB grades of pencil lead has been studied. The pencil lead field emitter is found to obey the Fowler-Nordheim characteristics. The emission current fluctuations are found to increase with the residual gas pressure and the emission current. The current density of the order of 106 amp/cm2 could be drawn from these emitters. The emission stability over the operation of six hours has been found to be reasonably good. The field ion microscopy of the 2H and HB gr...

  14. Advances in polypropylene based materials

    International Nuclear Information System (INIS)

    Polypropylene is an extremely versatile thermoplastic polymer known for its good performance/price ratio, excellent heat, moisture and chemical resistance, favorable processing characteristics and recyclability. Due to its universal properties, polypropylene is applied in numerous industrial fields such as electronic and electrical, automobile, textile, pipeline, etc. Furthermore, the progress in its synthesis and property modification in the last decade has contributed to the development of new polypropylene based materials with advanced performance. This review aims at reporting on some recent developments in polypropylene based materials, such as nano fibers, natural fiber reinforced composites, self-reinforced polypropylene and polypropylene/clay hybrids, that have replaced many types of engineering thermoplastics in high-performance applications. (Author)

  15. Ballasted and electrically steerable carbon nanotube field emitters

    Science.gov (United States)

    Cole, M. T.; Li, C.; Qu, K.; Zhang, Y.; Wang, B.; Pribat, D.; Milne, W. I.

    2012-09-01

    Here we present our on-going efforts toward the development of stable ballasted carbon nanotube-based field emitters employing hydrothermally synthesized zinc oxide nanowires and thin film silicon-on-insulator substrates. The semiconducting channel in each controllably limits the emission current thereby preventing detrimental burn-out of individual emitters that occurs due to unavoidable statistical variability in emitter characteristics, particularly in their length. Fabrication details and emitter characterization are discussed in addition to their field emission performance. The development of a beam steerable triode electron emitter formed from hexagonal carbon nanotube arrays with central focusing nanotube electrodes, is also described. Numerical ab-initio simulations are presented to account for the empirical emission characteristics. Our engineered ballasted emitters have shown some of the lowest reported lifetime variations (sources.

  16. Low-emittance Storage Rings

    CERN Document Server

    Wolski, A

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  17. Directional Thermal Emitter Simulation

    OpenAIRE

    Dhaka, Shailja; Sakr, Enas Said; Bermel, Peter

    2015-01-01

    The development of renewable energy sources has attracted increasing interest because of negative externalities associated with fossil fuel use. Thermophotovoltaics is a promising technology, in which a thermal emitter radiates photons which are directly converted into electricity using a photovoltaic diode. However, blackbody emission includes a broad range of wavelengths, but only higher energy photons can be converted into electricity. Thus, tailoring the selectivity of thermal emission is...

  18. Growth of GaN-based non- and semipolar heterostructures for high efficiency light emitters; Wachstum von nicht- und semipolaren InAIGaN-Heterostrukturen fuer hocheffiziente Lichtemitter

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim

    2010-07-01

    Optoelectronic devices based on GaN and its alloys InGaN and AlGaN are capable of emitting light from the visible to the ultraviolet spectral region. Blue and green lasers have applications in laser projectors, DNA sequencing and spectroscopy. But it is extremely difficult to fabricate green laser diodes. Currently almost all of the light emitting diodes (LEDs) and lasers are grown on GaN crystals that are oriented in the polar (0001) c-plane direction, which provides the most stable growth surface. However the resulting polarization fields on (0001)GaN have detrimental effects on the optical properties of nitride light emitters, e.g. causing significant wavelength shifts and reduced efficiencies in InGaN LEDs. Growth on crystal surfaces with non- and semipolar orientations, e.g. (10 anti 10) m-plane or (11 anti 22), could enable devices with new and improved optical properties. For example, for nonpolar and semipolar LEDs the degree of polarization of the emitted light can be tailored. Furthermore easier to grow devices with green light emission, since the indium incorporation is enhanced for semipolar orientations. In contrast to c-plane GaN there is no polarization field across quantum wells on nonpolar GaN. By reducing the polarization fields an increase in the radiative recombination rate can be expected and would lead to higher LED efficiencies and lower laser thresholds. One of the biggest challenges for the growth of light emitters on non- and semipolar GaN is the choice of a suitable substrate: Heteroepitaxial growth on sapphire or LiAlO{sub 2} allows the deposition of GaN on 2'' diameter wafers and larger. However, these layers show a very high defect density in particular basal plane stacking faults, in comparison to c-plane GaN on sapphire. In order to reduce the defect density we applied successfully epitaxial lateral overgrowth to heteroepitaxial nonpolar a-plane GaN and verified the improvement by spatially and spectrally

  19. Structural and magnetic effects on thermal emittance of La{sub 1−x}Sr{sub x}MnO{sub 3} from the first principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang-Fei [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tang, Fu-Ling, E-mail: tfl03@mails.tsinghua.edu.cn [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Xue, Hong-Tao; Lu, Wen-Jiang [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Feng, Yu-Dong [Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China)

    2015-09-15

    Generalized gradient approximation (GGA) exchange-correlation functional was used in the first-principles method to calculate thermal emittance of La{sub 1−x}Sr{sub x}MnO{sub 3} (LSMO). The effects of structure and magnetism on thermal emittance of LSMO were systematically investigated by the complex dielectric function. It is found that the LSMO with orthorhombic structure has a higher thermal emittance than that with rhombohedral structure at the same temperature. When the magnetism varying with temperature of LSMO is put into consideration, the magnetic different make a significant change on thermal emittance and the variation of thermal emittance of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} is the biggest among x=0, 0.2, 0.25, 0.5. It is found that thermal emittance have a low value at the low temperature and have a high value at the high temperature, due to the unique feature of variable thermal emittance based on metal-insulator transition, which makes LSMO attractive as potential thermal control materials. - Highlights: • The emittance of La{sub 1-x}Sr{sub x}MnO{sub 3} (LSMO) varies with different magnetism state. • Orthorhombic LSMO has larger emittance than rhombohedral LSMO at same temperature. • If the magnetism varying with temperature of LSMO is considered, the variation of emittance of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} is the biggest among x=0, 0.2, 0.25 and 0.5.

  20. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R. [Vanderbilt Univ., Nashville, TN (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L. [VTC Inc., Bloomington, MN (United States)

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  1. Measurement of emittance and emittance reduction in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Vittorio [Univ. and Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Napoli, Complesso Universitario di Monte Sant' Angelo, via Cintia, I-80126, Napoli (Italy); Verguilov, Vassil [Departement de physique nucleaire et corpusculaire - DPNC, Geneva University, 24, Quai Ernest Ansermet, 1211 Geneve 4 (Switzerland)

    2010-07-01

    MICE is building at RAL a muon beam with tunable emittance and an array of detectors capable to measure the emittance of the beam before and after any ionization cooling device that will be designed in the future. This talk will present the details of the measurements of beam emittance and of emittance reduction, the tracking and particle identification instrumentation used for this purpose, the physical observables and the techniques being prepared to provide convincing evidence of effective ionisation cooling. After the measurement of the transverse cooling performances of the cooling cell designed in early feasibility studies of a neutrino factory, the MICE beam and emittance measurement devices will remain as a facility for the study of new candidate cooling cell prototypes, including exchange between transverse and longitudinal emittance cooling. Some of those emerging options will also be briefly mentioned. (author)

  2. Emitter space charge layer transit time in bipolar junction transistors

    Science.gov (United States)

    Rustagi, S. C.; Chattopadhyaya, S. K.

    1981-04-01

    The charge defined emitter space charge layer transit times of double diffused transistors have been calculated using a regional approach, and compared with the corresponding base transit times. The results obtained for emitter space-charge layer transit times have been discussed with reference to the capacitance analysis of Morgan and Smit (1960) for graded p-n junctions.

  3. Performance comparisons of low emittance lattices

    International Nuclear Information System (INIS)

    The results of a performance analysis of four low emittance electron storage ring lattices provided to the authors by various members of the Lattice Working Group is presented. Altogether, four lattices were investigated. The beam energies of the four lattices are, respectively, 1.1, 2, 3, 4 GeV). A brief summary of the lattice parameters relevant to this study is given. The performance issues studied include an estimation of the longitudinal emittance expected for each lattice based on the effects of the longitudinal microwave instability, an estimation of the transverse emittance growth of the (required) dense bunches under the influence of intrabeam scattering (IBS), and an estimate of the Touschek lifetime. The analysis described here has been carried out with the LBL accelerator physics code ZAP

  4. Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter.

    Science.gov (United States)

    Yu, Ling; Wu, Zhongbin; Xie, Guohua; Zhong, Cheng; Zhu, Zece; Cong, Hengjiang; Ma, Dongge; Yang, Chuluo

    2016-09-21

    A new orange-red thermally activated delayed fluorescence (TADF) emitter is designed and synthesized by incorporating a fluorine-substituted quinoxaline as an electron-acceptor and a phenoxazine as an electron-donor. The rational molecular design enables small singlet-triplet energy splitting (ΔEST) and high fluorescence radiative rate (k) for long-wavelength TADF emitters. The organic light emitting diodes (OLEDs) employing the new TADF emitter achieve maximum external quantum efficiencies (EQEs) of 13.9% and 9.0% for the vacuum- and solution-processed OLEDs, respectively.

  5. What is so super about super-emitters? Characterizing methane high emitters from natural gas infrastructure

    Science.gov (United States)

    Zavala Araiza, D.; Lyon, D. R.; Alvarez, R.; Harriss, R. C.; Palacios, V.; Hamburg, S.

    2015-12-01

    Methane emissions across the natural gas supply chain are dominated at any one time by a few high-emitters (super-emitters or fat-tail of the distribution), often underrepresented in published datasets used to construct emission inventories. Characterization of high-emitters is essential for improving emission estimates based on atmospheric data (top-down) and emission inventories (bottom-up). The population of high-emitters (e.g. 10-20% of sites that account for 80-90% of the emissions) is temporally and spatially dynamic. As a consequence, it is challenging to design sampling methods and construct estimates that accurately represent their frequency and magnitude of emissions. We present new methods to derive facility-specific emission distribution functions that explicitly integrate the influence of the relatively rare super-emitters. These methods were applied in the Barnett Shale region to construct a custom emission inventory that is then compared to top-down emission estimates for the region. We offer a methodological framework relevant to the design of future sampling campaigns, in which these high-emitters are seamlessly incorporated to representative emissions distributions. This framework can be applied to heterogeneous oil and gas production regions across geographies to obtain accurate regional emission estimates. Additionally, we characterize emissions relative to the fraction of a facility's total methane throughput; an effective metric to identify sites with excess emissions resulting from avoidable operating conditions, such as malfunctioning equipment (defined here as functional super-emitters). This work suggests that identifying functional super-emitters and correcting their avoidable operating conditions would result in significant emission reductions. However, due to their spatiotemporal dynamic behavior, achieving and maintaining uniformly low emissions across the entire population of sites will require mitigation steps (e.g. leak detection

  6. Research on Radar Emitter Attribute Recognition Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described in detail. A new attribute recognition method based on attribute measure is presented in this paper. Application example is given, which demonstrates this new method is accurate and effective. Moreover, computer simulation for recognizing the emitter purpose is selected, and compared with classical statistical pattern recognition through simulation. The excellent experimental results demonstrate that this is a brand-new attribute recognition method as compared to existing statistical pattern recognition techniques.

  7. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  8. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  9. Effect of thin emitter set-back layer on GaAs delta-doped emitter bipolar junction transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2005-05-01

    GaAs delta-doped emitter bipolar junction transistors (δ-BJT) with different emitter set-back layer thicknesses of 10to50nm were fabricated to study the emitter set-back layer thickness effect on device dc performance. We found that the current gain decreases following decrease in the emitter set-back layer thickness. A detailed analysis was performed to explain this phenomenon, which is believed to be caused by reduction of the effective barrier height in the δ-BJT. This is due to change in the electric-field distribution in the delta-doped structure caused by the built-in potential of the base-emitter (B-E ) junction. Considering the recombination and barrier height reduction effects, the thickness of the emitter set-back layer should be designed according to the B-E junction depletion width with a tolerance of ±5nm. The dc performance of a δ-BJT designed based on this criteria is compared to that of a Al0.25Ga0.75As /GaAs heterojunction bipolar transistor (HBT). Both devices employed base doping of 2×1019cm-3 and base-to-emitter doping ratio of 40. Large emitter area (AE≈1.6×10-5cm-2) and small emitter area (AE≈1.35×10-6cm-2) device current gains of 40 and 20, respectively, were obtained in both types of transistors passivated by (NH4)2S treatment. The measured current gain of the GaAs δ-BJT is the highest reported for a homojunction device with such high base-to-emitter doping ratio normally used in HBT devices.

  10. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    Science.gov (United States)

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  11. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Among thermal control methods, variable-emittance materials remain the most promising for addressing deficiencies of current systems (mechanical louvers, loop heat...

  12. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  13. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  14. Research progress of Si-based germanium materials and devices

    Science.gov (United States)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  15. Omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals

    Science.gov (United States)

    Yeng, Yi Xiang; Chou, Jeffrey B.; Rinnerbauer, Veronika; Shen, Yichen; Kim, Sang-Gook; Joannopoulos, John D.; Soljačić, Marin; Čelanović, Ivan

    2014-08-01

    We demonstrate designs of dielectric-filled anti-reflection coated (ARC) two-dimensional (2D) metallic photonic crystals (MPhCs) capable of omnidirectional, polarization insensitive, wavelength selective emission/absorption. Up to 26% improvement in hemispherically averaged emittance/absorptance below the cutoff wavelength is observed for optimized hafnium oxide filled 2D tantalum (Ta) PhCs over the unfilled 2D Ta PhCs. The optimized designs possess high hemispherically averaged emittance/absorptance of 0.86 at wavelengths below the cutoff wavelength and low hemispherically averaged emittance/absorptance of 0.12 at wavelengths above the cutoff wavelength, which is extremely promising for applications such as thermophotovoltaic energy conversion, solar absorption, and infrared spectroscopy.

  16. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  17. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current applicability of these materials is limited due to their poor moisture tolerance and mechanical properties. Starch is therefore frequently blended with other polymers to make the material more suitable for sp

  18. Intelligent Variable Emittance Panels Using New, ?True? Solid Electrolyte Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This firm has, in ongoing work in collaboration with the Air Force, NASA and JPL, developed a unique Variable Emittance technology based on the electrochromism of...

  19. Materiality in a practice-based approach

    DEFF Research Database (Denmark)

    Svabo, Connie

    2009-01-01

    The paper provides an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Common terms for materiality are 'artifact' and 'object'. The interaction between social and material realities is grasped as several processes: object......-oriented activity, symbolization, embodiment, performance, alignment and mediation. Material artifacts both stabilize and destabilize organizational action. They may ensure coordination, communication, and control, but they may also create disturbance and conflict....

  20. An ultracold low emittance electron source

    CERN Document Server

    Xia, G; Murray, A J; Bellan, L; Bertsche, W; Appleby, R B; Mete, O; Chattopadhyay, S

    2014-01-01

    Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources lie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron s...

  1. A Program to Generate a Particle Distribution from Emittance Measurements

    CERN Document Server

    Bouma, DS; Lallement, JB

    2010-01-01

    We have written a program to generate a particle distribution based on emittance measurements in x-x’ and y-y’. The accuracy of this program has been tested using real and constructed emittance measurements. Based on these tests, the distribution generated by the program can be used to accurately simulate the beam in multi-particle tracking codes, as an alternative to a Gaussian or uniform distribution.

  2. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil

    Science.gov (United States)

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-07-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

  3. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

    Science.gov (United States)

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-12-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray. PMID:27401089

  4. Physical electrostatics of small field emitter arrays/clusters

    Science.gov (United States)

    Forbes, Richard G.

    2016-08-01

    This paper aims to improve qualitative understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays/clusters. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. An adequate approximation is to consider only the effects of sphere charges and (for significantly separated emitters) image charges. For the 2-emitter system, formulas are found for charge-transfer ("charge-blunting") effects and neighbor-field effects, for widely spaced and for "sufficiently closely spaced" emitters. Mutual charge-blunting is always the dominant effect, with a related (negative) fractional AFEF-change δtwo. For sufficiently small emitter spacing c, |δtwo| varies approximately as 1/c; for large spacing, |δtwo| decreases as 1/c3. In a 3-emitter equispaced linear array, differential charge-blunting and differential neighbor-field effects occur, but differential charge-blunting effects are dominant, and cause the "exposed" outer emitters to have higher AFEF (γ0) than the central emitter (γ1). Formulas are found for the exposure ratio Ξ = γ0/γ1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM implementations is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which is different from the FSEPP-model formulas. This discrepancy needs to be investigated, using systematic Laplace-based simulations and appropriate results

  5. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  6. Nanostructure-induced distortion in single-emitter microscopy

    CERN Document Server

    Lim, Kangmook; Fourkas, John; Shapiro, Benjamin; Waks, Edo

    2016-01-01

    Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitters far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35...

  7. An erbium(III)-based NIR emitter with a highly conjugated β-diketonate for blue-region sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, P., E-mail: pablomartinramos@gmail.com [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Department of Physics and MALTA Consolider Team, Universidad de La Laguna, E-38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Martín, I.R.; Lahoz, F. [Department of Physics and MALTA Consolider Team, Universidad de La Laguna, E-38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Hernández-Navarro, S. [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Pereira da Silva, P.S. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Hernández, I. [CITIMAC Dept., Facultad de Ciencias, University of Cantabria, Avenida Los Castros s/n, 39005 Santander (Spain); School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Lavín, V. [Department of Physics and MALTA Consolider Team, Universidad de La Laguna, E-38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Ramos Silva, M. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal)

    2015-01-15

    Highlights: • A new highly coordinated Er{sup 3+} complex has been synthesized and its properties studied. • X-ray diffraction shows that complex packs efficiently: no solvent accessible voids. • dnm ligand successfully extends the excitation bands to the blue region up to 550 nm. • Efficient energy transfer by antenna effect results in 1.53 μm emission from Er{sup 3+}. - Abstract: The sensitization of lanthanide complexes in the visible region is of particular interest for practical applications such as labeling, biological analysis and optoelectronics. A visible-light sensitized Er{sup 3+} complex based on the use of a highly conjugated β-diketonate (1,3-di(2-naphthyl)-1,3-propanedione, Hdnm) and 5-nitro-1,10-phenanthroline (5NO{sub 2}phen) as an ancillary ligand, [Er(dnm){sub 3}(5NO{sub 2}phen)], has been synthesized, fully characterized and its photophysical properties have been investigated. Suitably expanded π-conjugation in the complex molecule makes the excitation window red-shifted to the visible region (up to 550 nm). Efficient energy transfer by antenna effect results in 1.53 μm emission from the Er{sup 3+} ion.

  8. Attribute measure recognition approach and its applications to emitter recognition

    Institute of Scientific and Technical Information of China (English)

    GUAN Xin; HE You; YI Xiao

    2005-01-01

    This paper studies the emitter recognition problem. A new recognition method based on attribute measure for emitter recognition is put forward. The steps of the method are presented. The approach to determining the weight coefficient is also discussed. Moreover, considering the temporal redundancy of emitter information detected by multi-sensor system, this new recognition method is generalized to multi-sensor system. A method based on the combination of attribute measure and D-S evidence theory is proposed. The implementation of D-S reasoning is always restricted by basic probability assignment function. Constructing basic probability assignment function based on attribute measure is presented in multi-sensor recognition system. Examples of recognizing the emitter purpose and system are selected to demonstrate the method proposed. Experimental results show that the performance of this new method is accurate and effective.

  9. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  10. New Cork-Based Materials and Applications

    Directory of Open Access Journals (Sweden)

    Luís Gil

    2015-02-01

    Full Text Available This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders, and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  11. Courant-Snyder invariant density screening method for emittance analysis

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-Lei; TANG Jing-Yu; JING Han-Tao

    2011-01-01

    Emittance is an important characteristic of describing charged particle beams.In hadron accelerators,we often meet irregular beam distributions that are not appropriately described by a single rms emittance or 95% emittance or total emittance.In this paper,it is pointed out that in many cases a beam halo should be described with very different Courant-Snyder parameters from the ones used for the beam core.A new method - the Courant-Snyder invariant density screening method - is introduced for analyzing emittance data clearly and accurately.The method treats the emittance data from both measurements and numerical simulations.The method uses the statistical distribution of the beam around each particle in phase space to mark its local density parameter,and then uses the density distribution to calculate the beam parameters such as the Courant-Snyder parameters and emittance for different beam boundary definitions.The method has been used in the calculations for.beams from different sources,and shows its advantages over other methods.An application code based on the method including the graphic interface has also been designed.

  12. Low-emittance tuning at the Cornell Electron Storage Ring

    CERN Document Server

    Shanks, James; Sagan, David

    2013-01-01

    In 2008 the Cornell Electron/Positron Storage Ring (CESR) was reconfigured from an electron/positron collider to serve as a testbed for the International Linear Collider (ILC) damping rings. One of the primary goals of the CESR Test Accelerator (CesrTA) project is to develop low emittance tuning techniques to achieve sub-10pm geometric vertical emittance at 2.085 GeV. This paper discusses the tuning methods used at CesrTA to achieve low-emittance conditions. A minimum vertical emittance of 8.7 +2.9/-3.4(sys) +/-0.2(stat) pm has been achieved at 2.085 GeV. In various configurations and beam energies the correction technique routinely achieves vertical emittance <15 pm after correction. Beam-based measurement and correction requires about 15 minutes. Simulations modeling the effects of magnet misalignments, BPM errors, and emittance correction algorithm suggest the residual vertical emittance measured at the conclusion of the tuning procedure is dominated by sources other than optics errors and misalignments...

  13. Whole Language-Based English Reading Materials

    Directory of Open Access Journals (Sweden)

    Dian Erlina

    2016-05-01

    Full Text Available This Research and Development (R&D aims at developing English reading materials for undergraduate EFL students of Universitas Islam Negeri (UIN Raden Fatah Palembang, Indonesia. Research data were obtained through questionnaires, tests, and documents. The results of the research show that the existing materials are not relevant to the students’ need, so there is a need for developing new materials based on whole language principles. In general, the new developed materials are considered reliable by the experts, students, and lecturers. The materials are also effective in improving students’ reading achievement. The final product of the materials consists of a course book entitled Whole Language Reading (WLR and a teacher’s manual. WLR provides rich input of reading strategies, variety of topics, concepts, texts, activities, tasks, and evaluations. Using this book makes reading more holistic and meaningful as it provides integration across language skills and subject areas.Keywords: materials development, reading materials, whole language

  14. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  15. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    Science.gov (United States)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  16. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  17. ABSORBENT MATERIALS BASED ON KRAFT PULP: PREPARATION AND MATERIAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Fredrik Wernersson Brodin,

    2012-02-01

    Full Text Available Today, petroleum-based superabsorbents are widely used, but interest in renewable alternatives is on the rise. This study presents two wood-based absorbent materials suitable for various absorption applications as an alternative to petroleum-based products. Never-dried bleached kraft pulp was treated with TEMPO-oxidation, and new carboxylate and aldehyde groups were introduced. It was found that the aldehyde groups contributed to the wet integrity of the absorbent materials, possibly by the formation of hemiacetal bonds. After oxidation, the pulp fibers were gradually disintegrated, and size analysis showed that the disintegration rate was enhanced by an increase in the charge of the oxidant. Freeze drying produced a porous foam with a large surface area that enabled a rapid absorption rate as well as a reasonably high absorption capacity even for absorption under load. Air drying formed a compact film with a slow absorption rate but with a high final capacity for absorption.

  18. Development of starch-based materials

    OpenAIRE

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current applicability of these materials is limited due to their poor moisture tolerance and mechanical properties. Starch is therefore frequently blended with other polymers to make the material more suitable for special or severe circumstances. By varying the components of the blend and the process conditions, the morphology and hence the properties can be controlled. A clear understanding over the structure fo...

  19. Leaching from denture base materials in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lygre, H.; Solheim, E.; Gjerdet, N.R. [School of Medicine, Univ. of Bergen (Norway)

    1995-04-01

    Specimens made from denture base materials were leached in Ringer Solution and in ethanol. The specimens comprised a heat-cured product processed in two different ways and two cold-cured materials. The organic compounds leaching from the specimens to the solutions were separated, identified, and quantified by a combined gas-chromatography and gas-chromatography/mass-spectrometry technique. Additives and degradation products, possibly made by free radical reactions, were released from the denture base materials. In Ringer solution only phthalates could be quantified. In ethanol solvent, biphenyl, dibutyl phthalate, dicyclohexyl phthalate, phenyl benzoate, and phenyl salicylate were quantified. In addition, copper was found in the ethanol solvent from one of the denture base materials. The amount of leachable organic compounds varies among different materials. Processing temperature influences the initial amount of leachable compounds. 36 refs., 7 figs., 1 tab.

  20. A Novel Depletion-Mode MOS Gated Emitter Shorted Thyristor

    Institute of Scientific and Technical Information of China (English)

    张鹤鸣; 戴显英; 张义门; 马晓华; 林大松

    2000-01-01

    A Novel MOS-gated thyristor, depletion-mode MOS gated emitter shorted thyristor (DMST),and its two structures are proposed. In DMST,the channel of depletion-mode MOS makes the thyristor emitter-based junction inherently short. The operation of the device is controlled by the interruption and recovery of the depletion-mode MOS P channel. The perfect properties have been demonstrated by 2-D numerical simulations and the tests on the fabricated chips.

  1. Emittance measurements on ETA and ATA

    International Nuclear Information System (INIS)

    Emittance measurements on beams produced by the ETA and ATA accelerators are discussed. Emittance and brightness are defined. The significance of emittance for a beam in an accelerator and in gas is discussed. Various measurement techniques and results are presented and contrasted. Implicit calculations of emittance are also reported. Finally, the measurement of the time variation of emittance is discussed and the techniques to be used on the upcoming ATA experiments are outlined

  2. Materiality in a Practice-Based Approach

    Science.gov (United States)

    Svabo, Connie

    2009-01-01

    Purpose: The paper aims to provide an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Design/methodology/approach: The overview is theoretically generated and is based on the anthology Knowing in Organizations: A Practice-based Approach edited by Nicolini, Gherardi and Yanow. The…

  3. Material Recognition for Content Based Image Retrieval

    NARCIS (Netherlands)

    J.M. Geusebroek

    2002-01-01

    One of the open problems in content-based Image Retrieval is the recognition of material present in an image. Knowledge about the set of materials present gives important semantic information about the scene under consideration. For example, detecting sand, sky, and water certainly classifies the im

  4. INTELLIGENT MATERIALS BASED ON CERAMIC COMPOSITES

    OpenAIRE

    Maximov, Y.; Merzlikin, V.; Sidorov, O.; Suttugin, V.

    2010-01-01

    The paper examines the possibility to design intellectual materials based on film composites. Ferroelectric composites are offered to use as the film composites. The authors discuss ferroelectric composites of different structures. Sensors and intellectual materials on the basis of the obtained composites are considered.

  5. Electrically pumped single-defect light emitters in WSe2

    Science.gov (United States)

    Schwarz, S.; Kozikov, A.; Withers, F.; Maguire, J. K.; Foster, A. P.; Dufferwiel, S.; Hague, L.; Makhonin, M. N.; Wilson, L. R.; Geim, A. K.; Novoselov, K. S.; Tartakovskii, A. I.

    2016-06-01

    Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe2, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe2 under both optical and electrical excitation. This paves the way towards the realisation of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics.

  6. Graphene-based Composite Materials

    Science.gov (United States)

    Rafiee, Mohammad Ali

    We investigated the mechanical properties, such as fracture toughness (KIc), fracture energy (GIc), ultimate tensile strength (UTS), Young¡¦s modulus (E), and fatigue crack propagation rate (FCPR) of epoxy-matrix composites with different weight fractions of carbon-based fillers, including graphene platelets (GPL), graphene nanoribbons (GNR), single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and fullerenes (C60). Only ˜0.125 wt.% GPL was found to increase the KIc of the pure epoxy by ˜65% and the GIc by ˜115%. To get similar improvement, CNT and nanoparticle epoxy composites required one to two orders of magnitude greater weight fraction of nanofillers. Moreover, ˜0.125% wt.% GPL also decreased the fatigue crack propagation rate in the epoxy by ˜30-fold. The E value of 0.1 wt.% GPL/epoxy nanocomposite was ˜31% larger than the pure epoxy while there was only an increase of ˜3% for the SWNT composites. The UTS of the pristine epoxy was improved by ˜40% with GPLs in comparison with ˜14% enhancement for the MWNTs. The KIc of the GPL nanocomposite enhanced by ˜53% over the pristine epoxy compared to a ˜20% increase for the MWNT-reinforced composites. The results of the FCPR tests for the GPL nanocomposites showed a different trend. While the CNT nanocomposites were not effective enough to suppress the crack growth at high values of the stress intensity factor (DeltaK), the reverse behavior is observed for the GPL nanocomposites. The advantage of the GPLs over CNTs in terms of mechanical properties enhancement is due to their enormous specific surface area, enhanced adhesion at filler/epoxy interface (because of the wrinkled surfaces of GPLs), as well as the planar structure of the GPLs. We also show that unzipping of MWNTs into graphene nanoribbons (GNRs) enhances the load transfer effectiveness in epoxy nanocomposites. For instance, at ˜0.3 wt.% of fillers, the Young's modulus (E) of the epoxy nanocomposite with GNRs increased

  7. Recent developments of low-emittance electron gun for accelerator

    International Nuclear Information System (INIS)

    Recent developments of low-emittance electron guns for accelerator are reviewed. In the accelerator field, DC biased triode thermionic gun (Pierce type gun) has been widely used and is still conventional. On the other hand, because of strong demands on the high brightness electron beam by FEL and other advanced accelerator concepts based on linear accelerator, the low emittance beam generation becomes one of the most important issue in the accelerator science. The R and D effort is 'accelerated' by two technological innovations, photo-cathode and RF gun. They made a large improvement on the beam emittance. After the explanations on the technical and physical aspects of the low emittance electron beam generation, advanced electron sources for accelerators are reviewed. (author)

  8. ITER blanket, shield and material data base

    International Nuclear Information System (INIS)

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the ITER blanket, shield, and material data base. Part A, ''ITER Blanket and Shield Conceptual Design'', discusses the need for ITER of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. Blanket and shield combined must be designed to operate at a neutron wall loading of 1MW/m2, and to provide adequate shielding of the magnets to meet the neutron energy fluence goal of 3MWa/m2 at the first wall. After a summary of the conceptual design, the following topics are elaborated upon: (1) function, design requirement, and critical issues; (2) material selection; (3) blanket and shield segmentation; (4) blanket design description; (5) design analysis; (6) shield; (7) radiation streaming analysis; and (8) a summary of benchmark calculations. Part B, ''ITER Materials Evaluation and Data Base'', treats the compilation and assessment of the available materials data base used for the selection of the appropriate materials for all major components of ITER, including (i) structural materials for the first wall, (ii) Tritium breeding materials for the blanket, (iii) plasma facing materials for the divertor and first wall armor, and (4) electric insulators for use in the blanket and divertor. Refs, figs and tabs

  9. White organic light-emitting diodes with single active layer using a solution process based on a co-host emitter system.

    Science.gov (United States)

    Kim, Beomjin; Park, Youngil; Park, Jongwook

    2014-11-01

    A two-color white organic light-emitting diode (WOLED) with a co-host system in solution process method was demonstrated. The device configuration was ITO/PEDOT:PSS (40 nm)/emitting layer (50 nm)/TPBi (20 nm)/LiF (1 nm)/Al. The emitting layer consisted of TAT, (α- or β-) NPB, DPAVBi (blue dopant), and Rubrene (yellow dopant). The device using α-NPB or β-NPB showed a white color of CIE (0.29, 0.40) and (0.28, 0.39). The device using the α-NPB co-host showed a luminance efficiency of 3.39 cd/A, which is 21% higher than β-NPB (2.80 cd/A). Power efficiency was increased by 16% in α-NPB (2.34 Im/W) compared to β-NPB (2.02 Im/W). The Co-host emitter system of HTL and single blue emitter using a solution process for WOLED was shown before, but the HTL role was not understood clearly. From this study, the WOLED device efficiency can be attributed to the HTL's energy transfer property in the emitter mixing system. PMID:25958544

  10. White organic light-emitting device based on phosphorescent emissive layer combined with fluorescent emitter%磷光与荧光相结合的多层白色有机发光器件

    Institute of Scientific and Technical Information of China (English)

    杨惠山; 吴丽双; 潘玉灼

    2013-01-01

    采用真空热蒸镀的方法制备了磷光与荧光相结合的多层白色有机电致发光器件(OLED).将绿光[Ir(ppy)3]磷光掺杂染料掺杂到母体CBP中作为绿光发光层;荧光材料DCM2以亚单层的方式插入Alq3中作为红光发光层;DPVBi为蓝光发光层.器件的结构为ITO/NPB(40 nm)/DPVBi(d nm)/CBP:Ir(ppy)38%(5 nm)/Alq3(5 nm)/DCM2(0.05 nm)/Alq3 (45 nm)/LiF(1 nm)/AI(200 nm).实验中通过改变蓝光发光层的厚度,得到了高效率的白光OLED,器件的最大电流效率可达6.75 cd/A,最大功率效率达2.67 lm/W,最大亮度达30 440 cd/m2.此外,当电压从4V变化到14V时色坐标从(0.59,0.39)变化到(0.35,0.38),基本处于白光区.本文器件的特点在于其性能可以通过简单调整DPVBi的厚度,避免了使用多掺杂层工艺的复杂性.%Generating the broadband white light typically requires two or three types of emitters, which increases complication in material selection and device desiga In this paper, a white organic light-emitting device (WOLED) based on phosphorescent emissive layer combined with fluorescent emitter has been fabricated by vacuum deposition method,in which Ir(ppy)3 was doped into CBP host as green emitting layer,sub-monolayer DCM2 was inserted in the electron transporting layer as red emitting layer,and fluorescent blue material DPVBi was employed in the WOLED, respectively. The structure of the device is ITO/NPBC40 nm)/DPVBi(d nm)/CBP:Ir(ppy)38%(5 nm)/Alq3(5 nm)/DCM2(0. 05 nm)/Alq3(45 nm)/LiF(l nm)/AK200 nm). The efficient WOLED is obtained by varying the thickness of the blue e-mitting layer. The maximum luminance,electroluminescence (EL) efficiency,power efficiency of the device with the thickness of 12 nm DPVBi are 30440 cd/m2 ,6. 75 cd/A,2. 67 lm/W,respectively. Moreover , the Commission Internationale De L Eclairage ( CIE ) coordinates of the device vary from (0. 59, 0.39) at 4 V to (0. 35,0. 38) at 14 V generally within the white region. The performance of the WOLED

  11. Growth and characterization of ZnCdMgSe-based green light emitters and distributed Bragg reflectors towards II-VI based semiconductor disk lasers

    Energy Technology Data Exchange (ETDEWEB)

    De Jesus, Joel; Gayen, Swapan K. [The Graduate Center, City University of New York (CUNY), New York, NY (United States); Department of Physics, The City College of New York, New York, NY (United States); Garcia, Thor A.; Tamargo, Maria C. [The Graduate Center, City University of New York (CUNY), New York, NY (United States); Department of Chemistry, The City College of New York, New York, NY (United States); Kartazaev, Vladimir [Department of Physics, The City College of New York, New York, NY (United States); Jones, Brynmor E.; Schlosser, Peter J.; Hastie, Jennifer E. [Institute of Photonics, University of Strathclyde, Glasgow (United Kingdom)

    2015-02-01

    We report the structural and optical properties of molecular beam epitaxy grown II-VI semiconductor multiple quantum well (MQW) structures and distributed Bragg reflector (DBR) on InP substrates for application in developing optically-pumped semiconductor disk lasers (SDLs) operating in the green spectral range. One sample was grown directly on an InP substrate with an InGaAs buffer layer, while another had a 5-period ZnCdMgSe-based DBR grown on the InGaAs/InP substrate. X-ray diffraction and scanning electron microscopy measurements revealed sharp superlattice peaks and abrupt layer interfaces, while steady-state photoluminescence measurements demonstrated surface emission between 540-570 nm. Under pulsed excitation both samples exhibited features of amplified spontaneous emission (ASE) or stimulated emission, accompanied by luminescence lifetime shortening. The sample with the DBR showed higher surface luminescence and the onset of ASE at lower pump power. To further explore the design and performance of a ZnCdMgSe-based DBR, a 20-period DBR was grown and a reflectivity of 83% was obtained at ∝560 nm. We estimate that a DBR with ∝40 periods would be needed for optimal performance in a SDL using these materials. These results show the potential of II-VI MQW structures on InP substrates for the development of SDLs operational in the green-yellow wavelength range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    Science.gov (United States)

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  13. Observation of negative differential transconductance in tunneling emitter bipolar transistors

    Science.gov (United States)

    van Veenhuizen, Marc J.; Locatelli, Nicolas; Moodera, Jagadeesh; Chang, Joonyeon

    2009-08-01

    We report on measurement of negative differential transconductance (NDTC) of iron (Fe)/magnesium-oxide (MgO)/silicon tunneling emitter NPN bipolar transistors. Device simulations reveal that the NDTC is a consequence of an inversion layer at the tunneling-oxide/P-silicon interface for low base voltages. Electrons travel laterally through the inversion layer into the base and give rise to an increase in collector current. The NDTC results from the recombination of those electrons at the interface between emitter and base contact which is dependent on the base voltage. For larger base voltages, the inversion layer disappears marking the onset of normal bipolar transistor behavior.

  14. Measurement of the microwave emitter's inhomogeneity using optical fiber DTS

    Science.gov (United States)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vašinek, Vladimir; Smira, Pavel; Nasswettrova, Andrea; Cubik, Jakub; Kepak, Stanislav

    2014-06-01

    Researcher's teams were dealing with the microwave emitter's inhomogeneity problem since the microwaves were used. One possible way, how to measure electromagnetic field is the measurement on inhomogeneous temperature distribution on the irradiated sample, which can cause problems as in other material processing, so in the undesirable change of properties and even security. Inhomogeneity of electromagnetic field is specific by creating spots with higher or lower temperature called "hot spots". This inhomogeneity strongly affects the temperature distribution in the cross section of the material and its resultant heating. Given the impossibility of using classical electronic devices with metal temperature sensors were various indirect methods used in the past. This paper deals with experimental measurement of the microwave emitter's inhomogeneity (2.45 GHz) using the optical fiber DTS. The greatest advantage of this sensor system is just in using of the optical fiber (electromagnetic resistance, small size, safety using in inflammable and explosive area, easy installation). Due to these properties of the optical fiber sensor it's possible to measure the temperature of the sample in real time. These sensor are able to measure the temperature along the fiber, in some cases they use nonlinear effect in optical fiber (Raman nonlinear effect). The verification of non-homogeneity consists in experimental measuring of the temperature distribution within the wooden sample. The method is based on heat exchange in an isolated system where wooden sample serves as an absorber of the irradiated energy. To identify locations with different power density was used DTS system, based on nonlinear phenomena in optical fibers.

  15. 基于 TOA 预测的非同步照射辐射源定位算法%Asynchronous radiation emitter location method based on TOA prediction

    Institute of Scientific and Technical Information of China (English)

    张奎; 罗景青; 孟祥豪

    2014-01-01

    针对现有基于TDOA的定位算法难以适应辐射源信号非同步到达的实时定位问题,提出了一种基于TOA预测的非同步照射辐射源定位算法。该算法采用脉冲样本图外推法通过各站接收的短时脉冲列计算TDOA序列(TDOAs),并通过牛顿迭代法实现对辐射源位置的初步估计。对新到达的脉冲采用脉冲样本图外推法进行TOA预测,判别脉冲属性,进而获得新的TDOA测量值,然后采用扩展卡尔曼滤波算法实现对辐射源位置的实时更新。仿真分析表明:该算法解决了非同步照射引起的难以计算 TDOA的问题,并增强了处理的实时性。%As the existing location method based on TDOA cannot adapt to the asynchronous arrival real-time location of emitter signals ,an asynchronous radiation emitter location method based on TOA prediction is proposed .Firstly ,the pulse pattern extrapolating method is adopted to calculate TDOA sequences (TDOAs) through the short-time pulse sequences received by observing platforms ,and the initial estimation of the emitter position is made with Newton iterative algorithm .Then ,the new arri-val pulse attribute is judged by TOA prediction based on the pulse pattern extrapolating method to ob-tain new TDOA values .The extended Kalman filter (EKF) algorithm is used to implement a real-time renewal of the emitter position .Simulation results show that the proposed algorithm can not only o-vercome the difficulty in calculating TDOA that results from asynchronous radiation and but also en-hance the real-time processing .

  16. A method to measure the nonlinear force caused emittance growth in a RF photoinjector

    Institute of Scientific and Technical Information of China (English)

    Li Zheng-Hong; Yang Zhen-Ping

    2006-01-01

    Based on the multi-slit method, a new method is introduced to measure the non linear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.

  17. Ultra Low Emittance Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson,J.

    2008-06-23

    This paper outlines the special issues for reaching sub-nm emittance in a storage ring. Effects of damping wigglers, intra-beam scattering and lifetime issues, dynamic aperture optimization, control of optics, and their interrelations are covered in some detail. The unique choices for the NSLS-II are given as one example.

  18. Microemulsion-based synthesis of nanocrystalline materials.

    Science.gov (United States)

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials. PMID:20111772

  19. Morphology of polyethylene ski base materials.

    Science.gov (United States)

    Fischer, Jörg; Wallner, Gernot M; Pieber, Alois

    2010-03-01

    We used high-resolution Raman spectroscopy and differential scanning calorimetry for a comprehensive analysis of carbon black-filled polyethylene ski base grades at processing stages from the raw material to the structured ski base. Based on Raman mapping, we assessed the applicability of an advanced evaluation procedure for amorphous, disordered, and crystalline phase fractions of polyethylene for polyethylene extrusion and sinter grades. For sinter grades, a sufficient segregation between carbon black and polyethylene was confirmed, allowing for a comprehensive Raman spectroscopic morphological analysis. Significant morphological changes in polyethylene due to processing from the raw material to the semi-finished film and to the structured ski base were identified. Throughout the processing chain, we observed a decrease in crystallinity and an increase in the amorphous phase fraction. Although the raw material and the sintered semi-finished film exhibited a different but uniform polyethylene morphology, the morphological changes due to structuring of the ski base are limited to the top surface layer. The highest amorphous phase fractions were detected in the surface of the structured ski bases.

  20. Thermal emittance and response time of a cesium antimonide photocathode

    Science.gov (United States)

    Cultrera, Luca; Bazarov, Ivan; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Merluzzi, Richard; Nichols, Matthew

    2011-10-01

    Measurements of the intrinsic emittance and response time of a Cs3Sb photocathode are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. Photoemission response time is evaluated using a RF deflecting cavity synchronized to a picosecond laser pulse train. We find that Cs3Sb has both small mean transverse energy, 160 ± 10 meV at 532 nm laser wavelength, and a prompt response time (below the resolution of our measurement) making it a suitable material for high brightness electron photoinjectors.

  1. Molecular Designs and Properties of Highly Efficient Blue Emitters for OLEDs

    Institute of Scientific and Technical Information of China (English)

    Wong Ken-Tsung

    2004-01-01

    Advances made in the molecular design of modern optoelectronic materials have made significant contributions toward the development of organic electronics. The organic light-emitting devices (OLEDs) employing monodisperse or polymeric conjugated materials possess the most promising prospects. However, materials suitable for long-term use as blue light emitters are still far from optimization in terms of stability.In the past few years, interesting materials based on 9,9-diaryl-substituted fluorene as a core structure have been developed in our laboratory. We developed a series of efficient and morphologically stable pyrimidine-containing 9,9'-spirobifluorene-cored oligoaryls as pure blue emitters. The steric hindrance inherent with the molecular structure renders the material with a record-high thin-film PL quantum yield of ~95% and a glass transition temperature (Tg) of ~200 ℃.Blue OLEDs employing this thermally stable compound as the emitting host exhibit unusual endurance for high currents. Injection current over 5,000 mA/cm2 and maximal brightness of~80,000 cd/m2 had been demonstrated, representing the highest values reported for blue OLEDs under dc driving. In addition, a series of oligofluorene homologues have been synthesized. These oligofluorenes exhibit interesting reversible bipolar redox properties and excellent morphological and thermal stability. Furthermore, nondispersive ambipolar high hole and electron mobilities over 10-3 cm2/V.s can be achieved with these oligo(9,9-diarylfluorene)s. In particular, the electron mobility observed represents the highest ever reported for amorphous molecular solids. These intriguing properties together with the high quantum yields in thin films make these oligo(9,9-diarylfluorene)s are promising for OLEDs applications as efficient blue emitters. In this meeting, the synthesis and properties of these materials and their highly efficient OLEDs device characteristics will be discussed.

  2. Superconductivity in dense carbon-based materials

    Science.gov (United States)

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; Meng, Sheng; Li, Yinwei; Tse, John S.; Yang, Bai; Hemley, Russell J.

    2016-03-01

    Guided by a simple strategy in search of new superconducting materials, we predict that high-temperature superconductivity can be realized in classes of high-density materials having strong sp3 chemical bonding and high lattice symmetry. We examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited, and the density of states at the Fermi level in them can be as high as that in the renowned Mg B2 . Together with other factors, this boosts the superconducting temperature (Tc) in the materials investigated to higher levels compared to doped diamond. For example, the Tc of sodalitelike Na C6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. Owing to the rigid carbon framework of these and related dense carbon materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.

  3. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  4. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  5. Multiple emitter location and signal parameter estimation

    Science.gov (United States)

    Schmidt, R. O.

    1986-03-01

    Multiple signal classification (MUSIC) techniques involved in determining the parameters of multiple wavefronts arriving at an antenna array are discussed. A MUSIC algorithm is described, which provides asymptotically unbiased estimates of (1) the number of signals, (2) directions of arrival (or emitter locations), (3) strengths and cross correlations among the incident waveforms, and (4) the strength of noise/interference. The example of the use of the algorithm as a multiple frequency estimator operating on time series is examined. Comparisons of this method with methods based on maximum likelihood and maximum entropy, as well as conventional beamforming, are presented.

  6. Graphene based materials for biomedical applications

    Directory of Open Access Journals (Sweden)

    Yuqi Yang

    2013-10-01

    Full Text Available Graphene, a single layer 2-dimensional structure nanomaterial with unique physicochemical properties (e.g. high surface area, excellent electrical conductivity, strong mechanical strength, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization, has received increasing attention in physical, chemical and biomedical fields. This article selectively reviews current advances of graphene based materials for biomedical applications. In particular, graphene based biosensors for small biomolecules (glucose, dopamine etc., proteins and DNA detection have been summarized; graphene based bioimaging, drug delivery, and photothermal therapy applications have been described in detail. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  7. Graphene-based materials for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal [Energy Research Institute, Nanyang Technological University (Singapore); Pan, Yongzheng; Li, Lin; Chan, Siew Hwa [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore)

    2012-08-08

    With the depletion of conventional energy sources, the demand for renewable energy and energy-efficient devices continues to grow. As a novel 2D nanomaterial, graphene attracts considerable research interest due to its unique properties and is a promising material for applications in energy conversion and storage devices. Recently, the fabrication of fuel cells and solar cells using graphene for various functional parts has been studied extensively. This research news summarizes and compares the advancements that have been made and are in progress in the utilization of graphene-based materials for energy conversion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    of a novel epitaxial structure design. The layered structure is based on chirping the barrier layer thickness of the over grown quantum dash layer, in a multi-stack quantum dash/barrier active region, with the aim of inducing additional inhomogeneity. Based on material-structure and device characterization, enhanced lasing-emission bandwidth is achieved from the narrow (2 u m)ridge-waveguide LDs as a result of the formation of multiple ensembles of quantum dashes that are electronically different, in addition to improved device performance. Moreover, realization of SLDs from this device structure demonstrated extra-ordinary emission bandwidth covering the entire international telecommunication union (O- to U-) bands. This accomplishment is a collective emission from quantum wells and quantum dashes of the device active region. All these results lead to a step forward in the eventual realization of more than 150 nm lasing bandwidth from a single semiconductor laser diode.

  9. Emittance Measurements at the Langley Chemical Physics Laboratory

    Science.gov (United States)

    Lewis, B. W.

    1960-01-01

    Total hemispherical emittance measurements are made routinely for materials which may be heated by electrical resistance methods over the temperature range of 600 degrees to 2,000 F by using a black-body reference method. This employs a conical black body and a thermopile detector with a calcium fluoride lens. Emittance is obtained by measuring the radiant flux from the specimen strip and comparing it with the flux from an equal area of the black-body cone at the same temperature. The temperature measurements are made by use of thermocouples. It is planned to extend the temperature range of this type of measurement to temperatures above 2,000 F. Another technique has been investigated for measuring emittance of materials not amenable to electrical heating or thermocouple attachment. This method uses a black-body-cavity furnace similar to that used in reference 5 to measure emittance of transparent materials such as glass. The method employs a heated black-body cavity in which the semicircular specimen is allowed to come to the equilibrium temperature of the cavity and then is rotated in front of a water-cooled viewing port where a sensitive thermistor detector alternately views the specimen surface and the black-body cavity. The ratio of the two readings gives the specimen emittance directly, for the temperature of the black body. The detector output is recorded on a fast Brown self-balancing potentiometer. The furnace is provided with a water-cooled blackened shutter which may be inserted behind the specimen to eliminate any transmitted black-body radiation if the specimen is transparent. This apparatus is capable of measuring total normal emittance over the temperature range of 1,000 degrees to 2,000 F. Preliminary data for boron nitride specimens of two thicknesses are shown where total normal emittance is plotted against temperature for two experimental conditions: (1) black-body radiation incident on the back of the specimen and (2) no black-body radiation

  10. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  11. Emittance and Phase Space Tomography for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; /Fermilab; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the

  12. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    the potential mitigation value of this in relation to avoid crossing dangerous climatic target levels. CTP characterization factors for several GHG development scenarios and a number of other important model parameters are given, making the approach operational for direct inclusion in LCA. Influence of selected...... with temporary carbon storage in biomaterials, in a way that quantifies the potential climate change benefit in relation to avoiding crossing near-term climatic targets. The geographical scope in this PhD project is global, as the focus is on methodology development and assessment of biomaterials at a global...... materials. Background The society today is highly dependent on fossil oil and gas for producing fuels, chemicals and materials, however many of those can alternatively be produced from biomass. The potential of biomaterials to substitute fossil based materials receives increased attention, and their global...

  13. Achieving ultra-high temperatures with a resistive emitter array

    Science.gov (United States)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  14. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  15. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  16. Prolixe-prototype reprocessing unit for irradiating wastes contamined with alpha emitters

    International Nuclear Information System (INIS)

    A large number of hot cells are employed for research on nuclear fuel reprocessing and the production of isotope of transuranium elements. These activities generate solid wastes highly contaminated with alpha, beta, gamma emitters. The Prolixe hot cell was built in order to: 1/ reprocess the solid wastes contaminated with alpha, beta, gamma emitters produced in the Radiochemistry building: 2/ produce package wastes storable in shallow-ground disposal sites: 3/ develop a process sufficiently flexible to make it applicable to waste produced in other installations. The process is based on waste leaching after grinding. Depending on the type of wastes the leaching reactant will have a different composition 1/ nitric acid solution for cellulose waste: 2/ nitric solutions containing Ag(II) for other material. The complete process should achieve: 1/ a high waste volume reduction factor: 2/ the production of immobilized waste packages storage in shallow-ground disposal sites: 3/ the recycling of transuranium elements: 4/ the generation of a minimal volume of effluents. This process can be considered as an alternative process to incineration for the reprocessing of solid wastes highly contaminated with alpha, beta, gamma emitters

  17. Multibunch Emittance Preservation in CLIC

    CERN Document Server

    Guignard, Gilbert

    1996-01-01

    In high-frequency linacs, where the wakefields are strong, the stability of a train of bunches is critical. The beam break-up due to long range wakefields induces a decoherence of the bunch oscillations and a consequent blow-up of the effective betatron emittances of the whole train. Since the Compact Linear Collider (CLIC) study now includes several bunches per pulse, it is important to analyse numerically and theoretically this emittance blow-up. possibilities of controlling the beam break-up without upsetting the single bunch stability have been considered: first a multibunch generalization of the BNS damping principle, secondly an attenuation of the long-range fields, and thirdly an increase of the focusing in order to overconstrain the beam. Simulation codes have been written for both checking the theoretical predictions and investigating the requirements associated with a possible application to the main linac. Animated graphics make it possible to get a didactic display of the multibunch instability.

  18. Photoconductive terahertz generation from textured semiconductor materials

    Science.gov (United States)

    Collier, Christopher M.; Stirling, Trevor J.; Hristovski, Ilija R.; Krupa, Jeffrey D. A.; Holzman, Jonathan F.

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating—as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials. PMID:26979292

  19. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 (211At) and natural bismuth-212 (212Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 (223Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  20. Alpha particle emitters in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  1. Forensic Identification Based on Tooth Material

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-10-01

    Full Text Available Human teeth are the most robust and stable parts of the body, providing biological clue material for forensic purposes even when most of the oter means of identifcation have been seriously affected by adverse environmental conditions. In particular blood grouping, isozymes, serum proteins and DNA polymorhphisms can be detected from teeth that protect these identification markers in addition to the traditional dental records. While in general the value of traditional dental records in the forensic work is decreasing eg due to mproved dental care, the newer means of identification from tooth material provide considerable promise for effective identification in difficult cases.The DNA analysis from tooth material has been shown to ba a viable route in forensic analysis, when other material for such an analysis is unusable. However in most cases useful biologic material other than teeth is abailable, and then DNA analysis can be made from other tissue with less effort than by using teeth. Also, in cases with lacking other tissue, blood grouping, isozymes and serum proteins may provide cheaper inherited combinations of blood grouping, isozymes and serum proteins can be treated similary to polymorphic DNA loci as independent markers, their identification can be managed if the false positives and negatives in analysis can be minimmised, and the corresponding frequencies of occurrence are known.It was the purpose of the present work to review the methods of forensic identification from tooth material, based on analysis of blood grouping, isozymes and serum proteins. It appears that such a combined analysis provides a robust method for forensic purposes. Nevertheless, for efficient identification it is recommended that as many (multiple forensic methods as possible are combined, so that faster and cheaper methods such as imminent medical forensics are used first, and more thorough analysis is used to support and complement these methods.

  2. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  3. Enhancing selectivity of infrared emitters through quality-factor matching

    Science.gov (United States)

    Sakr, Enas; Zhou, Zhiguang; Bermel, Peter

    2015-09-01

    It has recently been proposed that designing selective emitters with photonic crystals (PhCs) or plasmonic metamaterials can suppress low-energy photon emission, while enhancing higher-energy photon emission. Here, we will consider multiple approaches to designing and fabricating nanophotonic structures concentrating infrared thermal radiation at energies above a critical threshold. These are based on quality factor matching, in which one creates resonant cavities that couple light out at the same rate that the underlying materials emit it. When this quality-factor matching is done properly, emissivities can approach those of a blackbody, but only within a selected range of thermal photon energies. One potential application is for improving the conversion of heat to electricity via a thermophotovoltaic (TPV) system, by using thermal radiation to illuminate a photovoltaic (PV) diode. In this study, realistic simulations of system efficiencies are performed using finite-difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) to capture both thermal radiation and PV diode absorption. We first consider a previously studied 2D molybdenum photonic crystal with a commercially-available silicon PV diode, which can yield TPV efficiencies up to 26.2%. Second, a 1D-periodic samarium-doped glass emitter with a gallium antimonide (GaSb) PV diode is presented, which can yield efficiencies up to 38.5%. Finally, a 2D tungsten photonic crystal with a 1D integrated, chirped filter and the GaSb PV diode can yield efficiencies up to 38.2%; however, the fabrication procedure is expected to be more challenging. The advantages and disadvantages of each strategy will be discussed.

  4. High-efficiency photonic crystal narrowband thermal emitters

    Science.gov (United States)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  5. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable-emittance materials are in high demand for applications ranging from manned and unmanned space platforms (e.g. in radiators at the Moon's poles where...

  6. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures i

  7. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator - presentation slides

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    Direct emittance measurement based on vertical undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.

  8. A Review on Multiple Emitter Location and Signal Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Sandeep Santosh, Karan Sharma

    2013-07-01

    Full Text Available Processing the signals received on an array of sensors for the location of the emitter is of great enough interest to have been treated under many special case assumptions. The general problem considers sensors with arbitrary locations and arbitrary directional characteristics (gain phase polarization in a noise/interference environment of arbitrary covariance matrix. This report is concerned first with the multiple emitter aspect of this problem and second with the generality of solution. A description is given of the multiple signal classification (MUSIC algorithm, which provides asymptotically unbiased estimates of 1 number of incident wavefronts present; 2 directions of arrival (DOA (or emitter locations; 3 strengths and cross correlations among the incident waveforms; 4 noise/interference strength. Examples and comparisons with methods based on maximum likelihood (ML and maximum entropy (ME, as well as conventional beamforming are. included. An example of its use as a multiple frequency estimator operating on time series is included.

  9. Hybrid genetic optimization for design of photonic crystal emitters

    Science.gov (United States)

    Rammohan, R. R.; Farfan, B. G.; Su, M. F.; El-Kady, I.; Reda Taha, M. M.

    2010-09-01

    A unique hybrid-optimization technique is proposed, based on genetic algorithms (GA) and gradient descent (GD) methods, for the smart design of photonic crystal (PhC) emitters. The photonic simulation is described and the granularity of photonic crystal dimensions is considered. An innovative sliding-window method for performing local heuristic search is demonstrated. Finally, the application of the proposed method on two case studies for the design of a multi-pixel photonic crystal emitter and the design of thermal emitter in thermal photovoltaic is demonstrated. Discussion in the report includes the ability of the optimal PhC structures designed using the proposed method, to produce unprecedented high emission efficiencies of 54.5% in a significantly long wavelength region and 84.9% at significantly short wavelength region.

  10. On the measurement of positron emitters with Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, Virginia, E-mail: virginia.peyres@ciemat.e [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain); Garcia-Torano, Eduardo [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain)

    2011-05-01

    This paper discusses the problems related to the measurement of positron emitters with germanium detectors. Five positron emitters with important applications in nuclear medicine ({sup 22}Na, {sup 18}F, {sup 11}C, {sup 13}N and {sup 68}Ga) have been studied. Measurements and Monte Carlo simulations have been used to determine the optimal conditions of measurement in gamma-ray spectrometry systems. The results obtained indicate that adding adequate absorbers, detection efficiencies are close to those of gamma emitters of similar energy measured in the same conditions, which allows a rapid calibration of a Ge-based spectrometry system. More accurate results are also presented using a detailed Monte Carlo simulation. Comparison to experimental data shows a good agreement.

  11. Racking strength of paperboard based sheathing materials

    Directory of Open Access Journals (Sweden)

    Bi, W.

    2007-02-01

    Full Text Available Small-scale racking testers were developed for use as a means to evaluate paperboard-based sheathing materials used in framed wall-construction. For the purpose of evaluating the performance of different sheathing materials, the tester provides an economic alternative to standard full-scale racking tests. In addition, results from testing provide practical insight into the racking response of framed and sheathed walls. The load-deformation responses of three commercial sheathing boards were measured, and initial racking stiffness and racking strength were proposed as parameters for characterizing the board. The racking test results showed that the initial paperboard racking stiffness correlated to elastic modulus and caliper, but the response was insensitive to paperboard orientation or test dimensions. Observations and results showed that both panel buckling and paperboard cutting at the staples affected the racking response, but the dominating factor influencing the racking response appears to be load transfer through the staples.

  12. Bibliographic data base for low activation materials

    Energy Technology Data Exchange (ETDEWEB)

    Alenina, M.V.; Kolotov, V.P. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Ivanov, L.I. [A.A. Baikov Institute of Metallurgy and Science of Materials, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: The analysis of the publications dealing with development of low-activation materials for fusion technology demonstrates that the period of information doubling is about 5-6 years. Such high rate usually is characteristic of the actively developing field of science. To develop an useful instrument for analysis and systematization of the available data a computer based bibliographic system has been developed some time ago. Recently the engine of the system has been significantly modernized. The bibliographic system is based on using of MS SQL server data base which includes main bibliographic information including abstracts. The most important feature of the system is that full-text abstracts searching capabilities are appended with indexing of information by experts to increase its definition. The experts indexes cover the following topics: - Main problems; - Software and methods for calculation; - Libraries of nuclear data; - Spectrum of neutrons for different construction parts of fusion reactor; - Low activation materials; - Technology of production; - Radiation effects; - Utilization of radiation waste; - Estimation of risks; - Designs of fusion reactor; - Nuclear transmutations; - Equipment used for investigations. The primary data base is filling/appending by periodical queries to different bibliographic data bases (INIS, COMPEMDEX and others) via suitable Internet providers including strict analysis of the income information to remove a possible 'information noise' and following data indexing by experts. The data base contains references since 1976 year (when first works in this area have been fulfilled) and until now. The bibliographic system is accessible by means of Internet using different forms developed for queries (http://www.geokhi.ru/{approx}lam{sub d}b). (authors)

  13. Narrowband infrared emitters for combat ID

    Science.gov (United States)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  14. Minimizing Emittance for the CLIC Damping Ring

    CERN Document Server

    Braun, H; Levitchev, E; Piminov, P; Schulte, Daniel; Siniatkin, S; Vobly, P P; Zimmermann, Frank; Zolotarev, Konstantin V; CERN. Geneva

    2006-01-01

    The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6·109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology the other on permanent magnets are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. For optimized wigglers, only bunches for a single machine pulse may need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 36...

  15. Quantum Mechanics Based Multiscale Modeling of Materials

    Science.gov (United States)

    Lu, Gang

    2013-03-01

    We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.

  16. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  17. Solution-based nanoengineering of materials.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Spoerke, Erik David; Liu, Jun; Voigt, James A.; Cygan, Randall Timothy; Machesky, Michael L. (Illinois State Water Survey, Champaign, IL); Tian, Zhengrong Ryan; McKenzie, Bonnie Beth

    2005-02-01

    Solution-based synthesis is a powerful approach for creating nano-structured materials. Although there have been significant recent successes in its application to fabricating nanomaterials, the general principles that control solution synthesis are not well understood. The purpose of this LDRD project was to develop the scientific principles required to design and build unique nanostructures in crystalline oxides and II/VI semiconductors using solution-based molecular self-assembly techniques. The ability to synthesize these materials in a range of different nano-architectures (from controlled morphology nanocrystals to surface templated 3-D structures) has provided the foundation for new opportunities in such areas as interactive interfaces for optics, electronics, and sensors. The homogeneous precipitation of ZnO in aqueous solution was used primarily as the model system for the project. We developed a low temperature, aqueous solution synthesis route for preparation of large arrays of oriented ZnO nanostructures. Through control of heterogeneous nucleation and growth, methods to predicatively alter the ZnO microstructures by tailoring the surface chemistry of the crystals were established. Molecular mechanics simulations, involving single point energy calculations and full geometry optimizations, were developed to assist in selecting appropriate chemical systems and understanding physical adsorption and ultimately growth mechanisms in the design of oxide nanoarrays. The versatility of peptide chemistry in controlling the formation of cadmium sulfide nanoparticles and zinc oxide/cadmium sulfide heterostructures was also demonstrated.

  18. Engineering and localization of quantum emitters in large hexagonal boron nitride layers

    CERN Document Server

    Choi, Sumin; ElBadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of microns wide) of hBN. The emitters can be activated in as-grown hBN by electron irradiation or high temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at edges of the flakes, unlike most luminescent point defects in 3D materials. Our results constitute an important step on the road map of deploying hBN in nanophotonics applications.

  19. Hybrid emitter all back contact solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  20. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  1. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  2. Negative Dielectric Constant Material Based on Ion Conducting Materials

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  3. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  4. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    Science.gov (United States)

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-01

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl3 diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)-(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher Voc. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  5. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA; Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted

  6. A highly efficient directional molecular white-light emitter driven by a continuous-wave laser diode

    Science.gov (United States)

    Rosemann, Nils W.; Eußner, Jens P.; Beyer, Andreas; Koch, Stephan W.; Volz, Kerstin; Dehnen, Stefanie; Chatterjee, Sangam

    2016-06-01

    Tailored light sources have greatly advanced technological and scientific progress by optimizing the emission spectrum or color and the emission characteristics. We demonstrate an efficient spectrally broadband and highly directional warm-white-light emitter based on a nonlinear process driven by a cheap, low-power continuous-wave infrared laser diode. The nonlinear medium is a specially designed amorphous material composed of symmetry-free, diamondoid-like cluster molecules that are readily obtained from ubiquitous resources. The visible part of the spectrum resembles the color of a tungsten-halogen lamp at 2900 kelvin while retaining the superior beam divergence of the driving laser. This approach of functionalizing energy-efficient state-of-the-art semiconductor lasers enables a technology complementary to light-emitting diodes for replacing incandescent white-light emitters in high-brilliance applications.

  7. Development and characterization of a rare earth emitter for a thermophotovoltaic power generator

    Energy Technology Data Exchange (ETDEWEB)

    Durisch, W.; Panitz, J.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Energy conversion based on thermophotovoltaic (TPV) methods has recently attracted renewed interest. Efforts at PSI are directed towards the development of a modular TPV system based on existing technology to demonstrate the feasibility of this method. Here, we report first results obtained with a prototype TPV generator based upon a modified rare earth emitter, a heat reflecting filter and commercial silicon solar cells. The preparation of the modified emitter is described, and first results of spectroscopic and electrical characterization of the TPV system are presented. The introduction of the modified emitter leads to an efficiency gain of 30-40%. (author) 3 figs., 4 refs.

  8. Surface Functionalization of Graphene-based Materials

    Science.gov (United States)

    Mathkar, Akshay

    Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs

  9. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  10. Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems

    Science.gov (United States)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2014-06-01

    A tantalum tungsten solid solution alloy, Ta 3% W, based 2D photonic crystal (PhC) was designed and fabricated for high-temperature energy conversion applications. Ta 3% W presents advantages compared to the non-alloys as it combines the better high-temperature thermomechanical properties of W with the more compliant material properties of Ta, allowing for a direct system integration path of the PhC as selective emitter/absorber into a spectrum of energy conversion systems. Indeed metallic PhCs are promising as high performance selective thermal emitters for thermophotovoltaics (TPV), solar thermal, and solar TPV applications due to the ability to tune their spectral properties and achieve highly selective emission. A 2D PhC was designed to have high spectral selectivity matched to the bandgap of a TPV cell using numerical simulations and fabricated using standard semiconductor processes. The emittance of the Ta 3% WPhC was obtained from near-normal reectance measurements at room temperature before and after annealing at 1200 °C for 24h in vacuum with a protective coating of 40 nm HfO2, showing high selectivity in agreement with simulations. SEM images of the cross section of the PhC prepared by FIB confirm the structural stability of the PhC after anneal, i.e. the coating effectively prevented structural degradation due to surface diffusion. The mechanical and thermal stability of the substrate was characterized as well as the optical properties of the fabricated PhC. To evaluate the performance of the selective emitters, the spectral selectivity and useful emitted power density are calculated as a function of operating temperature. At 1200 °C, the useful emitted irradiance is selectively increased by a factor of 3 using the selective emitter as compared to the non-structured surface. All in all, this paper demonstrates the suitability of 2D PhCs fabricated on polycrystalline Ta-W substrates with an HfO2 coating for TPV applications.

  11. Emitter/absorber interface of CdTe solar cells

    Science.gov (United States)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.

  12. A new concept for the modeling of the positron emitter production for the particle therapy

    International Nuclear Information System (INIS)

    One of the three main tumour treatment forms is radiation therapy. Here, the application of ion beams, in particular protons and carbon ions, is of growing importance. This high precision therapy requires a consequent monitoring of the dose delivery since the induced dose deposition is very sensitive to density changes in the irradiated tissue. Up to now, positron emission tomography (PET) is the only in vivo method in clinical use for monitoring the dose deposition in ion beam therapy. It allows for the verification of the particle range as well as the position of the irradiation field. The distribution of activity measured by means of PET cannot be compared directly to the planned dose distribution. Thus, a calculation of the expected activity distribution is required which then can be compared to the measurement. Simulation of the expected activity distribution requires the exact knowledge of various cross sections. Only a few of them have been measured in the required energy range so far. Therefore, in Monte Carlo simulations often intrinsic nuclear models or semi-empirical parametrization are used which often exhibit insufficient accuray. Among experts the question on the optimum ion species for tumour therapy is still open. Especially lithium ions exhibit a great potential due to their favourable physical and radiobiological properties. Also for these ions a PET monitoring is highly desirable. The presented work shows the feasibility of range verification by means of PET for lithium irradiation. Furthermore, a concept for modeling positron emitter distributions without the knowledge of cross sections is developed. This prediction is based on depth-dependent positron emitter yields measured in reference materials (water, graphite and polyethylene). With these data the positron emitter distribution in any material of known stoichiometry can be calculated by means of an appropriate linear combination. The feasibility of the yield concept is shown for lithium and

  13. FDI report on adverse reactions to resin-based materials.

    Science.gov (United States)

    Fan, P L; Meyer, D M

    2007-02-01

    Resin-based restorative materials are considered safe for the vast majority of dental patients. Although constituent chemicals such as monomers, accelerators and initiators can potentially leach out of cured resin-based materials after placement, adverse reactions to these chemicals are rare and reaction symptoms commonly subside after removal of the materials. Dentists should be aware of the rare possibility that patients could have adverse reactions to constituents of resin-based materials and be vigilant in observing any adverse reactions after restoration placement. Dentists should also be cognisant of patient complaints about adverse reactions that may result from components of resin-based materials. To minimise monomer leaching and any potential risk of dermatological reactions, resin-based materials should be adequately cured. Dental health care workers should avoid direct skin contact with uncured resin-based materials. Latex and vinyl gloves do not provide adequate barrier protection to the monomers in resin-based materials.

  14. Qualitative and quantitative analysis of beta emitters in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, Zaini bin

    1983-01-01

    A beta spectrometer, consisting of a liquid scintillation counter, coupled to a programmable multichannel analyser was used to achieve the objective of detecting and measuring beta activity in low level aqueous environmental solution as well as identifying the radioisotopes present. Aqueous solutions of standard beta emitters, covering a range of energies between 18.6 KeV and 3550 KeV, were used to develop computer methods for analysis. The effects of pH, acids, bases, buffers, and salts on the stability of the mixture and on the detection efficiency of the radioisotopes, were investigated. It was found that temperature changes, beyond the operating temperature range, could result in severe errors. Application of the Cherenkov counting technique for beta emitters, gives extra data to support the main results. For the analysis of environmental solutions, which may contain a variety of radioisotopes, the system was used to obtain spectra of alpha emitters, beta emitters with internal conversion and Cherenkov radiation. Synthetic mixtures of tritium and carbon-14 of activity ratios between 8:1 and 1:8 were used to investigate the problems of multielement spectral analysis.

  15. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    Science.gov (United States)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  16. Neutron detection based on superheated materials

    International Nuclear Information System (INIS)

    The environmental and radiation responses of the Active Personnel Dosimeter/Superheated Drop Detector (APD/SDD) combination have been evaluated at the Pacific Northwest Laboratory (PNL) for the US Department of Energy's Neutron Measurement and Evaluation Program. This paper provides results of the evaluation and discusses possible improvements for the current system. Radiation detection based on the radiation sensitivity of superheated liquids has been studied for some time. A liquid is superheated if it exists as a liquid at a temperature-pressure state normally associated with the vapor phase of that material. The liquid does not vaporize because there are no bubble nucleation sites in the sample. These sites usually exist (1) in microscopic cracks on solid container surfaces, (2) in crevices of imperfectly wetted solid particles suspended in the liquid, or (3) as a result of the radiation-matter interaction producing a microbubble that is large enough for bubble growth to be thermodynamically favorable. By suspending small drops of superheated liquid in an immiscible, inert, impurity-free medium, potential for bubble nucleation by the first two mechanisms is eliminated. Therefore, each drop becomes a miniature radiation detector

  17. Neutron detection based on superheated materials

    International Nuclear Information System (INIS)

    The environmental and radiation responses of the Active Personnel Dosimeter/Superheated Drop Detector (APD/SDD) combination have been evaluated at the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy's Neutron Measurement and Evaluation Program. This paper provides results of the evaluation and discusses possible improvements for the current system. Radiation detection based on the radiation sensitivity of superheated liquids has been studied for some time. A liquid is superheated if it exists as a liquid at a temperature-pressure state normally associated with the vapor phase of that material. The liquid does not vaporize because there are no bubble nucleation sits in the sample. These sites usually exist in microscopic cracks on solid container surfaces, in crevices of imperfectly wetted solid particles suspended in the liquid, or as a result of the radiation-matter interaction producing a microbubble that is large enough for bubble growth to be thermodynamically favorable. By suspending small drops of superheated liquid in an immiscible, inert, impurity-free medium, potential for bubble nucleation by the first two mechanisms is eliminated. Therefore, each drop becomes a miniature radiation detector

  18. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  19. Polymers based on renewable raw materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2002-01-01

    Full Text Available The basic raw materials for the chemical industry, which also means for polymer production, are mineral oil and natural gas. Mineral oil and natural gas resources are limited so that sooner or later they will be consumed. For this reason alternative, renewable raw materials for the chemical industry have become the object of intensive investigation all over the world. Some of the results of these investigations concerning renewable raw materials for the production of polymer materials are presented in this paper.

  20. Environmentally Sustainable Architecture: Material-Based Technological Design Approach

    OpenAIRE

    Maziar Asefi; Zahra Afzali

    2016-01-01

    This paper investigates material-based design approach in architectural forms where form generating process is informed by the combination of material properties and behavior as well as environmental constraints. It also tries to inform architects of the necessity of shift from formal form finding processes based on values of industrial age toward materiality in form generating processes. It also tries to overlook the current design practices in material-base design approaches to achieve a ho...

  1. The spectral emittance and stability of coatings and textured surfaces for thermophotovoltaic (TPV) radiator applications

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Hollenbeck, J.L.

    2000-11-01

    Coatings or surface modifications are needed to improve the surface emissivity of materials under consideration for TPV radiator applications to a value of 0.8 or higher. Vacuum plasma spray coatings (ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, Fe{sub 2}TiO{sub 5}, ZrTiO{sub 4}, ZrO{sub 2} + 8% Y{sub 2}O{sub 3} + 2% HfO{sub 2}, and Al{sub 2}O{sub 3} + TiO{sub 2}) and a chemical vapor deposited coating of rhenium whiskers were used to increase the surface emissivity of refractory metal and nickel-base materials. Emittance measurements following 4000 hours of vacuum annealing at 1100 C show that only the ZrO{sub 2} + 18% TiO{sub 2} + 10% Y{sub 2}O{sub 3}, ZrC, and Al{sub 2}O{sub 3} + TiO{sub 2} coatings have the desired thermal stability, and maintain emissivity values higher than 0.8. These coatings are graybody emitters, and provide a high emissivity value in the wavelength range that is relevant to the TPV cells. The highest emissivity values were observed for the Al{sub 2}O{sub 3} + TiO{sub 2} coatings, with post-anneal values higher than graphite.

  2. Electro-optical properties of dislocations in silicon and their possible application for light emitters

    Energy Technology Data Exchange (ETDEWEB)

    Arguirov, Tzanimir Vladimirov

    2007-10-14

    This thesis addresses the electro-optical properties of silicon, containing dislocations. The work demonstrates that dislocation specific radiation may provide a means for optical diagnostics of solar cell grade silicon. It provides insight into the mechanisms governing the dislocation recombination activity, their radiation, and how are they influenced by other defects present in silicon. We demonstrate that photoluminescence mapping is useful for monitoring the recombination activity in solar cell grade silicon and can be applied for identification of contaminants, based on their photoluminescence signatures. It is shown that the recombination at dislocations is strongly influenced by the presence of metals at the dislocation sites. The dislocation radiation activity correlates with their electrical activity. It is shown that the dislocation and band-to-band luminescence are essentially anti-correlated. {beta}FeSi{sub 2} precipitates, with a luminescence at 0.8 eV, were detected within the grains of block cast materials. They exhibit a characteristic feature of quantum dots, namely blinking. The second aspect of the thesis concerns the topic of silicon based light emitters for on-chip optical interconnects. The goal is an enhancement of sub-band-gap or band-to-band radiation by controlled formation of dislocation-rich areas in microelectronics-grade silicon as well as understanding of the processes governing such enhancement. For light emitters based on band-to-band emission it is shown, that internal quantum efficiency of nearly 2 % can be achieved, but the emission is essentially generated in the bulk of the wafer. On the other hand, light emitters utilizing the emission from dislocation-rich areas of a well localized wafer depth were explored. Three different methods for reproducible formation of a dislocation-rich region beneath the wafer surface were investigated and evaluated in view of their room temperature sub-band-gap radiation: (1) silicon implantation

  3. Theory of electron emission from atomically sharp metallic emitters in high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    He, Jun.

    1992-01-01

    A systematic theoretical investigation of the effect of tip geometry on the field emission current voltage characteristics from atomically sharp metallic field emitters is presented. A free electron model is used for the metal emitters with non-planar geometries in studying the dependence of the current density on tip geometry, local field, and temperature. The classical image interaction is derived exactly for the metal emitters modeled as cones, paraboloids, hyperboloids and sphere on cones. The classical image interaction for these non-planar emitter geometries is diminished in magnitude relative to the planar image interaction. The bias potential for the model emitter modifies the shape of the tunneling barriers, and the resulting form predicts a dramatically enhanced current relative to the classical Fowler-Nordheim result. The transmission coefficients for the surface potential barriers are evaluated within the WKB approximation. The current-voltage characteristics are calculated for these models using the kinetic formulation of the current density integral. The calculated results do not exhibit the straight line behavior predicted by the Fowler-Nordheim model for field emission from a planar surface. The effects of emitter curvature on electron emission in combined high fields and elevated temperature are examined. An analytic expression for the J(V) characteristics of a prototype sharp emitter is derived which exhibits explicitly the dependence of the current density on geometric and material parameters. The adequacy of a [beta]-factor in the conventional planar model F-N equation to account for emitter curvature is examined. The use of such an F-N equation is incorrect when applied to sharp emitters (r[sub t] [le] 10nm) and will lead to spurious results when used to extract information such as field values or emitting area from experimental F-N curves. The effect of tip geometry on the Nottingham energy exchange and temperature stability is studied.

  4. Sensors and actuators based on SOI materials

    Science.gov (United States)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  5. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  6. Performance comparisons of low emittance lattices

    International Nuclear Information System (INIS)

    In this paper, the results of a performance analysis of several low emittance electron storage ring lattices provided by various members of the Lattice Working Group are presented. Altogether, four lattices were investigated. There are two different functions being considered for the low beam emittance rings discussed here. The first is to serve as a Damping Ring (DR), i.e., to provide the emittance damping required for a high energy linear collider. The second is to provide beams for a short wavelength Free Electron Laser (FEL), which is envisioned to operate in the wavelength region near 40 A

  7. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  8. Environmentally Sustainable Architecture: Material-Based Technological Design Approach

    Directory of Open Access Journals (Sweden)

    Maziar Asefi

    2016-04-01

    Full Text Available This paper investigates material-based design approach in architectural forms where form generating process is informed by the combination of material properties and behavior as well as environmental constraints. It also tries to inform architects of the necessity of shift from formal form finding processes based on values of industrial age toward materiality in form generating processes. It also tries to overlook the current design practices in material-base design approaches to achieve a holistic understanding of the design process and possibilities. Through a comparative literature review, and an examination of current design practices, this paper elaborates on distinct material-based approach to design architectural form.

  9. Conjugated silane-based arylenes as luminescent materials

    International Nuclear Information System (INIS)

    Symetric (4a,b) and asymmetric (7b,c) silane-containing conjugated compounds comprising electron rich benzofurazane, 10-hexylphenothiazine and ethylenedioxytiophene moiety were designed and successfully synthesized by the palladium-catalyzed Suzuki coupling. These compounds have a relatively small band gaps and show strong absorption in the region 300–340 nm. Furthermore, compounds 7b and 7c show light emission in almost the entire visible light (from blue to red region) when symetric compounds emit blue and green light. of synthesized structures The electrochemical study revealed the onset of the oxidation wave was found at rather low potentials. The optical band gap (1.8 eV - 3.39 eV) makes the structures potentially useful as an hosting material for emitters. The lowest electrochemical and optical band gap characterizes asymmetric structure containing silane unit, the largest - structure with benzofurazane moiety. The electrochemical behavior of tetraphenylsilane derivatives was also confirmed by EPR as well as theoretical (density functional theory (DFT)), and time dependent density DFT techniques. The calculations rationalize the difference between electrochemical and optical experimentally measured energy gaps

  10. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  11. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  12. The step-by-step CFD design method of pressure-compensating emitter

    Institute of Scientific and Technical Information of China (English)

    Wei Zhengying

    2013-01-01

    In order to improve the design and research and development (R & D) efficiency of the pressure-compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method.By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensat-ing emitter was obtained.Then the test samples were fabricated using rapid prototype and manufacturing (RP & M) technology.The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained.The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure.On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance.Series products of the pressure-compensating emitter could be designed by changing the region's height.

  13. Design and construction of a imaging instrument for studying ion emission from pure ion emitters

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.E.

    1993-09-01

    The development of new ion sources is important in the area of surface analysis to make it easier to perform more sensitive and accurate analyses. In surface analysis a primary ion beam composed of a single species can help when predicting and interpreting the results. Therefore, much interest and effort has been focused on producing pure ion emitters. An instrument has been designed and constructed to view the current densities of the ions being emitted from pure ion emitters. The instrument electrostatically accelerates and focuses the ion beam onto a microchannel plate detector equipped with a phosphor screen for viewing the images. These images are used to identify areas of enhanced ion emission. Once these areas are identified, the investigator can use other instruments to analyze them, and hopefully develop a better understanding of the chemistry and physics involved in the ion emission process. A computer based control system has been integrated into the system to simplify the operation of the instrument and provide safety features to protect the hardware from damage. A closed-circuit video camera system is used to allow the images to be remotely viewed during imaging procedures. Experiments show that the instrument has a lower detection limit of 7.45 {times} 10{sup 3} ions/sec/mm{sup 2} and a spatial resolution of approximately 3 {minus} 4 {mu}m. Results from imaging cesium zeolite and perrhenate ion sources indicate that the ions are primarily being emitted from the surface of the sources and not from the interfacial region between the substrate and the emitter material.

  14. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  15. Comparison between 50 W tapered laser arrays and tapered single emitters

    Science.gov (United States)

    Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart; Keleman, Marc T.; Weber, Jürgen; Mikulla, Michael; Weimann, Günter

    2006-02-01

    During the last few years high power diode laser arrays have become well established for direct material processing due to their high efficiency of more than 50%. But standard broad-area waveguide designs are susceptible to modal instabilities and filamentations resulting in low beam qualities. The beam quality increases by more than a factor of four by using tapered laser arrays, but so far they suffer from lower efficiencies. Therefore tapered lasers are mainly used today as single emitters in external resonator configurations. With increased output power and lifetime, they will be much more attractive for material processing and for pumping of fiber amplifiers. High efficiency tapered mini bars emitting at a wavelength of 980 nm are developed, and in order to qualify the bars, the characteristics of single emitters and mini bars from the same wafer have been compared. The mini bars have a width of 6 mm with 12 emitters. The ridge waveguide tapered lasers consist of a 500 μm long ridge and a 2000 μm long tapered section. The results show very similar behavior of the electro-optical characteristics and the beam quality for single emitters and bars. Due to different junction temperatures, different slope efficiencies were measured: 0.8 W/A for passively cooled mini bars and 1.0 W/A for actively cooled mini-bars and single emitters. The threshold current of 0.7 A per emitter is the same for single emitters and emitter arrays. Output powers of more than 50 W in continuous wave mode for a mini bar with standard packaging demonstrates the increased power of tapered laser bars.

  16. Magnesium Based Materials and their Antimicrobial Activity

    Science.gov (United States)

    Robinson, Duane Allan

    that nMgO has similar effects. Incorporation of nMgO into a PCL composite was easily achieved and revealed similar, although not identical antimicrobial results. This work has provided a strong foundation and methodology for further evaluation of Mg based materials and their antimicrobial properties.

  17. 3rd Low Emittance Ring Workshop

    CERN Document Server

    2013-01-01

    The workshop brings together different accelerator communities working on the design of ultra low emittance lattices such as synchrotron light sources, damping rings and test facilities for linear colliders and HEP circular colliders. The aim of the workshop is to review the present development s in design of ultra low emittance lattices, the experience and the challenges with the operation of low emittance synchrotrons and the main technological problems. The merging of different accelerator communities is expected to foster ideas exchange and the collaboration both on theoretical, experimental and design issues. Areas for common R programmes will be explored. The workshop will profit from the experience of colleagues who have designed, commissioned and operated lepton ring colliders and synchrotron light sources as well as from the ones involved in future low emittance upgrade programmes of existing rings.

  18. Alpha-emitters for medical therapy workshop

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  19. Low emittance upgrade for CANDLE project

    CERN Document Server

    Zanyan, G S

    2015-01-01

    To improve the performance of CANDLE synchrotron light source and stay competitive with recently proposed low emittance upgrade programs in the world we have developed new low emittance lattices for CANDLE booster and storage ring. These lattices have been designed taking into account the new developments in magnet fabrication technology and the multi-bend achromat concept. The main design considerations, the linear and non-linear beam dynamics aspects of the modified lattices are presented.

  20. T-Shaped Emitter Metal Structures for HBTs

    Science.gov (United States)

    Fung, King Man; Samoska, Lorene; Velebir, James; Muller, Richard; Echternach, Pierre; Siegel, Peter; Smith, Peter; Martin, Suzanne; Malik, Roger; Rodwell, Mark; Urteaga, Miguel; Paidi, Vamsi; Griffith, Zack

    2006-01-01

    Metal emitter structures in a class of developmental InP-based high-speed heterojunction bipolar transistors (HBTs) have been redesigned to have T-shaped cross sections. T-cross-section metal features have been widely used in Schottky diodes and high-electron-mobility transistors, but not in HBTs. As explained, the purpose served by the present T cross-sectional shapes is to increase fabrication yields beyond those achievable with the prior cross-sectional shapes.

  1. Use of beam emittance measurements in matching problems

    International Nuclear Information System (INIS)

    The CERN new 50 MeV linac should operate with a computer-aided beam matching in which the transverse criteria are based on measured r.m.s. values of beam co-ordinates in phase space. The collected data, however, need to undergo an intermediate treatment before significant results can be obtained and then used in computations. Some examples from the experimental study programme are given and the role of automated beam emittance measurements in matching problems discussed. (author)

  2. Luminescent hybrid materials based on laponite clay.

    Science.gov (United States)

    Li, Huanrong; Li, Man; Wang, Yu; Zhang, Wenjun

    2014-08-11

    The spectroscopic behavior of ionic Eu(3+) or Tb(3+) complexes of an aromatic carboxyl-functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X-ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy-transfer efficiency from the ligand to Eu(3+) ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu(3+) complex shows bright red emission from the prominent (5) D0 →(7) F2 transition of Eu(3+) ions, and that containing the Tb(3+) complex exhibits bright green emission due to the dominant (5) D4 →(7) F5 transition of Tb(3+) ions. PMID:25043683

  3. Studies on the atomic and molecular processes produced by alpha emitters in gaseous media using track detection

    International Nuclear Information System (INIS)

    The main purpose of the studies consists in obtaining new and reliable experimental data on certain atomic and molecular physical processes which take place at low speed or/and very low amounts, such as: diffusion, adherence, fallout, etc. of the alpha emitters in gaseous media. By using the track analysis method, most experimental data can be visualized by optical microscopy, so that reliable qualitative and quantitative investigations can be performed. In the first stage, the alpha track method was used. Two plastic detectors were used: CR - 39 (Page, England) and RL - 115 types 1 and 2 (Kodak, France). For these detectors new etching conditions were developed. In the present stage, a calibration of CR - 39 and RL - 115 track detectors for the alpha particles emitted from gaseous radionuclides, particularly for 222 Rn and its alpha descendants, is performed. For this purpose the track detectors were suspended in tight vessels and the following alpha emitter sources were used: - a diuranate source calibrated in uranium prepared in our laboratory; - a calibrated 226 Ra solution; - sources calibrated in 222 Rn and 226 Ra. The amounts and activities of each alpha decay product of these sources are calculated using a radioactive accumulation computation programme UURASE based on the Bateman general equation. The alpha particle ranges were calculated using the TRIM computation programme. In the future stages of this investigation the following studies will be performed: - the diffusion of gaseous alpha emitters; - the sorption of alpha emitter gases and aerosols on different materials; - 222 Rn monitoring in dwelling houses and working places and the implementation of the alpha track method in the National Networks for surveillance of the environmental alpha radioactivity. (authors)

  4. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.

    Science.gov (United States)

    Ghanekar, Alok; Lin, Laura; Zheng, Yi

    2016-05-16

    We theoretically demonstrate a novel, efficient and cost effective thermal emitter using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications. We propose for the first time the design of a thermal emitter which is based on nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on a substrate. The thin film is embedded with tungsten nanoparticles which alter the refractive index of the film. This gives rise to desired emissive properties in the wavelength range of 0.4 μm to 2 μm suitable for GaSb and InGaAs based photovoltaics. Effective dielectric properties are calculated using Maxwell-Garnett-Mie theory. Our calculations indicate this would significantly improve the efficiency of TPV cells. We introduce a new parameter to gauge the efficacy of thermal emitters and use it to compare different designs.

  5. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT

    Science.gov (United States)

    Liheng, Zhu; Xingbi, Chen

    2014-06-01

    A physically based equation for predicting required p-emitter length of a snapback-free reverse-conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resistances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.

  6. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  7. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  8. Acetylene-Based Materials in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Fabio Silvestri

    2010-04-01

    Full Text Available Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (polyarylacetylenes that have been used in the field. A general introduction to (polyarylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (copolymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

  9. Acetylene-based materials in organic photovoltaics.

    Science.gov (United States)

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  10. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  11. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off.

    Science.gov (United States)

    Wu, Kailong; Zhang, Tao; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Jiang, Nan; Lu, Zheng-Hong; Yang, Chuluo

    2016-07-25

    A series of green butterfly-shaped thermally activated delayed fluorescence (TADF) emitters, namely PXZPM, PXZMePM, and PXZPhPM, are developed by integrating an electron-donor (D) phenoxazine unit and electron-acceptor (A) 2-substituted pyrimidine moiety into one molecule via a phenyl-bridge π linkage to form a D-π-A-π-D configuration. Changing the substituent at pyrimidine unit in these emitters can finely tune their emissive characteristics, thermal properties, and energy gaps between the singlet and triplet states while maintaining frontier molecular orbital levels, and thereby optimizing their optoelectronic properties. Employing these TADF emitters results in a green fluorescent organic light-emitting diode (OLED) that exhibits a peak forward-viewing external quantum efficiency (EQE) close to 25 % and a slow efficiency roll-off characteristic at high luminance. PMID:27331374

  12. A low-emittance lattice for SPEAR

    Science.gov (United States)

    Safranek, J.; Wiedemann, H.

    1992-08-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented [J. Safranek, Ph.D. thesis, Stanford University, 1991]. The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129π nm rad, which makes the low emittance lattice the lowest emittance, running synchrotron radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further increased by reducing βy at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal dispersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave reasonable agreement with the design. The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992.

  13. Quantum Emitters near Layered Plasmonic Nanostructures: Decay Rate Contributions

    CERN Document Server

    Pors, Anders

    2016-01-01

    We introduce a numerical framework for calculating decay rate contributions when excited two-level quantum emitters are located near layered plasmonic nanostructures, particularly emphasizing the case of plasmonic nanostructures atop metal substrates where three decay channels exist: free space radiation, Ohmic losses, and excitation of surface plasmon polaritons (SPPs). The calculation of decay rate contributions is based on Huygen's equivalence principle together with a near-field to far-field transformation of the local electric field, thereby allowing us to discern the part of the electromagnetic field associated with free propagating waves rather than SPPs. The methodology is applied to the case of an emitter inside and near a gap-plasmon resonator, emphasizing strong position and orientation dependencies of the total decay rate, contributions of different decay channels, radiation patterns, and directivity of SPP excitation.

  14. Emittance preservation during bunch compression with a magnetized beam

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  15. Crystalline silicon solar cells with high resistivity emitter

    Science.gov (United States)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  16. Extended emitter target tracking using GM-PHD filter.

    Directory of Open Access Journals (Sweden)

    Youqing Zhu

    Full Text Available If equipped with several radar emitters, a target will produce more than one measurement per time step and is denoted as an extended target. However, due to the requirement of all possible measurement set partitions, the exact probability hypothesis density filter for extended target tracking is computationally intractable. To reduce the computational burden, a fast partitioning algorithm based on hierarchy clustering is proposed in this paper. It combines the two most similar cells to obtain new partitions step by step. The pseudo-likelihoods in the Gaussian-mixture probability hypothesis density filter can then be computed iteratively. Furthermore, considering the additional measurement information from the emitter target, the signal feature is also used in partitioning the measurement set to improve the tracking performance. The simulation results show that the proposed method can perform better with lower computational complexity in scenarios with different clutter densities.

  17. Oxidation and emittance of superalloys in heat shield applications

    Science.gov (United States)

    Wiedemann, K. E.; Clark, R. K.; Unnam, J.

    1986-01-01

    Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.

  18. Emittance preservation during bunch compression with a magnetized beam

    Science.gov (United States)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  19. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  20. A novel cement-based hybrid material

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  1. Molecular magnetic materials based on porphyrin macrocyles

    OpenAIRE

    ÖNAL, Emel

    2014-01-01

    The preparation of Molecule-Based Magnets is based on the assembling carriers of magnetic moment. These may be the metal ions only with diamagnetic linkers or the metal ions connected through open-shell organic molecule. The building of novel Molecule-Based Magnets architectures following the metal-radical approach relies on the design of innovative open-shell organic molecular blocks. In this regard, we focus our strategy on the synthesis of porphyrins incorporating free radicals. Indeed, po...

  2. Bio-based amphiphilic materials development and applications

    Science.gov (United States)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  3. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    Directory of Open Access Journals (Sweden)

    Yuning Sun

    2014-07-01

    Full Text Available The carbon nanotube (CNT field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm2. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  4. Double-step annealing and ambient effects on phosphorus implanted emitters in silicon

    International Nuclear Information System (INIS)

    Emitters of npn silicon bipolar transistors have been made by a phosphorus implantation at 50 keV P+ to a dose of 1 x 1016cm-2. This was followed by high temperature processes to reduce lattice disorder, to drive-in the phosphorus atoms, and to form oxide layers. The first process step was carried out by using single- and double-step anneals in various ambients (dry N2, dry 02 and steam) while the drive-in and oxidation steps were common for all structures. Electrical measurements on emitter/base leakage current, low frequency (popcorn) noise and current gain showed that the annealing ambient had a major influence. The transistors with implanted emitters annealed in a dry N2 ambient are comparable to commercial ones with thermally-diffused emitters. Transmission electron microscopy observations on samples annealed in steam ambients revealed dislocations extending into the sidewall of the emitter/base junction. This sidewell penetration of dislocations is the main origin of the degradation of the emitter/base junction characteristics. (author)

  5. Quantum-Kinetic Approach to Deriving Optical Bloch Equations for Light Emitters in a Weakly Absorbing Dielectric

    Directory of Open Access Journals (Sweden)

    Gladush M.G.

    2015-01-01

    Full Text Available We obtained the system of Maxwell-Bloch equations (MB that describe the interaction of cw laser with optically active impurity centers (particles embedded in a dielectric material. The dielectric material is considered as a continuous medium with sufficient laser detuning from its absorption lines. The model takes into account the effects associated with both the real and the imaginary part of the dielectric constant of the material. MB equations were derived within a many-particle quantum-kinetic formalism, which is based on Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY hierarchy for reduced density matrices and correlation operators of material particles and the quantized radiation field modes. It is shown that this method is beneficial to describe the effects of individual and collective behavior of the light emitters and requires no phenomenological procedures. It automatically takes into account the characteristics associated with the presence of non-resonant and resonant particles filling the space between the optical centers.

  6. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  7. Describing a Laser Diode Emulation Tool Using Single Emitter Simulation Results

    Directory of Open Access Journals (Sweden)

    C.K. Amuzuvi

    2013-02-01

    Full Text Available This study describes and explores the use of a laser diode simulation tool at the single emitter level of operation and how they can be degraded. A test of the simulation tool is implemented to complement the by-emitter degradation analysis of high power laser diodes. The simulation tool is called Speclase, designed for the simulation of single emitters. Tests were performed using a 975 nm narrow-angle (<1º tapered laser structure from Alcatel Thales III-V Lab with front and rear facet reflectivities of 3 and 90%, respectively. The tool worked for both the constant current and power modes of operation. Simulation results were obtained for both constant QW trap density, based on the maximum QW temperature and variable QW trap density generation due to local heating. Single emitter degradation results are obtained using the Arrhenius equation to compare the rate of degradation between the constant and variable QW trap densities.

  8. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    CERN Document Server

    Kalozoumis, P A; Kodaxis, G; Diakonos, F K; Schmelcher, P

    2016-01-01

    A recursive scheme for the design of scatterers acting simultaneously as emitters and absorbers, such as lasers and coherent perfect absorbers in optics, at multiple prescribed frequencies is proposed. The approach is based on the assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility in the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  9. Artificial atoms based on correlated materials

    Science.gov (United States)

    Mannhart, J.; Boschker, H.; Kopp, T.; Valentí, R.

    2016-08-01

    Low-dimensional electron systems fabricated from quantum matter have in recent years become available and are being explored with great intensity. This article gives an overview of the fundamental properties of such systems and summarizes the state of the field. We furthermore present and consider the concept of artificial atoms fabricated from quantum materials, anticipating remarkable scientific advances and possibly important applications of this new field of research. The surprising properties of these artificial atoms and of molecules or even of solids assembled from them are presented and discussed.

  10. Biomedical applications of the graphene-based materials.

    Science.gov (United States)

    Zhang, Baomei; Wang, Yang; Zhai, Guangxi

    2016-04-01

    Graphene, a rapidly rising star, has gained extensive research interests lately due to its excellent properties--such as the exceptional optical, electrical, thermal and mechanical features--which are superior to other materials, so it is called "two-dimensional magical materials". This article presents diverse types and various properties of graphene-based materials, and the current methods for the surface modifications of the graphene-based materials are briefly described. In addition, the in vivo and in vitro cytotoxicity of graphene-based materials are comprehensively discussed. What's more, a summary of its biomedical applications such as drug/gene delivery, photothermal therapy, photodynamic therapy and multimodality therapy is also offered. Finally, an outlook of the graphene-based materials and the challenges in this field are briefly discussed.

  11. Carbon-based electrode materials for DNA electroanalysis.

    Science.gov (United States)

    Kato, Dai; Niwa, Osamu

    2013-01-01

    This review addresses recent studies of newly developed carbon-based electrode materials and their use for DNA electroanalysis. Recently, new carbon materials including carbon nanotubes (CNT), graphene and diamond-based nanocarbon electrodes have been actively developed as sensing platforms for biomolecules, such as DNA and proteins. Electrochemical techniques using these new material-based electrodes can provide very simple and inexpensive sensing platforms, and so are expected to be used as one of the "post-light" DNA analysis methods, which include coulometric detection, amperometric detection with electroactive tags or intercalators, and potentiometric detection. DNA electroanalysis using these new carbon materials is summarized in view of recent advances on electrodes.

  12. Highly stretchable graphene based conducting materials

    International Nuclear Information System (INIS)

    Rigid circuits were dominating electronic industries in the past tens of years. Recently, the creation of stretchable conductors opens a new era to electrical materials science and technology. Stretchable conductors, which are different from flexible conductors, can maintain electrical conductivity when they are not only bent but also stretched. folded or twisted. Because of this characteristic of stretchable conductors, a new class of applications which would be impossible to achieve by traditional rigid conductors will be opened up. These potential applications include flexible displays, stretchable interconnectors, electronic artificial skins, stretchable electronic implants, and health assistant. The creation of stretchable conductors changes our conventional conception of conductors, from rigid and brittle to soft and stretchable. As indispensable components in numerous emerging technologies, stretchable conductors have to overcome a critical challenge that is the simultaneous incorporation of high conductivity and stretchability. Usually, intrinsically conducting materials, such as metals and conducting polymers have excellent electronic performance, but their stretchability is poor. On the other hand, many soft elastomers exhibit good elasticity but inferior conductivity. Overall, stretchable conductors possessing both properties of conductors and elastomers can achieve excellent performance which cannot be obtained by traditional electronics.

  13. Modelling high redshift Lyman-alpha Emitters

    CERN Document Server

    Garel, Thibault; Guiderdoni, Bruno; Schaerer, Daniel; Verhamme, Anne; Hayes, Matthew

    2012-01-01

    We present a new model for high redshift Lyman-Alpha Emitters (LAEs) in the cosmological context which takes into account the resonant scattering of Ly-a photons through expanding gas. The GALICS semi-analytic model provides us with the physical properties of a large sample of high redshift galaxies. We implement a gas outflow model for each galaxy based on simple scaling arguments. The coupling with a library of numerical experiments of Ly-a transfer through expanding or static dusty shells of gas allows us to derive the Ly-a escape fractions and profiles. The predicted distribution of Ly-a photons escape fraction shows that galaxies with a low star formation rate have a f_esc of the order of unity, suggesting that, for those objects, Ly-a may be used to trace the star formation rate assuming a given conversion law. In galaxies forming stars intensely, the escape fraction spans the whole range from 0 to 1. The model is able to get a good match to the UV and Ly-a luminosity function (LF) data at 3 < z <...

  14. Fabrication of arrayed glassy carbon field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Sohda, Y.; Tanenbaum, D.M.; Turner, S.W.; Craighead, H.G. [School of Engineering and Applied Physics, Cornell University, Ithaca, New York 14853 (United States)

    1997-03-01

    Glassy carbon has desirable properties for electron field emission such as surface inertness, electrical conductivity, and thermal stability. In addition, a uniform thick substrate with a polished surface is easily obtainable. This enables one to apply large scale integrated circuit processing for fabricating arrayed tips. By using oxygen reactive ion etching, cusps over 3.5 {mu}m in height and 2.5 {mu}m in base diameter are fabricated with a tip radius of under 10 nm. The process is assisted by the formation of a layer of etch products which protects the newly forming tip from bending and over etching. The field emission current up to 50 {mu}A from the glassy carbon tips is obtained by applying high voltage to a mesh anode. The current which passed through the mesh anode is collected at another electrode and measured. The Fowler{endash}Nordheim plot suggests the existence of nm scale structure on the tip. This favorable result indicates glassy carbon substrate is a good substrate for field emitter arrays. {copyright} {ital 1997 American Vacuum Society.}

  15. Intermetallic-based high-temperature materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-07-01

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminides are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  16. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  17. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    Science.gov (United States)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  18. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    OpenAIRE

    CHARLIE P. NACARIO

    2014-01-01

    This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights...

  19. Polymerization shrinkage of flowable resin-based restorative materials

    OpenAIRE

    Stavridakis, Minos M; Dietschi, Didier; Krejci, Ivo

    2005-01-01

    This study measured the linear polymerization displacement and polymerization forces induced by polymerization shrinkage of a series of flowable resin-based restorative materials. The materials tested were 22 flowable resin-based restorative materials (Admira Flow, Aelite Flow, Aeliteflow LV, Aria, Crystal Essence, Definite Flow, Dyract Flow, Filtek Flow, FloRestore, Flow-it, Flow-Line, Freedom, Glacier, OmegaFlo, PermaFlo, Photo SC, Revolution 2, Star Flow, Synergy Flow, Tetric Flow, Ultrase...

  20. Slow light based on material and waveguide dispersion

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    We study slow light pulse propagation in a photonic crystal structure consisting of a dispersive and absorptive dielectric material and compare it with the constant wave case. The group index and the trasmission are investigated for the example of an ensemble of semiconductor quantum dots embedde...... in a photonic crystal waveguide by FDTD Maxwell-Bloch simulations. The total group index scales linearly with the material based group index whicle the transmission has a power dependency on the material based absorption coefficient....

  1. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Luikasz; Daussin, Raphaël; Saib, Aimad; Baudouin, Anne-Christine; Laloyaux, Xavier

    2007-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt % to 6 wt % carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loa...

  2. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Lucasz; Daussin, Raphaël; Saib, Aimad

    2006-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. Th...

  3. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  4. Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall β-NaYF 4 nanocrystals

    KAUST Repository

    Podhorodecki, Artur P.

    2012-01-01

    Multicolor emission is reported from ultrasmall (<10 nm) β-NaYF4:Eu,Tb nanocrystals depending on the excitation wavelengths or emission detection delay time. Detailed optical investigations of three samples (NaYF4:Eu, NaYF4:Tb and NaYF4:Eu,Tb) obtained by a co-thermolysis method have been carried out. Photoluminescence, photoluminescence excitation and emission decay time obtained at different excitation wavelengths have been measured. Excitation mechanisms of Eu and Tb ions have been explained based on the experimental results and calculations using Judd-Ofelt theory. It has been shown that efficient energy transfer from Tb to Eu ions accounts for the efficient red emission of NaYF4:Tb,Eu nanocrystals. © The Royal Society of Chemistry 2012.

  5. Variable emittance behavior of smart radiative coating

    Science.gov (United States)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173-373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  6. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  7. Lung cancer risk of low-level exposures to alpha emitters: critical reappraisal and experiments based on a new cytodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, Kenneth T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-20

    Ecologic U.S. county data suggest negative associations between residential radon exposure and lung cancer mortality (LCM)-inconsistent with clearly positive associations revealed by occupational data on individual miners, but perhaps explained by competing effects of cell killing vs. mutations in alpha-exposed bronchial epithelium. To assess the latter possibility, a biologically based "cytodynamic 2-stage" (CD2) cancer-risk model was fit to combined 1950-54 age- specific person-year data on lung cancer mortality (LCM) in white females of age 40+ y in 2,821 U.S. counties (-90% never-smokers), and in 5 cohorts of underground miners who never smoked. New estimates of household annual average radon exposure in U.S. counties were used, which were found to have a significant negative ecologic association with 1950-54 LCM in U.S. white females, adjusted for age and all subsets of two among 21 socioeconomic, climatic and other factors considered. A good CD2 fit was obtained to the combined residential/miner data, using biologically plausible parameter values. Without further optimization, the fit also predicted independent inverse dose-rate effects shown (for the first time) to occur in nonsmoking miners. Using the same U.S. county-level LCM data, a separate study revealed a positive ecologic association between LCM and bituminous coal use in the U.S., in agreement with epidemiological data on LCM in women in China. The modeling results obtained are consistent with the CD2-based hypothesis that residential radon exposure has a nonlinear U-shaped relation to LCM risk, and that current linear no-threshold extrapolation models substantially overestimate such risk. A U-shaped dose-response corresponds to a CD2-model prediction that alpha radiation kills more premalignant cells than it generates at low exposure levels, but not at higher levels. To test this hypothesis, groups of Japanese medaka (ricefish minnows) were exposed for 10 to 14 weeks to different concentrations of

  8. Two-dimensional VO2 photonic crystal selective emitter

    International Nuclear Information System (INIS)

    The design and simulation of a two-dimensional (2D) photonic crystal (PhC) selective emitter made of vanadium dioxide (VO2), a type metal oxide with a high temperature resistance, are reported. Spectral emission characteristics of the 2D VO2 PhCs were investigated using the finite difference time domain (FDTD) method. The PhC consists of a periodic array of cylindrical air microcavities. The influences of the geometric characteristic parameters are discussed. The influences of the radius and depth on the emission of the 2D VO2 PhC can be explained based on the coupled-mode theory. The emissivities at wavelengths below the cut-off wavelength were enhanced by increasing the depth. When the depth was much larger than the radius, the cut-off wavelength increased with the radius. The effect of the period on the emissivity at wavelengths less than the period was highly influenced by the diffraction modes. The designed 2D VO2 PhC emitter exhibited a selective emission that was well-matched with InGaAs cells. The spectral emissivities within the convertible wavelength range of the InGaAs cells reached 0.95, and the emissivities for non-convertible wavelengths were less than 0.3. - Highlights: • The lattice structure of metal phase VO2 does not change with temperature. • The influences of scales on the emission of a 2D VO2 PhC are discussed. • A 2D VO2 photonic crystal emitter matched well with InGaAs cell is designed. • The matched VO2 PhC emitter can highly improve the TPV system efficiency

  9. Gas ionization sensors with carbon nanotube/nickel field emitters.

    Science.gov (United States)

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  10. Variable Emittance Electrochromic Devices for Satellite Thermal Control

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C.

    2007-01-01

    An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.

  11. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  12. NEW BIO-BASED MATERIAL FOR FOOTWEAR

    OpenAIRE

    Ferrer, J.; A. Zapatero; Martínez, M. A.

    2012-01-01

    To date, the chemical industry has been using fossil resources to produce Thermoplastic Polyurethane (TPU). However, recently a bio-based alternative has been developed to produce TPU from renewable sources (plant oils). These environmentally-friendly TPUs can be used by different traditional industries (automotive, furniture, clothing, etc.) and the footwear industry is one of its potential consumers. Thus, the project titled “Thermoplastic polyurethane from renewable sources applied in foot...

  13. Emerging Ceramic-based Materials for Dentistry

    OpenAIRE

    Denry, I.; Kelly, J. R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appr...

  14. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  15. Elastic scintillation materials based on polyorganosiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Grinev, B.V.; Andryushchenko, L.A.; Shershukov, V.M.; Ulanenko, K.B.; Minakova, R.A.; Sevastjanova, I.V. [Ukrainian Academy of Sciences, Kharkov (Ukraine). Inst. for Single Crystals

    1994-12-31

    The developed elastic scintillators based on polymethyl-phenylsiloxane rubber are characterized by an elevated light output and a low toxicity. The increase of their light output is achieved by raising the content of phenyl chains, varying the chemical structure of luminescent additions and using isopropylnaphthalene. This high-boiling solvent introduced into the scintillation siloxane compositions is confined within siloxane matrix after the hardening of the rubber.

  16. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a Structural Aging (SAG) Program at the Oak Ridge National Laboratory (ORNL). The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One of the main parts of the program focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented. (author)

  17. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    USNRC initiated a Structural Aging (SAG) Program ORNL. The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One main part focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented

  18. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  19. Data bases concerning the transportation of radioactive materials

    International Nuclear Information System (INIS)

    This paper will describe two data bases which provide supporting information on radioactive material transport experience in the United States. The Radioactive Material Incident Report (RMIR) documents accident/incident experience from 1971 to the present from data acquired from the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). The Radioactive Material Postnotification (RAMPOST) data base documents the shipments that have taken place for Highway Route Controlled Quantities (HRCQ) of radioactive material. HRCQ shipments are post notified (that is, after the shipment) to the DOT

  20. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    Science.gov (United States)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  1. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities

    CERN Document Server

    Liberal, Iñigo

    2015-01-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high Q photonics crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. Here, we theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, it is demonstrated that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology...). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of both the emission by, and the interaction between, QEs. These phenomena provide...

  2. Design of main linac emittance tuning bumps for the Compact Linear Collider and the International Linear Collider

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The installation of elements in the main linac of future linear colliders can only be done with a limited precision. The inevitable misalignments lead to unacceptable emittance growth. Beam-based alignment, e.g., one-to-one correction, dispersion free steering, or ballistic alignment, is necessary to reduce the emittance growth. In some cases, this is, however, not sufficient. For further reduction of the emittance growth, so-called emittance tuning bumps have to be used. A general strategy for the design of emittance tuning bumps has been developed and tested. Simulations suggest that the method can be conveniently used to understand the weaknesses of existing emittance tuning bumps and to significantly improve their performance in terms of, e.g., emittance reduction capability and convergence speed. An example of an application is the design of ten orthogonal knobs that, according to simulations, can reduce the normalized emittance growth in the Compact Linear Collider (CLIC) main linac from 23.8 to 0.34 nm...

  3. Coupling single emitters to quantum plasmonic circuits

    CERN Document Server

    Huck, Alexander

    2016-01-01

    In recent years the controlled coupling of single photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic non-linearity on a nano-scaled platform. In this article we will review the recent progress on coupling single emitters to nano-wires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale, and for the study of fundamental physics in the ultra-strong coupling regime.

  4. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  5. Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems

    Science.gov (United States)

    Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.

    1994-01-01

    Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.

  6. Biofuels 2020: Biorefineries based on lignocellulosic materials.

    Science.gov (United States)

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan-Luis

    2016-09-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge-based jobs and mitigating greenhouse gas emissions. Today, engineering for plant construction is accessible and new processes using agricultural residues and municipal solid wastes have reached a good degree of maturity and high conversion yields (almost 90% of polysaccharides are converted into monosaccharides ready for fermentation). For the complete success of the 2G technology, it is still necessary to overcome a number of limitations that prevent a first-of-a-kind plant from operating at nominal capacity. We also claim that the triumph of 2G technology requires the development of favourable logistics to guarantee biomass supply and make all actors (farmers, investors, industrial entrepreneurs, government, others) aware that success relies on agreement advances. The growth of ethanol production for 2020 seems to be secured with a number of 2G plants, but public/private investments are still necessary to enable 2G technology to move on ahead from its very early stages to a more mature consolidated technology. PMID:27470921

  7. Resin-based composite as a direct esthetic restorative material.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala; Acharya, Shashirashmi

    2011-06-01

    The search for an ideal esthetic material for tooth restoration has resulted in significant improvements in both materials and the techniques for using them. Various resin-based composite (RBC) materials have recently been introduced into the market that offer improved esthetic and physical properties. This article reviews RBCs, including their compositions, advantages, and disadvantages, that are contemporary to today's clinical practice as well as those that are under research consideration and/ or in clinical trial phase.

  8. The preparation of aramid fibres in silicone based composite materials

    OpenAIRE

    L.A. Dobrzański; A. J. Nowak; A. Pusz; M. Górniak

    2011-01-01

    Purpose: The evaluation of modified aramid fibres – Kevlar – as reinforcement in silicon materials used in medicine.Design/methodology/approach: Samples of laminated material based on modified aramid fibres and medical silicone were made by a method of manual formation of laminates that is impregnation of reinforcement with matrix to hardening silicone process using hardening methods connected with heat. Created material was observed on Scanning Electron Microscopy manufactured by Zeiss.Findi...

  9. Listener: a probe into information based material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet

    2011-01-01

    This paper presents the thinking and making of the architectural research probe Listener. Developed as an interdisciplinary collaboration between textile design and architecture, Listener explores how information based fabrication technologies are challenging the material practices of architecture....... The paper investigates how textile design can be understood as a model for architectural production providing new strategies for material specification and allowing the thinking of material as inherently variegated and performative. The paper traces the two fold information based strategies present...... in the Listener project. Firstly, the paper presents the design strategy leading to the development of bespoke interfaces between parametric design and CNC based textile fabrication. Secondly, by integrating structural and actuated materials the paper presents the making of a new class of materials...

  10. Graphene-Based Carbon Materials for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2013-01-01

    Full Text Available Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.

  11. Justification of radiation protection fillers based composite materials fosfogipsum binding materials

    OpenAIRE

    Голов, Константин Сергеевич; Иванов, Валерий Анатолиевич; Мисовец, Юрий Викторович

    2012-01-01

    The results of comparative experimental studies of the effect of various radiation protection (RP) fillers of composite materials based on their fosfogipsum binding properties of RP From the analysis of results of experimental studies of the effect of various rare-earth filling of composite materials based on their binding fosfogipsum protective properties may be concluded. Barium sulfate as the RE filler plaster matrix displays technological instability in the manufacturing process of the co...

  12. Real-time holography on bacteriorhodopsin-based materials

    Science.gov (United States)

    Taranenko, Victor B.

    1998-09-01

    The main properties and mechanisms of photoresponse of the bacteriohodopsin-based materials are presented. Fields of their potential applications in the real-time holography and nonlinear optics are discussed.

  13. Polymers Based on Renewable Raw Materials – Part I

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available This paper gives an overview of the production and application of polymer materials based on renewable raw materials – biopolymers. It is pointed out that, investment of resources in the study of renewable raw materials in the last twenty years has led to the improvement of old and development of completely new chemical and biochemical processes for using biomass for the production of low molecular weight chemical substances, and especially for the production of biopolymers, which are biodegradable and compostable, and biopolymers which are nonbiodegradable. In the same period, producers of polymers based on fossil raw materials have also developed biopolymers that are biodegradable and some of them compostable and, most important, compatible with biopolymers based on renewable raw materials. The facts considering the state of biopolymers based on renewable raw materials on the market, and prediction of production increase over the next five years are also stated. Additionally, the main renewable raw materials and the biopolymers made from them that are already present in the world market are briefly listed. A short review of biopolymers based on cellulose from wood and annual plants is also given.

  14. Electronic transition imaging of carbon based materials: The photothreshold of melanin and thermionic field emission from diamond

    Science.gov (United States)

    Garguilo, Jacob

    This study explores electronic transitions in carbon based materials through the use of a custom built, non rastering electron emission microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The materials examined fall into two groups, melanosome films isolated from the human body and polycrystalline diamond tip arrays. A novel technique for determining the photothreshold of a heterogeneous material on a microscopic or smaller scale is developed and applied to melanosome films isolated from the hair, eyes, and brain of human donors. The conversion of the measured photothreshold on the vacuum scale to an electrochemical oxidation potential is discussed and the obtained data is considered based on this conversion. Pheomelanosomes isolated from human hair are shown to have significantly lower photoionization energy than eumelanosomes, indicating their likelihood as sources of oxidative stress. The ionization energies of the hair melanosomes are checked with complimentary procedures. Ocular melanosomes from the retinal pigment epithelium are measured as a function of patient age and melanosome shape. Lipofuscin, also found in the eye, is examined with the same microscopy technique and shown to have a significantly lower ionization threshold than RPE melanosomes. Neuromelanin from the substantia nigra is also examined and shown to have an ionization threshold close to that of eumelanin. A neuromelanin formation model is proposed based on these results. Polycrystalline diamond tip arrays are examined for their use as thermionic energy converter emitters. Thermionic energy conversion is accomplished through the combination of a hot electron emitter in conjunction with a somewhat cooler electron collector. The generated electron current can be used to do work in an external load. It is shown that the tipped structures of these samples result in enhanced emission over the surrounding flat areas, which may prove

  15. Theory and measurement of emittance properties for radiation thermometry applications.

    Science.gov (United States)

    Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    Some basic concepts of radiation physics are briefly reviewed to provide an introduction to the radiative properties - including emittance, reflectance, absorptance, and transmittance - their definitions, interrelations, theory and methods of measurement. Analyzed data showing typical characteristics of temperature and wavelength dependence, surface effects and environmental influences on the radiation properties of selected classes of materials are presented. Emphasis is placed on those emittance properties of particular interest to conventional radiation thermometry applications, but sufficient generality on all properties is presented to be useful for new or unusual techniques where a more detailed understanding of the behavior of materials is desirable. Data sources are identified to assist the reader in locating property information. It is the intention of the paper to give the reader a background to become more fully aware of the pitfalls, limitations, but of course, advantages in the use of data from the literature. The paper is written in the form of an abbreviated review fully documenting the more important topics and concepts which can only be treated briefly.

  16. Vertical heterostructures based on graphene and other 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, I. V. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch (Russian Federation)

    2016-01-15

    Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.

  17. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  18. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  19. Longitudinal emittance measurements at REX-ISOLDE

    CERN Document Server

    Fraser, M A; Jones, R.M.; Jones, R M; Pasini, M; Posocco, P A; Voulot, D; Wenander, F

    2012-01-01

    We report on measurements of the longitudinal emittance at the Radioactive ion beam EXperiment (REX) at ISOLDE, CERN. The rms longitudinal emittance was measured as 0.34 ± 0.08 π ns keV/u at the output of the RFQ and as 0.36 ± 0.04π ns keV/u in front of the third 7-gap split-ring resonator (7G3) using the three-gradient technique; systematic errors are not included but are estimated at approximately 10%. The 86% emittance was measured a factor of approximately 4.4 times larger than the rms emittance at 1.48 ± 0.2 and 1.55 ± 0.12π ns keV/u at the RFQ and 7G3, respectively. The REX switchyard magnet was used as a spectrometer to analyse the energy spread of the beam as it was manipulated by varying the voltage of the rebuncher (ReB) and 7G3 cavities operating at non-accelerating phases. The transfer matrix for a multi-gap bunching cavity is derived and suitably truncated to allow for the accurate reconstruction of the beam parameters from measurement. The technique for measuring the energy spread was rig...

  20. THz imaging system with the IJJ emitter

    Science.gov (United States)

    Tsujimoto, Manabu; Minami, Hidetoshi; Sawamura, Masashi; Delfanazari, Kaveh; Yamamoto, Takashi; Kashiwagi, Takanari; Kadowaki, Kazuo

    2011-03-01

    The intrinsic Josephson junction (IJJ) emitter consisted of thousands of IJJs uniformly stacked in single crystalline high-Tc superconductor Bi 2 Sr 2 CaCu 2 O8 + δ (Bi-2212) [L. Ozyuzer et al., Science 318, (2007) 1291.] is expected to be a novel source of the continuous terahertz electromagnetic waves (THz-waves). The maximum emission power of tens of microwatts recently obtained with the mesa structure of IJJs seems to be sufficient to make use of the IJJ emitter for some practical applications such as THz imaging. According to the cavity resonance condition, we can control the radiation frequency by changing the geometrical size of the mesa. In this study, we develop the THz imaging system with IJJ emitter. In the presentation, we will show some transparent images of standard specimens obtained by the raster scanning method. Also, we will mention some problems to be solved for the future applications of the IJJ emitter. CREST-JST, WPI-MANA, Strategic Initiative A (University of Tsukuba).

  1. Nanotechnology-based restorative materials for dental caries management.

    Science.gov (United States)

    Melo, Mary A S; Guedes, Sarah F F; Xu, Hockin H K; Rodrigues, Lidiany K A

    2013-08-01

    Nanotechnology has been applied to dental materials as an innovative concept for the development of materials with better properties and anticaries potential. In this review we discuss the current progress and future applications of functional nanoparticles incorporated in dental restorative materials as useful strategies to dental caries management. We also overview proposed antimicrobial and remineralizing mechanisms. Nanomaterials have great potential to decrease biofilm accumulation, inhibit the demineralization process, to be used for remineralizing tooth structure, and to combat caries-related bacteria. These results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.

  2. Effect of Modifying Prosthetic Socket Base Materials by Adding Nanodiamonds

    Directory of Open Access Journals (Sweden)

    Lifang Ma

    2015-01-01

    Full Text Available The curing process of prosthetic socket base materials requires attention owing to a series of associated problems that are yet to be addressed and solved. However, to date, few relevant studies have been reported. In this paper, nanodiamonds modified with a silane coupling agent were dispersed into a prosthetic socket base material, and the performance of the modified base materials was investigated. Adding a predetermined amount of nanodiamonds to the prosthetic socket base material increased the glass transition temperature, improved the mechanical properties of the cured base material, and reduced the influence of the volatile gas formed during the curing process on the environment. With increasing nanodiamond contents, the glass transition temperature increased and the mechanical properties improved slightly. Owing to the high thermal conductivity of the nanodiamonds, the localized heat, as a result of the curing process, could be dissipated and released. Thus, adding nanodiamonds led to a more uniform temperature field forming in the curing system. This improved the curing process and reduced the formation of volatile monomers, thereby decreasing the adverse impact of the generated volatile gases on the environment. All of these provide a potential strategy for modifying prosthetic socket base materials.

  3. Development of polystyrene-based scintillation materials and its mechanisms

    Science.gov (United States)

    Nakamura, Hidehito; Kitamura, Hisashi; Shinji, Osamu; Saito, Katashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2012-12-01

    Scintillation materials based on polystyrene (PS) have been investigated. Para-terphenyl was employed as a fluorescent molecule (fluor) that functions as a wavelength shifter. A clear increase in photon yield of the scintillation materials relative to the pure PS was observed, which cannot be explained by the conventional theory of scintillation mechanism. Furthermore, the photon yield increased with flour concentration in accordance with a power-law. Here we reveal the emergence of a luminescence of PS-based scintillation materials and demonstrate that their photon yields can be controlled by the fluor concentration.

  4. Graphene and graphene-based materials for energy storage applications.

    Science.gov (United States)

    Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua

    2014-09-10

    With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries.

  5. Tantalum-base materials for molten plutonium containment

    International Nuclear Information System (INIS)

    Operating conditions for the pyrochemical processing of plutonium severely restricts materials choices for process components. Pure tantalum has many desirable properties as a construction material; it has a high melting point and low solubility in molten plutonium at processing temperatures. However it has limitations because it is susceptible to intergranular attack and is wetted by molten plutonium. Tantalum-carbon base materials have been developed to overcome the limitations of pure tantalum. Different materials are used depending on the requirements of the operating conditions. Carbide coated tantalum is used for components, such as stirrers, that do not remain in contact with significant amounts of solidifying material. A tantalum-carbon base alloy has been developed for components, such as crucibles, that are in contact with solidifying plutonium

  6. Tantalum-base materials for molten plutonium containment

    International Nuclear Information System (INIS)

    The operating conditions for the pyrochemical processing of plutonium severely restricts the materials choices for the process components. Pure tantalum has many desirable properties as a construction material; it has a high melting point and low solubility in molten plutonium at processing temperatures. However, it has limitations because it is susceptible to intergranular attack and is wetted by molten plutonium. Tantalum-carbon base materials have been developed to overcome the limitations of pure tantalum. Different materials are used depending on the requirements of the operating conditions. Carbide coated tantalum is used for components, such as stirrers, that do not remain in contact with significant amounts of solidifying material. A tantalum-carbon base alloy has been developed for components, such as crucibles, that are in contact with solidifying plutonium

  7. Low cost pavement marking materials based on plasticized sulfur

    Science.gov (United States)

    Dale, J. M.

    1982-04-01

    Pavement marking was made more cost effective by reducing the cost of the marking materials. A low cost marking material based on sulfur was developed. Elemental sulfur is a hard, brittle, crystalline material which, on heating, melts to a thin liquid that can be spray applied. If molten elemental sulfur is spray applied to the road as markings, it will on application solidify, crack and adhere poorly to the road. The first ten high speed trucks that ride over the markings will remove them. To make a useful sulfur based pavement marking material it was necessary to chemically modify (plasticize) the sulfur and mix it with fillers and pigments such that it had all of the characteristics desired of a pavement marking material. Yellow and white formulations were developed. For identification they were given the names YS-EIGHT and WS-EIGHT for the yellow and white formulations.

  8. RF Emitter geolocation using PDOA algorithms and UAVs - A strategy from emitter detection to location prediction

    OpenAIRE

    Engebråten, Sondre Andreas

    2015-01-01

    In this thesis, I explored strategies for locating an RF emitter. Expanding on an idea conceived at Norwegian Defence Research Establishment (FFI), of using small, cheap RSS sensors and Unmanned Aerial Vehicles (UAVs) to search for unknown RF emitters. Cheap and simple, will in most cases, mean that some property of the system suffers, compared to more complicated and expensive systems. This thesis attempts to circumvent these issues by using multiple sensors instead of one ...

  9. Using learning materials for design-based interventions

    DEFF Research Database (Denmark)

    Gissel, Stig Toke

    2015-01-01

    through a research project using and developing digital learning materials for developing literacy in the early grades. One of many important choices to be made in elaborating this learning material concerns which texts should be used for supporting students’ literacy development in the lower grades......This article considers a methodological issue concerning the use of learning materials for interventions in design-based research. When the researcher uses existing or creates new didacticised learning materials for research purposes and tests their applicability in authentic contexts, many...... variables are in play. When using or designing a learning material a lot of choices have to be made and effects are difficult to isolate. The advantage of using learning materials for interventions is that results could have high ecological validity. In the article this methodological issue is exemplified...

  10. Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride

    CERN Document Server

    Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor

    2016-01-01

    Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.

  11. Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters

    Science.gov (United States)

    de Vega, Sandra; Cox, Joel D.; de Abajo, F. Javier García

    2016-08-01

    We study the potential of highly doped finite carbon nanotubes to serve as plasmonic elements that mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit large interaction with light and electron beams, as revealed upon examination of the corresponding light extinction cross-section and electron energy-loss spectra. We show that quantum emitters experience record-high Purcell factors, while they undergo strong mutual interaction mediated by their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as tunable plasmonic materials for quantum optics applications.

  12. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  13. Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters

    CERN Document Server

    Steiner, Florian; Vogelsang, Jan; Lupton, John M

    2015-01-01

    The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ense...

  14. Feasibility of a ring FEL at low emittance storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I., E-mail: ilya.agapov@xfel.eu

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500–1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  15. Mg2(Si,Sn)-based thermoelectric materials and devices

    Science.gov (United States)

    Gao, Peng

    Thermoelectric effects are phenomena found in materials that can achieve direct conversion between heat flow and electricity. One important application of thermoelectric effects is thermoelectric generators, which can generate electricity when a temperature gradient is applied. Thermoelectric generators make use of various sources of heat and it is considered a promising solution for waste heat recovery. The conversion efficiency of thermoelectric generators depends on the materials used in the devices. Significant improvement in the performance of thermoelectric materials has been made in the past few decades. However, most of the good thermoelectric materials being investigated have limitations, such as the high materials cost, high materials density and toxicity of the constituent elements. The Mg2(Si,Sn)-based materials studied in this work are promising candidates for thermoelectric generators in the mid-temperature range and have drawn increasing research interest in recent years because these materials are high performance thermoelectrics that are low cost, low-density and non-toxic. In this work, systematic studies were performed on the Mg2(Si,Sn) thermoelectric materials. Thermal phase stability was studied for different compositions of Mg2Si1-xSnx and Mg2Si0.4Sn 0.6 was used as base material for further optimization. Both n-type and p-type samples were obtained by doping the materials with different elements. Peak ZT ˜ 1.5 for the n-type and ZT ˜ 0.7 for the p-type materials were obtained, both of which are among the best reported results so far. Experimental work was also done to study the techniques to develop the Mg2Si 0.4Sn0.6 materials into working devices. Different electrode materials were tested in bonding experiment for this compound, and copper was found to be the best electrode material for Mg2Si 0.4Sn0.6. Preliminary work was done to demonstrate the possibility of fabricating a Mg2Si0.4Sn0.6-based thermoelectric generator and the result is

  16. Reading Sŏktok Kugyŏl materials based on Ŏnhae materials

    OpenAIRE

    Joho, Satoshi

    2014-01-01

    In this paper, we discussed some advantages of and points of attempt to research how to read Hancha (漢字) with Kugyŏl (口訣) markings based on the premise, that the tradition of Hanmun Hundok (漢文訓讀) in Sŏktok Kugyŏl (釋讀口訣) materials has been succeeded to Ŏnhae (諺解) materials since the mid-15th century, the promulgation of Hunmin Chyŏngŭm (訓民正音), and based on Ŏnhae (諺解) system in these Ŏnhae (諺解) materials. As a result, Hundok (訓讀) systems of Sŏktok Kugyŏl (釋讀口訣) materials had much resemblance to...

  17. Reading Sŏktok Kugyŏl materials based on Ŏnhae materials

    Directory of Open Access Journals (Sweden)

    Satoshi JOHO

    2014-03-01

    Full Text Available In this paper, we discussed some advantages of and points of attempt to research how to read Hancha (漢字 with Kugyŏl (口訣 markings based on the premise, that the tradition of Hanmun Hundok (漢文訓讀 in Sŏktok Kugyŏl (釋讀口訣 materials has been succeeded to Ŏnhae (諺解 materials since the mid-15th century, the promulgation of Hunmin Chyŏngŭm (訓民正音, and based on Ŏnhae (諺解 system in these Ŏnhae (諺解 materials. As a result, Hundok (訓讀 systems of Sŏktok Kugyŏl (釋讀口訣 materials had much resemblance to the Non-Buddhist (Confucian Ŏnhae (諺解 materials since the end of 15th century. Therefore, Non-Buddhist (Confucian Ŏnhae (諺解 materials occupy an important position to consider the reading methods of Sŏktok Kugyŏl (釋讀口訣 materials.

  18. Some functional properties of composite material based on scrap tires

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  19. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10-6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  20. Studying fringe field effect of a field emitter array

    International Nuclear Information System (INIS)

    Field emitter arrays on heavy As-doped Si wafer are studied in vacuum nanoelectronics diode configuration. Different shapes of emitters are considered: cone-shaped point-emitters and cylinder-shaped sharp-edge-emitters are compared. Micro scale field enhancement factor on the edge of cylindrical emitter was calculated via home-developed Matlab application and the results are presented. Two types of anode geometry are proposed: plane anode and spherical anode. Experimental and modelling results of surface electric field distribution are presented. The spherical shape of anode allows higher voltage (and higher field emission current) without destructive arcs risk

  1. Investigation of slice emittance using an energy-chirped electron beam in a dispersive section for photo injector characterization at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Ivanisenko, Yevgeniy

    2012-06-15

    This work describes a transverse slice emittance diagnostics with an RMS temporal resolution down to 2 ps that was implemented at the Photo Injector Test facility in Zeuthen (PITZ). The measurements were performed for several bunch charges generated by a laser pulse that has a flat-top temporal profile of 21-22 ps FWHM duration. This diagnostics allows to study the beam projected emittance compensation with a solenoid magnetic field experimentally and therefore contributes to the beam emittance optimization for the needs of short wavelength linac-based FELs in particular. The diagnostics is based upon the usage of electron bunches which have a correlation between the longitudinal position and the momentum of the bunch particles. This property allows to convert the bunch longitudinal distribution into a transverse one in a dipole magnet. A slit with a narrow opening at the dipole exit selects a fraction of the particle ensemble, a slice, which emittance is analyzed at a screen downstream. Slit scan and quadrupole scan techniques can be used to measure the emittance of the slices. In the experiments it was found that the slice emittance values are 5-10% lower than the projected emittance values, indicating a good effectivity of the solenoid compensation. The emittance obtained using quadrupole scan technique has shown different results when compared to slit scan technique due to a beam halo. The observed beam halo in phase space contributes up to 40% of the emittance value while having only 10% of the bunch charge.

  2. Investigation of slice emittance using an energy-chirped electron beam in a dispersive section for photo injector characterization at PITZ

    International Nuclear Information System (INIS)

    This work describes a transverse slice emittance diagnostics with an RMS temporal resolution down to 2 ps that was implemented at the Photo Injector Test facility in Zeuthen (PITZ). The measurements were performed for several bunch charges generated by a laser pulse that has a flat-top temporal profile of 21-22 ps FWHM duration. This diagnostics allows to study the beam projected emittance compensation with a solenoid magnetic field experimentally and therefore contributes to the beam emittance optimization for the needs of short wavelength linac-based FELs in particular. The diagnostics is based upon the usage of electron bunches which have a correlation between the longitudinal position and the momentum of the bunch particles. This property allows to convert the bunch longitudinal distribution into a transverse one in a dipole magnet. A slit with a narrow opening at the dipole exit selects a fraction of the particle ensemble, a slice, which emittance is analyzed at a screen downstream. Slit scan and quadrupole scan techniques can be used to measure the emittance of the slices. In the experiments it was found that the slice emittance values are 5-10% lower than the projected emittance values, indicating a good effectivity of the solenoid compensation. The emittance obtained using quadrupole scan technique has shown different results when compared to slit scan technique due to a beam halo. The observed beam halo in phase space contributes up to 40% of the emittance value while having only 10% of the bunch charge.

  3. Identification of collagen-based materials in cultural heritage.

    Science.gov (United States)

    Kirby, Daniel P; Buckley, Michael; Promise, Ellen; Trauger, Sunia A; Holdcraft, T Rose

    2013-09-01

    All stakeholders in cultural heritage share an interest in fabrication methods and material technology. Until now methods for analysis of organic materials, particularly proteins, have not been widely available to researchers at cultural institutions. This paper will describe an analytical method for the identification of collagen-based materials from soft tissue sources and show examples of its application to diverse museum objects. The method, peptide mass fingerprinting (PMF), uses enzymatic digestion of extracted proteins to produce a mixture of peptides. The mass spectrum of the mixture contains characteristic marker ions-a peptide mass fingerprint-which are compared to species-specific markers from references as the basis of identification. Preliminary results indicate that analysis of materials from aged samples, several different tissue types, and tanned or untanned materials yields comparable PMF results. Significantly, PMF is simple, rapid, sensitive and specific, has been implemented in a museum laboratory, and is being practiced successfully by non-specialists.

  4. Lignin Based Carbon Materials for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sabornie [ORNL; Saito, Tomonori [ORNL; Rios, Orlando [ORNL; Johs, Alexander [ORNL

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  5. Study of New Materials Design based on Hadoop

    Directory of Open Access Journals (Sweden)

    Wu Jun

    2016-01-01

    Full Text Available With the rapid development of information technology, the scientific research shows that the data mining and other information technology could be used in the design of new materials. It is explicit that Intelligent Materials research focuses on using physical and chemical principles combined with computer techniques such as Big Data, Cloud computing and Intelligent modeling and simulation to solve chemical problems. In this paper, based on the cluster based outlier algorithm as the main body, this paper discusses the definition New Materials research In the Hadoop cloud platform, and the parallel processing of Map-Reduce model. The performance this model of new material was established by using the method of Map-Reduction provided the basis for the performance optimization.

  6. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  7. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Science.gov (United States)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  8. Field Emitter Arrays for a Free Electron Laser Application

    CERN Document Server

    Shing-Bruce-Li, Kevin; Ganter, Romain; Gobrecht, Jens; Raguin, Jean Yves; Rivkin, Leonid; Wrulich, Albin F

    2004-01-01

    The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Field emitter arrays (FEAs) are an attractive technology for electron sources of ultra high brightness. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by applying voltage to a first grid layer close to the tip apexes, the so called gate layer, and focused by a second grid layer one micrometer above the tips. The typical aperture diameter of the gate and the focusing layer is in the range of one micrometer. One challenge for such cathodes is to produce peak currents in the ampere range since the usual applications of FEAs require less than milliampere. Encouraging peak current performances have been obtained by applying voltage pulses at low frequency between gate and tips. In this paper we report on different tip materials available on the market: diamond FEAs from Extreme Devices Inc., ZrC single ...

  9. Metamaterial based telemetric strain sensing in different materials

    OpenAIRE

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2010-01-01

    We present telemetric sensing of surface strains on different industrial materials using split-ring-resonator based metamaterials. For wireless strain sensing, we utilize metamaterial array architectures for high sensitivity and low nonlinearity-errors in strain sensing. In this work, telemetric strain measurements in three test materials of cast polyamide, derlin and polyamide are performed by observing operating frequency shift under mechanical deformation and these data are compared with c...

  10. Iron based Li-ion insertion materials for battery applications

    OpenAIRE

    Blidberg, Andreas

    2016-01-01

    Li-ion batteries are currently the most efficient technology available for electrochemical energy storage. The technology has revolutionized the portable electronics market and is becoming a corner stone for large scale applications, such as electric vehicles. It is therefore important to develop materials in which the energy storage relies on abundant redox active species, such as iron. In this thesis, new iron based electrode materials for positive electrodes in Li-ion batteries were invest...

  11. Recent advances on polyoxometalate-based molecular and composite materials.

    Science.gov (United States)

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references). PMID:22850732

  12. Biogas Filter Based on Local Natural Zeolite Materials

    Directory of Open Access Journals (Sweden)

    Satriyo Krido Wahono

    2014-02-01

    Full Text Available UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as increasing methane contents, increasing heating value, reduction of odors, reduction of corrosion potential, increasing the efficiency and stability of the generator.

  13. Effect of phonon-plasmon and surface plasmon polaritons on photoluminescence in quantum emitter and graphene deposited on polar crystals

    Science.gov (United States)

    Singh, Mahi R.; Brzozowski, Marek J.; Apter, Boris

    2016-09-01

    We investigate the light-matter interaction in a quantum emitter and metallic graphene flake (MGF) hybrid system deposited on a polar material. The coupling of surface plasmons in graphene and optical phonons in the polar material produces phonon-plasmon polaritons (PPPs). Similarly, couplings of photons with surface plasmons of graphene produce surface-plasmon polaritons (SPPs). Using the second quantized formulation for SPPs and PPPs interactions and density matrix method, we have calculated photoluminescence of the quantum emitters. It is found that when the exciton energy of the quantum emitter is in resonant with SPP and PPP energies, the photoluminescence in the quantum emitter are enhanced in the terahertz range. The enhancement is due to the transfer of SPP and PPP energies from the graphene flake to the quantum emitter. The energy transfer from graphene to the quantum emitter can be controlled by applying external pump lasers or stress and strain fields. These are interesting findings which can be used to fabricate switches and sensors.

  14. Impact of forward emitter current gain and geometry of pnp power transistors on radiation tolerance of voltage regulators

    International Nuclear Information System (INIS)

    Low-dropout voltage regulators with various geometries and technological realisations of serial pnp power transistors were exposed to ionizing radiation. Although devices with vertical emitters were considered much less susceptible to the influence of radiation on forward emitter current gain than circuits with round emitters, the experiment showed a similar degradation of current gain in both cases. The main reason of high radiation susceptibility of the examined vertical serial pnp transistor is the implementation of an interdigitated emitter, with high perimeter-to-area ratio, causing the great increase of serial transistors base current, but a minor influence on the maximum output current. Transistors with round emitters with small perimeter-to-area ratio expressed a moderate current gain degradation, but a rapid fall of the emitter injection efficiency, causing a significant decrease of the maximum output current. Regardless of the similar forward emitter current gain degradation, reliability and operational characteristics of two types of low-dropout voltage regulators were completely different. (author)

  15. Large-area lanthanum hexaboride electron emitter

    Science.gov (United States)

    Goebel, D. M.; Hirooka, Y.; Sketchley, T. A.

    1985-09-01

    The characteristics of lanthanum-boron thermionic electron emitters are discussed, and a large-area, continuously operating cathode assembly and heater are described. Impurity production and structural problems involving the support of the LaB6 have been eliminated in the presented configuration. The performance of the cathode in a plasma discharge, where surface modification occurs by ion sputtering, is presented. Problem areas which affect lifetime and emission current capability are discussed.

  16. Emittance growths in resonance crossing at FFAGs

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab; Pang, X.; Wang, F.; Wang, X.; Lee, S.Y.; /Indiana U.

    2007-10-01

    Scaling laws of the emittance growth for a beam crossing the 6th-order systematic space-charge resonances and the random-octupole driven 4th-order resonance are obtained by numerical multi-particle simulations. These laws can be important in setting the minimum acceleration rate and maximum tolerable resonance strength for the design of non-scaling fixed-field alternating gradient accelerators.

  17. EPR-based material modelling of soils considering volume changes

    Science.gov (United States)

    Faramarzi, Asaad; Javadi, Akbar A.; Alani, Amir M.

    2012-11-01

    In this paper an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR), taking into account its volumetric behaviour. EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial test are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well known conventional material models. In particular, the capability of the developed EPR models in predicting volume change behaviour of soils is illustrated. It is also shown that the developed EPR-based material models can be incorporated in finite element (FE) analysis. Two geotechnical examples are presented to verify the developed EPR-based FE model (EPR-FEM). The results of the EPR-FEM are compared with those of a standard FEM where conventional constitutive models are used to describe the material behaviour. The results show that EPR-FEM can be successfully employed to analyse geotechnical engineering problems. The advantages of the proposed EPR models are highlighted.

  18. Polymers Based on Renewable Raw Materials – Part II

    Directory of Open Access Journals (Sweden)

    Jovanović, S.

    2013-09-01

    Full Text Available A short review of biopolymers based on starch (starch derivatives, thermoplastic starch, lignin and hemicelluloses, chitin (chitosan and products obtained by degradation of starch and other polysaccharides and sugars (poly(lactic acid, poly(hydroxyalkanoates, as well as some of their basic properties and application area, are given in this part. The problem of environmental and economic feasibility of biopolymers based on renewable raw materials and their competitiveness with polymers based on fossil raw materials is discussed. Also pointed out are the problems that appear due to the increasing use of agricultural land for the production of raw materials for the chemical industry and energy, instead for the production of food for humans and animals. The optimistic assessments of experts considering the development perspectives of biopolymers based on renewable raw materials in the next ten years have also been pointed out.At the end of the paper, the success of a team of researchers gathered around the experts from the company Bayer is indicated. They were the first in the world to develop a catalyst by which they managed to effectively activate CO - and incorporate it into polyols, used for the synthesis of polyurethanes in semi-industrial scale. By applying this process, for the first time a pollutant will be used as a basic raw material for the synthesis of organic compounds, which will have significant consequences on the development of the chemical industry, and therefore the production of polymers.

  19. Using bio-based polymers for curing cement-based materials

    OpenAIRE

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shrinkage. Continuous cement hydration also guarantees a strong bond between aggregate, fewer voids, and depercoliation of capillary pores. Thus, a properly cured cement-based material is prepared for...

  20. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  1. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan ZHANG

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  2. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  3. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  4. Emissivity Tuned Emitter for RTPV Power Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carl M. Stoots; Robert C. O' Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size

  5. Polyamide as a Denture Base Material: A Literature Review

    Science.gov (United States)

    Vojdani, Mahroo; Giti, Rashin

    2015-01-01

    The purpose of this article was to review the biocompatibility, physical, and mechanical properties of the polyamide denture base materials. An electronic search of scientific papers from 1990-2014 was carried out using PubMed, Scopus and Wiley Inter Science engines using the search terms “nylon denture base” and “polyamide denture base”. Searching the key words yielded a total of 82 articles. By application of inclusion criteria, the obtained results were further reduced to 24 citations recruited in this review. Several studies have evaluated various properties of polyamide (nylon) denture base materials. According to the results of the studies, currently, thermo-injectable, high impact, flexible or semi-flexible polyamide is thought to be an alternative to the conventional acrylic resins due to its esthetic and functional characteristics and physicochemical qualities. It would be justifiable to use this material for denture fabrication in some cases such as severe soft/ hard tissue undercuts, unexplained repeated fracture of denture, in aesthetic-concerned patients, those who have allergy to other denture base materials, and in patients with microstomia.  Although polyamide has some attractive advantages, they require modifications to produce consistently better properties than the current polymethyl methacrylate (PMMA) materials. Moreover, since there is a very limited knowledge about their clinical performance, strict and careful follow-up evaluation of the patients rehabilitated with polyamide prosthesis is recommended. PMID:26106628

  6. Polyamide as a Denture Base Material: A Literature Review

    Directory of Open Access Journals (Sweden)

    Mahroo Vojdani

    2015-03-01

    Full Text Available The purpose of this article was to review the biocompatibility, physical, and mechanical properties of the polyamide denture base materials. An electronic search of scientific papers from 1990-2014 was carried out using PubMed, Scopus and Wiley Inter Science engines using the search terms “nylon denture base” and “polyamide denture base”. Searching the key words yielded a total of 82 articles. By application of inclusion criteria, the obtained results were further reduced to 24 citations recruited in this review. Several studies have evaluated various properties of polyamide (nylon denture base materials. According to the results of the studies, currently, thermo-injectable, high impact, flexible or semi-flexible polyamide is thought to be an alternative to the conventional acrylic resins due to its esthetic and functional characteristics and physicochemical qualities. It would be justifiable to use this material for denture fabrication in some cases such as severe soft/ hard tissue undercuts, unexplained repeated fracture of denture, in aesthetic-concerned patients, those who have allergy to other denture base materials, and in patients with microstomia. Although polyamide has some attractive advantages, they require modifications to produce consistently better properties than the current polymethyl methacrylate (PMMA materials. Moreover, since there is a very limited knowledge about their clinical performance, strict and careful follow-up evaluation of the patients rehabilitated with polyamide prosthesis is recommended.

  7. Materialized View Selection Approach Using Tree Based Methodology

    Directory of Open Access Journals (Sweden)

    MR. P. P. KARDE

    2010-10-01

    Full Text Available In large databases particularly in distributed database, query response time plays an important role as timely access to information and it is the basic requirement of successful business application. A data warehouse uses multiple materialized views to efficiently process a given set of queries. Quick response time and accuracy areimportant factors in the success of any database. The materialization of all views is not possible because of the space constraint and maintenance cost constraint. Selection of Materialized views is one of the most important decisions in designing a data warehouse for optimal efficiency. Selecting a suitable set of views that minimizesthe total cost associated with the materialized views and is the key component in data warehousing. Materialized views are found to be very useful for fast query processing. This paper gives the results of proposed tree based materialized view selection algorithm for query processing. In distributed environment where database is distributed over the nodes on which query should get executed and also plays an important role. This paper also proposes node selection algorithm for fast materialized view selection in distributed environment. And finally it is found that the proposed methodology performs better for query processing as compared to other materializedview selection strategies.

  8. Chairside resin-based provisional restorative materials for fixed prosthodontics.

    Science.gov (United States)

    Strassler, Howard E; Lowe, Robert A

    2011-01-01

    Provisional restorations are vital to fixed prosthodontics treatment, providing an important diagnostic function while in place. In addition to protecting the prepared teeth, provisionalization enables clinicians to refine biologic and biomechanical issues before the final restoration is fabricated. Adjustments can be made in the provisional restoration to achieve both the clinician's and patient's desired results. The fabrication of temporary restorations requires that clinicians be proficient with a variety of materials and techniques that can be used to make well-adapted and functional provisionals. There are many material choices available to temporize a single crown as well as multi-unit fixed partial dentures, and the selection of provisional materials should be made based on a case-by-case evaluation. This article provides a review of polymeric resin provisional materials. PMID:22167927

  9. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  10. Gelatin-Based Materials in Ocular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    James B. Rose

    2014-04-01

    Full Text Available Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  11. [Evidence-based management of medical disposable materials].

    Science.gov (United States)

    Yang, Hai

    2009-03-01

    Evidence-based management of medical disposable materials pays attention to collect evidence comprehensively and systematically, accumulate and create evidence through its own work and also evaluate evidence strictly. This can be used as a function to guide out job. Medical disposable materials evidence system contains product register qualification, product quality certification, supplier's behavior, internal and external communication evidence. Managers can find different ways in creating and using evidence referring to specific inside and outside condition. Evidence-based management can help accelerating the development of management of medical disposable materials from traditional experience pattern to a systematic and scientific pattern. It also has the very important meaning to improve medical quality, control the unreasonable growth of medical expense and make purchase and supply chain be more efficient. PMID:19565800

  12. Effect of surrounding materials on iterative reconstruction-based line-source response function, and annihilations outside the source assessed by a small animal PET scanner

    International Nuclear Information System (INIS)

    The aims of this study were (1) to evaluate the effect of surrounding materials on the iterative reconstruction-based line-source response function (IR-RF) of 18F, 11C, 13N, and 15O using a preclinical PET system, and (2) to determine whether and how annihilation outside the source can be visualized experimentally. We performed all the measurements using the LabPET-8 PET/CT subsystem built-in the Triumph II platform (TriFoil Imaging, Inc., Northridge, CA, USA). IR-RF was measured for 18F, 11C, 13N, and 15O, and was expressed as full-width at half-maximum (FWHM) and full-width at tenth maximum (FWTM) using a glass capillary phantom mounted in materials of various densities, which were chosen to cover the wide range of real tissues. To determine whether and how annihilation outside the source can be visualized, we designed a concentric ring paper phantom, which consisted of a source at the center with 4 ring-like paper layers. When the radionuclides were placed in air (material density 0 g/cm3), IR-RFs were similar among the radionuclides tested. As the surrounding material density increased, IR-RFs for higher energy-emitting radionuclides (11C, 13N, and 15O) became worse, whereas those of 18F remained relatively constant over the range of surrounding material densities (0-2.17 g/cm3). Both FWHM and FWTM values were closely correlated with mean energy of radionuclides at middle to high material densities (material density 0.94-2.17 g/cm3). The FWTM/FWHM ratio of high energy-emitting radionuclides such as 15O increased as a function of material density, which was followed by subsequent decrease at high material densities (1.2-2.17 g/cm3). Using a concentric ring paper phantom, annihilations outside the source were visible and measurable. The innermost layer was visible with all radionuclides, whereas the outer layers only with high energy positron emitters. The results indicate that surrounding material affects IR-RF particularly for high energy positron emitters

  13. Multiferroic materials for spin-based logic devices

    OpenAIRE

    de Sousa, Rogerio; Moore, Joel E.

    2008-01-01

    Logical devices based on spin waves offer the potential to avoid dissipation mechanisms that limit devices based on either the charge or spin of mobile electrons. Multiferroic magnetoelectrics, which are materials that combine ferroelectric and magnetic order, allow direct switching of magnetic order and thence of spin-wave properties using an applied electric field. The intrinsic coupling between polarization and magnetic moments, generated by strong electronic correlations in these multifer...

  14. Material effects in manufacturing of silicon based solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Anja; Sachse, Jens-Uwe; Mueller, Torsten; Seidel, Ulf; Bartholomaeus, Lars; Germershausen, Sven; Perras, Reinhold; Meissner, Rita; Hoebbel, Helmut; Schenke, Andreas; Bhatti, A.K.; Kuesters, Karl Heinz [Conergy Solar Module GmbH and Co. KG, Conergy Str. 8, 15236 Frankfurt/Oder (Germany); Richter, Hans [IHP, Im Technologiepark 25, 15236 Frankfurt/Oder (Germany); GFWW, Im Technologiepark 1, 15236 Frankfurt/Oder (Germany)

    2011-03-15

    The performance and efficiency of solar cells depends strongly on influence of materials. Key topics for solar cell optimisation are presently silicon material properties and materials for cell metallisation. Optimisation of silicon is focussed e.g. on material properties such as impurity content, density of dislocation and grain boundaries in multi-crystalline silicon which influence parameters like carrier lifetime, and therefore the cell efficiency. Improved characterisation methods of solar cells like electroluminescence and photoluminescence are combined with techniques such as thermography and LBIC to improve production process and materials. As a result cell efficiency will be increased. Optimisation of cell metallisation and module interconnects is strongly related to progress in paste materials for front side metallisation. Improved materials enable the use of higher emitter resistance and the printing of smaller metal lines, while reducing the series resistance of the solar cell. Progress in paste materials leads to increased solar cell efficiency for the standard cell process. The introduction of new metal pastes has to be combined with careful optimisation of the process window in soldering during module built-up. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    Science.gov (United States)

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  16. Developing Corpus-Based Materials to Teach Pragmatic Routines

    Science.gov (United States)

    Bardovi-Harlig, Kathleen; Mossman, Sabrina; Vellenga, Heidi E.

    2015-01-01

    This article describes how to develop teaching materials for pragmatics based on authentic language by using a spoken corpus. The authors show how to use the corpus in conjunction with textbooks to identify pragmatic routines for speech acts and how to extract appropriate language samples and adapt them for classroom use. They demonstrate how to…

  17. Innovations in bonding to zirconia-based materials: Part I

    NARCIS (Netherlands)

    M.N.M. Abou Shelib; J.P. Matinlinna; Z. Salameh; H. Ounsi

    2008-01-01

    Abstract Objectives Establishing a reliable bond to zirconia-based materials has proven to be difficult which is the major limitation against fabricating adhesive zirconia restorations. This bond could be improved using novel selective infiltration etching conditioning in combination with engineered

  18. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  19. Design study of a low-emittance lattice with a five-bend achromat

    Science.gov (United States)

    Liu, Hao-Lin; Kim, Eun-San

    2016-04-01

    The multi-bend achromat (MBA) lattice, which can provide a small horizontal emittance in the subnanometer range, shows promise for future storage-ring-based light-source facilities. We present the linear and the nonlinear properties of an optical design and the results of its optimization. The MBA lattice is designed as a five-bend achromat, and an emittance of 0.270 nm rad is achieved. The energy and the circumference of the designed ring are 3 GeV and 499.3 m, respectively. We investigated an injection system with a single-pulsed sextupole magnet in the storage ring. We describe the space allocation in the injection section and the particle dynamics of the injected beam. The investigation shows that our design exhibits a very low emittance and a sufficient dynamic aperture, and provides a suitable injection scheme for a 3-GeV light source.

  20. Transverse Emittance reconstruction in presence of space charge and application to the 50 MeV beam of Linac4

    CERN Document Server

    Garcia Tudela, M; Posocco, P A

    2011-01-01

    During the commissioning stage of Linac4 a test bench is planned to be used in order to characterize the 50 MeV beam after the DTL. Among other parameters, it will be possible to measure the transverse emittance using both the 3 monitors and the quadrupole scan method. As the space charge effects are not negligible at this energy, classical techniques of emittance reconstruction become questionable and a different approach based on recursive beam dynamics simulations must be applied.

  1. Optical imaging of alpha emitters: simulations, phantom, and in vivo results

    Science.gov (United States)

    Boschi, Federico; Meo, Sergio Lo; Rossi, Pier Luca; Calandrino, Riccardo; Sbarbati, Andrea; Spinelli, Antonello E.

    2011-12-01

    There has been growing interest in investigating both the in vitro and in vivo detection of optical photons from a plethora of beta emitters using optical techniques. In this paper we have investigated an alpha particle induced fluorescence signal by using a commercial CCD-based small animal optical imaging system. The light emission of a 241Am source was simulated using GEANT4 and tested in different experimental conditions including the imaging of in vivo tissue. We believe that the results presented in this work can be useful to describe a possible mechanism for the in vivo detection of alpha emitters used for therapeutic purposes.

  2. Magnetic GaAs resonant tunnelling diodes with a Mn-doped emitter

    International Nuclear Information System (INIS)

    We have fabricated ferromagnetic resonant tunnelling diodes (FRTD's) based on the AlAs/GaAs/AlAs quantum wells and the p-type Mn-doped GaAs emitter layers. At low temperatures a large magnetic field dependence of the tunnelling current appears in the magnetic RTD's in rather low fields (B < 1T), which is not found in nonmagnetic RTD's. The observed decrease of current in the case of the metallic ferromagnetic emitters is explained by a tunnelling anisotropic magnetoresistance effect

  3. Delay modeling of bipolar ECL/EFL (Emitter-Coupled Logic/Emitter-Follower-Logic) circuits

    Science.gov (United States)

    Yang, Andrew T.

    1986-08-01

    This report deals with the development of a delay-time model for timing simulation of large circuits consisting of Bipolar ECL(Emitter-Coupled Logic) and EFL (Emitter-Follower-Logic) networks. This model can provide adequate information on the performance of the circuits with a minimum expenditure of computation time. This goal is achieved by the use of proper circuit transient models on which analytical delay expressions can be derived with accurate results. The delay-model developed in this report is general enough to handle complex digital circuits with multiple inputs or/and multiple levels. The important effects of input slew rate are also included in the model.

  4. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng

    2015-09-23

    Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. PMID:26293692

  5. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  6. Development of chemical sensors by using beta emitters

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H. J; Yu, S. K.; Yoon, M. O.; Park, K. S.; Rhim, G. J. [Kyung Hee University, Seoul (Korea)

    2000-04-01

    The objective of this project is development of core techniques for fabrication of biosensor. This includes a method for immobilization of biologically active molecules, a method for labelling target molecules with beta emitter, and a detection method based on beta counting. A radioimmuno-sensor for detection of DNA antibody, self-assembled monolayers of {omega}-carboxylated thiol molecules such as thioctic acid and 12-mercaptododecanoic acid were used in combination with chemical coupling methods. EDC (1 - ethyl - 3 [3 - (dimethylamino)propyl] carbodiimide) and NHS (N - hydroxy - succinimide) were used as coupling reagents to induce amide bond formation between the COOH group on the sensor surface and the -NH{sub 2} group on the antibody. Various experimental conditions such as COOH concentration, immobilization pH, reaction times etc, have been examined to establish optimum conditions for efficient immobilization of the antibody. Efficient labeling of the target antigen, DNA, with a beta emitter, {sup 35}S, was achieved by using the polymerase chain reaction (PCR) method. Detection of sensing signal from antigens that are selectively bound to the surface of the DNA radioimmuno-sensor has been accomplished by use of the beta counting method. According to the present results, efficient immobilization of the antibody is possible at very low antibody concentration below or equal to 0.1 mg/mL with detection limit reaching as low as 10{sup -11} M bp DNA concentration. 25 refs., 14 figs. (Author)

  7. Operating single quantum emitters with a compact Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institute of Solid State Physics, Technische Universität Berlin, 10623 Berlin (Germany)

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  8. An Efficacy Trial of Research-Based Curriculum Materials with Curriculum-Based Professional Development

    Science.gov (United States)

    Taylor, Joseph A.; Getty, Stephen R.; Kowalski, Susan M.; Wilson, Christopher D.; Carlson, Janet; Van Scotter, Pamela

    2015-01-01

    This study examined the efficacy of a curriculum-based intervention for high school science students. Specifically, the intervention was two years of research-based, multidisciplinary curriculum materials for science supported by comprehensive professional development for teachers that focused on those materials. A modest positive effect was…

  9. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shr

  10. Radiation doses and risks from internal emitters

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, John [Health Protection Agency, Radiation Protection Division, CRCE, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Day, Philip [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom)], E-mail: john.harrison@hpa.org.uk, E-mail: philip.day@manchester.ac.uk

    2008-06-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  11. Mechanical properties of gangue-containing aluminosilicate based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials.The gangue was calcined at 500℃.The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent.The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM.The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt.For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt%gangue can still be up to 52.3 MPa.The larger K+ favors the formation of large silicate oligomers with which Al(OH)4- prefers to bind.Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator.The reasons for this were found through IR and NMR analysis.Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.

  12. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    Directory of Open Access Journals (Sweden)

    CHARLIE P. NACARIO

    2014-08-01

    Full Text Available This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights from the experiences of the students and teacher. The study used the single group pretest and posttest experimental design. Descriptive, quantitative and qualitative techniques were also utilized. Quantitative data were taken from the pretest-posttest results on the Test on Conceptual Understanding, Science Process Skills and Chemistry Attitudinaire. Qualitative data were drawn from the experts’ assessment of the developed lessons and research instruments, and the insights of students and teacher. The developed lessons integrating UNESCO ICT-based instructional materials were Atomic Model and Structure, Periodic Table of Elements, Chemical Bonding, and Balancing Chemical Equation. These lessons increased the conceptual understanding of the students by topic and skill from very low mastery to average mastery level. The students have slightly improved along the different science process skills. After teaching the lessons, the students’ attitude also improved. The students became more motivated and interested in Chemistry and the lessons were student centered and entailed teacher’s competence and flexibility in computer use.

  13. Verifiable Distribution of Material Goods Based on Cryptology

    Directory of Open Access Journals (Sweden)

    Radomír Palovský

    2015-12-01

    Full Text Available Counterfeiting of material goods is a general problem. In this paper an architecture for verifiable distribution of material goods is presented. This distribution is based on printing such a QR code on goods, which would contain digitally signed serial number of the product, and validity of this digital signature could be verifiable by a customer. Extension consisting of adding digital signatures to revenue stamps used for state-controlled goods is also presented. Discussion on possibilities in making copies leads to conclusion that cryptographic security needs to be completed by technical difficulties of copying.

  14. Design, chirality, and flexibility in nanoporous molecule-based materials.

    Science.gov (United States)

    Bradshaw, D; Claridge, J B; Cussen, E J; Prior, T J; Rosseinsky, M J

    2005-04-01

    Scientific and technological interest in porous materials with molecule-sized channels and cavities has led to an intense search for controlled chemical routes to systems with specific properties. This Account details our work on directing the assembly of open-framework structures based on molecules and investigating how the response of nanoporous examples of such materials to guests differs from classical rigid porous systems. The stabilization of chiral nanoporosity by a hierarchy of interactions that both direct and maintain a helical open-framework structure exemplifies the approach. PMID:15835874

  15. Experimental studies on coherent synchrotron radiaiton in the emittance exchange line at the Fermilab A0 Photoinjector

    International Nuclear Information System (INIS)

    Future accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. Coherent synchrotron radiation (CSR) in the dipoles could limit the performance of the emittance exchanger. In this paper, we report the experimental studies on measuring CSR and its effects on the beam at the A0 photoinjector in the emittance exchange line. After reporting the CSR power measurements, we report on the diagnostic scheme based on a weak skew quad in the emittance exchange line to study the CSR effects on the beam and other beam dynamics. In this work, we have reported on CSR measurements and the effect of skew quad on the dogleg line with the 5-cell turned on and off. We plan to study CSR effects on the bunch with the 5-cell on at larger chirp. This is will not only increase the CSR self-effect but also reduce the beamsize at the screen for convenient beamsize measurements.

  16. Simple formulae for the optimization of the FEL gain length including the effects of emittance, betatron oscillations and energy spread

    International Nuclear Information System (INIS)

    Simple analytical formulae are presented for a quick optimization of the Free Electron Laser (FEL) gain length for given values of radiation wavelength, electron beam current, normalized transverse emittance and energy spread. The optimization parameters include the gap size of the wiggler, the wiggler period and the betatron wavelength (in the case of external focusing). The method is based on the handy formulae for the FEL gain of a Gaussian beam including the effects of energy spread, emittance, and betatron oscillations of the electron beam. We have found a simple relation between the minimum FEL gain length and the optimum betatron wavelength for given energy spread, emittance, and gap size of the wiggler. When the emittance is about the radiation wavelength divided by 4ρ and the energy spread is negligible, this relation shows that the gain length is optimized if the betatron wavelength is chosen so that the betatron phase advances by a half radian in the gain length

  17. Correlated spontaneous emission of fluorescent emitters mediated by single plasmons

    CERN Document Server

    Bouchet, Dorian; Ithurria, Sandrine; Gulinatti, Angelo; Rech, Ivan; Carminati, Rémi; De Wilde, Yannick; Krachmalnicoff, Valentina

    2016-01-01

    Manipulating the spontaneous emission of a fluorescent emitter can be achieved by placing the emitter in a nanostructured environment. A privileged spot is occupied by plasmonic structures that provide a strong confinement of the electromagnetic field, which results in an enhancement of the emitter-environment interaction. While plasmonic nanostructures have been widely exploited to control the emission properties of single photon emitters, performing the coupling between quantum emitters with plasmons poses a huge challenge. In this Letter we report on a first crucial step towards this goal by the observation of correlated emission between a single CdSe/CdS/ZnS quantum dot exhibiting single photon statistics and a fluorescent nanobead located micrometers apart. This is accomplished by coupling both emitters to a silver nanowire. Single-plasmons are created on the latter from the quantum dot, and transfer energy to excite in turn the fluorescent nanobead.

  18. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    Science.gov (United States)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  19. RIM as the data base management system for a material properties data base

    Science.gov (United States)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  20. Thermal emittance measurements of a cesium potassium antimonide photocathode

    OpenAIRE

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-01-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56+/-0.03 mm-mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  1. Thermal emittance measurements of a cesium potassium antimonide photocathode

    Science.gov (United States)

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-05-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  2. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  3. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  4. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  5. Laser -Based Joining of Metallic and Non-metallic Materials

    Science.gov (United States)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  6. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  7. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  8. Low emittance electron beam optics commissioning in Indus-2

    International Nuclear Information System (INIS)

    Currently Indus-2 is normally operated with beam emittance of 85 nmrad at 2.0 GeV. In order to reduce the beam emittance to half of this value its dispersion function has been modified by properly choosing the quadrupoles strengths of the lattice. At this low beam emittance optics dynamic aperture reduces and may not be sufficient for beam injection thus a procedure has been evolved and implemented to shift the beam emittance of stored beam at 2.0 GeV. (author)

  9. Material-based engineering strategies for cardiac regeneration.

    Science.gov (United States)

    Marion, Mieke H van; Bax, Noortje A M; Spreeuwel, Ariane C C van; van der Schaft, Daisy W J; Bouten, Carlijn V C

    2014-01-01

    Cardiac tissue is composed of muscle and non-muscle cells, surrounded by extracellular matrix (ECM) and spatially organized into a complex three-dimensional (3D) architecture to allow for coordinated contraction and electrical pulse propagation. Despite emerging evidence for cardiomyocyte turnover in mammalian hearts, the regenerative capacity of human cardiac tissue is insufficient to recover from damage, e.g. resulting from myocardial infarction (MI). Instead, the heart 'repairs' lost or injured tissue by ongoing synthesis and remodeling of scar tissue. Conventional therapies and timely (stem) cell delivery to the injured tissue markedly improve short-term function and remodeling, but do not attenuate later stage adverse remodeling, leading to functional deterioration and eventually failure of the heart. Material-based therapies have been successfully used to mechanically support and constrain the post-MI failing heart, preventing it from further remodeling and dilation. When designed to deliver the right microenvironment for endogenous or exogenous cells, as well as the mechanical and topological cues to guide neo-tissue formation, material-based therapies may even reverse remodeling and boost cardiac regeneration. This paper reviews the up-to-date status of material-based cardiac regeneration with special emphasis on 1) the use of bare biomaterials to deliver passive constraints that unload the heart, 2) the use of materials and cells to create engineered cardiac constructs for replacement, support, or regeneration of damaged myocardium, and 3) the development of bio-inspired and bioactive materials that aim to enhance the endogenous regenerative capacity of the heart. As the therapies should function in the infarcted heart, the damaged host environment and engineered in vitro test systems that mimic this environment, are reviewed as well.

  10. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  11. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-11-01

    Full Text Available Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  12. TOPOLOGY DESCRIPTION FUNCTION BASED METHOD FOR MATERIAL DESIGN

    Institute of Scientific and Technical Information of China (English)

    Cao Xianfan; Liu Shutian

    2006-01-01

    The purpose of this paper is to investigate the application of topology description function (TDF) in material design. Using TDF to describe the topology of the microstructure,the formulation and the solving technique of the design problem of materials with prescribed mechanical properties are presented. By presenting the TDF as the sum of a series of basis functions determined by parameters, the topology optimization of material microstructure is formulated as a size optimization problem whose design variables are parameters of TDF basis functions and independent of the mesh of the design domain. By this method, high quality topologies for describing the distribution of constituent material in design domain can be obtained and checkerboard problem often met in the variable density method is avoided. Compared with the conventional level set method, the optimization problem can be solved simply by existing optimization techniques without the process to solve the‘Hamilton-Jacobi-type'equation by the difference method.The method proposed is illustrated with two 2D examples. One gives the unit cell with positive Poisson's ratio, the other with negative Poisson's ratio. The examples show the method based on TDF is effective for material design.

  13. Electro-active material (EAM) based bend sensors

    Science.gov (United States)

    LaComb, Ronald; LaComb, Julie

    2010-04-01

    The capability to accurately estimate strain and orientation of cables in an undersea environment is important for a multitude of applications. One way to estimate the positional location of a submersed cable is to utilize a network of distributed bend sensors providing inputs to a curve fitting algorithm. In this work commercially available bend sensors are characterized for small deflections. In addition proto-type devices are presented which can potentially improve device sensitivity. Commercially available bend sensors are based upon electro-active materials and variable resistance materials. Electro-active materials (EAM) are known for their actuator functionality but certain EAMs are capable of sensing as well. New advances in materials such as Ionic Polymer Metal Composites (IPMC) are proving suitable for quasi-static sensor applications. These sensors are low power, conformal and produce directionally dependent output voltages which are linearly proportional to deflection, with voltage polarity representative of the deflection direction. IPMCs are capable of being morphed for increased sensitivity. Variable resistivity sensors are based on smart epoxy polymer and carbon loaded inks. These sensors are inexpensive and conformal and unlike EAMs provide static measurements.

  14. RECYCLING RECOVERED WOOD-BASED MATERIALS. FLATNESS, MOR AND MOE OF PANELS MADE FROM RECOVERED WOODEN BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Andrea DEÁK

    2015-12-01

    Full Text Available The objective of the research was to study the mechanical properties of recovered solid wood and wood-based materials, to create new panels made of strips of recovered oak and spruce wood, particleboards and blockboards and to study their mechanical properties, feasibility and use. Flatness, MOR and MOE were determined for the solid wood and wood-based materials recovered from construction and demolition sites. Four types of experimental panels (PL1, PL2, PALL1 and PALL2 were manufactured from solid wood strips alternating with either particleboard or blockboard strips glued edge to edge. Some of their physical and mechanical properties were investigated. All new panels made from recovered materials fell within allowable limits specified in European standard requirements for panel flatness. Panels type PL2, PALL1 and PALL2 show better values for MoR and MoE parallel to the grain when compared to the respective values for the recovered wood-based materials of which they are made, but panels type PL1 show no change. Panels type PALL2 are preferable to panels type PALL1 due to better mechanical properties. Panels type PL1 and PL2 show no such differences in their structure. The results also show that these new panels can be used successfully in furniture production, provided panels type PL1, PL2 ad PALL1 do not bear loads perpendicular to the grain or receive reinforcing elements.

  15. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  16. Material identification based upon energy-dependent attenuation of neutrons

    Science.gov (United States)

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  17. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  18. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O' Flynn, B; O' Mathuna, C, E-mail: wensi.wang@tyndall.ie [Tyndall National Institute, Dyke Parade, Cork (Ireland)

    2011-08-17

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm{sup 2} Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651{mu}W to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72{mu}W, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  19. SPH-based simulation of multi-material asteroid collisions

    CERN Document Server

    Maindl, Thomas I; Speith, Roland; Süli, Áron; Forgács-Dajka, Emese; Dvorak, Rudolf

    2013-01-01

    We give a brief introduction to smoothed particle hydrodynamics methods for continuum mechanics. Specifically, we present our 3D SPH code to simulate and analyze collisions of asteroids consisting of two types of material: basaltic rock and ice. We consider effects like brittle failure, fragmentation, and merging in different impact scenarios. After validating our code against previously published results we present first collision results based on measured values for the Weibull flaw distribution parameters of basalt.

  20. Process optimization electrospinning fibrous material based on polyhydroxybutyrate

    Science.gov (United States)

    Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.

    2016-05-01

    The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.

  1. Memory devices based on organic electric bistable materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; BAI Hua; SHI GaoQuan

    2007-01-01

    Organic/metallic composites have demonstrated electrical bistability, as well as memory effects. These advanced materials have shown potential applications in digital information storage because of their good stability, flexibility and fast response speed. The electric bistability phenomenon can be explained by electric field-induced electron transfer/storage. This article reviews the recent progress of memory devices based on organic/metallic and polymeric composites with electric bistability.

  2. Development of copper based drugs, radiopharmaceuticals and medical materials

    OpenAIRE

    Szymański, Paweł; Frączek, Tomasz; Markowicz, Magdalena; Mikiciuk-Olasik, Elżbieta

    2012-01-01

    Copper is one of the most interesting elements for various biomedical applications. Copper compounds show vast array of biological actions, including anti-inflammatory, anti-proliferative, biocidal and other. It also offers a selection of radioisotopes, suitable for nuclear imaging and radiotherapy. Quick progress in nanotechnology opened new possibilities for design of copper based drugs and medical materials. To date, copper has not found many uses in medicine, but number of ongoing researc...

  3. Calcium phosphate-based ceramic and composite materials for medicine

    International Nuclear Information System (INIS)

    The topical problems in chemistry and technology of materials based on calcium phosphates aimed at both the replacement of damaged bone tissue and its regeneration are discussed. Specific features of the synthesis of nanocrystalline powders and the fabrication of ceramic implants are described. Advances in the development of porous scaffolds from resorbable and osteoconductive calcium phosphates and of hybrid composites that form the basis of bone tissue engineering are considered.

  4. Theory based design and optimization of materials for spintronics applications

    Science.gov (United States)

    Xu, Tianyi

    The Spintronics industry has developed rapidly in the past decade. Finding the right material is very important for Spintronics applications, which requires good understanding of the physics behind specific phenomena. In this dissertation, we will focus on two types of perpendicular transport phenomena, the current-perpendicular-to-plane giant-magneto-resistance (CPP-GMR) phenomenon and the tunneling phenomenon in the magnetic tunnel junctions. The Valet-Fert model is a very useful semi-classical approach for understanding the transport and spin-flip process in CPP-GMR. We will present a finite element based implementation for the Valet-Fert model which enables a practical way to calculate the electron transport in real CPP-GMR spin valves. It is very important to find high spin polarized materials for CPP-GMR spin valves. The half-metal, due to its full spin polarization, is of interest. We will propose a rational way to find half-metals based on the gap theorem. Then we will focus on the high-MR TMR phenomenon. The tunneling theory of electron transport in mesoscopic systems will be covered. Then we will calculate the transport properties of certain junctions with the help of Green's function under the Landauer-Buttiker formalism, also known as the scattering formalism. The damping constant determines the switching rate of a device. We can calculate it using a method based on the Extended Huckel Tight-Binding theory (EHTB). The symmetry filtering effect is very helpful for finding materials for TMR junctions. Based upon which, we find a good candidate material, MnAl, for TMR applications.

  5. Industrial Preparation of Bauxite-based Mullite Raw Material

    Institute of Scientific and Technical Information of China (English)

    YANG Zhongzheng; DING Baohua

    2008-01-01

    Bauxite-based mullite grogs were prepared with grade II bauxite(≤3mm)and coal gangue(≤3mm)as starting materials with formula of w(Al2O3)=68%~72%.Mill the mixture to particle size≤0.044mm by wet milling to homogenize chemical composition. After shaping by wet extrusion and drying, the materials were fired at 1550℃, 1600℃ and 1700℃ for 6 hours respectively. After cooling apparent porosity and bulk density of fired materials were tested. The results show as follows: the appropriate sintering temperature for bauxite-based mullite with homogeneous and consistent composition and microstructure and properties is 1600℃,at which the mullite has apparent porosity≤1.5%,bulk density≥2.81g·cm-3and refractoriness under load is 1610-1650℃.Compared with the laboratory results, the sintering temperature is lowered about 100℃,bulk density increased 0.06g?cm-3.The industrial feasibility of preparing bauxite-based mullite grogs with the processing is confirmed.

  6. Therapeutic use of alpha-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, M. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Wuerzburg (Germany)

    2005-07-01

    In recent years there is a growing interest in the therapeutic use of {alpha}-emitters for patient treatment, {alpha}-particles have much higher energy and their range is only a few cell diameters. Their high LET and the limited ability of cells to repair DNA damage from {alpha}-radiation explain their high relative biological effectiveness and cytotoxicity. Potential {alpha}-emitting isotopes for therapeutic applications are {sup 224}Ra, {sup 223}Ra, {sup 213}Bi and {sup 211}At. The treatment with {alpha}-particles is focused upon targeted cancer therapy using radiolabeled monoclonal antibodies, on palliation of bone metastases or upon pain relief in patients with ankylosing spondylitis (AS). Examples for targeted cancer therapy are the treatment of melanoma with {sup 213}Bi and non-Hodgkin lymphoma with {sup 211}At. For metastatic bone pain palliation {sup 223}Ra was applied in a phase I clinical trial. For amelioration of pain in AS-patients {sup 224}Ra-chloride is used. This radiopharmaceutical is licensed for this particular application in Germany. Today there are some potential clinical applications for {alpha}-emitters although most of them are in the state of scientific, non-routine investigations. In-vivo dosimetry for risk assessment associated with this treatment is even more difficult to perform than for therapies using beta-emitting radiopharmaceuticals. (orig.)

  7. Muon Emittance Exchange with a Potato Slicer

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D. J. [Univ. of Mississippi, Oxford, MS (United States); Hart, T. L. [Univ. of Mississippi, Oxford, MS (United States); Acosta, J. G. [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, L. M. [Univ. of Mississippi, Oxford, MS (United States); Oliveros, S. J. [Univ. of Mississippi, Oxford, MS (United States); Perera, L. P. [Univ. of Mississippi, Oxford, MS (United States); Neuffer, D. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  8. Muon Emittance Exchange with a Potato Slicer

    CERN Document Server

    Summers, D J; Acosta, J G; Cremaldi, L M; Oliveros, S J; Perera, L P; Neuffer, D V

    2015-01-01

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long ...

  9. Signatures of reionization on Lyman alpha emitters

    CERN Document Server

    Dayal, Pratika; Gallerani, Simona

    2008-01-01

    We use a semi-analytic model of Lyman alpha emitters (LAEs) to constrain the reionization history. By considering two physically motivated scenarios in which reionization ends either early (ERM, z_i ~ 7) or late (LRM, z_i ~ 6), we fix the global value of the IGM neutral fraction (e.g. chi_{HI}=3 times 10^{-4}, 0.15 at z=6.56 for the ERM and LRM, respectively) leaving only the star formation efficiency and the effective escape fraction of Lya photons as free parameters. The ERM fits the observed LAE luminosity function (LF) at z=5.7 and 6.56 requiring no redshift evolution or mass dependence of the star formation efficiency, and LAE star formation rates (SFR) of 3-103 solar masses/year, contributing approximately 8% of the cosmic SFR density at z=5.7. The LRM requires a physically uncomfortable drop of approximately 4.5 times in the SFR of the emitters from z=6.5 to 5.7. Thus, the data seem to imply that the Universe was already highly ionized at z=6.56. The mass-dependent Lya transmissivity is between 0.36-0....

  10. An evaluation of candidate oxidation resistant materials

    Science.gov (United States)

    Rutledge, Sharon; Banks, Bruce; Mirtich, Michael; Difilippo, Frank; Hotes, Deborah; Labed, Richard; Dever, Terese; Kussmaul, Michael

    1987-01-01

    Ground based testing of materials considered for Kapton solar array blanket protection, graphite epoxy structural member protection, and high temperature radiators was performed in an RF plasma asher. Ashing rates for Kapton were correlated with rates measured on STS-8 to determine the exposure time equivalent to one year in low Earth orbit (LEO) at a constant density space station orbital flux. Protective coatings on Kapton from Tekmat, Andus Corporation, and LeRC were evaluated in the plasma asher and mass loss rates per unit area were measured for each sample. All samples evaluated provided some protection to the underlying surface but ion beam sputter deposited samples of SiO2 and SiO2 with 8% polytetrafluoroethylene (PTFE) showed no evidence of degradation after 47 hours of exposure. Mica paint was evaluated as a protective coating for graphite epoxy structural members. Mica appears to be resistant to attack by atomic oxygen but only offers some limited protection as a paint because the paint vehicles evaluated to date were not resistant to atomic oxygen. Four materials were selected for evaluation as candidate radiator materials: stainless steel, copper, niobium-1% zirconium, and titanium-6% aluminum-4% vanadium. These materials were surface textured by various means to improve their emittance. Emittances as high as 0.93 at 2.5 microns for stainless steel and 0.89 at 2.5 microns for Nb-1 Zr were obtained from surface texturing. There were no significant changes in emittance after asher exposure.

  11. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    Science.gov (United States)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  12. A new silver based composite material for SPA water disinfection.

    Science.gov (United States)

    Tartanson, M A; Soussan, L; Rivallin, M; Chis, C; Penaranda, D; Lapergue, R; Calmels, P; Faur, C

    2014-10-15

    A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h.

  13. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators

    Directory of Open Access Journals (Sweden)

    Janno Torop

    2009-12-01

    Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.

  14. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O2, strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H2 aq → H2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose rate

  15. Use of coated silicon field emitters as neutralisers for fundamental physics missions in space

    CERN Document Server

    Aplin, K L; Collingwood, C M; Wang, L; Stevens, R; Huq, S E; Malik, A

    2005-01-01

    Spacecraft neutralisers are required as part of the ion propulsion system for accurate station keeping in fundamental physics missions. A silicon field emitter neutraliser is under development at the Rutherford Appleton Laboratory. Thin layers of insulating materials as coatings for the gated field emitter array structure are described, which are postulated to reduce power consumption and reduce overheating. The power consumption and lifetime of aluminium nitrude and amorphous hydrogen diamond-like carbon coatings were promising, performing better in endurance tests than uncoated samples, but further work is required to characterise the coating's physical properties and its effects on field emission. The thermal conductivity of the coating material appeared to have little effect on the sample lifetimes. Aluminium nitride had reduced power consumption compared to diamond-like carbon coated and uncoated samples. A thin (~5nm)layer was optimal, meeting European Space Agency specifications for the neutraliser eng...

  16. Cathodoluminescence Emission Studies for Selected Phosphor-Based Sensor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Goedeke, Shawn [ORNL; Hollerman, William Andrew [ORNL; Allison, Stephen W [ORNL; Gray, P A [Integrated Concepts and Research Corporation - Huntsville, AL; Lewis, Linda A [ORNL; Smithwick III, Robert W [ORNL; Boatner, Lynn A [ORNL; Glasgow, David C [ORNL; Ivanov, Ilia N [ORNL; Wise, H. [Integrated Concepts and Research Corporation - Huntsville, AL

    2005-01-01

    The current interest in returning to the Moon and Mars by 2030 makes cost effective and low mass health monitoring sensors essential for spacecraft development. In space, there are many surface measurements that are required to monitor the condition of the spacecraft including: surface temperature, radiation dose, and impact. Through the use of phosphors, these conditions can be monitored. Practical space-based phosphor sensors will depend heavily upon research investigating the resistance of phosphors to ionizing radiation and the ability to anneal or self-heal from damage caused by ionizing radiation. The cathodoluminescence (CL) testing was performed using the low energy electron system located at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. For the materials tested, several interesting results were observed. For most materials, increases in both beam energy and current density improved the CL fluorescence yield. It was also noted that YAG:Nd,Ce has the greatest near infrared intensity for any of the tested materials. The evaluation of dopant concentration in YPO{sub 4}:Nd showed minimal differences in spectral shape and intensity. While the total electron dose was small, the intention was to maximize the number of irradiated materials.

  17. Modification of clay-based waste containment materials

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K. [DuPont Central Research and Development, Newark, DE (United States); Whang, J.M. [DuPont Specialty Chemicals, Deepwater, NJ (United States); McDevitt, M.F. [DuPont Central Research and Development, Wilmington, DE (United States)

    1997-12-31

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs.

  18. Hydrogen Adsorption in Carbon-Based Materials Studied by NMR

    Science.gov (United States)

    Wu, Yue; Kleinhammes, Alfred; Anderson, Robert; Mao, Shenghua

    2007-03-01

    Hydrogen adsorption in carbon-based materials such as boron-doped graphite and boron-doped single-walled carbon nanotubes (SWNTs) were investigated by nuclear magnetic resonance (NMR). ^1H NMR is shown to be a sensitive and quantitative probe for detecting adsorbed gas molecules such as H2, methane, and ethane. NMR measurements were carried out in-situ under given H2 pressure up to a pressure of over 100 atm. From such ^1H NMR measurement, the amount of adsorbed H2 molecules was determined versus pressure. This gives an alternative method for measuring the adsorption isotherms where the H2 signature is identified based on spin properties rather than weight or volume as in gravimetric and volumetric measurements. The measurement shows that boron doping has a favorable effect on increasing the adsorption enthalpy of H2 in carbon-based systems. This work was done in collaboration with NREL and Department of Chemistry, University of Pennsylvania, within the DOE Center of Excellence on Carbon-based Hydrogen Storage Materials and is supported by DOE.

  19. Degradation of chitosan-based materials after different sterilization treatments

    Science.gov (United States)

    San Juan, A.; Montembault, A.; Gillet, D.; Say, J. P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L.

    2012-02-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  20. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  1. A new shipping container for an intense neutron emitter

    International Nuclear Information System (INIS)

    Californium-252 is an intense neutron emitter (2.34 x 1012 n/s·g) used in medicine, research, and industry. The western world's sole source of this rare radioisotope is the Californium Facility at Oak Ridge National Laboratory's Radiochemical Engineering Development Center (REDC). A project has been initiated at the REDC to design a new Type B Californium Shipping Container. This effort is essential for future transportation of californium to meet the needs of users all over the world. The shipping container must meet all requirements for transport by motor freight, air, vessel, and rail, both domestic and foreign. There are unique problems in the design, fabrication, and licensing of a new Type B shipping container that will accommodate up to 60 milligrams of californium-252. One of the first challenges in the design phase of the project is the selection of a material to shield the high neutron flux. The more stringent safety precautions of today's world impel us to consider more exotic materials for such a purpose. The candidate materials must be examined not just for their neutron shielding properties, but also in conjunction with other properties such as thermal and structural requirements to withstand the hypothetical accident conditions. The design and building of such a container is a formidable task requiring much planning. The licensing process, with the complex, interactive federal codes, is a special challenge and may be the biggest on the project in terms of time and money

  2. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    Directory of Open Access Journals (Sweden)

    Naomi Tanoue

    2013-07-01

    Full Text Available OBJECTIVE: The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. MATERIAL AND METHODS: Disk specimens (diameter 10 mm and thickness 2.5 mm were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1 air-abraded with 50-70-µm grain alumina (CON; 2 1 + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA; 3 1 + conditioned with a primer including a diphosphate monomer (MDP; 4 treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. RESULTS: The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05 greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. CONCLUSION: Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used.

  3. Investigation of composite materials using SLM-based phase retrieval.

    Science.gov (United States)

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2013-07-01

    We present a robust method to inspect a typical composite material constructed of carbon fiber reinforced plastic (CFRP). It is based on optical surface contouring using the spatial light modulator (SLM)-based phase retrieval technique. The method utilizes multiple intensity observations of the wave field, diffracted by the investigated object, captured at different planes along the optical axis to recover the phase information across the object plane. The SLM-based system allows for the recording of the required consecutive intensity measurements in various propagation states across a common recording plane. This overcomes the mechanical shifting of a camera sensor required within the capturing process. In contrast to existing phase retrieval approaches, the measuring time is considerably reduced, since the switching time of the SLM is less than 50 ms. This enables nondestructive testing under thermal load. Experimental results are presented that demonstrate the approach can be used to assess structural properties of technical components made from CFRP.

  4. Investigation of composite materials using SLM-based phase retrieval.

    Science.gov (United States)

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2013-07-01

    We present a robust method to inspect a typical composite material constructed of carbon fiber reinforced plastic (CFRP). It is based on optical surface contouring using the spatial light modulator (SLM)-based phase retrieval technique. The method utilizes multiple intensity observations of the wave field, diffracted by the investigated object, captured at different planes along the optical axis to recover the phase information across the object plane. The SLM-based system allows for the recording of the required consecutive intensity measurements in various propagation states across a common recording plane. This overcomes the mechanical shifting of a camera sensor required within the capturing process. In contrast to existing phase retrieval approaches, the measuring time is considerably reduced, since the switching time of the SLM is less than 50 ms. This enables nondestructive testing under thermal load. Experimental results are presented that demonstrate the approach can be used to assess structural properties of technical components made from CFRP. PMID:23811877

  5. Influence of container base material (Fe) on SIMFUEL leaching behaviour

    International Nuclear Information System (INIS)

    The chemical stability of spent fuel will be greatly influenced by the redox potential of the near field. Presence of reductants such as iron is likely to be an important factor to maintain the original integrity of spent fuel. In this work experimental data about the influence of metallic iron (container base material) on SIMFUEL leaching behavior under simulated granite and saline repository conditions is presented. In the presence of iron uranium concentration undergoes a sharp decrease. This is much more noticeable in the experiments performed under initial oxic conditions. The effect of iron on simulated fission products of SIMFUEL is very important for the elements with high redox sensitivity such as molybdenum. On the contrary, strontium remains stable during the entire tests and it seems not be affected by changes in redox potential. Copyright (2001) Material Research Society

  6. Development of foamed Inorganic Polymeric Materials based on Perlite

    Science.gov (United States)

    Tsaousi, G.-M.; Douni, I.; Taxiarchou, M.; Panias, D.; Paspaliaris, I.

    2016-04-01

    This work deals with the development of lightweight geopolymeric boards for use in construction sector utilizing a solid perlitic waste as the main raw material. Hydrogen peroxide (H2O2) was used for the foaming of geopolymeric pastes and the production of porous and lightweight inorganic polymeric materials. The effect of geopolymeric synthesis parameters, such as the composition of activator and the curing conditions, on paste's properties that affect the foaming process, such as setting time and viscosity, were studied in detailed. Finally, the effects of H2O2 concentration on the properties (apparent density and % cell volume) and the microstructure of foamed boards were also studied. The produced porous boards have effective densities in-between 540 - 900 Kg/m3 and the thermal conductivity of the optimum product is 0.08 W/mK. Based on their properties, the developed lightweight geopolymeric boards have high potential to be used as building elements in construction industry.

  7. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  8. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  9. Jamming of Quantum Emitters by Active Coated Nanoparticles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2013-01-01

    effectively cloak the emitters to a far-field observer is reported and explained through thorough near- and far-field investigations. This property offers an interesting route toward the jamming of quantum emitters/nanoantennas that might be of potential use, for instance, in biological fluorescence assays...

  10. Spectral beam combining of multi-single emitters

    Science.gov (United States)

    Wang, Baohua; Guo, Weirong; Guo, Zhijie; Xu, Dan; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Chen, Xiaohua

    2016-03-01

    Spectral beam combination expands the output power while keeps the beam quality of the combined beam almost the same as that of a single emitter. Spectral beam combination has been successfully achieved for high power fiber lasers, diode laser arrays and diode laser stacks. We have recently achieved the spectral beam combination of multiple single emitter diode lasers. Spatial beam combination and beam transformation are employed before beams from 25 single emitter diode lasers can be spectrally combined. An average output power about 220W, a spectral bandwidth less than 9 nm (95% energy), a beam quality similar to that of a single emitter and electro-optical conversion efficiency over 46% are achieved. In this paper, Rigorous Coupled Wave analysis is used to numerically evaluate the influence of emitter width, emitter pitch and focal length of transform lens on diffraction efficiency of the grating and spectral bandwidth. To assess the chance of catastrophic optical mirror damage (COMD), the optical power in the internal cavity of a free running emitter and the optical power in the grating external cavity of a wavelength locked emitter are theoretically analyzed. Advantages and disadvantages of spectral beam combination are concluded.

  11. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  12. Coated nano-particle jamming of quantum emitters

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2012-01-01

    Spherical active coated nano-particles are examined analytically and numerically in the presence of one, two or four quantum emitters (electric Hertzian dipoles). The ability of the coated nano-particle to effectively cloak the emitters to a far-field observer is reported. This offers an...

  13. Bunch transverse emittance increase in electron storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper a theoretical framework to estimate the bunch transverse emittance growing in electron storage rings due to short range transverse wakefield of the machine is established. New equilibrium emittance equations are derived and applied to explain the experimentally obtained results in ATF damping ring. This equation will be useful for linear collider damping ring design.

  14. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials.

    Science.gov (United States)

    Márquez Brazón, E; Piccirillo, C; Moreira, I S; Castro, P M L

    2016-11-01

    Pharmaceutical persistent pollutants pose a serious threat to the environment. The aim of this study was to use, for the first time, hydroxyapatite-based biomaterials as photocatalysts to degrade micropollutants. Diclofenac and fluoxetine were selected for these initial tests. Hydroxyapatite (Ca10(PO4)(OH)2, HAp) is one of the most commonly used biomaterials/bioceramics, being a major constituent of bone. In this work sustainable HAp-based materials of marine origin, obtained from cod fish bones, were used; these photocatalysts were previously fully studied and characterised. Both single-phase HAp and HAp-titania multicomponent materials (1 wt% TiO2) were employed as UV light photocatalysts, the latter showing better performance, indicated by higher degradation rates of both compounds. The HAp-titania photocatalyst showed excellent degradation of both persistent pollutants, the maximum degradation performance being 100% for fluoxetine and 92% for diclofenac, with pollutant and photocatalyst concentrations of 2 ppm and 4 g/L, respectively. Variations in features such as pollutant and photocatalyst concentrations were investigated, and results showed that generally fluoxetine was degraded more easily than diclofenac. The photocatalyst's crystallinity was not affected by the photodegradation reaction; indeed the material exhibited good photostability, as the degradation rate did not decrease when the material was reused. Tests were also performed using actual treated wastewater; the photocatalyst was still effective, even if with lower efficiency (-20% and -4% for diclofenac and fluoxetine, respectively). TOC analysis showed high but incomplete mineralisation of the pollutants (maximum 60% and 80% for DCF and FXT, respectively). PMID:27526086

  15. Marine fungi: Degraders of poly-3-hydroxyalkanoate based plastic materials

    Directory of Open Access Journals (Sweden)

    Matavulj Milan

    2009-01-01

    Full Text Available The search for new biosynthetic and biodegradable materials to save nonrenewable resources and reduce global pollution problems is an urgent task. Recently, materials like thermoplastic poly-3-hydroxyalkanoates (PHA, have been found synthesized by bacteria as storage materials. The major PHAs synthesized are poly-b-hydroxybutyrate (PHB, poly-b-hydroxyvalerate (PHV and their copolymers. They are already commercially produced and used as BIOPOLTM (ICI, England. Their complete degradability by bacteria has already been shown. Today, oceans and estuaries serve as major landfills, and since fungi are an important part of the degrading microbiota, in order to prove their participation in the degradation process, a simple degradation test suitable for fungi and marine conditions had to be developed. Several solid media based on artificial sea water, differing in the content of non-alkanoate organics and supplemented with 0.1% PHA (or BIOPOLTM as a main source of carbon have been tested. The testing principle consists of clearing the turbid medium in test tube or plates caused by suspended granules of PHA. All media tested supported the growth of fungi. For the discrete and transparent clearing of zones, a mineral medium with 0.01% peptone, 0.01% yeast extract, and 0.1% PHB or BIOPOLTM was finally chosen where the fine and evenly distributed turbidity is accomplished by a specific procedure. This method allows the investigation of degradability of PHA-based plastic materials as well as screening for fungal ability to depolymerise pure PHA homopolymers. Using this medium, 32 strains of marine yeasts and 102 strains of marine mycelial fungi belonging to different systematic and ecological groups were tested for their ability to degrade PHAs. Only about 4% of the strains were able to degrade BIOPOLTM and about 6% depolymerised pure PHB homopolymer. This is in sharp contrast to the results of our previous experiments with 143 strains of terrestrial fungi

  16. Mesoporous Carbon-based Materials for Alternative Energy Applications

    Science.gov (United States)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  17. Theoretical study on charge injection and transport properties of six emitters with push–pull structure

    International Nuclear Information System (INIS)

    Highlights: • We investigated six small organic molecules by using computational approaches. • This investigation is mainly based on the Marcus electron transfer theory. • The density functional theory (DFT) was used in this investigation. • The IP, EA, reorganization energy and transfer integral were calculated. • We analyzed the charge properties of the molecules by using the computed results. - Abstract: The charge injection and transport properties of six organic light-emitting molecules with push–pull structures were studied by theoretical calculations. The ground-state geometries for the neutral, cationic and anionic states were optimized using density functional theory. Subsequently, the ionization potentials and electron affinities were calculated. We computed the reorganization energies and the transfer integrals based on the Marcus electron transfer theory. It was found that in addition to being emitters the six compounds are multifunctional materials being capable of transport for both holes and electrons. Moreover, the double-branched compound DCDPC2 was found to have higher charge injection ability and better balanced charge transport properties than single-branched compounds

  18. Large Optical Gain AlInN-Delta-GaN Quantum Well for Deep Ultraviolet Emitters.

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Borovac, Damir; Tansu, Nelson

    2016-01-01

    The optical gain and spontaneous emission characteristics of low In-content AlInN-delta-GaN quantum wells (QWs) are analyzed for deep ultraviolet (UV) light emitting diodes (LEDs) and lasers. Our analysis shows a large increase in the dominant transverse electric (TE) polarized spontaneous emission rate and optical gain. The remarkable enhancements in TE-polarized optical gain and spontaneous emission characteristics are attributed to the dominant conduction (C)-heavy hole (HH) transitions achieved by the AlInN-delta-GaN QW structure, which could lead to its potential application as the active region material for high performance deep UV emitters. In addition, our findings show that further optimizations of the delta-GaN layer in the active region are required to realize the high performance AlInN-based LEDs and lasers with the desired emission wavelength. This work illuminates the high potential of the low In-content AlInN-delta-GaN QW structure to achieve large dominant TE-polarized spontaneous emission rates and optical gains for high performance AlN-based UV devices.

  19. Large Optical Gain AlInN-Delta-GaN Quantum Well for Deep Ultraviolet Emitters

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Borovac, Damir; Tansu, Nelson

    2016-01-01

    The optical gain and spontaneous emission characteristics of low In-content AlInN-delta-GaN quantum wells (QWs) are analyzed for deep ultraviolet (UV) light emitting diodes (LEDs) and lasers. Our analysis shows a large increase in the dominant transverse electric (TE) polarized spontaneous emission rate and optical gain. The remarkable enhancements in TE-polarized optical gain and spontaneous emission characteristics are attributed to the dominant conduction (C)-heavy hole (HH) transitions achieved by the AlInN-delta-GaN QW structure, which could lead to its potential application as the active region material for high performance deep UV emitters. In addition, our findings show that further optimizations of the delta-GaN layer in the active region are required to realize the high performance AlInN-based LEDs and lasers with the desired emission wavelength. This work illuminates the high potential of the low In-content AlInN-delta-GaN QW structure to achieve large dominant TE-polarized spontaneous emission rates and optical gains for high performance AlN-based UV devices. PMID:26961170

  20. Emittance compensation of CW DC-gun photoinjector

    International Nuclear Information System (INIS)

    Emittance growth induced by space charge effect is very important, especially for CW DC-gun photoinjector. In this work, the linear space charge force and its effect on electron beam transverse emittance are studied, and the principle and properties of emittance compensation by solenoid are analyzed. The CAEP DC-gun photoinjector with a solenoid is also simulated by code Parmela. Simulated results indicate that the normalized transverse emittance of an 80 pC bunch at the 350 keV DC-gun ex-it is 5.14 mm · mrad. And after compensated by a solenoid, it becomes 1.27 mm · mrad. The emittance of beam is well compensated. (authors)

  1. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  2. Superradiance of a subwavelength array of independent classical nonlinear emitters

    CERN Document Server

    Nefedkin, N E; Zyablovsky, A A; Pukhov, A A; Vinogradov, A P; Lisyansky, A A

    2015-01-01

    We suggest a mechanism for the emergence of a superradiance burst in a subwavelength array of nonlinear classical emitters. We assume that the emitters interact via their common field of radiative response and that they may have an arbitrary distribution of initially phases. We show that only if this distribution is not uniform, a non-zero field of radiative response arises leading to a superradiance burst. Although this field cannot synchronize the emitters, it forces fast oscillations of a classical nonlinear emitter to have long-period envelopes. Constructive interference in the envelopes creates a large dipole moment of the array which results in a superradiance pulse. The intensity of the superradiance is proportional to the squared number of the emitters, which envelopes participate in the fluctuation.

  3. Evaluations of carbon nanotube field emitters for electron microscopy

    International Nuclear Information System (INIS)

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x109 A/m2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  4. Self-consistent, unbiased root-mean-square emittance analysis

    Science.gov (United States)

    Stockli, Martin P.; Welton, R. F.; Keller, R.

    2004-05-01

    We present a self-consistent method for analyzing measured emittance data that yields unbiased estimates for the root-mean-square (rms) emittance. The self-consistent, unbiased elliptical exclusion analysis uses an ellipse to determine the bias from the data outside the ellipse, before calculating the rms emittance from the bias-subtracted data within the ellipse. Increasing the ellipse size until the rms emittance estimate saturates allows for determining the minimum elliptical area that includes all real signals, even those buried in the noise. Variations of the ellipse shape and orientations are used to test the robustness of the results. Background fluctuations cause fluctuations in the rms emittance estimate, which are an estimate of the uncertainty incurred through the analysis.

  5. Vanadium-based nanostructure materials for secondary lithium battery applications

    Science.gov (United States)

    Tan, Hui Teng; Rui, Xianhong; Sun, Wenping; Yan, Qingyu; Lim, Tuti Mariana

    2015-08-01

    Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to ``create'' newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization.

  6. New absorbent material acoustic based on kenaf’s fibre

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2010-09-01

    Full Text Available Acoustic Standards in the building are responsible for, companies and individuals, propose new acoustic materials for the sound isolation. This paper presents a new sound-absorbent material, it is based on natural fibres, particularly fibres of kenaf. It also proposes an empirical model for this material, this models depends on the frequency. There are accepted models from the scientific community about mineral wool, glass wool, rock wool, foam or polyester fibre. Several of these models are empirical. They are obtained from the equation adjustments about the acoustic impedance and propagation constant behaviour, depending upon the flow resistivity, fibre’s diameter and density. There are even standards like UNE-EN 12354-6 where these models are accepted under certain limitations like the fundamental basis as in the materials’ acoustics behaviour prediction. From the various tests conducted in the laboratory, empirical equations are proposed for this new acoustic material. In addition, there has been a first approach to validate this model in combination with a micro-structural model, based on the steps taken by Bies-Hansen (1, which allows us to obtain the value of the resistance to flow.

    El carácter marcadamente prestacional de las normativas acústicas en la edificación abre el camino a la propuesta, por parte de empresas y particulares, de nuevos materiales acústicos susceptibles de ser utilizados en el ámbito de la acústica de la edificación. Éste es el caso que nos ocupa en el presente trabajo en el que se presenta un nuevo material acústico absorbente basado en fibras vegetales, concretamente el kenaf. Además se propone un modelo empírico de modelización del comportamiento absorbente de varias composiciones de este material en función de la frecuencia. Existen modelos de diferentes lanas minerales, lanas de roca, lanas de vidrio, espumas o lanas de poliéster. Algunos de estos modelos —llamados empíricos— se

  7. A new concept for the modeling of the positron emitter production for the particle therapy; Ein neues Konzept zur Modellierung der Positronenemitter-Produktion bei der Partikeltherapie

    Energy Technology Data Exchange (ETDEWEB)

    Priegnitz, Marlen

    2012-07-01

    One of the three main tumour treatment forms is radiation therapy. Here, the application of ion beams, in particular protons and carbon ions, is of growing importance. This high precision therapy requires a consequent monitoring of the dose delivery since the induced dose deposition is very sensitive to density changes in the irradiated tissue. Up to now, positron emission tomography (PET) is the only in vivo method in clinical use for monitoring the dose deposition in ion beam therapy. It allows for the verification of the particle range as well as the position of the irradiation field. The distribution of activity measured by means of PET cannot be compared directly to the planned dose distribution. Thus, a calculation of the expected activity distribution is required which then can be compared to the measurement. Simulation of the expected activity distribution requires the exact knowledge of various cross sections. Only a few of them have been measured in the required energy range so far. Therefore, in Monte Carlo simulations often intrinsic nuclear models or semi-empirical parametrization are used which often exhibit insufficient accuray. Among experts the question on the optimum ion species for tumour therapy is still open. Especially lithium ions exhibit a great potential due to their favourable physical and radiobiological properties. Also for these ions a PET monitoring is highly desirable. The presented work shows the feasibility of range verification by means of PET for lithium irradiation. Furthermore, a concept for modeling positron emitter distributions without the knowledge of cross sections is developed. This prediction is based on depth-dependent positron emitter yields measured in reference materials (water, graphite and polyethylene). With these data the positron emitter distribution in any material of known stoichiometry can be calculated by means of an appropriate linear combination. The feasibility of the yield concept is shown for lithium and

  8. Advanced materials characterization based on full field deformation measurements

    Science.gov (United States)

    Carpentier, A. Paige

    Accurate stress-strain constitutive properties are essential for understanding the complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. Among such materials, glass-fiber- and carbon-fiber-reinforced polymer--matrix composites play a critical role in advanced structural designs. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slows down the material characterization. Also, some of the material constitutive properties are never measured due to the prohibitive cost of the specimens needed. This work shows that simple short-beam shear (SBS) specimens are well-suited for measurement of multiple constitutive properties for composite materials and that can enable a major shift toward accurate material characterization. The material characterization is based on the digital image correlation (DIC) full-field deformation measurement. The full-field-deformation measurement enables additional flexibility for assessment of stress--strain relations, compared to the conventional strain gages. Complex strain distributions, including strong gradients, can be captured. Such flexibility enables simpler test-specimen design and reduces the number of different specimen types required for assessment of stress--strain constitutive behavior. Two key elements show advantage of using DIC in the SBS tests. First, tensile, compressive, and shear stress--strain relations are measured in a single experiment. Second, a counter-intuitive feasibility of closed-form stress and modulus models, normally applicable to long beams, is demonstrated for short-beam specimens. The modulus and stress--strain data are presented for glass/epoxy and carbon/epoxy material systems. The applicability of the developed method to static, fatigue, and impact load rates is also demonstrated. In a practical method to determine stress-strain constitutive relations, the stress

  9. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  10. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  11. Emittance compensation for an SRF photo injector

    Energy Technology Data Exchange (ETDEWEB)

    Vennekate, H.; Lu, P. [HZDR (Germany); TU Dresden (Germany); Arnold, A.; Mucek, P.; Teichert, J.; Xiang, R. [HZDR (Germany); Kamps, T. [HZB (Germany); Kneisel, P. [JLab (Germany); Voelker, J. [HZB (Germany); Humboldt Universitaet Berlin (Germany); Volkov, V. [BINP (Germany); Will, I. [MBI (Germany)

    2013-07-01

    The development of a superconducting photo injector is an ongoing challenge at the HZDR in Dresden. Several milestones like the first operation of a half cell niobium cavity in 2002 and the worldwide first beam transfer from a 3 1/2-cell SRF gun into an actual accelerator structure have already been accomplished. Nevertheless, as superconducting electron sources are of great interest for future ERL or cw operated FEL projects, studies to improve their output parameters and stability continue to get them on the same level as their normal conducting counterparts. The talk discusses several of the current approaches to reduce the transversal emittance of the next 3 1/2-cell cavity at the HZDR including the installation of a superconducting solenoid within the gun's cryostat.

  12. Gamma emitters in Hong Kong water

    International Nuclear Information System (INIS)

    Radioactivity in water originates from natural and artificial sources. The development of a nuclear powerplant near Hong Kong necessitates that attention be given to formulating techniques to assess the possible resultant environmental radioactive contamination. Water samples collected from various sites in Hong Kong in the spring and summer of 1987, representing seawater, river water, reservoir water, drinking water, and underground water were studied through gamma-ray spectral analysis. Only gamma emitters in the U238 and Th232 series and K40 were detected. No fission product was detected with specific activity above 0.1 Bq/kg. The data could be the baseline for future monitoring of the radioactivity released from a nuclear plant being built at a 50-km distance from Hong Kong. The variation of detected specific activities may be due to geological differences and the effect of plants. 1 ref., 3 tabs

  13. Space Charge Effects in Rectilinear Motion Emittance

    CERN Document Server

    Chen, C

    2000-01-01

    This report summarizes the presentations and discussions over a wide range of topics in Working Group I at the Second ICFA Advanced Accelerator Workshop on Physics of High-Brightness Beams held at University of California at Los $9 Angeles (UCLA), November 9-12, 1999. Latest developments towards to a better understanding of high-brightness photoinjectors were reported. The design and commissioning of the Los Alamos National Laboratory (LANL) Low-Energy $9 Demonstration Accelerator (LEDA) Radio-Frequency Quadrupole (RFQ) were reported. The problem of beam halo formation was discussed in both beam transport systems and the SLAC 50 MW 11.4 GHz periodic permanent magnet (PPM) focusing $9 klystron amplifier. A new class of corkscrewing elliptic beam equilibria was reported, and applications of such novel beam equilibria in controlling of charge-density and velocity fluctuations, beam halo formation and emittance $9 growth were discussed. Pattern formation in proton rings was also discussed.

  14. Water-based technique to produce porous PZT materials

    Science.gov (United States)

    Galassi, C.; Capiani, C.; Craciun, F.; Roncari, E.

    2005-09-01

    Water based colloidal processing of PZT materials was investigated in order to reduce costs and employ more environmental friendly manufacturing. The technique addressed was the production of porous thick samples by the so called “starch consolidation”. PZT “soft” compositions were used. The “starch consolidation” process allows to obtain the green body by raising the temperature of a suspension of PZT powder, soluble starch and water, cast into a metal mould. The influence of the processing parameters and composition on the morphology, pore volumes, pore size distributions and piezoelectric properties are investigated. Zeta potential determination and titration with different deflocculants were essential tools to adjust the slurry formulation.

  15. Radiation dosimetry in radiotherapy with internal emitters

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, Michael G. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-12-31

    Full text. Radiation dosimetry radionuclides are currently being labeled to various biological agents used in internal emitter radiotherapy. This talk will review the various technologies and types of radiolabel in current use, with focus on the characterization of the radiation dose to the various important tissues of the body. Methods for obtaining data, developing kinetic models, and calculating radiation doses will be reviewed. Monoclonal antibodies are currently being labeled with both alpha and beta emitting radionuclides in attempts to find effective agents against cancer. Several radionuclides are also being used as bone pain palliation agents. These agents must be studied in clinical trials to determine the biokinetics and radiation dosimetry prior to approval for general use. In such studies, it is important to ensure the collection of the appropriate kinds of data and to collect the data at appropriate time intervals. The uptake and retention of activity in all significant source organs and in excreta be measured periodically (with at least 2 data points phase of uptake or clearance). Then, correct dosimetry methods must be applied - the best available methods for characterizing the radionuclide kinetic and for estimating the dosimetry in the various organs of the body especially the marrow, should be used. Attempts are also under way to develop methods for estimating true patient-specific dosimetry. Cellular and animal studies are also. Valuable in evaluating the efficacy of the agents in shrinking or eliminating tumors; some results from such studies will also be discussed. The estimation of radiation doses to patients in therapy with internal emitters involves several complex phases of analysis. Careful attention to detail and the use of the best available methods are essential to the protection of the patient and a successful outcome

  16. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    Science.gov (United States)

    Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G. P.; Biagi, E.; Roncaglia, A.

    2014-08-01

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices.

  17. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    International Nuclear Information System (INIS)

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices. (paper)

  18. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  19. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  20. A batteryless temperature sensor based on high temperature sensitive material

    Science.gov (United States)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui