WorldWideScience

Sample records for based electron microbeam

  1. A nanotube based electron microbeam cellular irradiator for radiobiology research

    OpenAIRE

    Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha

    2008-01-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiothera...

  2. A nanotube based electron microbeam cellular irradiator for radiobiology research

    Science.gov (United States)

    Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha

    2008-12-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1-100 Gy/s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development.

  3. A nanotube based electron microbeam cellular irradiator for radiobiology research

    International Nuclear Information System (INIS)

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1-100 Gy/s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development.

  4. An accelerator-based neutron microbeam system for studies of radiation effects

    OpenAIRE

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2010-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam...

  5. Beam characterisation of the KIRAMS electron microbeam system

    International Nuclear Information System (INIS)

    An electron microbeam system has been installed at the Korea Inst. of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 μm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV μm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics. (authors)

  6. Development of a nano-technology based low-LET multi-microbeam array single cell irradiation system

    International Nuclear Information System (INIS)

    A novel single cell irradiation system using carbon nano-tube (CNT) based field emission technology is proposed. The system can produce electron microbeam at a large range of pulsation frequencies and dose rates with energy between 20 and 60 keV. Different from any existing single beam microbeam device, the CNT-based system can have 10,000 microbeam pixels, each is ∼10 μm in size and individually controlled. Microscope imaging will be used for targeting cell(s) and the coordinate(s) identification. A single cell or large number of individually selected cells can be simultaneously irradiated under real time microscope observation. This poster reports our preliminary results in the initial stage of the CNT multi-pixel microbeam array development - prototype single pixel CNT microbeam device development. (authors)

  7. A Variable-Energy Electron Microbeam: A Unique Modality for Targeted Low-LET Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marianne B.; Murphy, Mark K.; Miller, John H.; McDonald, Joseph C.; Strom, Daniel J.; Kimmel, Greg A.

    2005-11-01

    We have designed and constructed a low-cost, variable energy low-LET electron microbeam that utilizes energetic electrons to mimic radiation damage produced from y- and X -rays. The microbeam can access lower regions of the LET spectra, analogous to that produced by a 60Co source. The device has two operating modes, as a conventional microbeam targeting single cells or sub-populations of cells or as a pseudo broad beam source allowing for direct comparison with conventional sources. By varying the incident electron energy, the target cells can be selectively exposed to different parts of the energetic electron tracks, including the track ends.

  8. A Variable-Energy Electron Microbeam: A Unique Modality for Targeted Low-LET Radiation

    International Nuclear Information System (INIS)

    We have designed and constructed a low-cost, variable energy low-LET electron microbeam that utilizes energetic electrons to mimic radiation damage produced from y- and X -rays. The microbeam can access lower regions of the LET spectra, analogous to that produced by a 60Co source. The device has two operating modes, as a conventional microbeam targeting single cells or sub-populations of cells or as a pseudo broad beam source allowing for direct comparison with conventional sources. By varying the incident electron energy, the target cells can be selectively exposed to different parts of the energetic electron tracks, including the track ends

  9. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma

    International Nuclear Information System (INIS)

    Using microradiography, X-ray microbeam diffraction and electron probe microanalysis, a correlated morphologic and crystallographic study was performed on dysplastic enamel in a compound odontoma. The tumor was found in the lateral incisor-canine region of the left mandible of a 36-year-old woman. A conspicuous feature was the presence of hypomineralized areas, which were situated in the proximity of enamel surface and distinctly demarcated from the adjacent enamel. X-ray microbeam diffraction and electron microanalysis showed that these lesions have a lower crystallinity and a higher concentration of magnesium as compared with the adjacent enamel. In addition, the present study revealed the presence of two other types of calcifications: 1) calcified structures within the fissure or on the enamel surface, which include lacunae of varying size and which resemble a form of coronal cementum, and 2) spherical calcifications which may be an epithelial product. (author)

  10. Real time monitoring of electronic materials and devices using microbeams

    International Nuclear Information System (INIS)

    IBIC and IBIL techniques with proton microbeams of diameter of the order of 1 μm and of energy in the interval 2 MeV-6 MeV have been used in different configurations and geometries in order to characterize frontier semiconducting or insulating materials like GaAs and CVD diamond, or more traditional materials like Si, by looking at space distribution of important transport parameters like drift and diffusion lengths. By applying lateral IBIC in GaAs Schottky diodes it had been possible to follow directly the widening of depletion region as a function of bias voltage, while for Si drift/diffusion structures a particular code has been developed in order to measure directly the diffusion length and lifetime of minority carriers. In CVD diamond both IBIC and IBIL measurements have been performed in frontal and lateral geometries. The main results are represented by the correlation between IBIC maps and morphology of the grains, with the conclusion that collection length is limited by the grain dimensions, by the proof of the validity of the linear model, by the clarification of the spatial behaviour of the 'primed' or irradiated state in terms of homogenization and improvement of charge collection length and, finally, by the observation of a quasi-complementarity in space between IBIC and IBIL maps, with the conclusion that in CVD diamond the recombination is mainly radiative. Moreover, concerning nitrogen content, a method has been proposed in order to forecast the detector quality of CVD diamond from IBIL spectra. (author)

  11. Free Vibration of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Reddy Beam Theory

    Science.gov (United States)

    Ansari, R.; Gholami, R.; Sahmani, S.

    2014-09-01

    The microscale vibration characteristics of microbeams made of functionally graded materials (FGMs) are investigated based on the strain gradient Reddy beam theory capable of capturing the size effect. The non-classical governing differential equations, together with the corresponding boundary conditions, are obtained using Hamilton's principle. Then, the free vibration problem of simply supported FGM microbeams is solved using the Navier solution. The natural frequencies of FGM microbeams are calculated corresponding to a wide range of dimensionless length scale parameters, material property gradient indices, and aspect ratios to illustrate the influences of size effect on the vibrational response of FGM microbeams.

  12. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  13. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    CERN Document Server

    Matsui, J; Yokoyama, K; Takeda, S; Katou, M; Kurihara, H; Watanabe, K; Kagoshima, Y; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 sup - sup 5 -10 sup - sup 6. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO sub 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  14. Fabrication of devices for channeling-based high-energy micro-beams

    Science.gov (United States)

    Antonini, A.; Guidi, V.; Martinelli, G.; Milan, E.

    2007-05-01

    Presently MeV energy micro-beams are employed to study the cell response to radiation-induced damage. In fact, one of the frontiers is the study of radiobiological effects of particle radiation on human tissues. At relatively low energy (of the order of MeV), micro-beam facilities have been constructed to irradiate living cells with the aim to understand the architecture of biological tissues on radiation response and its behaviour at low dose. Interaction of radiation at high energy (GeV or higher) and its effects have indeed been considered for interplanetary space missions where a human equipage is being submitted to prolonged interaction with direct cosmic radiation. Thus, some particle accelerator laboratories study methods for implementation of micro-beam facilities to address the interaction of high-energy protons and ions with cells. A channeling-based scheme for generation of micro-beams has been proposed in the past; two designs for micro-collimator devices have been considered in this study and preliminary samples have been accordingly produced.

  15. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    OpenAIRE

    Schreiber, Eric C.; Chang, Sha X.

    2012-01-01

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on ca...

  16. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory

    Science.gov (United States)

    Sourki, R.; Hoseini, S. A. H.

    2016-04-01

    This paper investigates the analysis for free transverse vibration of a cracked microbeam based on the modified couple stress theory within the framework of Euler-Bernoulli beam theory. The governing equation and the related boundary conditions are derived by using Hamilton's principle. The cracked beam is modeled by dividing the beam into two segments connected by a rotational spring located at the cracked section. This model invokes the consideration of the additional strain energy caused by the crack and promotes a discontinuity in the bending slope. In this investigation, the influence of diverse crack position, crack severity, material length scale parameter as well as various Poisson's ratio on natural frequencies is studied. A comparison with the previously published studies is made, in which a good agreement is observed. The results illustrate that the aforementioned parameters are playing a significant role on the dynamic behavior of the microbeam.

  17. Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array

    Science.gov (United States)

    Chtcheprov, Pavel; Hadsell, Michael; Burk, Laurel; Ger, Rachel; Zhang, Lei; Yuan, Hong; Lee, Yueh Z.; Chang, Sha; Lu, Jianping; Zhou, Otto

    2013-03-01

    Micro-beam radiation therapy (MRT) uses parallel planes of high dose narrow (10-100 um in width) radiation beams separated by a fraction of a millimeter to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000Gy of entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during the treatment can result in significant movement of micro beam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), and thus can reduce the effectiveness of the MRT. Recently we have developed the first bench-top image guided MRT system for small animal treatment using a high powered carbon nanotube (CNT) x-ray source array. The CNT field emission x-ray source can be electronically synchronized to an external triggering signal to enable physiologically gated firing of x-ray radiation to minimize motion blurring. Here we report the results of phantom study of respiratory gated MRT. A simulation of mouse breathing was performed using a servo motor. Preliminary results show that without gating the micro beam full width at tenth maximum (FWTM) can increase by 70% and PVDR can decrease up to 50%. But with proper gating, both the beam width and PVDR changes can be negligible. Future experiments will involve irradiation of mouse models and comparing histology stains between the controls and the gated irradiation.

  18. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the

  19. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  20. X-ray microbeams based on Kumakhov polycapillary optics and its applications: Analytical consideration

    Indian Academy of Sciences (India)

    A Yu Romanov

    2011-02-01

    Kumakhov polycapillary optics is based on the effective passage of X-ray radiation through bundles of monocapillaries of various configurations. The passage of radiation takes place because of the total external reflection of X-rays from the inner capillary walls. In this work,the basic characteristics of intense quasi-parallel X-ray polycapillary microbeams from a laboratory source with microfocus X-ray tube/polycapillary cylindrical structure are investigated theoretically (analytical consideration). The data generated from theoretical estimations are compared with the experimental results. Several new generations of X-ray analytical devices like, laboratory synchrotron, fluorescent spectrometers, reflectometers/refractometers, diffractometers, X-ray microscopes and combinations of several such devices, are developed based on polycapillary optics. Besides, a number of devices can be developed for the most modern research problems such as nanomateriology, namely, X-ray nanoscanner, portable X-ray nanothickness indicator etc. X-ray tubes and the radiators, specially developed for polycapillary optics as efficiently as possible, are used in all the devices mentioned above.

  1. Channeling-based collimators for generation of microbeams produced by silicon micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Guidi, V. [Ferrara University, Department of Physics and INFN, Via Saragat 1, I-44100 Ferrara (Italy)]. E-mail: guidi@fe.infn.it; Antonini, A. [Ferrara University, Department of Physics and INFN, Via Saragat 1, I-44100 Ferrara (Italy); Milan, E. [Ferrara University, Department of Physics and INFN, Via Saragat 1, I-44100 Ferrara (Italy); Ronzoni, A. [Ferrara University, Department of Physics and INFN, Via Saragat 1, I-44100 Ferrara (Italy); Martinelli, G. [Ferrara University, Department of Physics and INFN, Via Saragat 1, I-44100 Ferrara (Italy); Biryukov, V.M. [Institute for High-Energy Physics, Protvino, Pobedy 1, 142280 (Russian Federation); Chesnokov, Yu.A. [Institute for High-Energy Physics, Protvino, Pobedy 1, 142280 (Russian Federation)

    2006-11-15

    The growing interest on micro-beams in recent years and the combined development of channeling technology in high-energy physics have opened the way to new concepts for micro-beams devices. Silicon micromachining technology is here applied to manufacture micro-collimators in inexpensive and feasible ways. Both dry and wet etchings can be employed for the purpose, though the latter technique appears to be cheaper and easier. Two designs for micro-collimator devices have been considered and preliminary samples have been produced accordingly.

  2. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    International Nuclear Information System (INIS)

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior

  3. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  4. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  5. Development of single-ion microbeam at Fudan university

    International Nuclear Information System (INIS)

    New beam line was constructed on the 2 × 3 MV tandem accelerator in the Institute of Modern Physics, Fudan University, for the development of a biological single-ion microbeam. Accelerated ion beam will first be deflected by 30° by an analyzing magnet and bended vertically up by 90° to the end of the beam line. Borosilicate glass capillary, with the inner diameter of 1.5 μm, was installed at the end of the beamline to extract an ion microbeam. A special structure of scintillator film and photomultiplier installed at the endstation of the microbeam exit was used for precise detection and counting of the microbeam ions. A high voltage beam deflector was installed on the beam line for a fast beam cutting action when predefined number of microbeam ions had arrived to target cells. Based on the overall design, low energy proton microbeam, with the energy of 3 MeV, FWHM<60 keV and a spatial resolution within 2.2 μm has been acquired in current experiment. Quantitative irradiation by the collimated microbeam has shown a precision above 95%. In this paper, the basic design and development progress of the microbeam facility was introduced, including the relevant parts of beamline design., microbeam generation, high voltage beam deflector and single-ion detection. (authors)

  6. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  7. Microbeams in radiation biology: Review and critical comparison

    International Nuclear Information System (INIS)

    Microbeams have undergone a renaissance since their introduction and early use in the mid-60's. Recent advances in imaging, software and beam delivery have allowed rapid technological developments in microbeams for use in a range of experimental studies. Microbeams allow the effects of single radiation tracks to be determined in a highly quantified way. They offer a unique tool for following DNA damage and repair in a highly controlled way. More importantly, they allow radiation to be targeted to specific regions within a cell to probe subcellular radiosensitivity. They are also playing an important role in our understanding of bystander responses, where cells not directly irradiated can respond to irradiated neighbours. Although these processes have been studied using a range of experimental approaches, microbeams offer a unique route by which bystander responses can be elucidated. Without exception, all of the microbeams currently active have studied bystander responses in a range of cell and tissue models. Together, these studies have considerably advanced our knowledge of the underpinning mechanisms. Much of this has come from charged particle microbeam studies, but increasingly, X-ray and electron microbeams are starting to contribute quantitative and mechanistic information on bystander effects. A recent development has been the move from studies with 2-D cell culture models to more complex 3-D systems where the possibilities of utilising the unique characteristics of microbeams in terms of their spatial and temporal delivery will make a major impact. (authors)

  8. Self-consistent depth profiling and imaging of GaN-based transistors using ion microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Cubero, A., E-mail: andres.redondo@uam.es [IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal); Departamento de Física Aplicada y Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Corregidor, V. [IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid (Spain); Alves, L.C. [C2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal)

    2015-04-01

    Using an ion microprobe, a comprehensive lateral and in-depth characterization of a single GaN-based high electron mobility transistor is carried out by means of Rutherford backscattering spectrometry (RBS) in combination with particle induced X-ray emission (PIXE). Elemental distribution was obtained for every individual section of the device (wafer, gate and source contact), identifying the basic constituents of the transistor (including the detection of the passivant layer) and checking its homogeneity. A self-consistent analysis of each individual regions of the transistor was carried out with a simultaneous fit of RBS and PIXE spectra with two different beam conditions. Following this approach, the quantification of the atomic content and the layer thicknesses was successfully achieved overcoming the mass-depth ambiguity of certain elements.

  9. Size effect on the static behavior of electrostatically actuated microbeams

    Institute of Scientific and Technical Information of China (English)

    Li Yin; Qin Qian; Lin Wang

    2011-01-01

    We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam, and smaller beam thickness displays stronger size effect and hence yields smaller deflection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter, the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.

  10. Assessment of mechanical properties of metallic thin-films through micro-beam testing

    International Nuclear Information System (INIS)

    Microelectronic industry is driven by the continuous miniaturization process conducing to the introduction of materials with better performance. These materials are subjected to stresses mainly due to thermal mismatch, microstructural changes or process integration which can be in the origin of mechanical reliability issues. To study these phenomena and even electromigration a good mechanical characterization of the materials is needed. This work aims at developing tests to assess fracture and elastoplastic behavior of thin Cu films. The tests developed are based on the deflection of microbeams (micromachined using a focused ion beam) using a nanoindenter. Different test geometries for microbeams have been evaluated and quantitative data have been obtained combining experimental results with analytical or numerical models, depending on the property under study. Microbeam response shows a strong dependence on the orientation of the grains close to the fixed end. Grain orientation has been measured by electron backscatter diffraction and the plastic behavior has been modeled by the finite element method using an in-house crystal plasticity subroutine. The effect of film thickness on fracture energy has been determined from tests of notched beams. - Highlights: • Cu microbeams have been machined with a focused ion beam and tested at a TriboIndenter. • Crystal plasticity has been accounted for when modeling constitutive behavior of Cu. • Fracture energy has been calculated using notched microcantilever beams. • Fracture energy decreases with film thickness

  11. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  12. Real-time observation of irradiated Hela-cell Modified by Fluorescent ubiquitination-based Cell Cycle Indicator Using Synchrotron X-Ray Microbeam

    International Nuclear Information System (INIS)

    Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle. (authors)

  13. Microbeam radiation therapy

    Science.gov (United States)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  14. The GEANT4 toolkit for microdosimetry calculations: Application to microbeam radiation therapy (MRT)

    International Nuclear Information System (INIS)

    Theoretical dose distributions for microbeam radiation therapy (MRT) are computed in this paper using the GEANT4 Monte Carlo (MC) simulation toolkit. MRT is an innovative experimental radiotherapy technique carried out using an array of parallel microbeams of synchrotron-wiggler-generated x rays. Although the biological mechanisms underlying the effects of microbeams are still largely unknown, the effectiveness of MRT can be traced back to the natural ability of normal tissues to rapidly repair small damages to the vasculature, and on the lack of a similar healing process in tumoral tissues. Contrary to conventional therapy, in which each beam is at least several millimeters wide, the narrowness of the microbeams allows a rapid regeneration of the blood vessels along the beams' trajectories. For this reason the calculation of the ''valley'' dose is of crucial importance and the correct use of MC codes for such purposes must be understood. GEANT4 offers, in addition to the standard libraries, a specialized package specifically designed to deal with electromagnetic interactions of particles with matter for energies down to 250 eV. This package implements two different approaches for electron and photon transport, one based on evaluated data libraries, the other adopting analytical models. These features are exploited to cross-check theoretical computations for MRT. The lateral and depth dose profiles are studied for the irradiation of a 20 cm diameter, 20 cm long cylindrical phantom, with cylindrical sources of different size and energy. Microbeam arrays are simulated with the aid of superposition algorithms, and the ratios of peak-to-valley doses are computed for typical cases used in preclinical assays. Dose profiles obtained using the GEANT4 evaluated data libraries and analytical models are compared with simulation results previously obtained using the PENELOPE code. The results show that dose profiles computed with GEANT4's analytical model are almost

  15. Microbeam facility at NIRS

    International Nuclear Information System (INIS)

    Radiation biophysics or microdosimetry has suggested radiation effect mechanism. Full understanding of it has not yet been obtained. There are vast variety of events in physical, chemical and biological processes from at the time of irradiation to biological endpoints. Analysis of RBE-LET relation for biological endpoints like survival, mutation and transformation in cultured mammalian cells is still the leading subject to study the physical processes. The biological and repair processes have been studied phenomenologically through dose rate effect or fractionation experiment. Human genome project has accelerated biological sciences as a whole taking methodology of the molecular biology, where the mechanism is explained by molecules involved. We have thus to know entity and its (biological) function in every single process. Molecular biological approach in radiation biology has started and revealed several proteins being involved in the repair processes. Quantitative relation between phenomenological data like cell survivals and molecular processes, however, has been little known yet. A promising approach to fill this gap should be the study by microbeam, which enables us to see, for example, a deletion in chromosomal level by a single particle traverse of cell nucleus and may suggest possible molecular processes. Under this motivation we started feasibility study on installation of a microbeam port in our Tandem accelerator (5.1 MeV 4He2+). We have planned to adopt a lens focusing and a scanning system developed (by the Oxford microbeam Ltd) for the existing micro PIXE system in NIRS, which has basically achieved irradiation to a cell within a position resolution of 2 micrometer. There are two practical requirements, i.e. precise positioning and faster irradiation. These are described including research subjects planned. (author)

  16. 6th International Microbeam Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dr Kevin M. Prise

    2004-01-01

    The extended abstracts which are submitted here present a summary of the proceedings of the 6th International Workshop/12th LH Gray Workshop: Microbeam Probes of Cellular Radiation Response, held at St. Catherine's College, University of Oxford, UK on March, 29th-31st, 2003. In 1993 the 4th LH Gray Workshop entitled ''Microbeam Probes of Cellular Radiation Response'' was held at the Gray Cancer Institute in Northwood. This was organized by Prof BD Michael, Dr M. Folkard and Dr KM Prise and brought together 40 participants interested in developing and applying new microbeam technology to problems in radiation biology (1). The workshop was an undoubted success and has spawned a series of subsequent workshops every two years. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Following the first microbeam workshop, there has been a rapid growth in the number of centres developing radiobiology microbeams, or planning to do so and there are currently 15-20 worldwide. Much of the recent research using microbeams has used them to study low-dose effects and ''non-targeted'' responses such bystander effects, genomic instability and adaptive responses. The goal of the 6th workshop was to build on our knowledge of the development of microbeam approaches and the application to radiation biology in the future with the meeting stretching over a 3 day period. Over 80 participants reviewed the current state of radiobiology microbeam research worldwide and reported on new technological developments both in the fields of physics and biology.

  17. Microbeam Studies of the Bystander Response

    OpenAIRE

    Prise, Kevin M.; SCHETTINO, Giuseppe; Vojnovic, Boris; BELYAKOV, Oleg; Shao, Chunlin

    2009-01-01

    Microbeams have undergone a renaissance since their introduction and early use in the mid 60s. Recent advances in imaging, software and beam delivery have allowed rapid technological developments in microbeams for use in a range of experimental studies.

  18. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    J Kamila; S Roy; K Bhattacharjee; B Rout; B N Dev; R Guico; J Wang; A W Haberl; P Ayyub; P V Satyam

    2006-04-01

    Proton beam lithography has made it possible to make various types of 3D-structures in polymers. Usually PMMA, SU-8, PS polymers have been used as resist materials for lithographic purpose. Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface of PtBA polymer is studied using the optical and secondary electron microscopic experimental methods.

  19. Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool

    CERN Document Server

    Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N

    2000-01-01

    Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...

  20. Improvement of the Energy Stability of the Single Ion Microbeam

    Institute of Scientific and Technical Information of China (English)

    ZHAN Furu; QI Xuehong; XU Mingliang; CHEN Lianyun; YU Zengliang

    2008-01-01

    Energy instability strongly affects the state and the beam size of the single ion microbeam. A facility based on the Generating Voltmeter was developed to improve the energy stability of the CAS-LIBB (Chinese Academy of Sciences, key laboratory of ion beam bioengineering) single ion microbeam. This paper presents the analysis of the energy instability of the single ion microbeam. A simplified theoretical model is set up to calculate the relationship between the energy instability and the beam spot size. By using this technique, the energy instability is adjusted to about 1%. Stable run-time is over 6 hours. The radius of the single ion beam is reduced by 10% compared to the previous one.

  1. Verification of micro-beam irradiation

    Science.gov (United States)

    Li, Qiongge; Juang, Titania; Beth, Rachel; Chang, Sha; Oldham, Mark

    2015-01-01

    Micro-beam Radiation Therapy (MRT) is an experimental radiation therapy with provocative experimental data indicating potential for improved efficacy in some diseases. Here we demonstrated a comprehensive micro-beam verification method utilizing high resolution (50pm) PRESAGE/Micro-Optical-CT 3D Dosimetry. A small PRESAGE cylindrical dosimeter was irradiated by a novel compact Carbon-Nano-Tube (CNT) field emission based MRT system. The Percentage Depth Dose (PDD), Peak-to-Valley Dose Ratio (PVDR) and beam width (FWHM) data were obtained and analyzed from a three strips radiation experiment. A fast dose drop-off with depth, a preserved beam width with depth (an averaged FWHM across three beams remains constant (405.3um, sigma=13.2um) between depth of 3.0~14.0mm), and a high PVDR value (increases with depth from 6.3 at 3.0mm depth to 8.6 at 14.0mm depth) were discovered during this verification process. Some operating procedures such as precise dosimeter mounting, robust mechanical motions (especially rotation) and stray-light artifact management were optimized and developed to achieve a more accurate and dosimetric verification method.

  2. Memory and survival after microbeam radiation therapy

    International Nuclear Information System (INIS)

    Background: Disturbances of memory function are frequently observed in patients with malignant brain tumours and as adverse effects after radiotherapy to the brain. Experiments in small animal models of malignant brain tumour using synchrotron-based microbeam radiation therapy (MRT) have shown a promising prolongation of survival times. Materials and methods: Two animal models of malignant brain tumour were used to study survival and memory development after MRT. Thirteen days after implantation of tumour cells, animals were submitted to MRT either with or without adjuvant therapy (buthionine-SR-sulfoximine = BSO or glutamine). We used two orthogonal 1-cm wide arrays of 50 microplanar quasiparallel microbeams of 25 μm width and a center-to-center distance of about 200 μm, created by a multislit collimator, with a skin entrance dose of 350 Gy for each direction. Object recognition tests were performed at day 13 after tumour cell implantation and in monthly intervals up to 1 year after tumour cell implantation. Results: In both animal models, MRT with and without adjuvant therapy significantly increased survival times. BSO had detrimental effects on memory function early after therapy, while administration of glutamine resulted in improved memory

  3. Other applications of ion microbeams

    International Nuclear Information System (INIS)

    The paper concerns the analytical and non-analytical applications of ion microbeams. The analytical applications considered include:-fusion research, environmental studies, ion implantations and criminology, and each is briefly discussed. Non-analytical applications in which nuclear microprobes have been used include:-thickness and uniformity measurements, energy loss radiography, channelling contrast, tomography, topography, ion implantation, and detector testing, and these are also discussed. (UK)

  4. The scanning microbeam PIXE analysis facility at NIRS

    International Nuclear Information System (INIS)

    In March 1999, a HVEE Tandetron was installed in the Electrostatic Accelerator Building of National Institute of Radiological Sciences (NIRS) for particle induced X-ray emission (PIXE) analysis. The specifications of the Tandetron accelerator system operating at NIRS are as follows: the accelerating voltage is 0.4-1.7 MV, and the maximum beam current is 500 nA at 3.4 MeV. The accelerator facility incorporates three beam lines for conventional, in-air and microbeam PIXE analysis. The scanning microbeam PIXE analysis line is based around an Oxford Microbeams OM2000 nuclear microscope end stage. This system provides the ability of multi-elemental mapping over sample areas up to 2 x 2 mm area with spatial resolutions routinely at 1 x 1 μm. The scheduled operation of this facility started in April 2000 and is controlled by the Division of Technical Service and Development. The result of beam resolution tests carried out in 2001 are as follows: for scanning transmission ion microscopy, the estimated beam size is 100 x 200 nm, measured using a 2.6 MeV proton beam scanned over a 12.7 μm repeat distance copper grid. For PIXE operation at 50 pA beam current the estimated best spot size is 0.4 x 0.6 μm. The microbeam facility is being used for research into the elemental distribution of small biological samples such as biological cells and tissue

  5. Microbeam-coupled capillary electrophoresis

    International Nuclear Information System (INIS)

    Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical (O2-*) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University. (authors)

  6. Microcontroller based electronic load

    International Nuclear Information System (INIS)

    A microcontroller based electronic load has been designed and developed for testing of power supplies in CAT, Indore. This system is designed to operate in 4 different modes viz. constant current, constant power, constant resistance and constant resistance-inductance mode. This dynamic electronic load is very useful because a single load can be used in four different modes and different values can be emulated in each mode. It can be used as a switching load too. User interface has been provided to set the mode of operation and the set point during run time. (author)

  7. An automated scanning ion microbeam system

    International Nuclear Information System (INIS)

    A standard Russian quadruplet lens system providing a microbeam on a 6 MV Van de Graaff accelerator has been fitted with an automated scanner. Samples housed in a special target chamber can be positioned accurately in two dimensions with respect to the beam. This is achieved by stepping motors. Two pairs of deflection coils provide electromagnetic deflection of the beam in two dimensions and the combination of electrical deflection of the beam and mechanical displacement of the sample permits scanning over a sample area of 10 mm x 10 mm. A staircase current waveform is provided to the coils and data accumulated at each step is routed appropriately to addresses in a large multichannel analyser (computer). The target chamber accommodates particle and X-ray detectors. The electronic operation is controlled by a microprocessor. The requirements of a complete scan are entered through the keyboard and the complete operation including writing of spectral data onto magnetic tape follows automatically. The arrangement has been used to study details of the oxidation behaviour of iron-chromium alloys as part of a larger programme of oxidation studies centred round the 18O (p,α)15 N reaction. (orig.)

  8. An automated scanning ion microbeam system

    Science.gov (United States)

    Requicha Ferreira, L. F.; Calvert, J. M.

    A standard Russian quadruplet lens system providing a microbeam on a 6 MV Van de Graaff accelerator has been fitted with an automated scanner. Samples housed in a special target chamber can be positioned accurately in two dimensions with respect to the beam. This is achieved by stepping motors. Two pairs of deflection coils provide electromagnetic deflection of the beam in two dimensions and the combination of electrical deflection of the beam and mechanical displacement of the sample permits scanning over a sample area of 10 mm × 10 mm. A staircase current waveform is provided to the coils and data accumulated at each step is routed appropriately to addresses in a large multichannel analyser (computer). The target chamber accommodates particle and X-ray detectors. The electronic operation is controlled by a microprocessor. The requirements of a complete scan are entered through the keyboard and the complete operation including writing of spectral data onto magnetic tape follows automatically. The arrangement has been used to study details of the oxidation behaviour of iron-chromium alloys as part of a larger programme of oxidation studies centred round the 18O(p, α) 15N reaction.

  9. Time Resolved Ion Beam Induced Current measurements on MOS capacitors using a cyclotron microbeam

    International Nuclear Information System (INIS)

    As overlayers on electronic devices become progressively thicker, radiation effects microscopy using traditional microbeams (with ion energies up to a few tens of MeVs) is becoming less and less viable. To penetrate to the sensitive regions of these devices, much higher energies, several hundreds of MeVs are necessary. These high energies are available only from cyclotrons. A nuclear microprobe has been developed on the AVF cyclotron of the Takasaki Ion Accelerators for Advanced Radiation Applications (TIARA) facility. In this paper we will present the first results using 260 MeV Ne and 520 MeV Ar microbeams to perform Time Resolved Ion Beam Induced Current (TRIBIC) measurements on Metal-Oxide-Semiconductor (MOS) capacitors. The results will be compared to data taken with a traditional 15 MeV O microbeam.

  10. X-ray microbeam quantification of grain subdivision accompanying large deformations of copper

    International Nuclear Information System (INIS)

    Polychromatic synchrotron x-ray microbeams offer a very efficient alternative to electron beam methods for quantifying the amount and character of grain subdivision accompanying large deformations. With a 0.01 mm diameter collimator, bending magnet radiation from a 3.0 GeV source and image storage plates, samples of copper with thicknesses greater than 0.1 mm have been studied. Results from an as-received sample and a sample deformed to 100% torsion are compared and illustrate how efficiently grain subdivision can be quantified with polychromatic microbeam diffraction

  11. Development of micromachining technology in ion microbeam system at TIARA, JAEA.

    Science.gov (United States)

    Kamiya, T; Nishikawa, H; Satoh, T; Haga, J; Oikawa, M; Ishii, Y; Ohkubo, T; Uchiya, N; Furuta, Y

    2009-03-01

    An ion-beam-lithography technique has been progressed in the microbeam systems at Japan Atomic Energy Agency (JAEA) Takasaki. In order to obtain a high-precision measure for microbeam size estimation with a high precision, we applied this technique combined with the electroplating process to make a Ni relief pattern as a resolution standard used in secondary electron imaging. As a result, the smallest beam size could be recorded. The scattering of ions in the materials influenced the spatial resolution and this is also discussed. PMID:18674918

  12. Development of micromachining technology in ion microbeam system at TIARA, JAEA

    International Nuclear Information System (INIS)

    An ion-beam-lithography technique has been progressed in the microbeam systems at Japan Atomic Energy Agency (JAEA) Takasaki. In order to obtain a high-precision measure for microbeam size estimation with a high precision, we applied this technique combined with the electroplating process to make a Ni relief pattern as a resolution standard used in secondary electron imaging. As a result, the smallest beam size could be recorded. The scattering of ions in the materials influenced the spatial resolution and this is also discussed

  13. Development of micromachining technology in ion microbeam system at TIARA, JAEA

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, T. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA) 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Center for Flexible Micro-Machining, Shibaura Institute of Technology, 307 Ohaza Fukasaku, Minuma-ku, Saitama, Saitama 337-8570 (Japan); 21st Century COE Program, Gunma University 39-22 Showa-machi 3-chome, Maebashi, Gunma 371-8511 (Japan)], E-mail: kamiya.tomihiro@jaea.go.jp; Nishikawa, H. [Department of Electrical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Center for Flexible Micro-Machining, Shibaura Institute of Technology, 307 Ohaza Fukasaku, Minuma-ku, Saitama, Saitama 337-8570 (Japan); Satoh, T.; Haga, J. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA) 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Oikawa, M. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA) 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); 21st Century COE Program, Gunma University 39-22 Showa-machi 3-chome, Maebashi, Gunma 371-8511 (Japan); Ishii, Y.; Ohkubo, T. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA) 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Uchiya, N. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA) 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Department of Electrical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Furuta, Y. [Department of Electrical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan)

    2009-03-15

    An ion-beam-lithography technique has been progressed in the microbeam systems at Japan Atomic Energy Agency (JAEA) Takasaki. In order to obtain a high-precision measure for microbeam size estimation with a high precision, we applied this technique combined with the electroplating process to make a Ni relief pattern as a resolution standard used in secondary electron imaging. As a result, the smallest beam size could be recorded. The scattering of ions in the materials influenced the spatial resolution and this is also discussed.

  14. DNA damage and repair kinetics after microbeam radiation therapy emulation in living cells using monoenergetic synchrotron X-ray microbeams

    International Nuclear Information System (INIS)

    The molecular response of mammalian cells to a monoenergetic synchrotron X-ray microbeam which emulated microbeam radiation configurations has been investigated. Very few γH2AX foci were found outside the irradiated zone within 1 h of irradiation, even within a single nucleus. Furthermore, 12 h after radiation there was a large decrease in foci number but many cells still contained γH2AX foci, of which many were outside the directly irradiated regions. A novel synchrotron-based approach, known as microbeam radiation therapy (MRT), currently shows considerable promise in increased tumour control and reduced normal tissue damage compared with conventional radiotherapy. Different microbeam widths and separations were investigated using a controlled cell culture system and monoenergetic (5.35 keV) synchrotron X-rays in order to gain further insight into the underlying cellular response to MRT. DNA damage and repair was measured using fluorescent antibodies against phosphorylated histone H2AX, which also allowed us to verify the exact location of the microbeam path. Beam dimensions that reproduced promising MRT strategies were used to identify useful methods to study the underpinnings of MRT. These studies include the investigation of different spatial configurations on bystander effects. γH2AX foci number were robustly induced in directly hit cells and considerable DNA double-strand break repair occurred by 12 h post-10 Gy irradiation; however, many cells had some γH2AX foci at the 12 h time point. γH2AX foci at later time points did not directly correspond with the targeted regions suggesting cell movement or bystander effects as a potential mechanism for MRT effectiveness. Partial irradiation of single nuclei was also investigated and in most cases γH2AX foci were not observed outside the field of irradiation within 1 h after irradiation indicating very little chromatin movement in this time frame. These studies contribute to the understanding of the

  15. New irradiation geometry for microbeam radiation therapy

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) has the potential to treat infantile brain tumours when other kinds of radiotherapy would be excessively toxic to the developing normal brain. MRT uses extraordinarily high doses of x-rays but provides unusual resistance to radioneurotoxicity, presumably from the migration of endothelial cells from 'valleys' into 'peaks', i.e., into directly irradiated microslices of tissues. We present a novel irradiation geometry which results in a tolerable valley dose for the normal tissue and a decreased peak-to-valley dose ratio (PVDR) in the tumour area by applying an innovative cross-firing technique. We propose an MRT technique to orthogonally crossfire two arrays of parallel, nonintersecting, mutually interspersed microbeams that produces tumouricidal doses with small PVDRs where the arrays meet and tolerable radiation doses to normal tissues between the microbeams proximal and distal to the tumour in the paths of the arrays

  16. Origin of Knudsen forces on heated microbeams

    KAUST Repository

    Zhu, Taishan

    2010-09-09

    The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.

  17. Consequences of Cytoplasmic Irradiation: Studies from Microbeam

    Science.gov (United States)

    Zhou, Hongning; Hong, Mei; Chai, Yunfei; Hei, Tom K.

    2013-01-01

    The prevailing dogma for radiation biology is that genotoxic effects of ionizing radiation such as mutations and carcinogenesis are attributed mainly to direct damage to the nucleus. However, with the development of microbeam that can target precise positions inside the cells, accumulating evidences have shown that energy deposit by radiation in nuclear DNA is not required to trigger the damage, extra-nuclear or extra-cellular radiation could induce the similar biological effects as well. This review will summarize the biological responses after cytoplasm irradiated by microbeam, and the possible mechanisms involved in cytoplasmic irradiation. PMID:19346686

  18. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    Science.gov (United States)

    Zhang, Lei; Yuan, Hong; Burk, Laurel M.; Inscoe, Christy R.; Hadsell, Michael J.; Chtcheprov, Pavel; Lee, Yueh Z.; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.

  19. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors. (paper)

  20. Analysis and Optimization of Stability of CAS-LIBB Single Ion Microbeam

    Institute of Scientific and Technical Information of China (English)

    XU Mingliang; XU Yongjian; ZHAN Furu; CHEN Bin; CHEN Lianyun; LI Jun; YU Zengliang

    2008-01-01

    Single ion microbeam is the most advanced technology which can emit a single ion for precise localization. A single-ion microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB),Chinese Academy of Sciences (CAS),with a spatial resolutions of about 5 #m.Based on CAS-LIBB microbeam,three key elements affecting the quality of the system axe assessed:the size of beam spot,the energy range and the counting accuracy of implanting ions.Various contributions to the ion beam stability,including the ion source,the terminal voltage of electrostatic accelerator and the components in beam pipeline,are discussed.Analysis shows that the improvement of terminal voltage stability is the most important issue for future optimization of CAS-LIBB facility.Some preliminary investigations and project aimed at optimization and development are proposed as well.

  1. Proton microbeam analysis in air

    International Nuclear Information System (INIS)

    A technique has been developed to permit proton induced X-ray analysis (PIXA) to be carried out on biological materials in air, rather than in vacuum. Air convection can then dissipate some of the heat generated in the specimen by the proton beam. A microbeam system of magnetic quadrupoles developed for a 3MeV accelerator was used in the production of a proton beam focused to a spot of diameter less than 4μm. The beam then emerged into air through a 7.5μm kapton foil (a DuPont polyamide film, highly resistant to radiation damage) and in order to preserve positional resolution the specimens were mounted directly on the outside of the beam exit foil. The test specimen consisted of Chinese hamster lung cells washed in isotonic sucrose and plated onto the kapton. The beam was scanned in a line at comparatively high frequency (500 Hz) across the target and the X-rays emitted from the specimen detected in a 10 mm2 Si-Li detector with a resolution of 158 eV at 5.89 keV. P, S, Cl, K and Ca were found with differing positional distributions, together with Ar from the air and Si of unknown origin, by a scan across a single cell. Although the method has important intrinsic advantages, further investigations are required to show that the technique gives reasonable estimates of elemental distributions without too much perturbation of the concentration by the analytical procedure. (U.K.)

  2. Mitigation of residual oscillations in electrostatically actuated microbeams using a command-shaping approach

    Science.gov (United States)

    Godara, R. K.; Joglekar, M. M.

    2015-11-01

    When electrostatically actuated microbeams are driven by an input-waveform comprising multiple voltage steps, the resulting response inherently contains residual oscillations, which may prove detrimental to the device performance and accuracy. In this article, we report the systematic development of a command shaping technique for mitigating such residual oscillations in electrostatically actuated microbeams and achieving fast switching between the successive equilibrium states. Invoking the force balance at a critical point in an oscillation cycle, the proposed technique relies on bringing the actuator to a stagnation state by applying an additional voltage signal of specific amplitude at a predetermined time. The underlying principle of the technique is enunciated for the lumped parallel-plates model of the microactuator, and further extended to the cases of microbeams. The electromechanical model of the microbeam incorporates the effects of full-order electrostatic nonlinearity, moderately large deflections, viscous energy dissipation, and fringing fields. The modal superposition method is employed to obtain the dynamic response of microbeams. Based on a single-mode assumption, the proposed technique lends itself to a simple multistep waveform, which is attractive from the implementation point of view. The applicability of the proposed technique is demonstrated by considering a wide range of parameters involving variations in the extent of geometric nonlinearity, damping, and equilibrium sequences. The impact of higher modes on the stabilized response is exposited, and a command shaping approach based on the multi-mode response of the actuator is suggested. In particular, such an approach is shown to be effective in controlling the motion of the beam in the vicinity of the static pull-in displacement, which is associated with strong electrostatic nonlinearity. The present investigation can find its potential use in the development of an open-loop controller for

  3. Revealing the underlying mechanism of microbeam radiation therapy with low energy Monte Carlo simulations

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) is a new experimental oncological modality, intended for the treatment of inoperable brain tumours, particularly in difficult cases where conventional radiation therapy can cause irreversible damage. MRT consists of an array of highly collimated, quasi-parallel x-ray microbeams aimed at the tumour tissue, delivering high dose within the beam path and low doses in regions between the beams. For reasons still not fully understood, healthy tissue exposed to the microbeam array is able to regenerate while tumour volumes are significantly reduced. Low energy Monte Carlo radiative transport simulations provide new insight into understanding the underlying mechanisms of MRT. In particular, predicting the ionisation cluster distribution, which is a significant cause of lethal damage to cells, would provide insight into the biological responses. Geant4-DNA was used to model an x-ray microbeam of width 20 μm in liquid water. Secondary electrons, predominately responsible for ionisation clustering, were tracked to predict damage to cells within and adjacent to the beams. We find that higher energy beams (100 keV) produce less secondary electrons in the regions outside the beam than low energy beams (30-50 keV)

  4. A new paradigm in radioadaptive response developing from microbeam research

    International Nuclear Information System (INIS)

    A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve bio-chemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radio-adaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams. (author)

  5. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Hadsell, Mike, E-mail: mhadsell@stanford.edu; Cao, Guohua; Zhang, Jian; Burk, Laurel; Schreiber, Torsten; Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Schreiber, Eric; Chang, Sha [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. Methods: The microbeam dose distribution was generated by our CNT micro-CT scanner (100μm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. Results: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300μm (calculated value was 290 μm). Also, during the multiple beam simulation, a peak to valley dose ratio of ∼10 was found when the phantom translation distance was roughly 4x the beam width

  6. Diagnosis of the profile of the heavy-ion microbeam and estimation of the aiming accuracy of the single-ion-hit with using CR-39

    CERN Document Server

    Hamano, T; Takebe, M; Hirao, T; Nashiyama, I; Sakai, T; Kamiya, T

    1998-01-01

    The aiming accuracy of the single-ion-hit method has been studied by the measurement of etch-pit patterns on a CR-39 film irradiated with a heavy-ion microbeam. It becomes clear that the aiming accuracy is determined to be the size of the core-part of the microbeam, which is almost twice as large as the full width at half maximum (FWHM) beam size measured by the conventional secondary electron image method.

  7. High energy ion hit technique to local area using microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Kamiya, Tomihiro; Suda, Tamotsu; Sakai, Takuro; Hirao, Toshio; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Single energetic ion hit technique has been developed as an application of ion microbeam technique, in order to study the effect of local damage or injury to materials and living organisms. The overall performance is basically defined by those of separate techniques: microbeam formation, microbeam positioning, single ion detection, detection signal processing, hit timing control, and hit verification. Recent progress on the developments of these techniques at JAERI-TIARA facility are reviewed. (author)

  8. Parameter identification of an electrically actuated imperfect microbeam

    KAUST Repository

    Ruzziconi, Laura

    2013-12-01

    In this study we consider a microelectromechanical system (MEMS) and focus on extracting analytically the model parameters that describe its non-linear dynamic features accurately. The device consists of a clamped-clamped polysilicon microbeam electrostatically and electrodynamically actuated. The microbeam has imperfections in the geometry, which are related to the microfabrication process, resulting in many unknown and uncertain parameters of the device. The objective of the present paper is to introduce a simple but appropriate model which, despite the inevitable approximations, is able to describe and predict the most relevant aspects of the experimental response in a neighborhood of the first symmetric resonance. The modeling includes the main imperfections in the microstructure. The unknown parameters are settled via parametric identification. The approach is developed in the frequency domain and is based on matching both the frequency values and, remarkably, the frequency response curves, which are considered as the most salient features of the device response. Non-linearities and imperfections considerably complicate the identification process. Via the combined use of linear analysis and non-linear dynamic simulations, a single first symmetric mode reduced-order model is derived. Extensive numerical simulations are performed at increasing values of electrodynamic excitation. Comparison with experimental data shows a satisfactory concurrence of results not only at low electrodynamic voltage, but also at higher ones. This validates the proposed theoretical approach. We highlight its applicability, both in similar case-studies and, more in general, in systems. © 2013 Elsevier Ltd.

  9. Advances in radiobiological studies using a microbeam

    International Nuclear Information System (INIS)

    Recent developments in microbeam technology have made drastic improvements in particle delivery, focusing, image processing and precision to allow for rapid advances in our knowledge in radiation biology. The unequivocal demonstration that targeted cytoplasmic irradiation results in mutations in the nuclei of hit cells and the presence of non-targeted effects, all made possible using a charged particle microbeam, results in a paradigm shift in our basic understanding of the target theory and other radiation-induced low dose effects. The demonstration of a bystander effect in 3D human tissue and whole organisms have shown the potential relevance of the non-targeted response in human health. The demonstration of delayed mutations in the progeny of bystander cells suggest that genomic instability induced following ionizing radiation exposure is not dependent on direct damage to cell nucleus. The identification of specific signaling pathways provides mechanistic insight on the nature of the bystander process. (author)

  10. Microbeam irradiation effects on transmission diamond detector

    International Nuclear Information System (INIS)

    Response of thin film CVD diamond to the ionized particle irradiation was investigated for the utilization as a transmission detector in the end-station of the microbeam line connecting to the AVF cyclotron at JAEA/Takasaki. A spectroscopy-grade 50 μm-thick film Single Crystalline CVD diamond was characterized using Ion Beam Induced Charge (IBIC) and Transient Ion Beam Induced Current (TIBIC) systems. Significant decrease in IBIC signals was observed temporally during a microbeam irradiation period. Peak degradation was easily recovered in a short time by release of biases thus it seems to be caused by the polarization effect due to charge-capture by defects in the surface layer of diamond. (author)

  11. Microbeam applications in metallurgy and industry

    International Nuclear Information System (INIS)

    The paper concerns the use of ion microbeams in metallurgy and industry. Many of the applications involve analyses using nuclear reactors, with a few examples of the use of elastic recoil detection analysis, Rutherford back-scattering, and particle-induced X-ray emission. A table is presented of all the microbeam analysis that has been carried out for metallurgical purposes. Many of the applications concern changes in the distributions of one or more light elements in a metallic matrix. A table is also presented for the relevant published work on industrial applications to non-metals. This time the elements of interest are much more varied than they were for metallurgy. (UK)

  12. Dynamic response of an electrostatically actuated microbeam to drop-table test

    International Nuclear Information System (INIS)

    In this paper, we present a theoretical and experimental investigation into the dynamic response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler–Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse of the drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. The analytical simulation results are validated by finite-element results for the static response. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over a wide range of shock spanning hundreds of thousands of g up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 µm is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is also demonstrated that by biasing short and too stiff microbeams with electrostatic voltages, their stiffness is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with in-house shock testing equipments, such as drop-table tests. (paper)

  13. System of neutron microbeams from a planar waveguide

    Science.gov (United States)

    Kozhevnikov, S. V.; Ignatovich, V. K.; Nikitenko, Yu. V.; Ott, F.; Petrenko, A. V.

    2015-07-01

    Results of experimental investigations of space, angular and wavelength distribution in neutron microbeams obtained for the first time with the help of a resonant planar neutron waveguide at the time-of-flight reflectometer of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. Possible application of microbeams in physical experiments is discussed.

  14. Phase contrast image guidance for synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C; Larkin, Kieran G

    2016-08-21

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required. PMID:27436750

  15. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  16. Extreme stress gradient effects on microstructural fatigue crack propagation rates in Ni microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi-Tohidi, F.; Pierron, O. N., E-mail: olivier.pierron@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2015-05-18

    The fatigue crack propagation behavior of microstructurally small cracks growing under extreme stress gradients was investigated in Ni microbeams under fully reversed cyclic loading. A technique to calculate the crack growth rates in microbeams with two different normalized stress gradients (17% and 50% μm{sup −1}) is developed and validated. Decreasing crack propagation rates are observed over the first 2 μm, and the rates are more than 1 order of magnitude slower for the devices with 50% μm{sup −1} stress gradients. This fundamental knowledge is critical to predict the fatigue reliability of advanced metallic microcomponents under bending such as in microelectromechanical systems or flexible/stretchable electronics.

  17. Production of ion micro-beams

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Isoya, Akira; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tanaka, Ryuichi [Ion Beam Irradiation Service Limited Company, Takasaki, Gunma (Japan)

    2001-02-01

    This is a short summary on the test fabrication and performance testing. Here micro-beams are understood as beams in diameter smaller than 0.01 {mu} m. We had made a choice of the combination, of the focusing action with a single hole lens, and of the focusing and acceleration actions with a uniform electrostatic field between the electrodes. Measurements has been repeated of the beam radius with a moving knifedge. The spatial resolution now reaches 0.05 {mu} m. (M. Tanaka)

  18. Microbeam dosimetry using x-ray film

    International Nuclear Information System (INIS)

    Full text: Concern for astronauts in space began research into the effects of microbeam radiation on the tissue of the central nervous system. Since then, it has been proposed that microbeam x-ray radiation could be used to administer radiotherapy and radiosurgery for lesions in the brain. We are investigating the microbeam dose from a collimated superficial x-ray source using x-ray film dosimetry. A variable width collimator was used with widths of 5000 μm, 1000 μm, 500 μm, 100 μm, 50 μm and 10 μm to define the microbeam. This was placed at the end of an 8 cm diameter, 30 cm FSD (film source distance) cone. The film was placed on a 5 cm thick perspex phantom. The cone, in turn, rested on the phantom. The film used was Kodak X-Omat V Diagnostic Film and was read with a MacBeth TD-92 transmission reader with an improvised 100 μm aperture. All data were fitted to a Gaussian curve using Sigmaplot. The peak values decreased with the decrease in slit width, and the values for the FWHM converged to a minimum value. The idealised peak height, for zero resolution, is obtained from the Area Under Curve/Slit Width. The results reveal an anomaly for the slit widths less than 100 μm, for which the dose appears to be up to 4 times that of the uncollimated beam dose. This may be due to an edge effect as the film is especially sensitive to low energy x-rays. Thus the smaller slit widths ( <100 μm) could exhibit an increased fraction of low energy scattered photons from the edge of the aperture, and this would show as an increase in dose because of the increased sensitivity of the film to lower energy x-rays. Aluminium filters are to be added to the system to eliminate the edge effect for the smaller slit widths, so that a more reliable dose measurement can be found

  19. External microbeam set-up at the CNA (Sevilla) and its application to the study of Tartesic jewellery

    International Nuclear Information System (INIS)

    A new external microbeam system has been installed recently at the +45 deg. beam line of the 3 MV Pelletron accelerator at the Centro Nacional de Aceleradores (Sevilla, Spain). The facility, based on the system from Oxford Microbeams (OM), includes two sets of slits, a doublet of magnetic quadrupole focusing lenses, a Faraday cup and an accurate positioning device. In addition, a beam profile monitor (BPM) and a quartz viewer have been installed in the line to facilitate the microbeam production. The first PIXE application of the new facility was made in the field of Archaeometry, on the study of Tartesic gold artefacts (700-500 BC, SW of Spain) from Ebora and other archaeological sites. The aim of the analysis was to perform an exhaustive and systematic study about the soldering procedures that were employed by the goldsmiths along the Valley of Guadalquivir River after the Phoenician colonisation

  20. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy

    Science.gov (United States)

    Anderson, D.; Andrais, B.; Mirzayans, R.; Siegbahn, E. A.; Fallone, B. G.; Warkentin, B.

    2013-06-01

    Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.

  1. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.

  2. PREFACE: European Microbeam Analysis Society's 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015), Portorož, Slovenia, 3-7 May 2015

    Science.gov (United States)

    Llovet, Xavier; Matthews, Michael B.; Čeh, Miran; Langer, Enrico; Žagar, Kristina

    2016-02-01

    This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 14th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 3rd to the 7th of May 2015 in the Grand Hotel Bernardin, Portorož, Slovenia. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a unique format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field.This workshop was organized in collaboration with the Jožef Stefan Institute and SDM - Slovene Society for Microscopy. The technical programme included the following topics: electron probe microanalysis, STEM and EELS, materials applications, cathodoluminescence and electron backscatter diffraction (EBSD), and their applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2016 Microscopy and Microanalysis meeting at Columbus, Ohio. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled "Electron channelling contrast reconstruction with electron backscattered diffraction". The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 71 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan, Canada, USA, and Australia. A selection of participants with posters was invited

  3. New insights into the cellular response to radiation using microbeams

    Science.gov (United States)

    Folkard, Melvyn; Prise, Kevin; Schettino, Giuseppe; Shao, Chunlin; Gilchrist, Stuart; Vojnovic, Boris

    2005-04-01

    Micro-irradiation techniques continue to be highly relevant to a number of radiobiological studies, due to their ability to deliver precise doses of radiation to selected individual cells (or sub-cellular targets) in vitro. The Gray cancer institute (GCI) ion microbeam uses a 1 μm diameter bore glass capillary to vertically collimate protons, or helium ions accelerated by a 4 MV Van de Graaff. Using 3He2+ ions, 99% of cells are targeted with an accuracy of ±2 μm, and with a particle counting accuracy >99%. Using automated cell finding and irradiation procedures, up to 10,000 cells per hour can be individually irradiated. Microbeams are now being used to study a number of novel 'non-targeted' responses that do not follow the standard radiation model based on direct DNA damage and are now known to occur when living cells and tissues are irradiated. One such response is the so-called 'bystander effect' where unirradiated cells are damaged through signalling pathways initiated by a nearby irradiated cell. This effect predominates at low doses and profoundly challenges our understanding of environmental radiation risk. Furthermore, we now have evidence that simple molecules (such as nitric oxide) are involved in the signalling process, such that it may be possible to chemically influence the bystander response. If so, then this could eventually lead to improvements in the treatment of cancer by radiotherapy. Other studies have shown that the bystander effect is induced with equal effectiveness if either the nucleus or the cytoplasm of a cell is targeted.

  4. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C., E-mail: cyril.koughia@usask.ca; Kasap, S. O. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Edgar, A.; Varoy, C. [School of Chemical and Physical Sciences and MacDiarmid Institute, Victoria University of Wellington, Wellington 6140 (New Zealand); Belev, G.; Wysokinski, T.; Chapman, D. [Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Sammynaiken, R. [Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 (Canada)

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  5. Development of microbeam technology to expand applications at TIARA

    International Nuclear Information System (INIS)

    Herein, we review the last half decade of progress in ion-microbeam technology and applications at the Takasaki Ion Accelerators for Advanced Radiation Applications facility. Materials were microanalysed with the light-ion-microbeam system by combining micro-particle-induced X-ray and γ-ray emission, nuclear-reaction analysis and micro-ion-beam-induced luminescence to analyse elements, including light elements such as lithium, boron or fluoride, and also their chemical states. For microfabrication, we used particle-beam writing and techniques of maskless patterning to processes materials without etching. The goal was to develop optical, magnetic or other new types of microdevices with both light-ion and the heavy-ion microbeam systems. In addition, techniques were developed to monitor in real time every individual ion injection by using an efficient scintillator or a thin diamond particle detector in both heavy-ion and high-energy heavy-ion microbeam systems

  6. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  7. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  8. Microbeam Irradiation of C. elegans Nematode in Microfluidic Channels

    OpenAIRE

    M. Buonanno; Garty, G.; Grad, M.; Gendrel, M.; Hobert, O.; Brenner, D J

    2013-01-01

    To perform high-throughput studies on the biological effects of ionizing radiation in vivo, we have implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows the immobilization of worms with minimal stress for a rapid and controlled microbeam irradiation of multiple samples in parallel. Adapted from an established design, our microfluidic clamp consists of 16 tapered channels with 10-μm thin bottoms to ensure charged particle traversal. Worms are i...

  9. Microbeam irradiation of the C. elegans nematode

    International Nuclear Information System (INIS)

    The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that γ-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 μm from the site of irradiation. (author)

  10. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Massi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Calusi, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Fedi, M.E.; Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Liccioli, L.; Mandò, P.A.; Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [INFN, Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Romano, F.P. [Consiglio Nazionale delle Ricerche (CNR), Istituto per i Beni Archeologici e Monumentali (IBAM), Via Biblioteca, 4, 95124 Catania (Italy); Istituto Nazionale di Fisica Nucleare (INFN), LNS, Via S.Sofia 62, 95125 Catania (Italy); and others

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm{sup 2}), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  11. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    International Nuclear Information System (INIS)

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm2), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported

  12. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  13. Proceedings of 6th International Microbeam Workshop/12th L.H. Gray Workshop Microbeam Probes of Cellular Radiation Response

    International Nuclear Information System (INIS)

    The extended abstracts which are submitted here present a summary of the proceedings of the 6th International Workshop/12th LH Gray Workshop: Microbeam Probes of Cellular Radiation Response, held at St. Catherine's College, University of Oxford, UK on March, 29th-31st, 2003. In 1993 the 4th LH Gray Workshop entitled ''Microbeam Probes of Cellular Radiation Response'' was held at the Gray Cancer Institute in Northwood. This was organized by Prof BD Michael, Dr M. Folkard and Dr KM Prise and brought together 40 participants interested in developing and applying new microbeam technology to problems in radiation biology (1). The workshop was an undoubted success and has spawned a series of subsequent workshops every two years. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Following the first microbeam workshop, there has been a rapid growth in the number of centres developing radiobiology microbeams, or planning to do so and there are currently 15-20 worldwide. Much of the recent research using microbeams has used them to study low-dose effects and ''non-targeted'' responses such bystander effects, genomic instability and adaptive responses. The goal of the 6th workshop was to build on our knowledge of the development of microbeam approaches and the application to radiation biology in the future with the meeting stretching over a 3 day period. Over 80 participants reviewed the current state of radiobiology microbeam research worldwide and reported on new technological developments both in the fields of physics and biology

  14. Dynamics of a clamped–clamped microbeam resonator considering fabrication imperfections

    KAUST Repository

    Bataineh, Ahmad M.

    2014-10-18

    We present an investigation into the static and dynamic behavior of an electrostatically actuated clamped–clamped polysilicon microbeam resonator accounting for its fabrication imperfections, which are commonly encountered in similar microstructures. These are mainly because of the initial deformation of the beam due to stress gradient and its flexible anchors. First, we show experimental data of the microbeam when driven electrically by varying the amplitude and frequency of the voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Theoretical investigation is then conducted to model the microbeam, and hence, interpret the experimental data. We solve the Eigen value problem governing the natural frequencies analytically. We then utilize a Galerkin-based procedure to derive a reduced order model, which is then used to simulate both the static and dynamic responses. To achieve good matching between theory and experiment, we show that the exact profile of the deformed beam needs to be utilized in the reduced order model, as measured from the optical profiler, combined with a shooting technique simulation, which is capable of tracing the resonant frequency branches under very-low damping conditions.

  15. A detailed ray-tracing simulation of the high resolution microbeam at the AIFIRA facility

    International Nuclear Information System (INIS)

    The AIFIRA (Applications Interdisciplinaires des Faisceaux d'Ions en Region Aquitaine) ion beam facility at the CENBG (Centre d'Etudes Nucleaires de Bordeaux-Gradignan) is being equipped with a high demagnification focused microbeam line. This beam line, which is under its final stage of development, should allow focusing of protons and alpha particles down to a sub-micrometer resolution, and is therefore referred to as a 'nanobeam line' in the following paper. We present the complete beam transport simulation along the chosen configuration for the nanobeam line, which consists of a long working distance doublet-triplet of Oxford Microbeam Ltd. OM-50 quadrupoles. These simulations have been performed using the Geant4 Monte Carlo simulation toolkit, which has been previously validated for ray-tracing studies in the design of quadrupole microbeam systems. They include a fine modelling of the quadupole magnetic field, based on the analytical Enge's model, which is compared to a classical square field model and to a high granularity tri-dimensional field map computed with the OPERA3D software. The beam emittance model is parameterized from experimental measurements performed directly on the HVEE Singletron at the AIFIRA facility, allowing the computation of the beam transmitted current along the nanobeam line. Grid shadow images, acquired from simulations, for system alignment purposes and beam deflection studies on target are presented as well

  16. WE-E-BRE-06: High-Dose Microbeam Radiation Induces Different Responses in Tumor Microenvironment Compared to Conventional Seamless Radiation in Window Chamber Tumor Models

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy and GRID therapy are different forms of Spatially-Fractioned Radiation Therapy (SFRT) that is fundamentally different from the conventional seamless and temporally fractionated radiation therapy. SFRT is characterized by a ultra-high dose (10s –100s Gy) dose single treatment with drastic inhomogeneity pattern of given spatial frequencies. Preclinical and limited clinical studies have shown that the SFRT treatments may offer significant improvements in reducing treatment toxicity, especially for those patients who have not benefited from the state-of-the-art radiation therapy approaches. This preliminary study aims to elucidate the underlying working mechanisms of SFRT, which currently remains poorly understood. Methods: A genetically engineered 4T1 murine mammary carcinoma cell line and nude mice skin fold window chamber were used. A nanotechnology-based 160kV x-ray irradiator delivered 50Gy (entrance dose) single treatments of microbeam or seamless radiation. Animals were in 3 groups: mock, seamless radiation, and 300μm microbeam radiation. The windows were imaged using a hyperspectral system to capture total hemoglobin/saturation, GFP fluorescence emission, RFP fluorescence emission, and vessel density at 9 time points up to 7 days post radiation. Results: We found unique physiologic changes in different tumor/normal tissue regions and differential effects between seamless and microbeam treatments. They include 1) compared to microbeam and mock radiation seamless radiation damaged more microvasculature in tumor-surrounding normal tissue, 2) a pronounced angiogenic effect was observed with vascular proliferation in the microbeam irradiated portion of the tumor days post treatment (no such effect observed in seamless and mock groups), and 3) a notable change in tumor vascular orientation was observed where vessels initially oriented parallel to the beam length were replaced by vessels running perpendicular to the irradiation

  17. WE-E-BRE-06: High-Dose Microbeam Radiation Induces Different Responses in Tumor Microenvironment Compared to Conventional Seamless Radiation in Window Chamber Tumor Models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S; Zhang, J; Hadsell, M [UNC School of Medicine, Chapel Hill, NC (United States); Fontanella, A; Schroeder, T; Palmer, G; Dewhirst, M [Duke University, Durham, NC (United States); Boss, M [North Carolina State University, Raleigh, NC (United States); Berman, K [School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2014-06-15

    Purpose: Microbeam radiation therapy and GRID therapy are different forms of Spatially-Fractioned Radiation Therapy (SFRT) that is fundamentally different from the conventional seamless and temporally fractionated radiation therapy. SFRT is characterized by a ultra-high dose (10s –100s Gy) dose single treatment with drastic inhomogeneity pattern of given spatial frequencies. Preclinical and limited clinical studies have shown that the SFRT treatments may offer significant improvements in reducing treatment toxicity, especially for those patients who have not benefited from the state-of-the-art radiation therapy approaches. This preliminary study aims to elucidate the underlying working mechanisms of SFRT, which currently remains poorly understood. Methods: A genetically engineered 4T1 murine mammary carcinoma cell line and nude mice skin fold window chamber were used. A nanotechnology-based 160kV x-ray irradiator delivered 50Gy (entrance dose) single treatments of microbeam or seamless radiation. Animals were in 3 groups: mock, seamless radiation, and 300μm microbeam radiation. The windows were imaged using a hyperspectral system to capture total hemoglobin/saturation, GFP fluorescence emission, RFP fluorescence emission, and vessel density at 9 time points up to 7 days post radiation. Results: We found unique physiologic changes in different tumor/normal tissue regions and differential effects between seamless and microbeam treatments. They include 1) compared to microbeam and mock radiation seamless radiation damaged more microvasculature in tumor-surrounding normal tissue, 2) a pronounced angiogenic effect was observed with vascular proliferation in the microbeam irradiated portion of the tumor days post treatment (no such effect observed in seamless and mock groups), and 3) a notable change in tumor vascular orientation was observed where vessels initially oriented parallel to the beam length were replaced by vessels running perpendicular to the irradiation

  18. MFM and PEEM observation of micrometre-sized magnetic dot arrays fabricated by ion-microbeam irradiation in FeRh thin films

    International Nuclear Information System (INIS)

    Micrometre-size lateral magnetic modulations were fabricated in FeRh thin films by ion-microbeam irradiation. Their magnetic domain structures were characterized by XMCD–PEEM. FeRh thin films were irradiated with a 10 MeV iodine ion microbeam to produce micrometre-scale ferromagnetic microstructures by modifying the local magnetic character from antiferromagnetism to ferromagnetism using ion-microbeam irradiation. Two-dimensional magnetic dot arrays of dimensions ∼2 µm × 4 µm as well as 10 µm × 10 µm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy (MFM). The results of photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism reveal that the easy axis of the magnetization of the ion-beam-irradiated ferromagnetism in the FeRh thin films lies in the film planes along the 〈001〉 direction of the MgO substrates

  19. MFM and PEEM observation of micrometre-sized magnetic dot arrays fabricated by ion-microbeam irradiation in FeRh thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aikoh, K.; Tohki, A. [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Osaka Pefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Iwase, A. [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Satoh, T.; Takano, K.; Kohka, M.; Saitoh, Y.; Kamiya, T. [Japan Atomic Energy Agency, Takasaki, Gumma 370-1292 (Japan); Ohkochi, T. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Kotsugi, M. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan); Nakamura, T. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Kinoshita, T. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan)

    2012-03-01

    Micrometre-size lateral magnetic modulations were fabricated in FeRh thin films by ion-microbeam irradiation. Their magnetic domain structures were characterized by XMCD–PEEM. FeRh thin films were irradiated with a 10 MeV iodine ion microbeam to produce micrometre-scale ferromagnetic microstructures by modifying the local magnetic character from antiferromagnetism to ferromagnetism using ion-microbeam irradiation. Two-dimensional magnetic dot arrays of dimensions ∼2 µm × 4 µm as well as 10 µm × 10 µm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy (MFM). The results of photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism reveal that the easy axis of the magnetization of the ion-beam-irradiated ferromagnetism in the FeRh thin films lies in the film planes along the 〈001〉 direction of the MgO substrates.

  20. MFM and PEEM observation of micrometre-sized magnetic dot arrays fabricated by ion-microbeam irradiation in FeRh thin films

    OpenAIRE

    Aikoh, K.; Tohki, A.; T. Matsui; Iwase, A.; Satoh, T.; Takano, K; Kohka, M.; Saitoh, Y.; Kamiya, T; Ohkochi, T.; Kotsugi, M.; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Kinoshita, T.

    2012-01-01

    FeRh thin films were irradiated with a 10 MeV iodine ion microbeam to produce micrometre-scale ferromagnetic microstructures by modifying the local magnetic character from antiferromagnetism to ferromagnetism using ion-microbeam irradiation. Two-dimensional magnetic dot arrays of dimensions ∼2 µm × 4 µm as well as 10 µm × 10 µm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy (MFM). The results of photoemission electron microscopy (PEEM) combine...

  1. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  2. Negative Knudsen force on heated microbeams

    KAUST Repository

    Zhu, Taishan

    2011-11-18

    Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.

  3. Consideration about the Single-neutron Microbeam Facility

    Institute of Scientific and Technical Information of China (English)

    吴瑜; 王绍虎; 余增亮

    2004-01-01

    A conception of the single-neutron microbeam facility was put forward in this paper.The specific particle (e.g. H+, 2d+ or α ) bombarding a specific target can generate neutron,when the particle energy is more than a threshold (e.g., H+ energy is more than 2 MeV). And if the specific beam spot on the target is very small, the neutron beam along the direction of the specific beam spot will be very small too. If the neutron beam is weak and a neutron detector is mounted after the specific neutron collimator, the single- neutron will be obtained. Therefore,if the specific target and the neutron detector are installed after the proton accelerator and the microbeam system, the single-neutron microbeam will probably be obtained.

  4. Quantitative Single-Ion Irradiation by ASIPP Microbeam

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Fei; WU Yu; XU Ming-Liang; WU Li-Jun; WANG Shao-Hu; YU Zeng-Liang; CHEN Lian-Yun; HU Zhi-Wen; WANG Xiao-Hua; ZHANG Jun; LI Jun; CHEN Bin; HU Su-Hua; SHI Zhong-Tao

    2004-01-01

    @@ A single-ion microbeam facility has been constructed by the microbeam research group in ASIPP (Institute of Plasma Physics, Chinese Academy of Science). The system was designed to deliver defined numbers of hydrogen ions produced by a van de Graaff accelerator, covering an energy range from 200keV to 3 MeV, into living cells(5 μm-20 μm diameter) growing in culture on thin plastic films. The beam is collimated by a 1- μm inner diameter HPLC (high performance liquid chromatography) capillary, which forms the micron-dimensional beam-line exit.A microbeam collimator, a scintillation ion counting system and a fast beam shutter, which constitute a precise dosage measuring and controlling system, jointly perform quantitative single-ion irradiation. With this facility,we can presently acquire ion-hitting efficiency close to 95%.

  5. Dynamics of an Imperfect Microbeam Considering its Exact Shape

    KAUST Repository

    Bataineh, Ahmad M.

    2014-08-17

    We study the static and dynamic behavior of electrically actuated micromachined arches. First, we conduct experiments on micromachined polysilicon beams by driving them electrically and varying their amplitude and frequency of voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Next, we conduct analytical and theoretical investigation to understand the experiments. First, we solve the Eigen value problem analytically. We study the effect of the initial rise on the natural frequency and mode shapes, and use a Galerkin-based procedure to derive a reduced order model, which is then used to solve both the static and dynamic responses. We use two symmetric modes in the reduced order model to have accurate and converged results. We use long time integration to solve the nonlinear ordinary differential equations, and then modify our model using effective length to match experimental results. To further improve the matching with the experimental data, we curve-fit the exact profile of the microbeam to match the experimentally measured profile and use it in the reduced-order model to generate frequency-response curves. Finally, we use another numerical technique, the shooting technique, to solve the nonlinear ordinary differential equations. By using shooting and the curve fitted function, we found that we get good agreement with the experimental data.

  6. Analysis of Frequency Spectrum of Laser-Induced Vibration of Microbeam Resonators

    Institute of Scientific and Technical Information of China (English)

    FANG Dai-Ning; SUN Yu-xin; SOH Ai-Kah

    2006-01-01

    The vibration phenomenon during pulsed laser heating of micro-beams is investigated.The beam is made of silicon and js heated by a laser pulse with a non-Gaussian temporal profile and with an ultrashort pulse duration of 2ps.which incites vibration due to the thermoelastic damping effect.This coupled thermoelastic problem is solved using an analytical-numerical technique based on the Laplace transformation.The damping ratio and resonant frequency shift ratio of beams due t0 the air damping effect and the thermoelastic damping ettect are also examined and discusssed.

  7. The first interdisciplinary experiments at the IMP high energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Guo, Na; Liu, Wenjing; Ye, Fei; Sheng, Lina; Li, Qiang [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou (China); Li, Huiyun [Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China)

    2015-04-01

    The high energy beam of tens to hundred MeV/u ions possesses mm-to-cm penetration depth in materials and can be easily extracted into air without significant energy loss and beam scattering. Combination of high energy ions and microbeam technology facilitates the microprobe application to many practical studies in large scale samples. The IMP heavy ion microbeam facility has recently been integrated with microscopic positioning and targeting irradiation system. This paper introduced the first interdisciplinary experiments performed at the IMP microbeam facility using the beam of 80.5 MeV/u carbon ions. Bystander effect induction via medium transferring was not found in the micro-irradiation study using HeLa cells. The mouse irradiation experiment demonstrated that carbon irradiation of 10 Gy dose to its tuberomammillary nucleus did not impair the sleep nerve system. The fault injection attack on RSA (Rivest–Shamir–Adleman) decryption proved that the commercial field-programmable gate array chip is vulnerable in single event effect to low linear-energy-transfer carbon irradiation, and the attack can cause the leakage of RSA private key. This work demonstrates the potential of high energy microbeam in its application to biology, biomedical, radiation hardness, and information security studies.

  8. The first interdisciplinary experiments at the IMP high energy microbeam

    International Nuclear Information System (INIS)

    The high energy beam of tens to hundred MeV/u ions possesses mm-to-cm penetration depth in materials and can be easily extracted into air without significant energy loss and beam scattering. Combination of high energy ions and microbeam technology facilitates the microprobe application to many practical studies in large scale samples. The IMP heavy ion microbeam facility has recently been integrated with microscopic positioning and targeting irradiation system. This paper introduced the first interdisciplinary experiments performed at the IMP microbeam facility using the beam of 80.5 MeV/u carbon ions. Bystander effect induction via medium transferring was not found in the micro-irradiation study using HeLa cells. The mouse irradiation experiment demonstrated that carbon irradiation of 10 Gy dose to its tuberomammillary nucleus did not impair the sleep nerve system. The fault injection attack on RSA (Rivest–Shamir–Adleman) decryption proved that the commercial field-programmable gate array chip is vulnerable in single event effect to low linear-energy-transfer carbon irradiation, and the attack can cause the leakage of RSA private key. This work demonstrates the potential of high energy microbeam in its application to biology, biomedical, radiation hardness, and information security studies

  9. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  10. PREFACE: EMAS 2013 Workshop: 13th European Workshop on Modern Developments and Applications in Microbeam Analysis

    Science.gov (United States)

    Llovet, Xavier, Dr; Matthews, Mr Michael B.; Brisset, François, Dr; Guimarães, Fernanda, Dr; Vieira, Professor Joaquim M., Dr

    2014-03-01

    This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 13th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 12th to the 16th of May 2013 in the Centro de Congressos do Alfândega, Porto, Portugal. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with LNEG - Laboratório Nacional de Energia e Geologia and SPMICROS - Sociedade Portuguesa de Microscopia. The technical programme included the following topics: electron probe microanalysis, future technologies, electron backscatter diffraction (EBSD), particle analysis, and applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2014 Microscopy and Microanalysis meeting at Hartford, Connecticut. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled ''Plastic deformation studies with electron channelling contrast imaging and electron backscattered diffraction''. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 21 countries were on display at the meeting and that the participants came from as far away as Japan, Canada and the USA. A

  11. Continuous observation of polarization effects in thin SC-CVD diamond detector designed for heavy ion microbeam measurement

    International Nuclear Information System (INIS)

    Continuous irradiation effects on a thin-film diamond detector were investigated for the utilization of these films as a detector for heavy ion microbeams. Temporal signal degradation in the energy spectrum was frequently observed during the focused heavy ion microbeam irradiation. To measure the temporal response to the each ion incidents, focused heavy ion microbeam with different beam fluence rates were irradiated to a single crystal (SC)-CVD diamond film detector with thickness of 50 μm. The responses to each ion were continuously observed and characterized by ion beam-induced charge (IBIC) measurement system. Heavy ions with short penetration path in diamond generate the large difference in mean path of electrons and holes, which is inverted by changing bias polarity. Signal degradation condition was relied on the bias polarity under the irradiation of heavy ions with short penetration length in the diamond. The continuous observation of IBIC signals revealed that temporal degradation in pulse height of signals, so called polarization effects, seems to be mainly caused by the hole trapping in this diamond crystal

  12. WE-G-BRE-01: A High Power Nanotube X-Ray Microbeam Irradiator for Preclinical Brain Tumor Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, P; Inscoe, C; Zhang, L; Lu, J; Zhou, O [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Chang, S [UNC School of Medicine, Chapel Hill, NC (United States); Sprenger, F; Laganis, P [Xinray Systems, Cedar Fork, NC (United States)

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is a new type of cancer treatment undergoing studies at various synchrotron facilities. The principle of MRT is using arrays of microscopically small, low-energy X-radiation for the treatment of various radio-resistant, deep-seated tumors. Our motivation is to develop a compact and inexpensive image guided MRT irradiator to use in the research lab setting. After a successful initial demonstration, here we report a second generation carbon nanotube (CNT) cathode based MRT tube, capable of producing multiple microbeam lines with an anticipated dose rate of 11 Gy/min per line. Methods: The system uses multiple line CNT source arrays to generate multiple focal lines on the anode. The increase in dose-rate, compared to our first generation system, is achieved by increasing the operating voltage from 160 kVp to 225kVp, adding multiple simultaneous focal lines on the anode, and a more efficient cooling mechanism using a 6kW oil-cooled anode. Results: This work will present the design and development process, challenges and solutions to meeting operating specifications, and the final design of the tube and collimator, along with optimization and stabilization of its use. A detailed characterization of its capabilities will be included with a comprehensive measurement of its X-ray focal line dimensions, an evaluation of its collimator alignment and microbeam dimensions, and phantom-based quantification of its dosimetric output. Conclusion: The development of a second generation, compact, multiple line MRT device using carbon nanotube (CNT) cathode based X-ray technology and a novel oil cooled anode design is presented here. With this new source, we are capable of delivering a total microbeam radiation dose comparable to the low end of the synchrotron based MRT systems for small animal brain tumor models.

  13. An Evaluation of Dose Equivalence between Synchrotron Microbeam Radiation Therapy and Conventional Broadbeam Radiation Using Clonogenic and Cell Impedance Assays

    OpenAIRE

    Mohammad Johari Ibahim; Crosbie, Jeffrey C.; Yuqing Yang; Marina Zaitseva; Andrew W Stevenson; Rogers, Peter A. W.; Premila Paiva

    2014-01-01

    BACKGROUND: High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments. AIM: To develop an in vitro approach to determine biological dose equivalence between MRT and BB using two different cell-based assays. METHO...

  14. WE-G-BRE-01: A High Power Nanotube X-Ray Microbeam Irradiator for Preclinical Brain Tumor Treatment

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is a new type of cancer treatment undergoing studies at various synchrotron facilities. The principle of MRT is using arrays of microscopically small, low-energy X-radiation for the treatment of various radio-resistant, deep-seated tumors. Our motivation is to develop a compact and inexpensive image guided MRT irradiator to use in the research lab setting. After a successful initial demonstration, here we report a second generation carbon nanotube (CNT) cathode based MRT tube, capable of producing multiple microbeam lines with an anticipated dose rate of 11 Gy/min per line. Methods: The system uses multiple line CNT source arrays to generate multiple focal lines on the anode. The increase in dose-rate, compared to our first generation system, is achieved by increasing the operating voltage from 160 kVp to 225kVp, adding multiple simultaneous focal lines on the anode, and a more efficient cooling mechanism using a 6kW oil-cooled anode. Results: This work will present the design and development process, challenges and solutions to meeting operating specifications, and the final design of the tube and collimator, along with optimization and stabilization of its use. A detailed characterization of its capabilities will be included with a comprehensive measurement of its X-ray focal line dimensions, an evaluation of its collimator alignment and microbeam dimensions, and phantom-based quantification of its dosimetric output. Conclusion: The development of a second generation, compact, multiple line MRT device using carbon nanotube (CNT) cathode based X-ray technology and a novel oil cooled anode design is presented here. With this new source, we are capable of delivering a total microbeam radiation dose comparable to the low end of the synchrotron based MRT systems for small animal brain tumor models

  15. PIXE in an external microbeam arrangement for the study of finely decorated tartesic gold jewellery items

    International Nuclear Information System (INIS)

    Narrow regions on Tartesic (Spain, 6th century B.C.) gold jewellery items have been studied by PIXE. An external microbeam (250 μm) of 2.3 MeV protons has been used in order to determine the elemental concentrations in the various tiny elements and specially at places of solders. The comparison with results on jewellery items of Etruscan origin (same period as Tartesic but coming from the North of Italy) allows us to identify the differences in the workmanship of goldsmiths of these geographic regions. The details on the surface topography of wires, granulations, filigrees were observed with an electron microbeam in order to complement the micro-PIXE results. Accurate quantitative elemental analyses have been obtained from PIXE spectra by a comparison with reference samples and an extensive calculation of thick target parameters. The background has been carefully calculated by using a physical approach and not only computer adjustment. The necessary corrections to take the topography of these very irregular surfaces into account were calculated. They include the secondary fluorescence effects and the variation of Kα/Kβ (for Cu and Ag) or Lα/Lβ (for Au) X-ray intensity ratios as a function of the surface orientation relative to the incident beam and the detector positions

  16. A software tool enabling the analysis of small lateral features without the use of a micro-beam

    Energy Technology Data Exchange (ETDEWEB)

    Healy, M.J.F. [Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)]. E-mail: m.j.f.healy@cranfield.ac.uk; Torres, M. [Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom); Painter, J.D. [Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)

    2006-08-15

    A new method is developed that allows samples whose composition varies rapidly across the surface, such as actual microelectronic devices, to be composition depth profiled without the use of a micro-beam or other special equipment. This is achieved by extending the traditional simulation method to an extra dimension where lateral position is also accommodated. The tool is a software shell to SIMNRA [M. Mayer, SIMNRA User's Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik, Garching, Germany, 1997] that allows a multi-dimensional model of the sample to be created, simulated and iterated towards experiment. It is demonstrated on a silicon dioxide coated wafer embedded with narrowly spaced sub-micron wide metal tracks probed with a conventional beam-spot of millimetre proportions, and is supported by electron microscopy studies. The software shell also eases the analysis of laterally homogeneous samples where complementary ion beam analysis techniques must be employed by allowing a single model to control multiple simulations based on different geometries or techniques.

  17. A software tool enabling the analysis of small lateral features without the use of a micro-beam

    International Nuclear Information System (INIS)

    A new method is developed that allows samples whose composition varies rapidly across the surface, such as actual microelectronic devices, to be composition depth profiled without the use of a micro-beam or other special equipment. This is achieved by extending the traditional simulation method to an extra dimension where lateral position is also accommodated. The tool is a software shell to SIMNRA [M. Mayer, SIMNRA User's Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik, Garching, Germany, 1997] that allows a multi-dimensional model of the sample to be created, simulated and iterated towards experiment. It is demonstrated on a silicon dioxide coated wafer embedded with narrowly spaced sub-micron wide metal tracks probed with a conventional beam-spot of millimetre proportions, and is supported by electron microscopy studies. The software shell also eases the analysis of laterally homogeneous samples where complementary ion beam analysis techniques must be employed by allowing a single model to control multiple simulations based on different geometries or techniques

  18. PREFACE: EMAS 2011: 12th European Workshop on Modern Developments in Microbeam Analysis

    Science.gov (United States)

    Brisset, François; Dugne, Olivier; Robaut, Florence; Lábár, János L.; Walker, Clive T.

    2012-03-01

    presentation of their work in three dedicated sessions. The prize for the best poster was an invitation to participate in the 22nd Australian Conference on Microscopy and Microanalysis (ACMM 22) at Perth, Western Australia. The prize was awarded to G Samardzija of the Jozef Stefan Institute, Ljubljana, for the poster entitled: 'EPMA-WDS quantitative compositional analysis of barium titanate ceramics doped with cerium'. This proceedings volume contains the full texts of 5 of the invited plenary lectures and of 23 papers on related topics originating from the posters presented at the workshop. All the papers have been subjected to peer review by a least two referees. January 2012 Acknowledgements On behalf of the European Microbeam Analysis Society I would like to thank all the invited speakers, session chairs and members of the discussion panels for making the meeting such a great success. Special thanks go to François Brisset and Luc Van't dack who directed the organisation of the workshop giving freely of their time and talents. As was the case for previous workshops, the EMAS board in corpore was responsible for the scientific programme. The technical exhibition, which occupied 130 sq.m of floor space, was outstanding. It was very encouraging to see new instruments on display, including a FEG electron microprobe as a first worldwide presentation. Moreover, almost all the companies that exhibited provided financial support, either by sponsoring an event or by advertising. Below, in alphabetical order, is a list of exhibiting companies and sponsors of the workshop: Ametek GmbH, Edax Business UnitGN-MEBA Bruker Nano GmbHJeol (Europe) SAS CamecaL'Oréal, Direction Générale Recherche et Innovation Carl Zeiss NTSNanoMEGAS sprl Commissariat à l'Energie AtomiqueOxford Instruments SAS European Institute for Transuranium Elements (Germany)Probe Software, Inc. ElexienceSAMx FEI CompanyTarget-Messtechnik Fondis Electronic SAThermo Fisher Scientific Gatan (France) Clive T. Walker

  19. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain

    International Nuclear Information System (INIS)

    Purpose: Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. Methods: Tissue responses to MRT (two orthogonal arrays (2 × 400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MRSO2) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. Results: In tumors, MRSO2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MRSO2, although vessel inter-distances increased slightly. Conclusion: We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia

  20. Electronic Seal Stamping Based on Group Signature

    OpenAIRE

    Girija Srikanth

    2011-01-01

    This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted b...

  1. Biomaterials-Based Organic Electronic Devices

    Science.gov (United States)

    Bettinger, Christopher J.; Bao, Zhenan

    2010-01-01

    Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics, and biotechnology. The traditional interface of organic electronics with biology, biotechnology, and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to realize a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. PMID:20607127

  2. A new approach and model for accurate determination of the dynamic pull-in parameters of microbeams actuated by a step voltage

    International Nuclear Information System (INIS)

    Accurate determination of pull-in voltage and pull-in position is crucial in the design of electrostatically actuated microbeam-based devices. In the past, there have been many works on analytical modeling of the static pull-in of microbeams. However, unlike the static pull-in of microbeams where the analytical models have been well established, there are few works on analytical modeling of the dynamic pull-in of microbeam actuated by a step voltage. This paper presents two analytical approximate models for calculating the dynamic pull-in voltage and pull-in position of a cantilever beam and a clamped–clamped beam, respectively. The effects of the fringing field are included in the two models. The two models are derived based on the energy balance method. An N-order algebraic equation for the dynamic pull-in position is derived. An approximate solution of the N-order algebraic equation yields the dynamic pull-in position and voltage. The accuracy of the present models is verified by comparing their results with the experimental results and the published models available in the literature. (paper)

  3. On using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applications

    KAUST Repository

    Ouakad, Hassen M.

    2014-01-01

    Numerical and experimental investigations of the dynamics of micromachined shallow arches (initially curved microbeams) and the possibility of using their dynamic snap-through motion for filtering purposes are presented. The considered MEMS arches are actuated by a DC electrostatic load along with an AC harmonic load. Their dynamics is examined numerically using a Galerkin-based reduced-order model when excited near both their first and third natural frequencies. Several simulation results are presented demonstrating interesting jumps and dynamic snap-through behavior of the MEMS arches and their attractive features for uses as band-pass filters, such as their sharp roll-off from pass-bands to stop-bands and their flat response. Experimental work is conducted to test arches realized of curved polysilicon microbeams when excited by DC and AC loads. Experimental data of the micromachined curved beams are shown for the softening and hardening behavior near the first and third natural frequencies, respectively, as well as dynamic snap-through motion. © 2013 Elsevier Ltd.

  4. Automatic cell detection in bright-field microscopy for microbeam irradiation studies

    International Nuclear Information System (INIS)

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells’ inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system. (paper)

  5. Automatic cell detection in bright-field microscopy for microbeam irradiation studies

    Science.gov (United States)

    Georgantzoglou, A.; Merchant, M. J.; Jeynes, J. C. G.; Wéra, A.-C.; Kirkby, K. J.; Kirkby, N. F.; Jena, R.

    2015-08-01

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells’ inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system.

  6. Analysis of the X-ray microbeam test result of the flash memories

    International Nuclear Information System (INIS)

    Background: The failure phenomenon is difficult to analyze for the flash memories when the whole chip is exposed to irradiation since both the memory array and the peripheral circuits might be degraded. Purpose: In order to detect the radiation susceptibility and corresponding phenomenon of the related circuits that included in the flash memories, the X-ray microbeam is used as the radiation source instead of 60Co. Methods: The failure phenomenon is studied respectively when the memory array, decoder circuits, the charge pump circuits as well as the I/O circuits are exposed to radiation. The errors are mapped according to the logical address and the failure mechanism is analyzed based on the circuits. Results: Irradiated on the memory .array win lead to regularly distributed 0→1 bit flips, while only 1→0 are found when the row decoder is under exposure. Degradation of the charge pump circuits would lead to the erase/program functional failure. Conclusions: The results suggest that the X-ray microbeam radiation test is a good method for detecting the radiation susceptibility of the integrated circuits that contains lots of circuit modules. (authors)

  7. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation

    International Nuclear Information System (INIS)

    The ureter primary explant technique was developed to study bystander effects under in vivo like conditions where stem and differentiated cells are present. Irradiation was performed with a 3He2+ charged particle microbeam available at the Gray Cancer Institute, with high (∼2 μm) precision. Tissue sections from porcine ureters were pre-irradiated with the microbeam at a single location with 103He2+ particles (5 MeV; LET 70 keV.μm-1). After irradiation, the tissue section was incubated for 7 days, thus allowing the explant outgrowth to form. Total cellular damage (total fraction of micronucleated and apoptotic cells) was measured according to morphological criteria. Apoptosis was also assessed using a 3'-OH DNA end-labelling technique. Premature differentiation was estimated using antibodies to uroplakin III, a specific marker of terminal urothelial differentiation. Results of our experiments demonstrated a significant bystander-induced differentiation and a less significant increase in apoptotic and micronucleated cells. A hypothesis based on the protective nature of the bystander effect is proposed. (author)

  8. In situ monitoring of polyimide windows for external ion microbeams

    International Nuclear Information System (INIS)

    Damage of polyimide windows for external ion microbeams was monitored by analyzing backscattering protons from the window. A 1.5 MeV proton microbeam focused to approximately 50 x 50 μm2 was transmitted through the polyimide window from vacuum to oxygen atmosphere. The changes in backscattering spectra of the window were monitored as a function of irradiation dose up to 2 x 1018 H+/cm2. For comparison, the polyimide window was irradiated in vacuum in the same way as the oxygen case. The backscattering spectra drastically changed in the case of oxygen. We observed that the carbon spectrum width, corresponding to the thickness of the window, substantially decreased with increasing the irradiation dose. The in situ monitoring of backscattering protons demonstrated the ability to detect the damage of the window and to predict the rupture of the window

  9. Online imaging of initial DNA damages at the PTB microbeam

    International Nuclear Information System (INIS)

    In an inter-disciplinary collaboration of Physikalisch-Technische Bundesanstalt (PTB), German Collection of Microorganisms and Cell Cultures (DSMZ) and Heinrich-Heine Univ., live-cell imaging has been established at the charged-particle microbeam facility of PTB. Candidate genes participating in DNA strand-break repair pathways such as PARP-1, MRE11, MSH2, MDC1 and p53BP1 have been modified to generate fluorescent fusion proteins. Using multi-cistronic expression vectors, stable genomic integration was achieved in HT-1080 fibroblasts. The aim of this study is to characterise and use these highly reliable cell lines for studying initial steps of DNA damage responses and kinetics of repair after microbeam irradiation with high- and low-linear energy transfer (LET) particles in living cells at physiological conditions. (authors)

  10. Extended abstracts: Microbeam Probes of Cellular Radiation Response [final report

    International Nuclear Information System (INIS)

    In July 1999, we organized the 4th International Workshop: Microbeam Probes of Cellular Radiation Response, held in Killiney Bay, Dublin, Ireland, on July 17-18. Roughly 75 scientists (about equal numbers of physicists and biologists) attended the workshop, the fourth in a bi-annual series. Extended abstracts from the meeting were published in the Radiation Research journal, vol. 153, iss. 2, pp. 220-238 (February 2000)(attached). All the objectives in the proposal were met

  11. Improvement and recent applications of the Tohoku microbeam system

    Science.gov (United States)

    Matsuyama, S.; Ishii, K.; Watanabe, K.; Terakawa, A.; Kikuchi, Y.; Fujiwara, M.; Sugai, H.; Karahashi, M.; Nozawa, Y.; Yamauchi, S.; Fujisawa, M.; Ishiya, M.; Nagaya, T.; Ortega, R.; Carmona, A.; Roudeau, S.

    2014-01-01

    The microbeam system at Tohoku University has been applied to various fields since its installation and is mainly used for biological applications. The primary purpose of this work was to develop a 3D μ-CT, in which a microbeam is used as a monoenergetic point X-ray source. The second one was to develop a microbeam analysis system for biological samples. A beam spot of 0.4 × 0.4 μm2 at a beam current of several tens of pA has been produced. However, in our set-up, μ-PIXE/RBS analyses demand beam currents of ca. 100 pA, which restricts the spatial resolution to around 1 × 1 μm2. In order to get higher spatial resolution down to several hundred nm and higher beam current with a several μm resolution, a triplet lens system was designed and newly installed. This upgrade was carried out simultaneously with the recovery from the damage caused by the great east Japan earthquake. The triplet lens system has larger demagnification and was designed by adding a quadrupole lens to the existing doublet system. Although a beam spot size of 2 × 1 μm2 is currently obtained, it has not achieved the performance obtained by the previous doublet system. The doublet system has been recovered to its previous performance and is routinely applied to simultaneous μ-PIXE/RBS analysis in various fields. Recent applications of 3D-PIXE-μ-CT of toxic elements in single cells with the new microbeam system are presented.

  12. Micro-beam XRF localization by a laser beam

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new method for micro-beam XRF localization is presented. A laserbeam along with an incident X-ray hits on the surface of a sample. The micro region onthe sample that reached by X-ray beam can be localized by means of thevisible spot of the laser beam. This method is suitable for X-ray microprobesusing anX-ray tube or synchrotron radiation as excitation sources.

  13. An FPGA-Based Electronic Cochlea

    OpenAIRE

    M. P. Leong; Jin, Craig T.; Philip H.W. Leong

    2003-01-01

    A module generator which can produce an FPGA-based implementation of an electronic cochlea filter with arbitrary precision is presented. Although hardware implementations of electronic cochlea models have traditionally used analog VLSI as the implementation medium due to their small area, high speed, and low power consumption, FPGA-based implementations offer shorter design times, improved dynamic range, higher accuracy, and a simpler computer interface. The tool presented takes filter coeffi...

  14. Fair Electronic Payment Scheme Based on DSA

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-bin; HONG Fan; ZHU Xian

    2005-01-01

    We present a multi-signature scheme based on DSA and describes a fair electronic payment scheme based on improved DSA signatures. The scheme makes both sides in equal positions during the course of electronic transaction. A Trusted Third Party (TTP) is involved in the scheme to guarantee the fairness of the scheme for both sides. However, only during the course of registration and dispute resolution will TTP be needed. TTP is not needed during the normal payment stage.

  15. Advances in microbeam technologies and applications to radiation biology.

    Science.gov (United States)

    Barberet, P; Seznec, H

    2015-09-01

    Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology. PMID:25911406

  16. Anonymous Fingerprinting Based on Electronic Cash

    Institute of Scientific and Technical Information of China (English)

    CHENXiaofeng; ZHANGFangguo; WANGJilin; WANGYumin

    2003-01-01

    A new anonymous fingerprinting protocol based on the principle of electronic cash is proposed in this paper.Redistributing a data item is equal to doublespending electronic cash.Contrasting with the previous coin-based anonymous fingerprinting protocol,we use the real electronic cash to trace traitors instead of the "coins" which serve only as a cryptographic primitive and have no monetary value,so it is easily understood and the bank does not need key-distribution and registration to prepare the "coina".

  17. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    International Nuclear Information System (INIS)

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of the piezoelectric transducer elements. The study takes into account stress induced structural changes and provides models for the equivalent motional parameters of resonators with particular shapes of the transducers matching the flexural modes of vibration. The above is analyzed theoretically using numerical models and is confirmed by impedance measurements and optical measurements of fabricated doubly-clamped beam resonators. We propose various transducer designs and highlight the advantages of using higher order vibration modes by implementing specially designed mode matching transducer elements. It is concluded that the paper describes and highlights the importance of accounting for the membrane stresses to optimize the resonator performance and the low power in electronic feedback of resonating sensing systems. (paper)

  18. Diffraction-limited microbeam with Fresnel zone plate optics in hard x-ray regions

    International Nuclear Information System (INIS)

    A hard X-ray microbeam with zone plate optics has been tested, and preliminary experiments on scanning microscopy have been performed. A Fresnel zone plate fabricated by the electron-beam lithography technique is used as an X-ray focusing device. The material of the zone structure is tantalum with thickness of about 1 μm, and the outermost zone width of the zone plate is 0.25 μm. A focused spot size measured by knife-edge scanning is 0.3 μm at an X-ray energy of 8 keV. Closer evaluation of the spatial resolution has been done by observing-resolution test patterns in a scanning X-ray microscopy experiment, and fine patterns with a 0.2 μm-structure have been resolved. (author)

  19. Ion microbeam analysis. Application to the study of the skin barrier and its nano-toxicology

    International Nuclear Information System (INIS)

    This work is dedicated to the use of ion microbeam irradiation to the study of a complex biological tissue like skin. Up to now, it has been very difficult to detect and track metallic oxides and manufactured nano-particles in biological tissues, most particularly in skin. Thus, it is essential to precise the mechanisms involved in skin barrier function processes face to exogenous agents like nano-particles and to characterize them in biological models in vitro/in vivo. During my work, I have had the opportunity to combine quantitative methods of analysis with high resolution imagery techniques (confocal microscopy, transmission electron microscopy and ion beam analysis) in order to characterize: (i) the skin barrier function of an ex vivo pig ear skin model understanding the ion homeostasis behavior face to different chemical or physical stresses; (ii) the impact on viability, accumulation and intracellular distribution of nano-particles (Titanium Oxides) naked or functionalized with fluorescent dyes (FITC, Rhodamine)

  20. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  1. Electronic structure of Fe-based superconductors

    International Nuclear Information System (INIS)

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of d states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand p states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems. (author)

  2. Electronic Seal Stamping Based on Group Signature

    Directory of Open Access Journals (Sweden)

    Girija Srikanth

    2011-05-01

    Full Text Available This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted by CNBAB platform since Mar., 2008

  3. TSET: Token based Secure Electronic Transaction

    OpenAIRE

    Borgohain, Rajdeep; Singh, Moirangthem Tiken; Sakharwade, Chandrakant; Sanyal, Sugata

    2012-01-01

    Security and trust are the most important factors in online transaction, this paper introduces TSET a Token based Secure Electronic Transaction which is an improvement over the existing SET, Secure Electronic Transaction protocol. We take the concept of tokens in the TSET protocol to provide end to end security. It also provides trust evaluation mechanism so that trustworthiness of the merchants can be known by customers before being involved in the transaction. Moreover, we also propose a gr...

  4. DNA-based applications in molecular electronics

    OpenAIRE

    Linko, Veikko

    2011-01-01

    This thesis is mainly focused on DNA molecules and especially on self-assembled DNA constructs and their potential applications in nanotechnology and molecular electronics. In the field of molecular electronics the conductivity of DNA is a crucial - yet open - question, and it is of great concern, since DNA is a very promising molecule in a context of bottom-up based nanodevices due to its superior selfassembly characteristics. A key tool in all the experiments presented in ...

  5. Fullerene based devices for molecular electronics

    OpenAIRE

    G. Cuniberti; R. GUTIERREZ; Fagas, G.; Grossmann, F.; Richter, K; Schmidt, R.

    2001-01-01

    We have investigated the electronic properties of a C_60 molecule in between carbon nanotube leads. This problem has been tackled within a quantum chemical treatment utilizing a density functional theory-based LCAO approach combined with the Landauer formalism. Owing to low-dimensionality, electron transport is very sensitive to the strength and geometry of interfacial bonds. Molecular contact between interfacial atoms and electrodes gives rise to a complex conductance dependence on the elect...

  6. A study with microbeam PIXE technique needed for the interpretation of data on pollutants in hair obtained with NAA and other bulk concentration analysis. Part of a coordinated programme on nuclear-based methods for analysis of pollutants in human hair

    International Nuclear Information System (INIS)

    Hair metals the analysis of which has been proposed as a practical method for assaying human contamination with metal pollutants, reflect both internal and external contamination. This study is an attempt to distinguish these two components of hair metals, using the scanning microbeam PIXE technique. Individual hair strands were embedded in a resin combined with a hardener. Each embedded hair strand was cut perpendicular to its axis, into the root, 1-cm and 2-cm segments from the root. The 3 segments were analysed for few elements including As and Pb, using the scanning microbeam PIXE technique. For each segment, a proton microbeam of 15μ diameter and 500Hz frequency was used to scan the segment cross-section along the long axis. X-ray spectrometry was used to determine the concentrations of the elements studied. The results, although preliminary, showed that the scanning microbeam PIXE technique may provide important information about elemental concentrations and distribution patterns along hair length and hair cross-section. This may lead to a better understanding of mechanisms responsible for the deposition of elements into hair and thereby to a more rational use of hair analysis as a method for assaying human exposure to element pollutants

  7. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  8. MOF-based electronic and opto-electronic devices.

    Science.gov (United States)

    Stavila, V; Talin, A A; Allendorf, M D

    2014-08-21

    Metal-organic frameworks (MOFs) are a class of hybrid materials with unique optical and electronic properties arising from rational self-assembly of the organic linkers and metal ions/clusters, yielding myriads of possible structural motifs. The combination of order and chemical tunability, coupled with good environmental stability of MOFs, are prompting many research groups to explore the possibility of incorporating these materials as active components in devices such as solar cells, photodetectors, radiation detectors, and chemical sensors. Although this field is only in its incipiency, many new fundamental insights relevant to integrating MOFs with such devices have already been gained. In this review, we focus our attention on the basic requirements and structural elements needed to fabricate MOF-based devices and summarize the current state of MOF research in the area of electronic, opto-electronic and sensor devices. We summarize various approaches to designing active MOFs, creation of hybrid material systems combining MOFs with other materials, and assembly and integration of MOFs with device hardware. Critical directions of future research are identified, with emphasis on achieving the desired MOF functionality in a device and establishing the structure-property relationships to identify and rationalize the factors that impact device performance. PMID:24802763

  9. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  10. MFM and PEEM observation of micrometre-sized magnetic dot arrays fabricated by ion-microbeam irradiation in FeRh thin films.

    Science.gov (United States)

    Aikoh, K; Tohki, A; Matsui, T; Iwase, A; Satoh, T; Takano, K; Kohka, M; Saitoh, Y; Kamiya, T; Ohkochi, T; Kotsugi, M; Nakamura, T; Kinoshita, T

    2012-03-01

    FeRh thin films were irradiated with a 10 MeV iodine ion microbeam to produce micrometre-scale ferromagnetic microstructures by modifying the local magnetic character from antiferromagnetism to ferromagnetism using ion-microbeam irradiation. Two-dimensional magnetic dot arrays of dimensions ∼2 µm × 4 µm as well as 10 µm × 10 µm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy (MFM). The results of photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism reveal that the easy axis of the magnetization of the ion-beam-irradiated ferromagnetism in the FeRh thin films lies in the film planes along the direction of the MgO substrates. PMID:22338683

  11. Single-ion microbeam as a tool for low-dose radiation effects investigations

    Science.gov (United States)

    Gerardi, Silvia; Galeazzi, Giuseppe; Cherubini, Roberto

    2006-05-01

    Practical assessment of human radiation exposure risk deserves particular attention especially for low doses (and low dose rates), which concern environmental and occupational exposure. At these dose levels ionizing radiation exposures involve mainly isolated charged particle tracks, which strike individual cells at time intervals averaging from weeks to several years apart. Accelerator-based microbeam irradiation technique offers a unique tool to mimic such an exposure, allowing irradiating single cells individually with micrometer precision and with a preset number of charged particles down to one particle per cell. A horizontal single-ion microbeam facility for single-cell irradiations has been designed and set up at the INFN-LNL 7MV CN Van de Graaff accelerator. The light ion beam is collimated in air down to a section of 2-3µm in diameter by means of appropriate pinholes. Semi-automatic cell visualization and automatic cell positioning and revisiting system, based on an inverted phase contrast optical microscope and on X-Y translation stages with 0.1µm positioning precision, has been developed. An in-house-written software allows to control remotely the irradiation protocol. As a distinctive feature of the facility, cell recognition is performed without using fluorescent staining and UV light. Particle detection in air, behind the biological sample, is based on a silicon detector while in-air beam profile and precise hit position measurements are accomplished by a custom-made cooled-CCD camera and Solid State Nuclear Track detectors, respectively. A particle counting rate of less than 1 ion/sec can be reached.

  12. Synchrotron microbeam x-ray radiation damage in semiconductor layers

    International Nuclear Information System (INIS)

    Radiation induced structural damage is observed in silicon-on-insulator (SOI) and SiGe on SOI samples illuminated with monochromatic (11.2 keV) x-ray microbeams approximately 250 nm in diameter. The x-ray diffraction peaks from the irradiated layers irreversibly degrade with time, indicating permanent structural damage to the crystal lattice. The size of the damaged regions is almost an order of magnitude larger than the beam size. The magnitude of damage decreases as one moves away from the center of the illuminated volume. We discuss the threshold dosage required for damage initiation and possible mechanisms for the observed damage

  13. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    Science.gov (United States)

    Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca

    2014-08-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  14. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  15. Fabrication of nanowires by varying energy microbeam lithography using heavy ions at the TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)], E-mail: kamiya.tomihiro@jaea.go.jp; Takano, K.; Ishii, Y.; Satoh, T.; Oikawa, M.; Ohkubo, T.; Haga, J. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Nishikawa, H.; Furuta, Y.; Uchiya, N. [Dept. of Electrical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Seki, S. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sugimoto, M. [Quatum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2009-06-15

    In TIARA facility of Japan Atomic Energy Agency (JAEA) Takasaki, we have produced three-dimensional micro/nano-structures with high aspect ratio using cross linking process based on negative resist such as SU-8 by a technique of mask less ion beam lithography. By bombarding high energy heavy ions such as 450 MeV Xe{sup 23+} to SU-8, on the other hand, it appeared that a nanowire could be produced just with a single ion hitting. Then we tried to produce nanowires, of which both ends were fixed in the three-dimensional structure. This paper shows a preliminary experiment for this purpose using a combination of 15 MeV Ni{sup 4+} ion microbeam patterning and the 450 MeV {sup 129}Xe{sup 23+} hitting on SU-8.

  16. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  17. TSET: Token based Secure Electronic Transaction

    CERN Document Server

    Borgohain, Rajdeep; Sakharwade, Chandrakant; Sanyal, Sugata

    2012-01-01

    Security and trust are the most important factors in online transaction, this paper introduces TSET a Token based Secure Electronic Transaction which is an improvement over the existing SET, Secure Electronic Transaction protocol. We take the concept of tokens in the TSET protocol to provide end to end security. It also provides trust evaluation mechanism so that trustworthiness of the merchants can be known by customers before being involved in the transaction. Moreover, we also propose a grading mechanism so that quality of service in the transactions improves.

  18. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  19. Examination Of Nanostructures By Electron Beam

    Czech Academy of Sciences Publication Activity Database

    Hrnčiřík, Petr; Müllerová, Ilona

    Bled: European Microbeam Analysis Society, 2004, s. 139. [EMAS 2004 /6./ Electron Probe Analysis Today - Practical Aspects. Bled (SI), 08.05.2004-11.05.2004] R&D Projects: GA AV ČR KJB2065405 Keywords : scanning electron microscope * scanning Auger electron microscopy * very slow electrons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Communication: Electron ionization of DNA bases.

    Science.gov (United States)

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space. PMID:27131520

  1. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  2. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  3. An FPGA-Based Electronic Cochlea

    Directory of Open Access Journals (Sweden)

    M. P. Leong

    2003-06-01

    Full Text Available A module generator which can produce an FPGA-based implementation of an electronic cochlea filter with arbitrary precision is presented. Although hardware implementations of electronic cochlea models have traditionally used analog VLSI as the implementation medium due to their small area, high speed, and low power consumption, FPGA-based implementations offer shorter design times, improved dynamic range, higher accuracy, and a simpler computer interface. The tool presented takes filter coefficients as input and produces a synthesizable VHDL description of an application-optimized design as output. Furthermore, the tool can use simulation test vectors in order to determine the appropriate scaling of the fixed point precision parameters for each filter. The resulting model can be used as an accelerator for research in audition or as the front-end for embedded auditory signal processing systems. The application of this module generator to a real-time cochleagram display is also presented.

  4. Graphene-based Electronically Tuneable Microstrip Attenuator

    Directory of Open Access Journals (Sweden)

    L. Pierantoni

    2014-06-01

    Full Text Available This paper presents the design of a graphene- based electronically tuneable microstrip attenuator operating at a frequency of 5 GHz. The use of graphene as a variable resistor is discussed and the modelling of its electromagnetic properties at microwave frequencies is fully addressed. The design of the graphene-based attenuator is described. The structure integrates a patch of graphene, whose characteristics can range from being a fairly good conductor to a highly lossy material, depending on the applied voltage. By applying the proper voltage through two high-impedance bias lines, the surface resistivity of graphene can be modified, thereby changing the insertion loss of the microstrip attenuator.

  5. Elemental microanalysis in ecophysiology using ion microbeam

    International Nuclear Information System (INIS)

    A few recent applications of elemental microanalysis based on proton beam in ecophysiology and ecotoxicology are shown. They are related to biofiltering capabilities of mycorrhiza (symbiosis between fungi and plant roots) and to plant-insect herbivore interactions. The reported results were obtained at iThemba LABS, South Africa. PIXE and BS techniques were simultaneously used. True elemental maps were generated using a VMS version and PC version of GeoPIXE (GeoPIXE I and II). Further analysis was performed using PIXE and BS spectra extracted from list-mode data and corresponding to specific organs of an insect or a plant

  6. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    International Nuclear Information System (INIS)

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm−3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1–6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm−2

  7. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Željko, E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Capan, Ivana [Material Physics Division, Institute Rudjer Boskovic, PO Box 180, 10000 Zagreb (Croatia); Cohen, David D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Forneris, Jacopo [Physics Department and NIS Excellence Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Iwamoto, Naoya; Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Siegele, Rainer [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 10{sup 14} cm{sup −3}) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He{sup 2+} ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z{sub 1/2} center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1–6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 10{sup 11} cm{sup −2}.

  8. Microbeam synchrotron radiation diffraction and fluorescence study of oxide layers formed on 9Cr ODS steel in supercritical water

    International Nuclear Information System (INIS)

    Uniform corrosion is a major concern for ferritic-martensitic steels when considered as candidate materials for the supercritical water reactor (SCWR). The corrosion rate depends on alloy composition and microstructure. The best ferritic-martensitic alloys resist corrosion by developing a protective oxide layer that stabilizes oxide growth. To better understand the protection and stabilization mechanism, the structure of oxide layers formed on ferritic-martensitic alloys in supercritical water is studied using both transmission electron microscopy and microbeam synchrotron radiation diffraction and fluorescence. Using the microbeam it is possible to determine phases present using x-ray diffraction and chemical composition using x-ray fluorescence, both as a function of location in the oxide layer. The detailed study of phases present and elemental segregation at interfaces is presented for an oxide formed on 9Cr ODS steel after exposure to supercritical water for 667 hours. In the diffusion layer, both metal and oxide peaks are seen indicating a coexistence of the two phases in the diffusion layer. In the Cr-rich inner layer, a mixture of spinel phase FeCr2O4 and Fe3O4 is observed, while in the outer oxide layer, Fe3O4 is the predominant phase. Evidence for additional Cr-rich phases near the interfaces is also shown. (author)

  9. Explanation-based knowledge acquisition of electronics

    Science.gov (United States)

    Kieras, David E.

    1992-08-01

    This is the final report in a project that examined how knowledge of practical electronics could be acquired from materials similar to that appearing in electronics training textbooks, from both an artificial intelligence perspective and an experimental psychology perspective. Practical electronics training materials present a series of basic circuits accompanied by an explanation of how the circuit performs the desired function. More complex circuits are then explained in terms of these basic circuits. This material thus presents schema knowledge for individual circuit types in the form of explanations of circuit behavior. Learning from such material would thus consist of first instantiating any applicable schemas, and then constructing a new schema based on the circuit structure and behavior described in the explanation. If the basic structure of the material is an effective approach to learning, learning about a new circuit should be easier if the relevant schemas are available than not. This result was obtained for both an artificial intelligence system that used standard explanation-based learning mechanisms and with human learners in a laboratory setting, but the benefits of already having the relevant schemas were not large in these materials. The close examination of learning in this domain, and the structure of knowledge, should be useful to future cognitive analyses of training in technical domains.

  10. Micro-beam scanning PIXE in NIRS and the application tests to biological samples

    International Nuclear Information System (INIS)

    Micro-beam scanning system for PIXE analysis newly installed in National Institute of Radiological Sciences (NIRS) was introduced in this paper. Fine ring structure of a fish scale was observed using elemental mapping with proton micro-beam scanning. Pollen was analyzed as one example of single cell to demonstrated the elemental distribution. The minimum size of the proton beam is estimated as 0.4 x 0.65 μm. (author)

  11. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    OpenAIRE

    Grad, Michael; Harken, Andrew; RANDERS-PEHRSON, Gerhard; Attinger, Daniel; Brenner, David J.

    2012-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission de...

  12. Electron-avalanche amplifier based on the electronic Venturi effect

    Science.gov (United States)

    Taubert, D.; Schinner, G. J.; Tranitz, H. P.; Wegscheider, W.; Tomaras, C.; Kehrein, S.; Ludwig, S.

    2010-10-01

    Scattering of otherwise ballistic electrons far from equilibrium is investigated in a cold two-dimensional electron system. The interaction between excited electrons and the degenerate Fermi liquid induces a positive charge in a nanoscale region which would be negatively charged for diffusive transport at local thermal equilibrium. In a three-terminal device we observe avalanche amplification of electrical current, resulting in a situation comparable to the Venturi effect in hydrodynamics. Numerical calculations using a random-phase approximation are in agreement with our data and suggest Coulomb interaction as the dominant scattering mechanism.

  13. The Progress of a Microbeam Facility in the Institute of Plasma Physics

    Institute of Scientific and Technical Information of China (English)

    吴瑜; 胡素华; 李军; 陈斌; 张束清; 王旭飞; 时钟涛; 袁航; 张俊; 王绍虎; 余增亮

    2003-01-01

    The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20μA, the H2+ current before the second bending magnet is near 0.9μA, the current after the second bending magnet is near 0.8μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10μm diameter aperture and the 3.5μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.

  14. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  15. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  16. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Enguita, Olga E-mail: olga.enguita@uam.es; Fernandez-Jimenez, M.T.; Garcia, G.; Climent-Font, A.; Calderon, T.; Grime, G.W

    2004-06-01

    This paper describes the new external microbeam on the 15 deg. beamline of the 5 MV Tandetron accelerator recently installed at the CMAM in Madrid. The focusing and beam extraction system was supplied by Oxford Microbeams Ltd. and consists of a high precision quadrupole doublet with an interchangeable Kapton window exit nozzle and front-viewing video microscope. The sample is positioned in the beam using a stepper motor stage. The beam current and beam profile have been determined under different experimental conditions. A simple method based on the signal processing of ion-induced luminescence from quartz targets has been used to determine the beam profile in two dimensions simultaneously, without scanning. This is the first step in the development of a real time beam profile monitoring system, which could be used as part of an automated beam focusing procedure. The beam line will be primarily devoted to archaeometry and cultural heritage studies. As an example we report the characterisation of two Tang appearance antique porcelains.

  17. The new external microbeam facility at the 5 MV Tandetron accelerator laboratory in Madrid: beam characterisation and first results

    International Nuclear Information System (INIS)

    This paper describes the new external microbeam on the 15 deg. beamline of the 5 MV Tandetron accelerator recently installed at the CMAM in Madrid. The focusing and beam extraction system was supplied by Oxford Microbeams Ltd. and consists of a high precision quadrupole doublet with an interchangeable Kapton window exit nozzle and front-viewing video microscope. The sample is positioned in the beam using a stepper motor stage. The beam current and beam profile have been determined under different experimental conditions. A simple method based on the signal processing of ion-induced luminescence from quartz targets has been used to determine the beam profile in two dimensions simultaneously, without scanning. This is the first step in the development of a real time beam profile monitoring system, which could be used as part of an automated beam focusing procedure. The beam line will be primarily devoted to archaeometry and cultural heritage studies. As an example we report the characterisation of two Tang appearance antique porcelains

  18. Microbeam facility extension for single-cell irradiation experiments. Investigations about bystander effect and reactive oxygen species impact

    International Nuclear Information System (INIS)

    The LPS microbeam facility is based on a KN3750 Van de Graaff accelerator devoted to microbeam analysis [1]. It is equipped with two horizontal microbeam lines used in various fields such as material science, geological science, nuclear material science and biology. Since two years, a single ion hit device is being developed at the LPS. The setup is dedicated to the study of ionizing radiation effects on living cells by performing single ion irradiation at controlled doses and locations. This study will complete current researches conducted on uranium chemical toxicity on renal an d osteoblastic cells. After ingestion, most uranium is excreted from the body within a few days except small fraction that is absorbed into the blood-stream (0.2 to 5%) and then deposit and preferentially in kidneys and bones, where it can remain for many years. Uranium is a heavy metal and a primarily alpha emitter. It can lead to bone cancer as a result of the ionizing radiation associated with the radioactive decay products. The study of the response to an exposure to alpha particles will permit to distinguish radiotoxicity and chemical toxicity of uranium bone cells with a special emphasis or the bystander effect at low dose.All the beam lines at the LPS nuclear microprobe are horizontal and under vacuum. A dedicated deflecting magnet was inserted in one of the two available beam lines of the facility. The ion beam is extracted to air using a 100 nm thick silicon nitride membrane, thin enough to induce negligible effects on the ions in terms of energy loss and spatial resolution. By this way, we believe that we minimize the experimental setup impact on the living cells easing the detection of low irradiation dose impact. The atmosphere around the samples is also important to guaranty low stressed cell culture conditions. A temperature, hygrometry and CO2 controlled atmosphere device will be implanted in the future. The irradiation microbeam is produced using a fused silica capillary

  19. Fair Electronic Cash Based on Double Signatures

    Institute of Scientific and Technical Information of China (English)

    陈晓峰; 王常杰; 王育民

    2002-01-01

    In order to decrease crimes such as money laundering, blackmailing etc. inelectronic cash systems, fair electronic cash has been a major focus of academic research inelectronic commence. When a bank finds some dubious cash or owner, the trusted entity ortrustee can help him to revoke the anonymity of the cash. In the previous protocols, the trusteeknows all the information of the cash whether he is trusted or not, that is, he can trace the useror cash unconditionally. Furthermore, the dishonest trustee may deceive a user, which meansthat he may withdraw cash while tracing other users. Such cases are unfair to the honest users.A new fair electronic cash protocol based on untrustworthy trustees is proposed in thispaper. The key idea is that the coin structure should include the signatures of both the trusteeand the bank so that the trustee shares the information of the cash with the bank, while we donot use the secret sharing scheme. In contrast with the previous protocols, neither the trusteenor the bank can trace the money without the help of the other entity. In this way, the privacyof the user is protected furthest. Also, the trustee is off-line in the protocol, which meansthat he will not be involved in withdrawing the cash. Therefore, the protocol is efficient forimplementation.

  20. Direct microfabrication using an x-ray micro-beam with a single refractive lens

    International Nuclear Information System (INIS)

    A micro-beam of hard X-ray (10 keV) as small as 5 μm in diameter has been generated using a single refractive lens made of polymers (e.g. PMMA, PTFE) and been applied for direct writing, which may find possible applications in three-dimensional (3D) micro-fabrication. The refractive lenses are parabolic-shaped concave lenses with a radius of 4 μm and an aperture of 179 μm and have been produced using our high aspect-ratio techniques with synchrotron radiation (SR) of our home-made compact storage ring, AURORA-2S (electron energy of 0.7 GeV). The lenses have two parabolic curvatures (R=4 μm) with apertures A=2(2Rz)1/2=179 μm, thus the aspect-ratio z/R=250 for its curvatures, which is too great for traditional techniques to achieve. The transmissions of our lenses were measured to be 54-85%, which is higher than that of a zone plate and a compound refractive lens. (author)

  1. Special Technologies Related to Electron Beam Welding

    Institute of Scientific and Technical Information of China (English)

    Zhao; Haiyan; Cai; Zhipeng; Wang; Xichang

    2007-01-01

    In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.

  2. MOSFET dosimetry with high spatial resolution in intense synchrotron-generated x-ray microbeams.

    Science.gov (United States)

    Siegbahn, E A; Bräuer-Krisch, E; Bravin, A; Nettelbeck, H; Lerch, M L F; Rosenfeld, A B

    2009-04-01

    Various dosimeters have been tested for assessing absorbed doses with microscopic spatial resolution in targets irradiated by high-flux, synchrotron-generated, low-energy (approximately 30-300 keV) x-ray microbeams. A MOSFET detector has been used for this study since its radio sensitive element, which is extraordinarily narrow (approximately 1 microm), suits the main applications of interest, microbeam radiation biology and microbeam radiation therapy (MRT). In MRT, micrometer-wide, centimeter-high, and vertically oriented swaths of tissue are irradiated by arrays of rectangular x-ray microbeams produced by a multislit collimator (MSC). We used MOSFETs to measure the dose distribution, produced by arrays of x-ray microbeams shaped by two different MSCs, in a tissue-equivalent phantom. Doses were measured near the center of the arrays and maximum/minimum (peak/valley) dose ratios (PVDRs) were calculated to determine how variations in heights and in widths of the microbeams influenced this for the therapy, potentially important parameter. Monte Carlo (MC) simulations of the absorbed dose distribution in the phantom were also performed. The results show that when the heights of the irradiated swaths were below those applicable to clinical therapy (< 1 mm) the MC simulations produce estimates of PVDRs that are up to a factor of 3 higher than the measured values. For arrays of higher microbeams (i.e., 25 microm x 1 cm instead of 25 x 500 microm2), this difference between measured and simulated PVDRs becomes less than 50%. Closer agreement was observed between the measured and simulated PVDRs for the Tecomet MSC (current collimator design) than for the Archer MSC. Sources of discrepancies between measured and simulated doses are discussed, of which the energy dependent response of the MOSFET was shown to be among the most important. PMID:19472618

  3. MOSFET dosimetry with high spatial resolution in intense synchrotron-generated x-ray microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Siegbahn, E. A.; Braeuer-Krisch, E.; Bravin, A.; Nettelbeck, H.; Lerch, M. L. F.; Rosenfeld, A. B. [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, 38043 Grenoble (France); Center for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2522 (Australia)

    2009-04-15

    Various dosimeters have been tested for assessing absorbed doses with microscopic spatial resolution in targets irradiated by high-flux, synchrotron-generated, low-energy ({approx}30-300 keV) x-ray microbeams. A MOSFET detector has been used for this study since its radio sensitive element, which is extraordinarily narrow ({approx}1 {mu}m), suits the main applications of interest, microbeam radiation biology and microbeam radiation therapy (MRT). In MRT, micrometer-wide, centimeter-high, and vertically oriented swaths of tissue are irradiated by arrays of rectangular x-ray microbeams produced by a multislit collimator (MSC). We used MOSFETs to measure the dose distribution, produced by arrays of x-ray microbeams shaped by two different MSCs, in a tissue-equivalent phantom. Doses were measured near the center of the arrays and maximum/minimum (peak/valley) dose ratios (PVDRs) were calculated to determine how variations in heights and in widths of the microbeams influenced this for the therapy, potentially important parameter. Monte Carlo (MC) simulations of the absorbed dose distribution in the phantom were also performed. The results show that when the heights of the irradiated swaths were below those applicable to clinical therapy (<1 mm) the MC simulations produce estimates of PVDRs that are up to a factor of 3 higher than the measured values. For arrays of higher microbeams (i.e., 25 {mu}mx1 cm instead of 25x500 {mu}m{sup 2}), this difference between measured and simulated PVDRs becomes less than 50%. Closer agreement was observed between the measured and simulated PVDRs for the Tecomet MSC (current collimator design) than for the Archer MSC. Sources of discrepancies between measured and simulated doses are discussed, of which the energy dependent response of the MOSFET was shown to be among the most important.

  4. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    Science.gov (United States)

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 μm, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations.

  5. 8th international workshop on microbeam probes of cellular radiation response. Extended abstracts

    International Nuclear Information System (INIS)

    This meeting has been held regularly since 1993. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Advances in microbeam technology are continuously occurring and have greatly contributed to the studies in various fields of life sciences in ways that can not be achieved using conventional broad field exposures. Microbeam irradiation can inactivate subcellular compartments and cell/tissue sub-populations, and can be used to investigate the spatial dynamics of sub-nuclear irradiation-induced DNA damage repair and non-targeted responses such as bystander effects, or as a tool in radio-microsurgery in eukaryotes including plants, silkworm, and nematode. At the last meeting held in 2006, about 30 microbeams were reported in operation or under development in the world. Now, only also in Tokyo metropolitan area, several different microbeams, using protons, heavy charged particles, synchrotron and Al-K X-rays, are available for cell-targeting irradiation. This Workshop will provide a forum to assess the current state of microbeam technology and current biological applications, and to discuss future directions for development, both technological and biological. (author)

  6. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    International Nuclear Information System (INIS)

    In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped–clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler–Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported. (paper)

  7. Distribution and role of trace transition metals in Glycera worm jaws studied with synchrotron microbeam techniques

    International Nuclear Information System (INIS)

    A combination of position-resolved synchrotron microbeam techniques was used to explore the distribution and role of trace transition metals in the jaws of Glycera dibranchiata. The mandibles of this marine sediment worm have recently been found to be reinforced by the copper-based biomineral atacamite [Cu2(OH)3Cl]. Here we show that the system is more complex, containing zinc and iron and unmineralized copper compounds as well. X-ray absorption spectroscopy studies showed that a fraction of copper is present in oxidation state, Cu(I), in contrast to the mineral that exclusively contains Cu(II). X-ray fluorescence imaging revealed traces of copper also in the jaw base devoid of mineral. Traces of iron were found as well, but occurred spatially correlated with the copper mineral, suggesting a substitution of copper atoms by iron in the atacamite mineral. Zinc was evenly dispersed throughout the jaw matrix, quite in analogy to zinc in Nereis jaw, a related worm species, where nonmineralized zinc serves to cross-link and harden the proteinaceous matrix

  8. Distribution and role of trace transition metals in Glycera worm jaws studied with synchrotron microbeam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenegger, Helga C.; Birkedal, Henrik; Casa, Deigo M.; Cross, Julie O.; Heald, Steve M.; Waite, J. Herbert; Stucky, Galen

    2005-05-31

    A combination of position-resolved synchrotron microbeam techniques was used to explore the distribution and role of trace transition metals in the jaws of Glycera dibranchiata. The mandibles of this marine sediment worm have recently been found to be reinforced by the copper-based biomineral atacamite [Cu2(OH)3Cl]. Here we show that the system is more complex, containing zinc and iron and unmineralized copper compounds as well. X-ray absorption spectroscopy studies showed that a fraction of copper is present in oxidation state, Cu(I), in contrast to the mineral that exclusively contains Cu(II). X-ray fluorescence imaging revealed traces of copper also in the jaw base devoid of mineral. Traces of iron were found as well, but occurred spatially correlated with the copper mineral, suggesting a substitution of copper atoms by iron in the atacamite mineral. Zinc was evenly dispersed throughout the jaw matrix, quite in analogy to zinc in Nereis jaw, a related worm species, where nonmineralized zinc serves to cross-link and harden the proteinaceous matrix.

  9. An Internet Based Anonymous Electronic Cash System

    OpenAIRE

    Israt Jahan; Mohammad Zahidur Rahman; K M Akkas Ali; Israt Jerin

    2015-01-01

    There is an increase activity in research to improve the current electronic payment system which is parallel with the progress of internet. Electronic cash system is a cryptographic payment system which offers anonymity during withdrawal and purchase. Electronic cash displays serial numbers which can be recorded to allow further tracing. Contrary to their physical counterparts, e-cash have an inherent limitation; they are easy to copy and reuse (double-spending). An observer is a tamper-resis...

  10. Entanglement-assisted electron microscopy based on a flux qubit

    OpenAIRE

    Okamoto, Hiroshi; Nagatani, Yukinori

    2013-01-01

    A notorious problem in high-resolution biological electron microscopy is radiation damage to the specimen caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio...

  11. The ionoluminescence apparatus at the LABEC external microbeam facility

    Energy Technology Data Exchange (ETDEWEB)

    Calusi, S.; Colombo, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Giuntini, L. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy)], E-mail: giuntini@fi.infn.it; Giudice, A. Lo [Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Manfredotti, C. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Massi, M. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy); Pratesi, G. [Dipartimento di Scienze della Terra and Museo di Storia Naturale, Universita di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Vittone, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2008-05-15

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 {mu}m can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance.

  12. Bystander effect studies using heavy-ion microbeam

    International Nuclear Information System (INIS)

    We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAEA-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV/amu 12C, 13.0 or 17.5 MeV/amu 20Ne, and 11.5 MeV/amu 40Ar ions. Targeting and irradiation of the cells were performed automatically according to the positional data of the target cells microscopically obtained before irradiation. The actual number of particle tracks that pass through target cells was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39). (author)

  13. Assessment of the environment using synchrotron radiation micro-beams

    International Nuclear Information System (INIS)

    The pollution from heavy metals such as lead and mercury has been a matter of great concern for decades as they may cause adverse health to human. In this study, we analyzed major and trace elements in modern and prehistoric teeth by X-ray fluorescence (XRF) analysis using synchrotron radiation micro-beams, in order to assess the changes of the environment through the civilization and the industrialization and their effects on human. Teeth from various periods of time including teeth from the human remains of the Jomon period were collected for the analysis as teeth are suggested to be indicators of the environmental changes. The main elements analyzed were Pb, Hg, Cu, and Zinc. Levels of Pb in modern teeth were higher than those in the Jomon teeth which indicate that the pollution from Pb is now greater than it was in the remote past. However, as there are small numbers of teeth collected in this study, there is a need to analyze more samples from various periods of time in order to assess the change of the environment in details

  14. Diagnosis of spatial resolution for microbeam scanning PIXE using STIM method and CR-39 track detector in PASTA

    International Nuclear Information System (INIS)

    In PIXE analysis system and Tandem Accelerator facility (PASTA) of NIRS, we are using Scanning Transmission Ion Microscopy (STIM) method and solid track detector to diagnose the spatial resolution of scanning microbeam PIXE analysis system. These methods are widely used by many microbeam facilities. (author)

  15. High-energy attosecond nanoplasmonic-based electron gun

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-03-01

    We present the design of an ultrafast conical lens based nanoplasmonic electron gun. Through excitation with a radially polarized laser pulse, and a combination of magnetostatic and spatial filtering, high energy electron packets with attosecond durations can be achieved.

  16. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  17. Electronic structure of hybrid interfaces for polymer-based electronics

    International Nuclear Information System (INIS)

    The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)

  18. Quantum-based electronic devices and systems selected topics in electronics and systems, v.14

    CERN Document Server

    Dutta, Mitra

    1998-01-01

    This volume includes highlights of the theories and experimental findings that underlie essential phenomena occurring in quantum-based devices and systems as well as the principles of operation of selected novel quantum-based electronic devices and systems. A number of the emerging approaches to creating new types of quantum-based electronic devices and systems are also discussed.

  19. Simulation of cellular irradiation with the CENBG microbeam line using GEANT4

    CERN Document Server

    Incerti, S; Villeneuve, R; Aguer, P; Gontier, E; Michelet-Habchi, C; Moretto, P; Nguyen Dinh Thao; Pouthier, T; Smith, R W; Barberet, Ph.; Moretto, Ph.

    2003-01-01

    Light-ion microbeams provide a unique opportunity to irradiate biological samples at the cellular level and to investigate radiobiological effects at low doses of high LET ionising radiation. Since 1998 a single-ion irradiation facility has been developed on the focused horizontal microbeam line of the CENBG 3.5 MV Van de Graaff accelerator. This setup delivers in air single protons and alpha particles of a few MeV onto cultured cells, with a spatial resolution of a few microns, allowing subcellular targeting. In this paper, we present results from the use of the GEANT4 toolkit to simulate cellular irradiation with the CENBG microbeam line, from the entrance to the microprobe up to the cellular medium.

  20. Investigation of Static and Dynamic Pull-in Instability in a FGP Micro-Beam

    Science.gov (United States)

    Rezaei Kivi, Araz; Azizi, Saber; Marzbanrad, Javad

    2015-12-01

    In this paper, static and dynamic behavior of a fully clamped functionally graded piezoelectric micro-beam, subjected to simultaneous electrostatic and piezoelectric actuations is investigated. The micro-beam is composed of silicon and PZ4 as a piezoelectric material. Applying DC piezoelectric voltage results in the generation of an axial force and as a result the equivalent bending stiffness of the micro-beam changes. The tunability of the bending stiffness due to piezoelectric actuation is used to stabilize the pull-in instability. The nonlinear governing equation of the motion is derived using Hamiltonian principle and discretized to a single degree of freedom system using Galerkin method. The static and dynamic pull-in voltages corresponding to various piezoelectric voltages are determined. The ratio of the static to dynamic pull-in voltages is in good agreement with those of the literature.

  1. Development of the CAS-LIBB single-particle microbeam for localized irradiation of living cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xufei; XU Mingliang; WU Lijun; WANG Shaohu; FENG Huiyun; ZHAN Furu; PENG Shixiang; HU Chundong; ZHANG Shuqing; CHENG Jianjun; SHI Zhongtao; WANG Xiaohua; YUAN Hang; YUAN Haitao; YU Zengliang; CHEN Lianyun; HU Zhiwen; LI Jun; WU Yu; CHEN Bin; HU Suhua; ZHANG Jun

    2004-01-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydrogen ions, produced by a van de Graaff accelerator, in an energy range of 2.0-3.0 MeV, into an area smaller than that of the nucleus of an individual living cell. The beam is collimated by a borosilicate glass capillary that forms the beam-line exit. An integrated computer program recognizes the cells and locates them one by one over the microbeam exit for irradiation. We present technical details of the CAS-LIBB microbeam facility, particularly on the collimator, hardware, control program, as well as cell irradiation protocols available. Various factors contributing to the targeting and positioning precision are discussed along with accuracy measurement results.

  2. Multifrequency excitation of a clamped–clamped microbeam: Analytical and experimental investigation

    KAUST Repository

    Jaber, Nizar

    2016-03-14

    Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped–clamped microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first three modes of vibration, whereas the second source frequency remains fixed. New additive and subtractive resonances are demonstrated. We illustrated that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. The microbeam is fabricated using polyimide as a structural layer coated with nickel from the top and chromium and gold layers from the bottom. Using the Galerkin method, a reduced order model is derived to simulate the static and dynamic response of the device. A good agreement between the theoretical and experimental data are reported.

  3. Monte Carlo simulation of the CENBG microbeam and nanobeam lines with the Geant4 toolkit

    International Nuclear Information System (INIS)

    A single-ended HVEE[reg] 3.5 MV Singletron electrostatic accelerator has been installed since October 2005 at the Centre d'Etudes Nucleaires de Bordeaux-Gradignan (CENBG) in France. This facility is equipped with a microbeam line dedicated to ion beam analysis (scanning transmission ion microscopy - STIM, particle induced X-ray emission - PIXE, Rutherford back scattering) and cellular irradiation in single event mode. A high demagnification nanobeam line will be installed on the same facility in the near future. This paper focuses on the simulation of the microbeam and nanobeam lines performances using the Geant4 Monte Carlo simulation toolkit. Comparisons with experimental data collected on the microbeam line are presented

  4. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. PMID:22483897

  5. The use of radiation microbeams to investigate the bystander effect in cells and tissues

    Science.gov (United States)

    Folkard, M.; Prise, K. M.; Michette, A. G.; Vojnovic, B.

    2007-09-01

    Microbeams are ideally suited to the study of so-called 'non-targeted' phenomena that are now known to occur when living cells and tissues are irradiated. Non-targeted effects are those where cells are seen to respond to ionising radiation through pathways other than direct damage to the DNA. One such phenomenon is the 'bystander effect'; the observation that unirradiated cells can be damaged through signalling pathways initiated by a nearby irradiated cell. The effect leads to a highly non-linear dose-response at low doses and is forcing a rethink of established models used to estimate low-dose radiation risk, which are largely based on linear extrapolations from epidemiological data at much higher doses. The bystander effect may also provide an opportunity for improvements in the treatment of cancer by radiotherapy, as it may be possible to chemically influence the bystander response in such a way as to enhance cell killing in tumour cells or to protect healthy tissue.

  6. Vibration behavior of a viscoelastic composite microbeam under simultaneous electrostatic and piezoelectric actuation

    Science.gov (United States)

    Chitsaz Yazdi, F.; Jalali, A.

    2015-08-01

    In this paper, the static and dynamic response of a clamped-clamped viscoelastic nanocomposite microbeam under combined electrostatic and piezoelectric actuations is analyzed. The equations of motion of the system are derived using the Euler-Bernoulli beam theory, Kelvin-Voigt model and Hamilton principle. The nonlinear model for the system is studied by considering stretching of the mid-plane, a DC electrostatic force, an AC harmonic force and a DC piezoelectric actuation. The static deflection and natural frequency of the system is extracted, and the influence of system parameters on the primary resonance behavior of the system is studied. It is shown that, based on various electrostatic and piezoelectric excitations, hardening or softening behavior is expected. So, one can tune these voltages such that this highly nonlinear system behaves linearly close to resonance frequency. Also it is shown that damping characteristics of the system with viscoelastic material not only depends on the damping coefficient of the system, but also on its other parameters.

  7. An Internet Based Anonymous Electronic Cash System

    Directory of Open Access Journals (Sweden)

    Israt Jahan

    2015-04-01

    Full Text Available There is an increase activity in research to improve the current electronic payment system which is parallel with the progress of internet. Electronic cash system is a cryptographic payment system which offers anonymity during withdrawal and purchase. Electronic cash displays serial numbers which can be recorded to allow further tracing. Contrary to their physical counterparts, e-cash have an inherent limitation; they are easy to copy and reuse (double-spending. An observer is a tamper-resistant device, issued by the Internet bank, which is incorporated with the Internet user’s computer that prevents double-spending physically, i.e., the user has no access to her e-cash and therefore he cannot copy them. In this paper, we shall present an anonymous electronic cash scheme on the internet which incorporates tamper-resistant device with user-module.

  8. Introducing the ELMCIP Electronic Literature Knowledge Base

    OpenAIRE

    Rettberg, Scott

    2013-01-01

    Focusing on a particular creative community, of electronic literature practitioners, the central research question of the ELMCIP collaborative research project is how creative communities of practitioners form within transnational and transcultural contexts, within a globalised and distributed communications environment. We seek to gain insight into and understanding of the social effects and manifestations of creativity. Our research seeks to exploit the characteristics of electronic literat...

  9. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  10. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan;

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... the FPGA and therefore integrate task-specific electronics without physically changing the electronics or we can reconfigure the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...

  11. Practical Research of Electronic Transformer Based on Interpolation Algorithm

    OpenAIRE

    Fu Yang; Ji Hui; Li Zhenkun

    2013-01-01

    As a result of the adoption of new photovoltaic technology, electronic transformers have great advantages compared with traditional electromagnetic type, such as anti-saturated, high linearity, compact and lightweight etc. The working principle of sensing head of electronic current/voltage transformers is introduced in the paper. The causes of phase error in electronic transformer are analyzed. And a set of phase compensation methods based on the signal transfer principle of electronic transf...

  12. Linac based free-electron laser

    International Nuclear Information System (INIS)

    A basic treatment of the principle of the linac-driven free-electron laser (FEL) is given. The first part of the paper describes the FEL in low-gain approximation, and in the second part the high-gain FEL theory is given. The majority of the treatment describes FELs in one dimensional approximation, neglecting effects by diffraction of radiation and by electron beam emittance. Only in the final section a few remarks on these issues are given. The ambition of the paper is by no means any progress in FEL theory but a clear presentation of basic FEL theory concepts with explicit derivation of the formulae from first principles. (orig.)

  13. Animation Based Learning of Electronic Devices

    Science.gov (United States)

    Gero, Aharon; Zoabi, Wishah; Sabag, Nissim

    2014-01-01

    Two-year college teachers face great difficulty when they teach the principle of operation of the bipolar junction transistor--a subject which forms the basis for electronics studies. The difficulty arises from both the complexity of the device and by the lack of adequate scientific background among the students. We, therefore, developed a unique…

  14. The Roads to LPA Based Free Electron Laser

    OpenAIRE

    Zhu, Xiongwei

    2014-01-01

    In this paper, we simply outline the present status of the free electron laser and the laser plasma based accelerator, and we simply discuss the potential possible roads appearing in the accelerator community to use the laser plasma based accelerator into the field of the free electron laser.

  15. Microbeam X-ray analysis in Poland - past and future

    International Nuclear Information System (INIS)

    The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.

  16. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  17. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, Rita, E-mail: rita.graceffa@gmail.com [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Nobrega, R. Paul [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Barrea, Raul A. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Kathuria, Sagar V. [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Chakravarthy, Srinivas [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Bilsel, Osman [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Irving, Thomas C. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States)

    2013-11-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  18. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    International Nuclear Information System (INIS)

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

  19. Development of diagnostic method for deep levels in semiconductors using charge induced by heavy ion microbeams

    International Nuclear Information System (INIS)

    Highlights: •Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed. •HIQTS system is connected with 3 MeV Tandem accelerator at JAEA Takasaki. •Defects in 4H Silicon Carbide (SiC) Schottky diodes were evaluated using HIQTS. •6H-SiC pn diodes with partial damaged areas were also evaluated using HIQTS. -- Abstract: In order to study defects that create deep energy levels in semiconductors which act as carrier traps, Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed at JAEA Takasaki. The HIQTS system was connected with the heavy ion microbeam line of the 3 MV Tandem accelerator. Using the HIQTS system, deep levels in 4H-SiC Schottky barrier diodes irradiated with 3 MeV-protons were studied. As a result, a HIQTS peak with an activation energy of 0.73 eV was observed. In addition, local damage in 6H-SiC pn diodes partially irradiated with 12 MeV-O ion microbeams was studied using HIQTS. With increasing 12 MeV-O ion fluence, charge collection efficiency in locally damaged areas decreased and HIQTS signals increased

  20. Live cell imaging at the Munich ion microbeam SNAKE – a status report

    International Nuclear Information System (INIS)

    Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins. The online version of this article (doi:10.1186/s13014-015-0350-7) contains supplementary material, which is available to authorized users

  1. Magnetic planar waveguides as combined polarizers and spin-flippers for neutron microbeams

    International Nuclear Information System (INIS)

    We propose the waveguides structures which transform an incident unpolarized neutron beam into a polarized microbeam and can also be used as spin-flippers by varying the incidence angle on the structure. We describe optimized structures combining these functions. Such waveguides could be used for the investigation of one-dimensional magnetic structures and implemented on any existing fixed wavelength reflectometer

  2. Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams

    Science.gov (United States)

    Alcheikh, N.; Kosuru, L.; Jaber, N.; Bellaredj, M.; Younis, M. I.

    2016-06-01

    This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped–clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes.

  3. Neural network based electron identification in the ZEUS calorimeter

    International Nuclear Information System (INIS)

    We present an electron identification algorithm based on a neural network approach applied to the ZEUS uranium calorimeter. The study is motivated by the need to select deep inelastic, neutral current, electron proton interactions characterized by the presence of a scattered electron in the final state. The performance of the algorithm is compared to an electron identification method based on a classical probabilistic approach. By means of a principle component analysis the improvement in the performance is traced back to the number of variables used in the neural network approach. (orig.)

  4. First Experiments on a Microreactor Created by Proton Microbeam

    International Nuclear Information System (INIS)

    Complete text of publication follows. Microreactors are innovative and promising tools in technology nowadays because of their advantages compared to the conventional-scale reactors. These advantages include vast improvements in surface to volume ratio, energy efficiency, reaction speed and yield, and increased control of reaction conditions, to name a few examples. In this work we present the design of a prototype micro-electrochemical cell of 1.5 μL volume (2.5 x 2.5 x 0.240 mm) created with a 3 MeV proton microbeam. We deposited gold electrodes on the bottom and top sides of the chamber. The cell can be separated into two half-cells with a suitable membrane applicable to galvanic or fuel cells as well. We used a polycapillary film (also made by PBW ourselves) to separate the two half-cells, hindering the mixing of the anolyte and catholyte solutions. Fig. 1. shows the 3D model of the designed structure. Fig. 2. shows the assembled microreactor with the attached pipes. Measuring a detectable current driven between the two electrodes in this microelectrochemical cell containing a simple electrolyte solution demonstrates an operating device. As a result of the minimal mixing caused by the polycapillary film, this cell design can be suitable for electro-synthesis. At 1 V potential the measured current was about 150-200 μA, at 2 V it was about 250-400 μA. After charging the cell with direct current for a while, it was found to act as a micro battery due to the changes of the starting concentration of the NaOH electrolyte and the formation of products in the anolyte and catholyte solutions. After five minutes of charging with 1 V, the measured voltage potential of electrodes was about 20 mV for a few minutes with slowly decreasing current. Due to the micromachining technique's high resolution, further reduction of the dimensions of this kind of microreactor is also planned. Acknowledgements The technical assistance of the Van de Graaff accelerator operating staff

  5. X-ray microbeam bystander studies between stripes of dose

    International Nuclear Information System (INIS)

    Evidence is emerging that radiation exposure can change communication between cells of the same type, as well as between cells of different cell compartments within tissues. We are using a novel X-ray Microprobe Beamline at the Advanced Light Source (ALS) at LBNL to investigate bystander effects of low doses in well-characterized human mammary epithelial cells (HMEC) and human skin fibroblasts (HSF). The ALS facility is capable of producing a beam of 12.5 keV X-rays with a focussed spot size of 2 square micron and a wide range of doses and dose-rates. Unlike normal X-ray sources, this beam has a very small background of either low- or high-energy X-rays. In initial studies, cultures grown in microwell slide chambers have been irradiated with precise stripes of dose up to 100 micron wide. We are using fluorescence microscopy on a high-precision-controlled microscope stage to evaluate several classes of radiation-induced soluble signals, how these signals are communicated across cell compartments, and how radiation changes cell signaling both acutely and chronically. To evaluate the spatial dependence of intercellular communications, we varied the distance between dose stripes from 0-900 micrometers. We are investigating the radiation induction of p21Cip1 (CDKN1a), and phosphorylation of H2AX and p53 serine-15 as endpoints. Our preliminary results indicate that there is a dose- and cell-type-dependent expression of p53 serine-15P within 10 minutes after exposure to a 100 micron wide stripe of dose. Immunohistochemistry of p53-serine-15P-positive cells traversed by the beam illuminates the path of the X-ray microbeam, with epithelial cells responding more rapidly and with greater intensity than fibroblasts. The intensity of the immunofluorescence scales with the dose. The number of p53-serine-15P-positive cells in the unirradiated cell populations between the stripes has been counted as a measure of the bystander effect, and compared to appropriate controls. We will

  6. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities

    International Nuclear Information System (INIS)

    The aim of the 'BioQuaRT' (Biologically weighted Quantities in Radiotherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the mis-repaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a bio-foil 25-μm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations. (authors)

  7. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities.

    Science.gov (United States)

    Patrono, C; Monteiro Gil, O; Giesen, U; Langner, F; Pinto, M; Rabus, H; Testa, A

    2015-09-01

    The aim of the 'BioQuaRT' (Biologically weighted Quantities in RadioTherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the misrepaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a biofoil 25-µm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations. PMID:25877532

  8. Microscopic residual stress evolution during deformation process of an Fe---Mn---Si---Cr shape memory alloy investigated using white X-ray microbeam diffraction

    International Nuclear Information System (INIS)

    Microscopic residual stress evolution in different austenite (γ) grains during shape memory process in an Fe---Mn---Si---Cr alloy was investigated using the white X-ray microbeam diffraction technique. The use of high-energy white X-ray microbeam with small beam size allowed us to measure the microscopic residual stress in coarse γ grains with specific orientation. After tensile deformation large compressive residual stress was evolved in γ grains due to the formation of stress-induced ε martensite, but upon recovery heating it almost disappeared as a result of reverse transformation of martensite. The magnitude of compressive residual stress was higher in grains with orientations close to 〈144〉 and 〈233〉 orientations than in a grain with near 〈001〉 orientation. Analysis of the microstructure of each grain using electron backscattering diffraction suggested that the difference in the magnitude of compressive residual stress could be attributed to different martensitic transformation characteristics in the grains

  9. Embedded Based Electronic Voting Machine Using Password

    Directory of Open Access Journals (Sweden)

    Varkala Vinay,

    2015-04-01

    Full Text Available The Electronic voting machine plays a key role in elections. The Earlier EVM’S needs more man power, time and mislead the voting scenario due to influence of local people vote and after voting the other may vote only after the Password is set then the system gets ready to accept the polling. After completion of the polling we may make the system to reset .If the person is authenticated then the vote is issued and the polling process is done using buzzer system, else that denies the process. At every regular intervals of time the polled votes are recorded and give the count that how many votes are casted through LCD. This system gives an efficient way to conduct elections and display the results on the same day.

  10. Synaptic devices based on purely electronic memristors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruobing [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Li, Jun; Zhuge, Fei, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Fu, Bing; Li, Kang [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-01-04

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  11. Synaptic devices based on purely electronic memristors

    International Nuclear Information System (INIS)

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs

  12. Graph-based linear scaling electronic structure theory

    CERN Document Server

    Niklasson, Anders M N; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Djidjev, Hristo

    2016-01-01

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  13. A generic converter for experimentation based power electronics learning

    OpenAIRE

    Leite, V; Barbosa, José; Teixeira, H.; Araújo, R.

    2005-01-01

    This paper presents a low cost, modular, configurable and fully protected education tool based on a generic electronic converter to be used by students, providing them with skills regarding power electronics and converters, and enabling them to learn from experience the most important issues concerning DC and AC electric drives.

  14. Using Electronic Resources to Support Problem-Based Learning

    Science.gov (United States)

    Chang, Chen-Chi; Jong, Ay; Huang, Fu-Chang

    2012-01-01

    Students acquire skills in problem solving and critical thinking through the process as well as team work on problem-based learning courses. Many courses have started to involve the online learning environment and integrate these courses with electronic resources. Teachers use electronic resources in their classes. To overcome the problem of the…

  15. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    KAUST Repository

    Ruzziconi, Laura

    2013-02-20

    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances

  16. Crystallization and melting behavior of polymer blend observed by microbeam small-angle x-ray scattering

    International Nuclear Information System (INIS)

    The microbeam small angle x-ray scattering (SAXS) technique gives the novel information about micron-scale structural distribution (or inhomogeneity). By using microbeam SAXS, we have studied the crystallization and melting behavior of miscible polymer blend PCL (poly- ε caprolactone)/PVB (poly-vinyl butyral). In PCL/PVB, the very large spherulite with highly regular band structure is formed because of low frequency of nucleation. By irradiating an X-ray microbeam near the edge of the spherulite, we have measured the lamella formation at the growth front. It is found that PCL/PVB crystal has two populations of lamella bundle (longer and usual periodic structure) and the very long periodic structure grows before the appearance of the usual lamella period. We have also scanned the X-ray microbeam along the radial direction of the spherulite and have observed a periodic change of SAXS intensity, the period of which corresponds to the band period. (author)

  17. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  18. Electronic Commerce Logistics Network Optimization Based on Swarm Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yabing Jiao

    2013-09-01

    Full Text Available This article establish an efficient electronic commerce logistics operation system to reduce distribution costs and build a logistics network operation model based on around the B2C electronic commerce enterprise logistics network operation system. B2C electronic commerce transactions features in the enterprise network platform. To solve the NP-hard problem this article use hybrid ant colony algorithm, particle swarm algorithm and group swarm intelligence algorithm to get a best solution. According to the intelligent algorithm, design of electronic commerce logistics network optimization system, enter the national 22 electronic commerce logistics network for validation. Through the experiment to verify the optimized logistics cost greatly decreased. This research can help B2C electronic commerce enterprise logistics network to optimize decision-making under the premise of ensuring the interests of consumers and service levels also can be an effective way for enterprises to improve the efficiency of logistics services and reduce operation costs

  19. A Novel Calibrator for Electronic Transformers Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Baoxiang PAN

    2013-01-01

    Full Text Available It is necessary for electronic transformer to make calibration before putting it into practice. To solve the problems in actual calibration process, a novel electronic transformer calibrator is designed. In principle, this system adopts both the direct method and the difference method, which are two popular methods for electronic transformer calibration, by this way the application of the system is extended with its reliability improved. In the system design, based on virtual instrument technology, LabVIEW and WinPCap toolkit are used to develop the application software, and it is able to calibrate those electronic transformers following the standard of IEC 61850. In the calculation of ratio and phase error based on fast Fourier transform, a new window function is introduced, and thus the accuracy of calibration, influenced by the frequency vibration, is improved. This research provides theoretic support and practical reference to the development of intelligent calibrator for electronic transformers.

  20. Chemical Functionalization Effects on Cubane-Based Chain Electronic Transport

    Directory of Open Access Journals (Sweden)

    Konstantin P. Katin

    2015-01-01

    Full Text Available We report electronic structure calculations in chemically functionalized linear cubane-based chains. The effects of covalent chemical attachments on chain transport properties are examined with nonorthogonal tight-binding model (NTBM considering Landauer-Büttiker formalism. The covalent bonding of even a single-type functional group is shown to considerably alter the conductance of the chain. For similar radical doping density, electronic characteristics are found to range from insulator to narrow-gap semiconductor depending on the nature of the covalent bonding. Therefore it has become possible to tune electronic properties of the cubane-based one-dimensional oligomers by the functionalization for nanoelectronic applications.

  1. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  2. Controlled cooling of an electronic system based on projected conditions

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  3. Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

    International Nuclear Information System (INIS)

    The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of

  4. Distribution and anisotropy of dislocations in cold-drawn pearlitic steel wires analyzed using micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    To characterize the distribution and anisotropy of dislocations in cold-drawn pearlitic steel wires, X-ray diffraction line-profile analysis was performed using synchrotron radiation micro-beams. An analytical procedure for correcting the instrumental line broadening for highly directional micro-beams was developed using diffraction profiles of standard CeO2 powder. Although the CeO2 powder line profile includes line broadening due to its microstructural imperfections, the instrumental broadening can be obtained by estimating the effect of the microstructural imperfections on the line broadening. The plastic shear strain was generally more severe near the surface than the center of the wire, whereas the dislocation density distribution was almost constant from the center to the surface. On the other hand, the dislocation rearrangement, which evolves the dislocation cell structure, progressed closer to the surface. It was also revealed that a difference between the hardness in axial and transverse wire directions could be explained by anisotropic dislocation density. Line-profile analysis based on diffraction data at elevated temperatures was performed. Whereas the cementite recovery progressed at a constant rate, the ferrite phase recovery rate was temperature-dependent, suggesting that the ferrite phase recovery was less related to that of the cementite phase. (author)

  5. Simultaneous ion luminescence imaging and spectroscopy of individual aerosol particles with external proton or helium microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@gunma-u.ac.jp [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    Simultaneous microscopic imaging and spectroscopy of individual aerosol particles were performed with an external microbeam. Visible luminescence induced by the external microbeam was successfully used as a probe to detect organic contaminants in the targets. Combined ion luminescence (IL)/particle-induced X-ray emission (PIXE) analysis of the aerosol targets revealed microscopic chemical and elemental composition distributions under ambient atmospheric conditions. The simple confocal micro-optics for the IL spectroscopy and microscopic imaging were sufficiently sensitive for detecting these molecules at sub-parts per million concentrations and at a wavelength resolution of less than 5 nm. The IL spectra were monitored to prevent severe damage to the samples. Furthermore, our IL system has the advantage that it is simple to add to a conventional micro-PIXE system.

  6. Accuracy Measurements of the CAS-LIBB Single-Particle Microbeam for Single Cell Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Fei; WU Li-Jun; YU Zeng-Liang; HU Zhi-Wen; WANG Xiao-Hua; CHEN Lian-Yun; ZHANG Jun; LI Jun; CHEN Bin; XU Ming-Liang; WU Yu

    2004-01-01

    A single-particle microbeam facility has been constructed at the Laboratory ofIon Beam Bioengineering (LIBB),Chinese Academy of Sciences. The system is designed to deliver the defined number of hydrogen ions, covering a range of energy from 1.0 to 3.5 MeV, into an area smaller than the nuclei of individual living cells. Accuracy of the particle detection system and the cell targeting system in the facility has been assessed using CR39 (nuclear track detector) for 2.3 MeV protons. The results demonstrate that the particle detection efficiency is above 98%,and the overall targeting accuracy of the microbeam is limited within 3μm for more than 90% hits.

  7. Micro-beam scanning PIXE analysis system at the National Institute of Radiological Sciences (NIRS)

    International Nuclear Information System (INIS)

    In 2000, micro-beam scanning particle induced X-ray emission (PIXE) analysis system was installed in NIRS. This system provides the ability of multi-elemental mapping on maximum 2.5 mm x 2.5 mm area in a spatial resolution of about 1 μm with quadrupole triplet magnets and a scanning coil. The estimated beam size on good tuning was 0.40 x 0.65 μm2, that is one of the best capacity of micro-beam scanning PIXE system in the world. The performance was tested using small biological samples such as fish scale, pollen and small fish eye. Fine elemental maps were obtained in the samples of about 30 μm to a few mm size in the special resolution of about 1 μm. (author)

  8. Simultaneous ion luminescence imaging and spectroscopy of individual aerosol particles with external proton or helium microbeams

    International Nuclear Information System (INIS)

    Simultaneous microscopic imaging and spectroscopy of individual aerosol particles were performed with an external microbeam. Visible luminescence induced by the external microbeam was successfully used as a probe to detect organic contaminants in the targets. Combined ion luminescence (IL)/particle-induced X-ray emission (PIXE) analysis of the aerosol targets revealed microscopic chemical and elemental composition distributions under ambient atmospheric conditions. The simple confocal micro-optics for the IL spectroscopy and microscopic imaging were sufficiently sensitive for detecting these molecules at sub-parts per million concentrations and at a wavelength resolution of less than 5 nm. The IL spectra were monitored to prevent severe damage to the samples. Furthermore, our IL system has the advantage that it is simple to add to a conventional micro-PIXE system

  9. Genetic changes induced in higher plant cells by a laser microbeam

    International Nuclear Information System (INIS)

    Introducing foreign genes into higher plants has proved to be complicated, with the exception of transformation of protoplasts of some plants (Negrutiu et al. 1987). In particular, culture of protoplasts and regeneration to plants are difficult in many monocotyledonous crops. Therefore, it would be desirable to avoid extensive tissue culture by introducing cloned genes directly into cells. A laser microbeam can perforate plant cell walls, thus facilitating uptake of genes into cells

  10. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    International Nuclear Information System (INIS)

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed

  11. Microbeam PIXE analysis of platinum resistant and sensitive ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeynes, J.C.G., E-mail: J.C.Jeynes@surrey.ac.u [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Bailey, M.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Coley, H. [Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J.; Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-06-15

    Microbeam PIXE was used to analyse platinum in single ovarian cancer cells. Carboplatin sensitive and resistant cells were grown as a monolayer on polypropylene and treated with either carboplatin or cisplatin. Pt from the carboplatin could not be detected. The Pt from cisplatin in the cells could be detected, and significantly more Zn was found in the resistant cells compared to the sensitive cells. The sensitive cells probably accumulated more cisplatin than the resistant ones.

  12. Rocking curve measurements of infrared LEDs using highly parallel X-ray microbeam

    CERN Document Server

    Takeda, S; Urakawa, M; Ibuki, T; Takai, K; Tsusaka, Y; Kagoshima, Y; Matsui, J; Miyamoto, N

    2001-01-01

    Using highly parallel X-ray microbeam of 9 mu mx9 mu m size and 1.8 arcsec angler divergence obtained by means of successive asymmetric reflections, measurements of the rocking curves of small electric devices was performed. The strain in a local region of LEDs under current operation was investigated. While changing the current, the deviation of the lattice constant around the surface was clearly observed.

  13. COMPUTER OF TESTING ON DISCIPLINE "BASES ELECTRICAL ENGINEERS AND ELECTRONICS"

    OpenAIRE

    Zarzhetskaja, N.; Noskov, M.

    2010-01-01

    In the given work application of program Electronics Workbench for teaching a rate is described: « Bases electrical engineers and electronics ». It is offered to use the program for carrying out of laboratory works and testing's of quality of knowledge of students. This approach raises quality of mastering of material students. It is the tool for independent check of results. Use of the program fixes the basic skills of calculations of electric circuits. In work the block from six laboratory ...

  14. Chemical Functionalization Effects on Cubane-Based Chain Electronic Transport

    OpenAIRE

    Konstantin P. Katin; Mikhail M. Maslov

    2015-01-01

    We report electronic structure calculations in chemically functionalized linear cubane-based chains. The effects of covalent chemical attachments on chain transport properties are examined with nonorthogonal tight-binding model (NTBM) considering Landauer-Büttiker formalism. The covalent bonding of even a single-type functional group is shown to considerably alter the conductance of the chain. For similar radical doping density, electronic characteristics are found to range from insulator to ...

  15. Design of wireless electronic stethoscope based on zigbee

    OpenAIRE

    Kadam Patil D.D; Shastri R.K

    2012-01-01

    Heart sound stethoscope is primary stage to access diseases. In this paper design of an electronic stethoscope with the functions of wireless transmission is discussed. This electronic stethoscope based on embedded processor. The data can be transmitted through wireless transmission using Zigbee module. A microphone is used to pick up the sound of the heart beat. Acoustic stethoscope can be changed into a digital stethoscope by inserting an electric capacity microphone into its head. The sig...

  16. Secure electronic commerce communication system based on CA

    Science.gov (United States)

    Chen, Deyun; Zhang, Junfeng; Pei, Shujun

    2001-07-01

    In this paper, we introduce the situation of electronic commercial security, then we analyze the working process and security for SSL protocol. At last, we propose a secure electronic commerce communication system based on CA. The system provide secure services such as encryption, integer, peer authentication and non-repudiation for application layer communication software of browser clients' and web server. The system can implement automatic allocation and united management of key through setting up the CA in the network.

  17. Graphene Electronic Device Based Biosensors and Chemical Sensors

    OpenAIRE

    Jiang, Shan

    2014-01-01

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first...

  18. An energy spread minimization system for microbeam generation in the JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    A heavy-ion microbeam with energy of hundreds of MeV is a significantly useful probe for research in biology and biotechnology. A single-ion hit technique using the heavy-ion microbeam is being developed at the JAERI AVF cyclotron facility for elucidation of biofunctions. For production of a microbeam with a spot size of one micro-meter in diameter, the energy spread in the beam is required to be reduced to 0.02% to minimize the effect of chromatic aberrations in the focusing lenses. The energy spread in the cyclotron beam depends on a waveform of the acceleration voltage and beam phase acceptance of the cyclotron. The typical energy spread of the cyclotron beam is around 0.1% in the ordinary acceleration mode using a sinusoidal voltage waveform. The energy spread can be reduced by superimposing a fifth-harmonic voltage waveform on the fundamental one to generate a flat-top waveform for uniform energy gain. The flat-top acceleration system has been designed for the variable-energy multi-particle AVF cyclotron with acceleration harmonic mode of 1, 2 and 3. An additional coaxial cavity has been installed to generate the fifth-harmonic voltage, coupled to the main resonator. The frequency range of the fifth harmonics, 55-110 MHz, was fully covered by the flat-top acceleration system

  19. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300–900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H{sup +} microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr{sup 3+} impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere.

  20. X-ray microbeams: Tumor therapy and central nervous system research

    International Nuclear Information System (INIS)

    Irradiation with parallel arrays of thin, planar slices of X-ray beams (microplanar beams, or microbeams) spares normal tissue, including the central nervous system (CNS), and preferentially damages tumors. The effects are mediated, at least in part, by the tissue's microvasculature that seems to effectively repair itself in normal tissue but fails to do so in tumors. Consequently, the therapeutic index of single-fraction unidirectional microbeam irradiations has been shown to be larger than that of single-fraction unidirectional unsegmented beams in treating the intracranial rat 9L gliosarcoma tumor model (9LGS) and the subcutaneous murine mammary carcinoma EMT-6. This paper presents results demonstrating that individual microbeams, or arrays of parallel ones, can also be used for targeted, selective cell ablation in the CNS, and also to induce demyelination. The results highlight the value of the method as a powerful tool for studying the CNS through selective cell ablation, besides its potential as a treatment modality in clinical oncology

  1. WDX-PIXE analysis of low energy X-rays using a microbeam

    International Nuclear Information System (INIS)

    A high-energy resolution PIXE system developed at a heavy ion microbeam line was used to analyze low energy X-rays below 1 keV. The system is equipped with a plane crystal spectrometer with a gas flow position sensitive proportional counter (PSPC), which enables high-energy resolution PIXE analysis using a microbeam. In order to improve the detection efficiency for the low energy X-rays, the X-ray entrance window of the PSPC was replaced with a thin polymer film supported by a metal grid. As the result, the detectable energy range was extended to carbon K X-rays and chemical effect in Fe and Cu L X-rays could be detected. A preliminary result of high-energy resolution PIXE mapping of Cu mesh (no. 500) showed that it is possible to obtain the Cu Lα mapping image using a 2 MeV proton microbeam with the size of 20x20 μm

  2. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    International Nuclear Information System (INIS)

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300–900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H+ microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere

  3. Semiconductor-based, large-area, flexible, electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit (Knoxville, TN)

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation.

    Science.gov (United States)

    Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel

    2009-08-28

    We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603

  5. The preclinical set-up at the ID17 biomedical beamline to achieve high local dose deposition using interlaced microbeams

    Science.gov (United States)

    Bräuer-Krisch, E.; Nemoz, C.; Brochard, Th; Berruyer, G.; Renier, M.; Pouyatos, B.; Serduc, R.

    2013-03-01

    Microbeam Radiation Therapy (MRT) uses spatially a fractionated "white beam" (energies 50-350 keV) irradiation from a Synchrotron Source. The typical microbeams used at ID17 are 25-100μm-thick, spaced by 200-400μm, and carry extremely high dose rates (up to about 16 kGy/s). These microbeams are well tolerated by biological tissue, i.e. up to several hundred of Gy in the peaks. When valley doses, caused by Compton scattering in between two microbeams, remain within a dose regime similar to conventional RT, a superior tumour control can be achieved with MRT than with conventional RT. The normal tissue tolerance of these microscopically small beams is outstanding and well documented in the literature. The hypothesis of a differential effect in particular on the vasculature of normal versus tumoral tissue might best be proven by using large animal models with spontaneous tumors instead of small laboratory animals with transplantable tumors, an ongoing project on ID17. An alternative approach to deposit a high dose, while preserving the feature of the spatial separation of these microbeams outside the target has opened up new applications in preclinical research. The instrumentation of this method to produce such interlaced beams is presented with an outlook on the challenges to build a treatment platform for human patients. Dose measurements using Gafchromic films exposed in interlaced geometries with their steep profiles highlight the potential to deposit radiotoxic doses in the vicinity of radiosensitive tissues.

  6. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....

  7. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger;

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  8. A laser printing based approach for printed electronics

    Science.gov (United States)

    Zhang, T.; Hu, M.; Liu, Y.; Guo, Q.; Wang, X.; Zhang, W.; Lau, W.; Yang, J.

    2016-03-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  9. Electronic properties of graphene-based bilayer systems

    Science.gov (United States)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco

    2016-08-01

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin-orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  10. Model Checking Electronic Commerce Security Protocols Based on CTL

    Institute of Scientific and Technical Information of China (English)

    XIAO De-qin; ZHANG Huan-guo

    2005-01-01

    We present a model based on Computational Temporal Logic (CTL) methods for verifying security requirements of electronic commerce protocols. The model describes formally the authentication, confidentiality integrity,non-repudiation, denial of service and access control of the electronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocol proposed by Lu-Smolka.Moreover, we have discovered two attacks that allow a dishonest user to purchase a good debiting the amount to another user. And also, we compared our work with relative research works and found that the formal way of this paper is more general to specify security protocols for E-Commerce.

  11. Multifunctional bulk plasma source based on discharge with electron injection.

    Science.gov (United States)

    Klimov, A S; Medovnik, A V; Tyunkov, A V; Savkin, K P; Shandrikov, M V; Vizir, A V

    2013-01-01

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings. PMID:23387642

  12. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  13. Alumina Based 500 C Electronic Packaging Systems and Future Development

    Science.gov (United States)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  14. A count rate based contamination control standard for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  15. Portable audio electronics for impedance-based measurements in microfluidics

    International Nuclear Information System (INIS)

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1–50 mM), flow rate (2–120 µL min−1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ∼10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems. (technical note)

  16. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    International Nuclear Information System (INIS)

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  17. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan

    2014-11-05

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  18. Microbeam studies of soft X-ray induced bystander cell killing using microbeam X-ray cell irradiation system at CRIEPI

    International Nuclear Information System (INIS)

    The radiation induced bystander response is defined as a response in cells which have not been directly targeted by radiation, but which are in the neighborhood of cells which have been directly exposed. In many cases, the bystander response is saturated with increasing dose and is observed when only one cell in a population is targeted by high-LET particle radiations or ultrasoft X-rays (278 eV). However, in our studies using synchrotron X-ray microbeams (5.35 keV), the bystander cell killing effect in normal human fibroblast WI-38 cells had a parabolic relationship to the irradiating dose and was detected if 5 or more cell nuclei were irradiated. To evaluate the feature of the X-ray-induced bystander cell killing effect at a wider dose range and the existence of photon energy dependence, the effects were assessed by irradiating cell nuclei in confluent WI-38 cells with aluminum K-shell (AlK) X-ray microbeams (1.49 keV). The surviving fraction decreased when only a single cell nucleus was irradiated, suggesting the minimal number of targeted cells to induce the effect may depend on the energy of photons used. In this study, we found that the bystander cell killing effect showed a biphasic relationship to the irradiating dose. The decrease in bystander cell survival at the doses higher than 0.23 Gy was partially suppressed between 2.3 and 7.0 Gy, followed by level-off around 90% above 14 Gy, suggesting that the X-ray-induced bystander response is dose dependent. In addition, NO is one of chief initiators/mediators of the effect at least 0.47 Gy. (author)

  19. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field. PMID:21137718

  20. Electron-doping of graphene-based devices by hydrazine

    International Nuclear Information System (INIS)

    A facile and effective technique to tune the electronic properties of graphene is essential to facilitate the flexibility of graphene-based device performances. Here, the use of hydrazine as a solution-processable and effective n-type dopant for graphene is described. By dropping hydrazine solutions at different concentrations on a graphene surface, the Dirac point of graphene can be remarkably tuned. The transport behavior of graphene can be changed from p-type to n-type accordingly, demonstrating the controllable and adjustable doping effect of the hydrazine solutions. Accompanying the Dirac point shift is an enhanced hysteretic behavior of the graphene conductance, indicating an increasing trap state density induced by the hydrazine adsorbates. The electron-doping of graphene by the hydrazine solutions can be additionally confirmed with graphene/p-type silicon heterojunctions. The decrease of the junction current after the hydrazine treatment demonstrates an increase of the junction barrier between graphene and silicon, which is essentially due to the electron-doping of graphene and the resultant upshift of the Fermi level. Finally, partially doped graphene is realized and its electrical property is studied to demonstrate the potential of the hydrazine solutions to selectively electron-doping graphene for future electronic applications

  1. Electron tomography based on a total variation minimization reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, W. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Heidari Mezerji, H.; Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2012-02-15

    The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms. -- Highlights: Black-Right-Pointing-Pointer A reconstruction algorithm for electron tomography is investigated based on total variation minimization. Black-Right-Pointing-Pointer Missing wedge artefacts are reduced by this algorithm. Black-Right-Pointing-Pointer The reconstruction is easier to segment. Black-Right-Pointing-Pointer More reliable quantitative information can be obtained.

  2. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation.

    Science.gov (United States)

    Buonanno, M; Randers-Pehrson, G; Smilenov, L B; Kleiman, N J; Young, E; Ponnayia, B; Brenner, D J

    2015-08-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/μm) with a range in skin of about 135 μm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 μm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 μm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 μm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism. PMID:26207682

  3. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  4. Electron injection and transport mechanism in organic devices based on electron transport materials

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M A; Xu Wei; Khizar-ul-Haq; Zhang Xiaowen; Bai Yu; Jiang, X Y; Zhang, Z L; Zhu, W Q [Department of Materials Science, Shanghai University, Jiading 201800 (China)

    2008-11-21

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at {approx}8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J {approx} V{sup m} with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be {approx}5 x 10{sup 18} cm{sup -3}. The critical voltage (V{sub c}) is found to be {approx}45 V and is almost independent of the materials.

  5. Laser microbeam irradiation and renucleation of mouse eggs. Final progress report, July 1, 1979-December 31, 1983

    International Nuclear Information System (INIS)

    We have combined laser microbeam irradiation of mouse egg nuclei with fusion to donor cell nuclei in order to develop a new procedure for transferring nuclei into mammalian eggs. We have been using virus-treated cells injected into the perivitelline for fusion with egg cells. Binucleate cells inside the zona pellucida were often produced indicating nuclear transfer between cells had occurred. To prevent the formation of such abortive polyploidy, host nuclei were inactivated with a laser microbeam. The subsequent cleavage of the microirradiated eggs has been studied

  6. Atom location using scanning transmission electron microscopy based on electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Full text: The technique of atom location by channelling enhanced microanalysis (ALCHEMI) using cross section data, measured as a function of electron beam orientation, has been widely implemented by many researchers. The accurate application of ALCHEMI, usually based on energy dispersive x-ray analysis (EDX), requires knowledge, from first principles, of the relative delocalization of the inner-shell ionization interaction (see for example Oxley and Allen, 1998; Oxley et al., 1999). Scanning transmission electron microscopy (STEM) based on electron energy loss spectroscopy (EELS) also provides information about the location of atoms of different types within the crystal lattice. Unlike high angle annular dark field (HAADF), EELS provides a unique signal for each atom type. In conjunction with highly focused probes, allowing near atomic resolution, this makes possible, in principle, the application of ALCHEMI like techniques to STEM images to determine the distribution of impurities within the unit cell. The accurate interpretation of STEM results requires that both the inner-shell ionization interaction and resulting ionization cross section or image be correctly modelled. We present model calculations demonstrating the in principle application of ALCHEMI type techniques to STEM images pertinent to EELS. The inner-shell ionisation interaction is modelled using Hartree-Fock wave functions to describe the atomic bound states and Hartree-Slater wave functions to describe the continuum states. The wave function within the crystal is calculated using boundary conditions appropriate for a highly focussed probe (Rossouw and Allen, 2001) and STEM images or ionisation cross sections are simulated using an inelastic cross section formulation that correctly accounts for the contribution from both dynamical electrons and those dechannelled by absorptive scattering processes such as thermal diffuse scattering (TDS). Copyright (2002) Australian Society for Electron Microscopy

  7. An evaluation of dose equivalence between synchrotron microbeam radiation therapy and conventional broad beam radiation using clonogenic and cell impedance assays.

    Directory of Open Access Journals (Sweden)

    Mohammad Johari Ibahim

    Full Text Available BACKGROUND: High-dose synchrotron microbeam radiation therapy (MRT has shown the potential to deliver improved outcomes over conventional broadbeam (BB radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments. AIM: To develop an in vitro approach to determine biological dose equivalence between MRT and BB using two different cell-based assays. METHODS: The acute response of tumour and normal cell lines (EMT6.5, 4T1.2, NMuMG, EMT6.5ch, 4T1ch5, SaOS-2 to MRT (50-560 Gy and BB (1.5-10 Gy irradiation was investigated using clonogenic and real time cell impedance sensing (RT-CIS/xCELLigence assays. MRT was performed using a lattice of 25 or 50 µm-wide planar, polychromatic kilovoltage X-ray microbeams with 200 µm peak separation. BB irradiations were performed using a Co60 teletherapy unit or a synchrotron radiation source. BB doses that would generate biological responses similar to MRT were calculated by data interpolation and verified by clonogenic and RT-CIS assays. RESULTS: For a given cell line, MRT equivalent BB doses identified by RT-CIS/xCELLigence were similar to those identified by clonogenic assays. Dose equivalence between MRT and BB were verified in vitro in two cell lines; EMT6.5ch and SaOS-2 by clonogenic assays and RT-CIS/xCELLigence. We found for example, that BB doses of 3.4±0.1 Gy and 4.40±0.04 Gy were radiobiologically equivalent to a peak, microbeam dose of 112 Gy using clonogenic and RT-CIS assays respectively on EMT6.5ch cells. CONCLUSION: Our data provides the first determination of biological dose equivalence between BB and MRT modalities for different cell lines and identifies RT-CIS/xCELLigence assays as a suitable substitute for clonogenic assays. These results will be useful for the safe selection of MRT doses for future veterinary and clinical trials.

  8. High-precision radiosurgical dose delivery by interlaced microbeam arrays of high-flux low-energy synchrotron X-rays.

    Directory of Open Access Journals (Sweden)

    Raphaël Serduc

    Full Text Available Microbeam Radiation Therapy (MRT is a preclinical form of radiosurgery dedicated to brain tumor treatment. It uses micrometer-wide synchrotron-generated X-ray beams on the basis of spatial beam fractionation. Due to the radioresistance of normal brain vasculature to MRT, a continuous blood supply can be maintained which would in part explain the surprising tolerance of normal tissues to very high radiation doses (hundreds of Gy. Based on this well described normal tissue sparing effect of microplanar beams, we developed a new irradiation geometry which allows the delivery of a high uniform dose deposition at a given brain target whereas surrounding normal tissues are irradiated by well tolerated parallel microbeams only. Normal rat brains were exposed to 4 focally interlaced arrays of 10 microplanar beams (52 microm wide, spaced 200 microm on-center, 50 to 350 keV in energy range, targeted from 4 different ports, with a peak entrance dose of 200Gy each, to deliver an homogenous dose to a target volume of 7 mm(3 in the caudate nucleus. Magnetic resonance imaging follow-up of rats showed a highly localized increase in blood vessel permeability, starting 1 week after irradiation. Contrast agent diffusion was confined to the target volume and was still observed 1 month after irradiation, along with histopathological changes, including damaged blood vessels. No changes in vessel permeability were detected in the normal brain tissue surrounding the target. The interlacing radiation-induced reduction of spontaneous seizures of epileptic rats illustrated the potential pre-clinical applications of this new irradiation geometry. Finally, Monte Carlo simulations performed on a human-sized head phantom suggested that synchrotron photons can be used for human radiosurgical applications. Our data show that interlaced microbeam irradiation allows a high homogeneous dose deposition in a brain target and leads to a confined tissue necrosis while sparing

  9. Implementing Electronic Tablet-Based Education of Acute Care Patients.

    Science.gov (United States)

    Sawyer, Tenita; Nelson, Monica J; McKee, Vickie; Bowers, Margaret T; Meggitt, Corilin; Baxt, Sarah K; Washington, Delphine; Saladino, Louise; Lehman, E Philip; Brewer, Cheryl; Locke, Susan C; Abernethy, Amy; Gilliss, Catherine L; Granger, Bradi B

    2016-02-01

    Poor education-related discharge preparedness for patients with heart failure is believed to be a major cause of avoidable rehospitalizations. Technology-based applications offer innovative educational approaches that may improve educational readiness for patients in both inpatient and outpatient settings; however, a number of challenges exist when implementing electronic devices in the clinical setting. Implementation challenges include processes for "on-boarding" staff, mediating risks of cross-contamination with patients' device use, and selling the value to staff and health system leaders to secure the investment in software, hardware, and system support infrastructure. Strategies to address these challenges are poorly described in the literature. The purpose of this article is to present a staff development program designed to overcome challenges in implementing an electronic, tablet-based education program for patients with heart failure. PMID:26830181

  10. Electronic Voting Protocol Using Identity-Based Cryptography

    Science.gov (United States)

    Gallegos-Garcia, Gina; Tapia-Recillas, Horacio

    2015-01-01

    Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps. PMID:26090515

  11. Electronic Voting Protocol Using Identity-Based Cryptography.

    Science.gov (United States)

    Gallegos-Garcia, Gina; Tapia-Recillas, Horacio

    2015-01-01

    Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps. PMID:26090515

  12. Monte Carlo simulation of microbeam photon irradiation of a single cell

    International Nuclear Information System (INIS)

    The numerical model presented in this paper offers the possibility of analyzing cell compartment response to irradiation microbeam fields of photons of different energies, beam sizes and cells arrangements. The results of the stochastic aspects of energy dissipation by photons interacting with the cells show that the energy deposited in the surrounding cells is 21% of the energy deposited in the target cell. The simulations with different photon beam energies ranging from 0.01 MeV to 2 MeV show that increased photon beam energy does not change the ratio of energy deposited in surrounding cell to that in target cell. (author)

  13. Effects of High-Dose Microbeam Irradiation on Tumor Microvascular Function and Angiogenesis

    OpenAIRE

    Fontanella, Andrew N.; Boss, Mary-Keara; Hadsell, Michael; Zhang, Jian; Schroeder, Thies; Berman, Katherine G.; Dewhirst, Mark W.; Chang, Sha; Palmer, Gregory M.

    2015-01-01

    Microbeam radiation therapy (MRT) is a form of cancer treatment in which a single large dose of radiation is spatially fractionated in-line or grid-like patterns. Preclinical studies have demonstrated that MRT is capable of eliciting high levels of tumor response while sparing normal tissue that is exposed to the same radiation field. Since a large fraction of the MRT-treated tumor is in the dose valley region that is not directly irradiated, tumor response may be driven by radiation bystande...

  14. Accelerator physics in ERL based polarized electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  15. Diffusion of Electronic Medical Record Based Public Hospital Information Systems

    OpenAIRE

    Cho, Kyoung Won; Kim, Seong Min; An, Chang-Ho; Chae, Young Moon

    2015-01-01

    Objectives This study was conducted to evaluate the adoption behavior of a newly developed Electronic Medical Record (EMR)-based information system (IS) at three public hospitals in Korea with a focus on doctors and nurses. Methods User satisfaction scores from four performance layers were analyzed before and two times after the newly develop system was introduced to evaluate the adoption process of the IS with Rogers' diffusion theory. Results The 'intention to use' scores, the most importan...

  16. Organic electronic memory based on a ferroelectric polymer

    International Nuclear Information System (INIS)

    Measurements of the capacitance of metal-insulator-semiconductor capacitors and the output characteristics of thin film transistors based on poly(3-hexylthiophene) as the active semiconductor and poly(vinylidenefluoride-trifluoroethylene) as the gate insulator show that ferroelectric polarisation in the insulator is stable but that its effect when poled by depletion voltages is partially neutralised by trapping of electrons at or near the semiconductor interface. Nevertheless, the combination of materials is capable of providing an adequate memory function.

  17. THE ELECTRONIC MARKET LIBERALIZATION IN A KNOWLEDGE BASED ECONOMY

    Directory of Open Access Journals (Sweden)

    Stegăroiu Carina-Elena

    2013-04-01

    Full Text Available In the current context of economic globalization and the advent of the virtual business environment, organizations have registered profound transformations that force companies to reconsider their strategic objectives, especially taking into consideration the opportunities created by the new information and communication technologies. Regardless of their reactive or proactive strategies when facing the changes in the competition, most companies in the developed countries and more and more of the Romanian enterprises are interested in developing technologies and information systems at a intra, inter and extra organizational level, with integrated traits, which are capable to sustain both the managerial process and the traditional functions of the organization. That being said, we herald now the expansion of the electronic commerce or eCommerce, which represents the automatization of the commercial transaction by using information systems and communication technologies. Developing an eCommerce system based on a business-to-business application consists of de-structuring the chain of value in managerial processes and then re-structuring it in order to identify the areas that can be made efficient through electronic means. This study is meant to aid the development of existing models by developing the services in certain less accessible to electronic commerce areas of a knowledge-based economy. As it stands, electronic commerce offers the opportunity of selling products world wide and this increasing the number of potential clients by eliminating the geographical barriers between buyers and seller. Opting for electronic commerce is a solution when the company wants to diversify its services and when it wants to reduce market related costs.

  18. Atomic Electronic Contract Protocol Based on Convertible Signature

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-chun; WANG Li-na; ZHANG Huan-guo

    2005-01-01

    A new class of atomicity, namely contract atomicity is presented. A new technical strategy based on convertible signature and two-phase commitment is proposed for implementing atomicity of electronic contract protocol. A new atomic contract signing protocol is given out by using ElGamal-like convertible undeniable signature and commitment of conversion key, and another new atomic contract signing protocol is brought forward by using RSA-based convertible undeniable signature scheme and commitment of conversion key.These two new protocols are proved to be of atomicity, fairness, privacy, non-repudiation.

  19. Pressure induced phase transition behaviour in -electron based dialuminides

    Indian Academy of Sciences (India)

    P Ch Sahu; N V Chandra Shekar

    2000-05-01

    The rare-earth and actinide based compounds are endowed with several exotic physical and chemical properties due to the presence of -electrons. These properties exhibit interesting changes under the action of various thermodynamic fields and hence continues to be a subject of extensive research. For instance, under pressure, the nature of -electrons can be changed from localized to itinerant, leading to a variety of changes in their structural, physical and chemical properties. The present review on the high pressure phase transition behaviour of dialuminides of rare earths and actinides is an outcome of research in our laboratory during the last five years using a unique combination of a Guinier diffractometer and a diamond anvil cell built in-house. To bring out the correlations between the compressibility and structural behaviour with the electronic structure, we have also carried out electronic structure calculation. Further, the usefulness of Villars' three parameter structure maps in predicting pressure induced structural transitions has been explored and this has been illustrated with the available phase transition data.

  20. A molecularly based theory for electron transfer reorganization energy

    International Nuclear Information System (INIS)

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory

  1. Advanced electron crystallography through model-based imaging.

    Science.gov (United States)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T; den Dekker, Arnold J; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  2. RFID-based Electronic Identity Security Cloud Platform in Cyberspace

    Directory of Open Access Journals (Sweden)

    Bing Chen

    2012-07-01

    Full Text Available With the moving development of networks, especially Internet of Things, electronic identity administration in cyberspace is becoming more and more important. And personal identity management in cyberspace associated with individuals in reality has been one significant and urgent task for the further development of information construction in China. So this paper presents a RFID-based electronic identity security cloud platform in cyberspace to implement an efficient security management of cyber personal identity, and designs and realizes a strong and pervasive security cloud service platform, and discusses key technology including security authentication mechanism for the electronic identity card, super high frequency RFID with eID cards, multilevel privacy protection mechanism, security cloud service, security isolation and single-oriented transmission, and boundary security gateway protection, and it can well apply to personal identity management with virtual roles of citizens in cyberspace such as E-Government and E-Business, and the electronic identity security platform has been primary implemented and achieved good effects in actual applications.

  3. Electronic shift register memory based on molecular electron-transfer reactions

    International Nuclear Information System (INIS)

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip

  4. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  5. Agent-based services for B2B electronic commerce

    Science.gov (United States)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  6. Web based electronic log book for Indus-2

    International Nuclear Information System (INIS)

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India has a 20 MeV Microtron injector, a 450/700 MeV Booster Synchrotron, a 450 MeV Storage Ring Indus-1 and another 2.5 GeV Storage Ring Indus-2. Both the machines are national facilities and are run round the clock to provide synchrotron radiation to users as well as carrying out machine related studies. In a multi accelerator complex like this, an effective system for electronically recording experimental data, machine status, events etc is considered essential. Considering the advantages of Internet technologies, a first version of web based Electronic Logbook (Elogbook) has been developed using HTML, JavaScript, java servlets and SQL database. This Elogbook will provide convenient way to review machine performance, help in problem diagnosis and improve communications among working teams. (author)

  7. Design of Wireless Electronic Stethoscope Based on Zigbee

    Directory of Open Access Journals (Sweden)

    Kadam Patil D.D

    2012-02-01

    Full Text Available Heart sound stethoscope is primary stage to access diseases. In this paper design of an electronic stethoscope with the functions of wireless transmission is discussed. This electronic stethoscope based on embedded processor. The data can be transmitted through wireless transmission using Zigbee module. A microphone is used to pick up the sound of the heart beat. Acoustic stethoscope can be changed into a digital stethoscope by inserting an electric capacity microphone into its head. The signal is processed and amplified to play with or without earphone. Heart sounds are processed, sampled and sent wirelessly using Zigbee module so that multiple doctors can do auscultation. PC connectivity is provided through serial port where from audio and video can be made available through LAN and internet for telemedicine consultation. Heart beat signals are sensed, sent, displayed, monitored, stored, reviewed, and analysed with ease.

  8. Design of wireless electronic stethoscope based on zigbee

    CERN Document Server

    Patil, D D Kadam

    2012-01-01

    Heart sound stethoscope is primary stage to access diseases. In this paper design of an electronic stethoscope with the functions of wireless transmission is discussed. This electronic stethoscope based on embedded processor. The data can be transmitted through wireless transmission using Zigbee module. A microphone is used to pick up the sound of the heart beat. Acoustic stethoscope can be changed into a digital stethoscope by inserting an electric capacity microphone into its head. The signal is processed and amplified to play with or without earphone. Heart sounds are processed, sampled and sent wirelessly using Zigbee module so that multiple doctors can do auscultation. PC connectivity is provided through serial port where from audio and video can be made available through LAN and internet for telemedicine consultation. Heart beat signals are sensed, sent, displayed, monitored, stored, reviewed, and analysed with ease.

  9. Paintings on copper by the Flemish artist Frans Francken II: PIXE characterization by external microbeam

    International Nuclear Information System (INIS)

    Resorting to an external proton microbeam, PIXE analyses of three oil paintings on copper support dated from the XVII century and attributed to the Flemish artist Frans Francken II, were undertaken. The present work aims to contribute to the compositional study of the painting materials employed by XVII century artists that exploited copper as a support for oil painting, and specifically the materials used by Francken’s workshop, particularly copper plates. Because of the low thickness of the pictorial layers of this type of paintings and its non-destructive character, PIXE is the ideal technique to study the elemental composition of the paintings. Several spots in each painting were chosen for analysis in order to cover almost all the pigments used in the colour palette. Lead and calcium were detected in practically every analysed regions, probably related to the presence of lead white and chalk, usually used as ground layer on copper paintings. Small quantities of gold were also detected, which is present in many of this artist’s works to embellish some details of the representations. Also this work reports the first application of the external proton microbeam set-up available at CTN/IST in Portugal for the characterization of oil paintings

  10. Paintings on copper by the Flemish artist Frans Francken II: PIXE characterization by external microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Corregidor, V., E-mail: vicky.corregidor@ctn.ist.utl.pt [IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, E.N. 10, 2695-066 Sacavém (Portugal); Oliveira, A.R. [CCR-Centro de Conservação e Restauro, R. do Ginjal, 11, 2950-685 Palmela (Portugal); Rodrigues, P.A. [LATR, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, E.N. 10, 2695-066 Sacavém (Portugal); Alves, L.C. [C2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, E.N. 10, 2695-066 Sacavém (Portugal)

    2015-04-01

    Resorting to an external proton microbeam, PIXE analyses of three oil paintings on copper support dated from the XVII century and attributed to the Flemish artist Frans Francken II, were undertaken. The present work aims to contribute to the compositional study of the painting materials employed by XVII century artists that exploited copper as a support for oil painting, and specifically the materials used by Francken’s workshop, particularly copper plates. Because of the low thickness of the pictorial layers of this type of paintings and its non-destructive character, PIXE is the ideal technique to study the elemental composition of the paintings. Several spots in each painting were chosen for analysis in order to cover almost all the pigments used in the colour palette. Lead and calcium were detected in practically every analysed regions, probably related to the presence of lead white and chalk, usually used as ground layer on copper paintings. Small quantities of gold were also detected, which is present in many of this artist’s works to embellish some details of the representations. Also this work reports the first application of the external proton microbeam set-up available at CTN/IST in Portugal for the characterization of oil paintings.

  11. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system.

    Science.gov (United States)

    Morishita, Maki; Muramatsu, Tomoki; Suto, Yumiko; Hirai, Momoki; Konishi, Teruaki; Hayashi, Shin; Shigemizu, Daichi; Tsunoda, Tatsuhiko; Moriyama, Keiji; Inazawa, Johji

    2016-03-01

    Chromothripsis is the massive but highly localized chromosomal rearrangement in response to a one-step catastrophic event, rather than an accumulation of a series of subsequent and random alterations. Chromothripsis occurs commonly in various human cancers and is thought to be associated with increased malignancy and carcinogenesis. However, the causes and consequences of chromothripsis remain unclear. Therefore, to identify the mechanism underlying the generation of chromothripsis, we investigated whether chromothripsis could be artificially induced by ionizing radiation. We first elicited DNA double-strand breaks in an oral squamous cell carcinoma cell line HOC313-P and its highly metastatic subline HOC313-LM, using Single Particle Irradiation system to Cell (SPICE), a focused vertical microbeam system designed to irradiate a spot within the nuclei of adhesive cells, and then established irradiated monoclonal sublines from them, respectively. SNP array analysis detected a number of chromosomal copy number alterations (CNAs) in these sublines, and one HOC313-LM-derived monoclonal subline irradiated with 200 protons by the microbeam displayed multiple CNAs involved locally in chromosome 7. Multi-color FISH showed a complex translocation of chromosome 7 involving chromosomes 11 and 12. Furthermore, whole genome sequencing analysis revealed multiple de novo complex chromosomal rearrangements localized in chromosomes 2, 5, 7, and 20, resembling chromothripsis. These findings suggested that localized ionizing irradiation within the nucleus may induce chromothripsis-like complex chromosomal alterations via local DNA damage in the nucleus. PMID:26862731

  12. A white-beam fast-shutter for microbeam radiation therapy at the ESRF

    CERN Document Server

    Renier, M; Nemoz, C; Thomlinson, W

    2002-01-01

    The ID17 Medical Beamline port at the European Synchrotron Radiation Facility (ESRF) delivers white beam generated by a 1.4 T wiggler. It is devoted to medical applications of synchrotron radiation. One major program of the beamline is called Microbeam Radiation Therapy (MRT). In this radiotherapy technique, still under development, the white beam fan is divided into several microbeams before reaching the target which is a tumoral brain. The maximum skin-entrance absorbed dose can reach extremely high values (over 1000 Gy) before causing tissue necrosis, while causing tumor necrosis. One of the key parameters for the success of the MRT is the accurate control of the radiation dose delivered to the target, as well as its location with respect to the tumor, to prevent unnecessary damage to normal tissues. Therefore, the opening and closing positions of the shutter while the target is moving vertically at a constant speed reaching 150 mm/s must be carefully controlled. Shutter opening times as short as 5+-0.5 ms...

  13. Multipole field components of doublet q-magnet for MeV ion microbeam

    International Nuclear Information System (INIS)

    A MeV ion microbeam system for ion beam analysis has been installed and connected with a 1.7 MV tandem accelerator at Waseda University, where field mapping is carried out to study field parameters of the doublet quadrupole magnet. The mapping uses a ray tracing program for computer simulation of the ion microbeam system. The distribution of the vertical component of the field strength in a horizontal median plane of the doublet quadrupole magnet is measured by using a Hall probe. Field strength measurements are analyzed in the first step, by using a model function to express two-dimensional distribution parameters covering the magnet geometry, multipole field and the fringing-field profile. In the second step, the transverse distribution of field strength in the magnet system is analyzed by using a function of multipole field. The longitudinal distributions of the multipole field components are determined through the analysis in the second step. It is found that the measured distribution in the fringing-field region cannot be expressed well by the model function used in the first step. In the second step, multipole field components other than the quadrupole ones are found to localize in the fringing-field region. (N.K.)

  14. Paintings on copper by the Flemish artist Frans Francken II: PIXE characterization by external microbeam

    Science.gov (United States)

    Corregidor, V.; Oliveira, A. R.; Rodrigues, P. A.; Alves, L. C.

    2015-04-01

    Resorting to an external proton microbeam, PIXE analyses of three oil paintings on copper support dated from the XVII century and attributed to the Flemish artist Frans Francken II, were undertaken. The present work aims to contribute to the compositional study of the painting materials employed by XVII century artists that exploited copper as a support for oil painting, and specifically the materials used by Francken's workshop, particularly copper plates. Because of the low thickness of the pictorial layers of this type of paintings and its non-destructive character, PIXE is the ideal technique to study the elemental composition of the paintings. Several spots in each painting were chosen for analysis in order to cover almost all the pigments used in the colour palette. Lead and calcium were detected in practically every analysed regions, probably related to the presence of lead white and chalk, usually used as ground layer on copper paintings. Small quantities of gold were also detected, which is present in many of this artist's works to embellish some details of the representations. Also this work reports the first application of the external proton microbeam set-up available at CTN/IST in Portugal for the characterization of oil paintings.

  15. Tumor Cell Response to Synchrotron Microbeam Radiation Therapy Differs Markedly From Cells in Normal Tissues

    International Nuclear Information System (INIS)

    Purpose: High-dose synchrotron microbeam radiation therapy (MRT) can be effective at destroying tumors in animal models while causing very little damage to normal tissues. The aim of this study was to investigate the cellular processes behind this observation of potential clinical importance. Methods and Materials: MRT was performed using a lattice of 25 μm-wide, planar, polychromatic, kilovoltage X-ray microbeams, with 200-μm peak separation. Inoculated EMT-6.5 tumor and normal mouse skin tissues were harvested at defined intervals post-MRT. Immunohistochemical detection of γ-H2AX allowed precise localization of irradiated cells, which were also assessed for proliferation and apoptosis. Results: MRT significantly reduced tumor cell proliferation by 24 h post-irradiation (p = 0.002). An unexpected finding was that within 24 h of MRT, peak and valley irradiated zones were indistinguishable in tumors because of extensive cell migration between the zones. This was not seen in MRT-treated normal skin, which appeared to undergo a coordinated repair response. MRT elicited an increase in median survival times of EMT-6.5 and 67NR tumor-inoculated mice similar to that achieved with conventional radiotherapy, while causing markedly less normal tissue damage. Conclusions: This study provides evidence of a differential response at a cellular level between normal and tumor tissues after synchrotron MRT.

  16. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  17. PREFACE: Proceedings of the 11th European Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis

    Science.gov (United States)

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 11th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from 10-14 May 2009 in the Hotel Faltom, Gdynia, Poland. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on careers in microbeam analysis can meet and discuss with the established experts. The workshops have a very distinct format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. For this workshop EMAS invited speakers on the following topics: EPMA, EBSD, fast energy-dispersive X-ray spectroscopy, three-dimensional microanalysis, and micro-and nanoanalysis in the natural resources industry. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 69 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan and the USA. A number of participants with posters were invited to give short oral presentations of their work in two dedicated sessions. As at previous workshops there was also a special oral session for young scientists. Small cash prizes were awarded for the three best posters and for the best oral presentation by a young scientist. The prize for the best poster went to the contribution by G Tylko, S Dubchak, Z Banach and K Turnau, entitled Monte Carlo simulation for an assessment of standard validity and quantitative X-ray microanalysis in plant. Joanna Wojewoda-Budka of the Institute of Metallurgy and Materials Science, Krakow, received the prize for the best oral presentation by a

  18. Two-dimensional materials based transparent flexible electronics

    Science.gov (United States)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  19. Low-voltage coherent electron imaging based on a single-atom electron

    CERN Document Server

    Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...

  20. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  1. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  2. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad;

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline st...

  3. DOCCⅡ-based electronically tunable current-mode biquadratic filters

    Institute of Scientific and Technical Information of China (English)

    Wang Weidong

    2005-01-01

    A complete state variable current-mode biquadratic filter built by duo-output CCⅡ (DOCCⅡ) with variable current gain is presented. All the coefficients of the filter can be independently tuned through the variable current gain factors of the DOCCⅡ. Based on the principles upon which the general biquadratic filter was constructed, a universal electronically tunable current-mode filter is proposed which implements the low-pass, high-pass, band-pass, band-suppress and all-pass second order transfer functions simultaneously. The PSPICE simulations of frequency responses of second-order filter of are also given.

  4. Electron transport in gold colloidal nanoparticle-based strain gauges

    International Nuclear Information System (INIS)

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au-CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au-BSPP, Au-TDSP, Au-MPA and Au-MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values. (paper)

  5. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  6. 微束X射线荧光光谱分析在法医学鉴定中的应用进展%Progress in Application of Microbeam X-ray Fluorescence Spectroscopy in Forensic Science

    Institute of Scientific and Technical Information of China (English)

    苏会芳; 刘超; 胡孙林; 王松才; 孙立敏; 黄炜; 张小婷; 李双琳

    2013-01-01

    微束X射线荧光(microbeam X-ray fluorescence,micro-XRF)光谱技术是近年来兴起的一种微束分析技术,以其灵敏度高、所需检材微少、检测精确、非破坏性等优点而得到广泛的应用,近年来micro-XRF在司法鉴定中的应用也逐渐增多.本文根据国内外近期micro-XRF在法医学应用方面的研究进展,概述了其在射击残留物、指纹显像、毒品来源及生产工艺等物证鉴别方面及其在犯罪现场分析等方面的应用.近年来智能、便携化的micro-XRF技术设备已经开始得到应用,相信其在法医学鉴定中将得到更广泛的普及和应用.%Microbeam X-ray fluorescence (micro-XRF) spectrometry has been raised as an analytical technique of microbeam during the recent years. With its advantages of high sensitivity,small sample requirement,high testing accuracy and non-destruction,the technique is widely utilized in forensic science. This review bases on recent researches at home and abroad,describes its applications including identification of gunshot residue,visualization of fingerprints,discrimination of drug source,production process,and other material evidences of analysis in crime scene. Thanks to the advances in technology,intelligent and portable micro-XRF equipment has appeared to be applied. It is believed that it may be more popular and frequent in administration of forensic science in the near future.

  7. An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities

    Science.gov (United States)

    Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen

    2012-01-01

    This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…

  8. Diamond-based heat spreaders for power electronic packaging applications

    Science.gov (United States)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  9. Antibody meets the microbeam - or how to find neurofibrillary tangles

    International Nuclear Information System (INIS)

    In biomedical research the distributions of physiologically or pathologically active elements around or in a certain structure (e.g. tangles, plaques or different cell types) are often of great interest. Therefore, μPIXE analyses are applied to yield quantitative and spatially resolved concentration images of the elements of interest. However, the localisation of the structures to be examined is sometimes scarcely practicable or even impossible. This paper proposes a method of localising the areas of interest for μPIXE analysis. The method is based on the application of a suitable antibody tagged with a single elemental marker (e.g. Ni, Co, Cd, Ag or Au). The antibody then binds selectively to the structures of interest. The elemental marker is detectable via μPIXE, thus, showing finally the structure of interest via the bound antibody. The versatility of the antibodies in combination with the easily applied marker facilitates the localisation of a variety of structures in both light microscopy and μPIXE-imaging. The method is demonstrated on several cellular and subcellular structures in the brain. The elemental concentrations of two consecutive slices, one stained with Ni-enhanced antibody, the other unstained control, are compared to show the feasibility of trace elemental analysis for particular elements in spite if immunohistochemical structure identification. It has to be stated that the proposed technique will not work for free diffusing elements (like Na, Cl, K and Ca) whose concentrations can be altered by wet sample preparation

  10. Antibody meets the microbeam - or how to find neurofibrillary tangles

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Markus [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany)]. E-mail: morm@medizin.uni-leipzig.de; Reinert, Tilo [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Meinecke, Christoph [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Arendt, Thomas [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany); Butz, T. [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2005-04-01

    In biomedical research the distributions of physiologically or pathologically active elements around or in a certain structure (e.g. tangles, plaques or different cell types) are often of great interest. Therefore, {mu}PIXE analyses are applied to yield quantitative and spatially resolved concentration images of the elements of interest. However, the localisation of the structures to be examined is sometimes scarcely practicable or even impossible. This paper proposes a method of localising the areas of interest for {mu}PIXE analysis. The method is based on the application of a suitable antibody tagged with a single elemental marker (e.g. Ni, Co, Cd, Ag or Au). The antibody then binds selectively to the structures of interest. The elemental marker is detectable via {mu}PIXE, thus, showing finally the structure of interest via the bound antibody. The versatility of the antibodies in combination with the easily applied marker facilitates the localisation of a variety of structures in both light microscopy and {mu}PIXE-imaging. The method is demonstrated on several cellular and subcellular structures in the brain. The elemental concentrations of two consecutive slices, one stained with Ni-enhanced antibody, the other unstained control, are compared to show the feasibility of trace elemental analysis for particular elements in spite if immunohistochemical structure identification. It has to be stated that the proposed technique will not work for free diffusing elements (like Na, Cl, K and Ca) whose concentrations can be altered by wet sample preparation.

  11. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  12. Photon-Electron Interactions in Graphene-Based Heterojunctions

    Science.gov (United States)

    Liu, Fangze

    Graphene, a single layer of carbon atoms arranged in honeycomb lattice, has been one of the most attractive materials for fundamental and applied research in the past decade. Its unique electronic, optical, thermal, chemical and mechanical properties have lead to the discovery of new physics and many promising applications. In particular, research on photon-electron interaction in graphene-based heterojunctions has revealed a new route to design photoactive devices. In this thesis, I present our work on the synthesis of graphene by chemical vapor deposition (CVD) and the study of graphene-based optoelectronic devices. In addition to the conventional synthesis of graphene on copper (Cu) foils, we also present the CVD synthesis of graphene on a new substrate: palladium (Pd). Especially, we performed detailed study of the nucleation, evolution and morphology of graphene growth on Pd substrate. It helps us to understand the growth reaction mechanism and achieve controllable synthesis of graphene from single layer to multiple layers with different morphologies. We then studied the broadband and ultrasensitive photocurrent and photovoltage response of graphene/silicon (Si) Schottky diodes. For the same architecture, we identified a new photoconductive mode with ultra high photoconductive gain, namely "quantum carrier reinvestment (QCR)". A gain exceeding 107 A/W was demonstrated. The underlying physics of photon-electron interactions in these junctions were studied by a combination of optical characterization tools including Raman spectroscopy, UV-Vis spectroscopy and scanning optical microscopy. The results obtained have been discussed in the framework of the unique electronic band structure, density states, and mobility of graphene, along with the manner in witch photoexcited carrier behave under various externally tuned parameters. We also systematically studied the optimization of performance of graphene/Si and thin transparent graphite/Si junction solar cells and

  13. Electron-ion plasma modification of Al-based alloys

    International Nuclear Information System (INIS)

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm2) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa

  14. Probing flexibility in porphyrin-based molecular wires using double electron electron resonance.

    Science.gov (United States)

    Lovett, Janet E; Hoffmann, Markus; Cnossen, Arjen; Shutter, Alexander T J; Hogben, Hannah J; Warren, John E; Pascu, Sofia I; Kay, Christopher W M; Timmel, Christiane R; Anderson, Harry L

    2009-09-30

    A series of butadiyne-linked zinc porphyrin oligomers, with one, two, three, and four porphyrin units and lengths of up to 75 A, have been spin-labeled at both ends with stable nitroxide TEMPO radicals. The pulsed EPR technique of double electron electron resonance (DEER) was used to probe the distribution of intramolecular end-to-end distances, under a range of conditions. DEER measurements were carried out at 50 K in two types of dilute solution glasses: deutero-toluene (with 10% deutero-pyridine) and deutero-o-terphenyl (with 5% 4-benzyl pyridine). The complexes of the porphyrin oligomers with monodentate ligands (pyridine or 4-benzyl pyridine) principally adopt linear conformations. Nonlinear conformations are less populated in the lower glass-transition temperature solvent. When the oligomers bind star-shaped multidentate ligands, they are forced to bend into nonlinear geometries, and the experimental end-to-end distances for these complexes match those from molecular mechanics calculations. Our results show that porphyrin-based molecular wires are shape-persistent, and yet that their shapes can deformed by binding to multivalent ligands. Self-assembled ladder-shaped 2:2 complexes were also investigated to illustrate the scope of DEER measurements for providing structural information on synthetic noncovalent nanostructures. PMID:19736940

  15. Preliminary investigation of trace element in Pterygium using Synchrotron radiation micro-beam X-ray fluorescence analysis (-XRF)

    International Nuclear Information System (INIS)

    We have assessed the relative content and distribution of Iron and Zinc elements using microbeam synchrotron radiation X-ray fluorescence technique. One such technique is X-ray fluorescence (XRF), which has been used previously to map trace elements distribution in Physical samples. In this article a compromise is suggested in issue Pterygium samples. In this study, a prospective randomized clinical trial was conducted. Serial frozen sections of pterygium tissues and conjunctival tissues of 40 μm thickness were collected from 8 patients 10 eyes undergoing pterygium excision combine with limbal stem cell transplantation. A synchrotron-based XRF microprobe was used to map the distribution of Fe and Zn in whole frozen pterygium sections. The frozen sections were tested by synchrotron radiation X-ray fluorescence technique. These experiments were performed at BL15U in Shanghai, China. Then, the results have palyed that Iron and Zinc were present in both pterygium tissues and normal conjunctiva tissues (relevance ratio 100%). The contents of Iron and Zinc in normal conjunctiva tissues were significantly lower than in pterygium tissues (P < 0.05). The microelements were mostly clusteredin the pterygium tissues, while sparsely distributed in the normal conjunctiva tissue. Finally, we found that XRF imaging will be useful for mapping elemental distribution in Pterygium tissues. 40 μm frozen section on 6 μm mylar film is good for the test on BL15U. The contents of Iron and Zinc in pterygium tissue were significantly higher than in the control tissues. The results seem to be valuable in that Iron and Zinc may play a role in the development process of Pterygium

  16. TRANSPARENCY IN ELECTRONIC BUSINESS NEGOTIATIONS – EVIDENCE BASED ANALYSIS

    Directory of Open Access Journals (Sweden)

    Radoslav Delina

    2014-12-01

    Full Text Available Purpose: In current economy, where ICT plays a crucial role for being competitive and effective, businesses are facing higher pressures of flexibility and efficiency than ever before. Transparency is often considered as a suitable mechanism for better market prices and more efficient market environment. Electronic business environment provides the possibility to set up more transparent environment and bring higher competitiveness and efficiency on the market. The paper analyse the impact of transparency on prices in e-procurement.Methodology: Reverse auctions are considered as transparent tool simulating in partial level real competition. Together, it allows to examine several levels of transparency set up in auction negotiation process. The impact of transparency on final prices was analysed on real data using relation based analysis were different situations of transparency set up is compared against achieved final price.Findings: Research results based on real data shows, that generally, the transparency in electronic reverse auction can lead to more negative prices agreed by purchasers as current scientific and commercial promotions.Research limitation: Significance of research results is limited due to still low readiness and skills of e-procurers. The validation of results is needed to realized within longer period of time and from environments with different level of e-readiness. Together, it reveal that transparency is more complex issue where the significance of transparency can reveal its sense in some specific situations on the market and negotiation.Value of paper: Evidenced based research reveal some controversy results which support new scientific efforts in microeconomics and socio-economic impact of ICT fields. Together, it affects real practitioners in way how to use and perceive claimed impact of reverse auction solutions.

  17. Concept of a laser-plasma based electron source for sub-10 fs electron diffraction

    CERN Document Server

    Faure, J; Beaurepaire, B; Gallé, G; Vernier, A; Lifschitz, A

    2015-01-01

    We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction.

  18. High-resolution X-ray spectroscopy for copper and copper oxides and a new WDX system using an ion microbeam

    International Nuclear Information System (INIS)

    High-resolution Cu L X-ray spectra from Cu, Cu2O and CuO targets induced by MeV H, He, C and F ions have been measured. High-resolution Cu Lα1,2 and Lβ1 X-ray spectra from Cu, Cu2O and CuO targets induced by 2.0 MeV focused protons have been also measured. It is shown that high-resolution X-ray spectra are sensitive to the chemical states of the emitting projectile and target atoms. The Cu Lα1,2 and Lβ1 X-ray spectra were compared with Cu 2p XPS spectra to investigate the atomic and electronic structures and electron excitation and relaxation processes in Cu and its compounds. High-resolution X-ray spectroscopy with a microbeam is found to be useful for analysis of the chemical environment of atoms of interest in the near surface region of bulk and particle samples

  19. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  20. Electronic structure of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    The electronic structure and phase stability of the Zr66.7Ni33.3 and Zr66.7Cu33.3 metallic glasses has been investigated by the recursion calculations method using a giant atom-cluster, of which arrangements of constituent atoms were determined by the Reverse Monte Carlo experimental structural studies reported before [T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu, Intermetallics 14 (2006) 893]. The electronic structure of the former is similar to that of the relevant Zr2Ni compound, while that of the latter is completely different from that of the relevant Zr2Cu compound. We have also calculated the band energy of the characteristic clusters in these metallic glasses. The smaller and Zr-richer these clusters are, the lower the band energy at the center of the cluster tends to be. The stability of these characteristic clusters of both metallic glasses can be explained by the total band energy based on the calculated local density of states and is consistent with the reported experimental Volonoi analysis.

  1. Electron accommodation dynamics in the DNA base thymine

    International Nuclear Information System (INIS)

    The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I−T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from −120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I−T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I−T VDE, which suggests that if the dipole-bound anion acts as a “doorway” to the valence-bound anion, it only does so at excitation energies near the VDE of the complex

  2. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    CERN Document Server

    Povoli, Marco; Bravin, Alberto; Cornelius, Iwan; Bräuer-Krisch, Elke; Fournier, Pauline; Hansen, Thor-Erik; Kok, Angela; Lerch, Michael; Monakhov, Edouard; Morse, John; Petasecca, Marco; Requardt, Herwig; Rosenfeld, Anatoly; Röhrich, Dieter; Sandaker, Heidi; Salomé, Murielle; Stugu, Bjarne

    2015-01-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any...

  3. Microbeam Studies of Diffusion Time Resolved Ion Beam Induced Charge Collection from Stripe-Like Junctions

    International Nuclear Information System (INIS)

    To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 microm. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices

  4. PIXE microbeam analysis of the metallic debris release around endosseous implants

    International Nuclear Information System (INIS)

    The mechanical friction that occurs during the surgical insertion of endosseous implants, both in dentistry and orthopaedics, may cause the detachment of metal debris which are dislodged into the peri-implant tissues and can lead to adverse clinical effects. This phenomenon more likely happens with coated or roughened implants that are the most widely employed. In the present study were studied dental implants screws made of commercially pure titanium and coated using titanium plasma-spray (TPS) technique. The implants were inserted in the tibia of rabbits, and removed 'en bloc' with the surrounding bone after one month. After proper processing and mounting on plastic holders, samples from bones were analysed by EDXRF setup at of National Laboratories of Legnaro, INFN, Italy, and consequently at 3 MeV proton microbeam setup at Sandia National Laboratories. Elemental maps were drawn, showing some occasional presence of metal particles in the peri-implant bone

  5. Ultraviolet light microbeam irradiation of the microtubules in single heliozoan axopodia

    International Nuclear Information System (INIS)

    Irradiation of single axopodia near their distal ends with ultraviolet light induces axopodial retraction which continues for a short period after irradiation has ceased and appears to depend on the reduction in length of a microtubular axoneme. Altering the target site of the microbeam to the mid-point of an axopodium and prolonging the irradiation time results in the amputation of the distal portion of the axopodium. Both retraction and amputation may involve an ultraviolet light dependent breakdown of cytoplasmic microtubules. Axopodia grow out again after retraction and after amputation. The rates of growth of axopodia shortened in both these ways have been compared. Axopodia which have been caused to retract grow at a mean rate which is faster than that of axopodia which have been amputated

  6. Hard X-ray microbeam with sputtered-sliced fresnel zone plate

    International Nuclear Information System (INIS)

    Hard X-ray microbeam with zone plate optics has been tested at the TRISTAN mainring test-beamline, and preliminary experiments on scanning microscopy has also been performed. A sputtered-sliced Fresnel zone plate with Au core and Ag/C multi-layer is used as an X-ray focusing device. The outermost zone width of the zone plate is 0.25 μm. A focused spot size of about 0.5 μm has been achieved at an X-ray energy of 8.54 keV. In a scanning X-ray microscopy experiment, test patterns with sub-micrometer fine structure have been clearly resolved. (author)

  7. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France)]. E-mail: incerti@cenbg.in2p3.fr; Smith, R.W. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Merchant, M. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Grime, G.W. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Meot, F. [CEA Saclay, DSM/DAPNIA/SEA, 91191 Gif-sur-Yvette cedex (France); Serani, L. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Moretto, Ph. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Touzeau, C. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Barberet, Ph. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Habchi, C. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France); Nguyen, D.T. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3/CNRS, Universite Bordeaux 1, BP120, Le Haut Vigneau, 33175 Gradignan cedex (France)

    2005-04-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented.

  8. PROTEOTRONICS: The emerging science of protein-based electronic devices

    Science.gov (United States)

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-10-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein.

  9. Computing environmental life of electronic products based on failure physics

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Zhang; Zongchang Xu; Chunyang Hu

    2016-01-01

    In some situations, the accelerated life test on en-vironmental stress for electronic products is not easily imple-mented due to various restrictions, and thus engineers are lacking of data of the product life test. Concerning this prob-lem, environmental life of the printed circuit board (PCB) board is calculated by way of physics of failure. Influences of thermal cycle and vibration on PCB and its components are studied. Based on the analysis of force and stress between components and the PCB board in thermal cycle events and vibration events, four life computing models of pins and sol-dered dots are established. The miler damage ratio is used to calculate the accumulated damage of a pin or a soldered dot, and then the environment life of the PCB board can be de-termined by the first failed one. Finaly, an example is used to ilustrate the models and their calculations.

  10. Positron lifetime study in dilute electron irradiated lead based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moya, G. [Lab. de Physique des Materiaux, 13 Marseille (France); Li, X.H. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France); Menai, A. [Lab. de Physique des Materiaux, 13 Marseille (France); Kherraz, M. [Lab. de Physique des Materiaux, 13 Marseille (France); Amenzou, H. [Lab. de Physique des Materiaux, 13 Marseille (France); Bernardini, J. [Lab. de Metallurgie, 13 Marseille (France); Moser, P. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France)

    1995-06-01

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  11. Silicon-based metallic micro grid for electron field emission

    International Nuclear Information System (INIS)

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  12. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  13. LASER-BASED PROFILE MONITOR FOR ELECTRON BEAMS

    International Nuclear Information System (INIS)

    High performance TeV energy electron / positron colliders (LC) are the first machines to require online, non-invasive beam size monitors for micron and sub-micron for beam phase space optimization. Typical beam densities in the LC are well beyond the threshold density for single pulse melting and vaporization of any material, making conventional wire scanners ineffective. Using a finely focused, diffraction limited high power laser, it is possible to devise a sampling profile monitor that, in operation, resembles a wire scanner. Very high resolution laser-based profile monitors have been developed and tested, first at FFTB (SLAC) and later at SLC and ATF. The monitor has broad applicability and we review here the technology, application and status of ongoing research programs

  14. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centered at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (authors). 3 figs., 9 refs

  15. A Novel Integrated SET Based Inverter for Nano Power Electronic Applications

    OpenAIRE

    Negin Moezi; Daryoosh Dideban; Abbas Ketabi

    2008-01-01

    In this research an emerging field of power electronics in nanotechnology is survived. This application-based technology today is called Nano Power Electronics. It utilizes nano electronic transistors in switching applications in the range of nano power for signal shaping purposes. In recent years Single Electron Transistors are highly interested in nano electronic applications. They have got inherently fast tunneling rate, which makes them highly suitable for high-speed operation. Based on t...

  16. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    International Nuclear Information System (INIS)

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  17. Assessment of optical CT as a future QA tool for synchrotron x-ray microbeam therapy

    Science.gov (United States)

    McErlean, Ciara M.; Bräuer-Krisch, Elke; Adamovics, John; Doran, Simon J.

    2016-01-01

    Synchrotron microbeam radiation therapy (MRT) is an advanced form of radiotherapy for which it is extremely difficult to provide adequate quality assurance. This may delay or limit its clinical uptake, particularly in the paediatric patient populations for whom it could be especially suitable. This study investigates the extent to which new developments in 3D dosimetry using optical computed tomography (CT) can visualise MRT dose distributions, and assesses what further developments are necessary before fully quantitative 3D measurements can be achieved. Two experiments are reported. In the first cylindrical samples of the radiochromic polymer PRESAGE® were irradiated with different complex MRT geometries including multiport treatments of collimated ‘pencil’ beams, interlaced microplanar arrays and a multiport treatment using an anthropomorphic head phantom. Samples were scanned using transmission optical CT. In the second experiment, optical CT measurements of the biologically important peak-to-valley dose ratio (PVDR) were compared with expected values from Monte Carlo simulations. The depth-of-field (DOF) of the optical CT system was characterised using a knife-edge method and the possibility of spatial resolution improvement through deconvolution of a measured point spread function (PSF) was investigated. 3D datasets from the first experiment revealed excellent visualisation of the 50 μm beams and various discrepancies from the planned delivery dose were found. The optical CT PVDR measurements were found to be consistently 30% of the expected Monte Carlo values and deconvolution of the microbeam profiles was found to lead to increased noise. The reason for the underestimation of the PVDR by optical CT was attributed to lack of spatial resolution, supported by the results of the DOF characterisation. Solutions are suggested for the outstanding challenges and the data are shown already to be useful in identifying potential treatment anomalies.

  18. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  19. Surfaces and interfaces in polymer-based electronics

    Science.gov (United States)

    Fahlman, M.; Salaneck, W. R.

    2002-03-01

    Research on electronics applications such as light-emitting devices for flat-panel displays, transistors, sensors and even solid state lasers based on conducting polymers is presently under way and in some cases has reached the stage of prototype production. The mechanisms for charge injection and conduction in these materials are being studied, as are the physics of luminescence and its quenching. Lately, research into controlling film morphology through self-organizing techniques also has gained interest. Though the present interest in conducting polymers mainly concerns the pristine semiconducting state, doped conducting polymers are also studied for potential use in many applications. In this paper, we present an overview of some of the central issues in surface and interface science in the field, as well as provide our view on what may lie ahead in the future. Specifically, the importance of metal/polymer, polymer/metal and polymer/polymer interfaces is addressed. We illustrate these using polymer-based light-emitting devices, though the same type of issues appear in other polymer-based applications such as transistors and solar cells.

  20. Highly sensitive hot electron bolometer based on disordered graphene

    OpenAIRE

    Qi Han; Teng Gao; Rui Zhang; Yi Chen; Jianhui Chen; Gerui Liu; Yanfeng Zhang; Zhongfan Liu; Xiaosong Wu; Dapeng Yu

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using ...

  1. Development of an Electronic Claim System Based on an Integrated Electronic Health Record Platform to Guarantee Interoperability

    OpenAIRE

    Kim, Hwa Sun; Cho, Hune; Lee, In Keun

    2011-01-01

    Objectives We design and develop an electronic claim system based on an integrated electronic health record (EHR) platform. This system is designed to be used for ambulatory care by office-based physicians in the United States. This is achieved by integrating various medical standard technologies for interoperability between heterogeneous information systems. Methods The developed system serves as a simple clinical data repository, it automatically fills out the Centers for Medicare and Medic...

  2. A Novel Diagnostics of Ultrashort Electron Bunches Based on Detection of Coherent Radiation from Bunched Electron Beam in an Undulator

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is based on detection of coherent undulator radiation produced by modulated electron beam. Seed optical quantum laser is used to produce exact optical replica of ultrashort electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches a hundred-MW-level power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating) providing real-time single-shot measurements of the electron bunch structure. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emi...

  3. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  4. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  5. Magnetic and electronic properties of porphyrin-based molecular nanowires

    International Nuclear Information System (INIS)

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics

  6. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  7. The accident of overexposure at the University hospital center of Toulouse. Expertise report n.1. Checking of experimental protocols of micro-beams calibration before and after dysfunction correction

    International Nuclear Information System (INIS)

    The regional center of stereotaxic radiosurgery of the University hospital center of Toulouse is equipped since april 2006 of a Novalis accelerator (Brainlab) devoted to the intra-skull stereotaxic radiosurgery. In april 2007, during an intercomparison of dosimetry computer files coming from different sites, the Brainlab society finds an anomaly in the files. The analysis made by the society concludes to to the use of an inappropriate detector for the measurement of a dosimetry parameter during the initial calibration of the accelerator. following this error, 145 patients (on the 172 treated by the service in question) suffer the consequences of an overdose whom importance is variable according the cases. The I.R.S.N. in charge of an expertise about the protocols of calibration of micro-beams before and after the correction of the dysfunction, took up with the search of the technical causes of the dysfunction. This report presents successively: the documents base on which is founded the expertise; the material of dosimetry and quality control necessary to the initial calibration of the device and to its follow-up; the formula made at the accelerator commissioning; the calibration of micro-beams in the two configurations that allows the device (micro-multi-knives and conic collimator) and the definition of parameters of the software of treatment planning; the maintenance and quality control implemented in the frame of its clinical use. (N.C.)

  8. Problems and Projects Based Approach For Analog Electronic Circuits' Course

    Directory of Open Access Journals (Sweden)

    Mustapha Rafaf

    2009-04-01

    Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.

  9. Cell Locating with the Image Analysis System of the CAS-LIBB Single-Particle Microbeam Facility

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohua; Wang Shaohu; Yu Zengliang

    2005-01-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects;after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.

  10. Study of local strain distribution in semiconductor devices using high-resolution X-ray microbeam diffractometry

    International Nuclear Information System (INIS)

    High-resolution X-ray diffraction has been carried out by using a vertically and horizontally condensed X-ray microbeam at the Hyogo beamline (BL24XU) of SPring-8. The microbeam is 7x5 μm2 in size and it possesses a small angular divergence and a narrow energy bandwidth. The sample is a Si substrate on which thermal oxide films are fabricated with fine patterns. At the region of the line-and-space pattern, many periodic peaks lying along the transverse direction are observed in a reciprocal space map. Those patterns are attributed to some local strain distribution due to the patterned oxide film on the Si wafer

  11. X-ray microbeam radiation therapy calculations, including polarisation effects, with the Monte Carlo code EGS5

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, Richard P., E-mail: r.p.hugtenburg@swansea.ac.u [School of Medicine, Swansea University, Swansea SA2 8PP (United Kingdom); Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg University, LHB, Swansea SA2 8QA (United Kingdom); Adegunloye, A.S.; Bradley, David A. [Department of Physics, Surrey University, Guildford (United Kingdom)

    2010-07-21

    Microbeam radiation therapy (MRT) is currently being considered for the treatment of glioblastoma multiforme. A high degree of dosimetric accuracy (around 5%) is known to be required for a successful outcome in conventional radiation therapy, Modelling of MRT beams, measurements and treatments have been performed with Monte Carlo methods using the code EGS5, which features improved physics models for low energy scattering processes including linear polarisation. Polarisation of the X-ray source leads to distortions in beam profiles that exceed the usual clinical tolerances. Changes in the energy spectrum also effect the response of many dosimetry systems. Anatomical (CT) data has been used in the dose calculations and the manipulation of dose data with the open-source software treatment planning system, PlanUNC, is demonstrated, in order that the therapeutic effects of the different components, e.g. the microbeam and scattered photons, can examined separately in relation to relevant anatomy.

  12. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  13. Controlled Phase Gate Based on an Electron Floating on Helium

    Institute of Scientific and Technical Information of China (English)

    SHI Yan-Li; MEI Feng; YU Ya-Fei; ZHANG Zhi-Ming

    2011-01-01

    We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium. The electron is also driven by a classical laser beam and by an oscillating magnetic field. In the process, the vibration of the electron is used as the qubus to couple the energy level qubit (1D Stark-shifted hydrogen) and spin qubit Ultimately. the controlled phase gate can be generated.%@@ We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium.The electron is also driven by a classical laser beam and by an oscillating magnetic field.In the process,the vibration of the electron is used as the qubus to couple the energy level qubit(1D Stark-shifted hydrogen) and spin qubit.Ultimately,the controlled phase gate can be generated.

  14. Obstacles of XML-based electronic accounting reference

    OpenAIRE

    Juhava, Antti

    2012-01-01

    Research objectives The use of electronic accounting reference in its newest form, constructed from the viewpoint of unified practices, seems to have fallen short. Because no proper research has been conducted to depict the reasons that effect on the adoption of electronic accounting reference, this thesis aims to find answers through the following research question: What reasons hinder the adoption of electronic accounting reference for incoming invoices in Finnish companies? Researc...

  15. Studies of the beam finding and targeting accuracy of the CAS-LIBB single-particle microbeam

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Hua; Wu Li-Jun; Wang Shao-Hu; Yu Zeng-Liang; Wang Xu-Fei; Hu Zhi-Wen; Cheng Lian-Yun; Zhang Jun; Zhan Fu-Ru; Li Jun; Chen Bin; Xu Ming-Liang

    2005-01-01

    A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined number of hydrogen ions produced by a Van de Graaff accelerator, in an energy range of 2.0-3.0MeV, into an area smaller than the nuclei of individual living cells grown on thin plastic films. The beam is collimated by a borosilicate glass capillary that forms the beam-line exit. An computer integrated control program is developed to recognize the cells and to target them one by one for irradiation.Experiments for finding (capturing and recognizing) the microbeam position in the microscope imaging system and measuring the overall targeting accuracy of the facility are presented in this article. When a borosilicate glass capillary with 5μm inner diameter and 980μm length is used as the microbeam collimator, the overall targeting accuracy is that 91% aimed pit clusters are located within 2.4μm radius, and 98% are within 3.6μm radius.

  16. Adaptive response in zebrafish embryos induced using microbeam protons as priming dose and X-ray photons as challenging dose

    International Nuclear Information System (INIS)

    In the studies reported here, a high-linear-energy-transfer (high-LET)-radiation dose was used to induce adaptive response in zebrafish embryos in vivo. Microbeam protons were used to provide the priming dose and X-ray photons were employed to provide the challenging dose. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to control and accurately quantify the number of protons at very low doses, viz., about 100 μGy. The embryos were dechorionated at 4 h post fertilization (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, ten irradiation points were arbitrarily chosen without overlapping with one another. To each irradiation point, 5, 10 or 20 protons each with an energy of 3.4 MeV were delivered. The embryos were returned back to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of X-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed that 5 to 20 protons delivered at 10 points each on the embryos, or equivalently 110 to 430 μGy, could induce radioadaptive response in the zebrafish embryos in vivo. (author)

  17. In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

    International Nuclear Information System (INIS)

    A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35–60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients

  18. Assessment of Proton Microbeam Analysis of 11B for Quantitative Microdistribution Analysis of Boronated Neutron Capture Agent Analogs in Biological Tissues

    International Nuclear Information System (INIS)

    The purpose is to assess the 11B(p, α) 8Be* nuclear reaction for quantitatively mapping the in-vivo sub-cellular distribution of boron within gliosarcoma tumors treated with boronated neutron capture therapy agent (NCTA) analogs. Intracranial tumors were produced in Fisher 344 rats using a 9L gliosarcoma model. Fourteen days later, the majority of rats were treated with f-boronophenylalanine and sacrificed 30 or 180 minutes after intravenous injection. Freeze dried tumor cryosections were imaged using the 11B(p, α) 8Be* nuclear reaction and proton microbeams obtained from the nuclear microprobe at Lawrence Livermore National Laboratory. With 11B(p, α) 8Be* analysis, 11B distributions within cells can be quantitatively imaged with spatial resolutions down to 1.5 μm, minimum detection limits of 0.8 mg/kg and acquisition times of several hours. These capabilities offer advantages over alpha track autoradiography, electron energy loss spectroscopy and secondary ion mass spectrometry (SIMS) for 11B quantitation in tissues. However, the spatial resolution, multi-isotope capability and analysis times achieved with SIMS are superior to those achieved with 11B(p, α) 8Be* analysis. When accuracy in quantitation is crucial, the 11B(p, α) 8Be* reaction is well suited for assessing the microdistribution of 11B. Otherwise, SIMS may well be better suited to image the microdistribution of boron associated with NCTAs in biological tissues.

  19. Electronic structure of Fe- vs. Ru-based dye molecules

    International Nuclear Information System (INIS)

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field, axial ligands, and the 2+ vs. 3+ oxidation states.

  20. Digital waterway construction based on inland electronic navigation chart

    Science.gov (United States)

    Wang, Xue; Pan, Junfeng; Zhu, Weiwei

    2015-12-01

    With advantages of large capacity, long distance, low energy consumption, low cost, less land occupation and light pollution, inland waterway transportation becomes one of the most important constituents of the comprehensive transportation system and comprehensive water resources utilization in China. As one of "three elements" of navigation, waterway is the important basis for the development of water transportation and plays a key supporting role in shipping economic. The paper discuss how to realize the informatization and digitization of waterway management based on constructing an integrated system of standard inland electronic navigation chart production, waterway maintenance, navigation mark remote sensing and control, ship dynamic management, and water level remote sensing and report, which can also be the foundation of the intelligent waterway construction. Digital waterway construction is an information project and also has a practical meaning for waterway. It can not only meet the growing high assurance and security requirements for waterway, but also play a significant advantage in improving transport efficiency, reducing costs, promoting energy conservation and so on. This study lays a solid foundation on realizing intelligent waterway and building a smooth, efficient, safe, green modern inland waterway system, and must be considered as an unavoidable problem for the coordinated development between "low carbon" transportation and social economic.

  1. Electronic structure of Fe- vs. Ru-based dye molecules

    DEFF Research Database (Denmark)

    Johnson, Phillip S.; Cook, Peter L.; Zegkinoglou, Ioannis;

    2013-01-01

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold......, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding...... energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field...

  2. Inter-base Electronic Coupling for transport through DNA

    CERN Document Server

    Anantram, H M M P

    2005-01-01

    We develop a new approach to derive single state tight binding (SSTB) model for electron transport in the vicinity of valence-conduction bands of poly(G)-poly(C) and poly(A)-poly(T) DNA. The SSTB parameters are derived from {\\it first principles} and are used to model charge transport through finite length DNA. We investigate the rigor of reducing the full DNA Hamiltonian to SSTB model to represent charge transport in the vicinity of valence-conduction band. While the transmission coefficient spectrum is preserved, its position shifts in energy. Thymine is poorly represented and its peak height is substantially reduced. This is attributed to the abstraction of the HOMO-LUMO coupling to other eigen-states in the nearest neighbor DNA bases, and can be corrected within $2^{nd}$ order time independent perturbation theory. Inter-strand charge transport has also been analyzed and it is found that hopping to the nearest neighbor in the complementary strand is the most important process except in the valence band of ...

  3. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  4. Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers

    Science.gov (United States)

    Giazotto, F.; Solinas, P.; Braggio, A.; Bergeret, F. S.

    2015-10-01

    We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal-ferromagnetic-insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz-1 /2 , a realistic amplifying chain will reduce the sensitivity up to 10 μ K Hz-1 /2 . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum-interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz-1 /2 . We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz /K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz-1 /2 thereby being potentially attractive for radiation-sensing applications.

  5. An Analysis of Electronic Products’ Advertisements Based onthe Cooperative Principles

    Institute of Scientific and Technical Information of China (English)

    周亚林

    2015-01-01

    In moderntimes,more and more electronic products appear.Advertisements as an important way to promotethe products are applied by more and more businessmen.Many advertisements violate the Cooperative Principles which is proposed by the philosopher Paul Grice.This paper attempts to analyze the violations of cooperative principles in English electronic products’ advertisements.

  6. Electrons

    International Nuclear Information System (INIS)

    Fast electrons are used to produce isotopes for studying the cooper metabolism: Cu-64 in a cyclotron and Cu-67 in a linear accelerator. Localized electrons are responsible for the chemical and physiological characteristics of the trace elements. Studied are I, Cu, Co, Zn, Mo, Mn, Fe, Se, Mg. The Cu/Mo and Cu/Zn interactions are investigated. The levels of molybdenum, sulfate and zinc in the food are analysed. The role of the electrons in free radicals is discussed. The protection action of peroxidases and super oxidases against electron dangerous effect on normal physiology is also considered. Calculation of radiation damage and radiation protection is made. (author)

  7. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    International Nuclear Information System (INIS)

    We discuss the design and current status of experiments to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  8. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  9. The quest for a high-quality zircon standard for microbeam Pb-U-Th geochronology

    International Nuclear Information System (INIS)

    Full text: Many, if not most, geological studies are critically dependent on effective geochronological control, and microbeam technology is playing an increasingly important role in this respect. Like other microbeam geochronology techniques, SHRIMP Pb-U-Th zircon dating is currently totally dependent on calibrating the analyses of unknown zircons against zircon of known age (the standard). The ideal standard must meet several strict criteria. Naturally, it must have been dated by a technique quite independent of SHRIMP, and that independent age measurement must be both highly accurate and precise. The standard must also represent only a single generation of zircon growth, and have constant Pb/U (and preferably Pb/Th) on all scales from submicron to intergranular. There must have been no post-crystallisation chemical or isotopic disturbance. The standard should also be sufficiently abundant to last indefinitely, and its quality should be so obvious that it will be readily adopted by other laboratories. Over the course of the past two decades about a dozen different zircon samples from a wide range of rocks around the world have been trialed as reference materials at the RSES/AGSO laboratory. A few of these have been selected as in-house standards. As knowledge of both SHRIMP itself and those standards has advanced, the production of progressively more precise data has allowed the question of standard homogeneity to be addressed, and at least most of these standards have proved to be less than ideal in this regard. A recent outcome of this testing process has been the identification of a promising new standard from a small, high-level gabbroic diorite plug near Temora, in the Lachlan Fold Belt, eastern Australia. A reconnaissance sample from this pluton contains 10 ppm of relatively coarse-grained zircon crystals which appear to have remained geologically and isotopically undisturbed since the diorite was emplaced 417 Ma ago. The excellent uniformity of the zircon

  10. Electronic structure of nitride-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Winkelnkemper, Momme

    2008-11-07

    In the present work the electronic and optical properties of In{sub x}Ga{sub 1-x}N/GaN and GaN/AlN QDs are studied by means of eight-band k.p theory. Experimental results are interpreted in detail using the theoretical results. The k.p model for the QD electronicstructure calculations accounts for strain, piezo- and pyroelectric effects, spin-orbit and crystal-field splitting, and is implemented for arbitrarily shaped QDs on a finite differences grid. Few-particle corrections are included using the self-consistent Hartree method. Band parameters for the wurtzite and zinc-blende phases of GaN, AlN, and InN are derived from first-principle G{sub 0}W{sub 0} band-structure calculations. Reliable values are also provided for parameters that have not been determined experimentally yet. The electronic properties of nitride QDs are dominated by the large built-in piezo- and pyroelectric fields, which lead to a pronounced red-shift of excitonic transition energies and extremely long radiative lifetimes in large GaN/AlN QDs. In In{sub x}Ga{sub 1-x}N/GaN QDs these fields induce a pronounced dependence of the radiative excitonic lifetimes on the exact QD shape and composition. It is demonstrated that the resulting variations of the radiative lifetimes in an inhomogeneous QD ensemble are the origin of the multi-exponential luminescence decay frequently observed in time-resolved ensemble measurements on In{sub x}Ga{sub 1-x}N/GaN QDs. A polarization mechanism in nitride QDs based on strain-induced valence-band mixing effects is discovered. Due to the valence-band structure of wurtzite group-III nitrides and the specific strain situation in c-plane QDs, the confined hole states are formed predominantly by the two highest valence bands. In particular, the hole ground state (h{sub 0} {identical_to} h{sub A}) is formed by the A band, and the first excited hole state (h{sub 1} {identical_to} h{sub B}) by the B band. It is shown that the interband transitions involving h{sub A} or h

  11. Electronic structure of nitride-based quantum dots

    International Nuclear Information System (INIS)

    In the present work the electronic and optical properties of InxGa1-xN/GaN and GaN/AlN QDs are studied by means of eight-band k.p theory. Experimental results are interpreted in detail using the theoretical results. The k.p model for the QD electronicstructure calculations accounts for strain, piezo- and pyroelectric effects, spin-orbit and crystal-field splitting, and is implemented for arbitrarily shaped QDs on a finite differences grid. Few-particle corrections are included using the self-consistent Hartree method. Band parameters for the wurtzite and zinc-blende phases of GaN, AlN, and InN are derived from first-principle G0W0 band-structure calculations. Reliable values are also provided for parameters that have not been determined experimentally yet. The electronic properties of nitride QDs are dominated by the large built-in piezo- and pyroelectric fields, which lead to a pronounced red-shift of excitonic transition energies and extremely long radiative lifetimes in large GaN/AlN QDs. In InxGa1-xN/GaN QDs these fields induce a pronounced dependence of the radiative excitonic lifetimes on the exact QD shape and composition. It is demonstrated that the resulting variations of the radiative lifetimes in an inhomogeneous QD ensemble are the origin of the multi-exponential luminescence decay frequently observed in time-resolved ensemble measurements on InxGa1-xN/GaN QDs. A polarization mechanism in nitride QDs based on strain-induced valence-band mixing effects is discovered. Due to the valence-band structure of wurtzite group-III nitrides and the specific strain situation in c-plane QDs, the confined hole states are formed predominantly by the two highest valence bands. In particular, the hole ground state (h0 ≡ hA) is formed by the A band, and the first excited hole state (h1 ≡ hB) by the B band. It is shown that the interband transitions involving hA or hB are affected differently by an anisotropic strain field in the basal plane: hA transitions are

  12. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 105 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  13. Free-electron-laser-based biophysical and biomedical instrumentation

    International Nuclear Information System (INIS)

    A survey of biophysical and biomedical applications of free-electron lasers (FELs) is presented. FELs are pulsed light sources, collectively operating from the microwave through the x-ray range. This accelerator-based technology spans gaps in wavelength, pulse structure, and optical power left by conventional sources. FELs are continuously tunable and can produce high-average and high-peak power. Collectively, FEL pulses range from quasicontinuous to subpicosecond, in some cases with complex superpulse structures. Any given FEL, however, has a more restricted set of operational parameters. FELs with high-peak and high-average power are enabling biophysical and biomedical investigations of infrared tissue ablation. A midinfrared FEL has been upgraded to meet the standards of a medical laser and is serving as a surgical tool in ophthalmology and human neurosurgery. The ultrashort pulses produced by infrared or ultraviolet FELs are useful for biophysical investigations, both one-color time-resolved spectroscopy and when coupled with other light sources, for two-color time-resolved spectroscopy. FELs are being used to drive soft ionization processes in mass spectrometry. Certain FELs have high repetition rates that are beneficial for some biophysical and biomedical applications, but confound research for other applications. Infrared FELs have been used as sources for inverse Compton scattering to produce a pulsed, tunable, monochromatic x-ray source for medical imaging and structural biology. FEL research and FEL applications research have allowed the specification of spin-off technologies. On the horizon is the next generation of FELs, which is aimed at producing ultrashort, tunable x rays by self-amplified spontaneous emission with potential applications in biology

  14. HPS Electronic Ballast Based on CIC-CPPFC Technique

    Institute of Scientific and Technical Information of China (English)

    王卫; 苏勤; 高国安

    2002-01-01

    Investigates the application of CIC-CPPFC techniques to high-pressure sodium(HPS) lamp electronic ballast. In order to ensure a unity power factor, different power electronic ballasts are studied by PSpice simulation. A dynamic model of HPS lamp with simple and accurate features is proposed for further study of characteristics. Experimental results verify the feasibility of HPS lamp operating at high frequency. It is shown that the presented electronic ballast has 0.99 power factor and 9% total harmonic distortion(THD).

  15. ID-Based Fair Off-Line Electronic Cash System with Multiple Banks

    Institute of Scientific and Technical Information of China (English)

    Chang-Ji Wang; Yong Tang; Qing Li

    2007-01-01

    ID-based public key cryptography (ID-PKC) has many advantages over certificate-based public key cryptog-raphy (CA-PKC), and has drawn researchers’ extensive attention in recent years. However, the existing electronic cash schemes are constructed under CA-PKC, and there seems no electronic cash scheme under ID-PKC up to now to the best of our knowledge. It is important to study how to construct electronic cash schemes based on ID-PKC from views on both practical perspective and pure research issue. In this paper, we present a simpler and provably secure ID-based restrictive partially blind signature (RPBS), and then propose an ID-based fair off-line electronic cash (ID-FOLC) scheme with multiple banks based on the proposed ID-based RPBS. The proposed ID-FOLC scheme with multiple banks is more efficient than existing electronic cash schemes with multiple banks based on group blind signature.

  16. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  17. Designing Electronic Markets for Defeasible-based Contractual Agents

    OpenAIRE

    Groza, Adrian

    2013-01-01

    The design of punishment policies applied to specific domains linking agents actions to material penalties is an open research issue. The proposed framework applies principles of contract law to set penalties: expectation damages, opportunity cost, reliance damages, and party design remedies. In order to decide which remedy provides maximum welfare within an electronic market, a simulation environment called DEMCA (Designing Electronic Markets for Contractual Agents) was developed. Knowledge ...

  18. Electronic counterfeit detection based on the measurement of electromagnetic fingerprint

    OpenAIRE

    Huang, He; H. Huang; Boyer, Alexandre; Boyer, A; Ben Dhia, Sonia

    2015-01-01

    International audience Counterfeit integrated circuits become a big challenge for the whole electronic industry. The use of electronic counterfeits can cause reduced performance of circuits, or failure of the whole system. New efficient approaches of counterfeit device detection are always required. Since the electromagnetic emission level of integrated devices depends on various circuit parameters like technology, manufacturing and aging, the electromagnetic emission measurement could be ...

  19. An Electron Bunch Compressor Based on an FEL Interaction in the Far Infra Red

    CERN Document Server

    Gaupp, Andreas

    2013-01-01

    In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.

  20. Tuning the Electron Acceptor in Phthalocyanine-Based Electron Donor-Acceptor Conjugates.

    Science.gov (United States)

    Sekita, Michael; Jiménez, Ángel J; Marcos, M Luisa; Caballero, Esmeralda; Rodríguez-Morgade, M Salomé; Guldi, Dirk M; Torres, Tomás

    2015-12-21

    Zinc phthalocyanines (ZnPc) have been attached to the peri-position of a perylenemonoimide (PMI) and a perylenemonoanhydride (PMA), affording electron donor-acceptor conjugates 1 and 2, respectively. In addition, a perylene-monoimide-monoanhydride (PMIMA) has been connected to a ZnPc through its imido position to yield the ZnPc-PMIMA conjugate 10. The three conjugates have been studied for photoinduced electron transfer. For ZnPc-PMIMA 10, electron transfer occurs upon both ZnPc and PMIMA excitation, giving rise to a long-lived (340 ps) charge-separated state. For ZnPc-PMI 1 and ZnPc-PMA 2, stabilization of the radical ion pair states by using polar media is necessary. In THF, photoexcitation of either ZnPc or PMI/PMA produces charge-separated states with lifetimes of 375 and 163 ps, respectively. PMID:26593778

  1. Probing Flexibility in Porphyrin-Based Molecular Wires Using Double Electron Electron Resonance

    OpenAIRE

    Lovett, Janet E.; Hoffmann, Markus; Cnossen, Arjen; Shutter, Alexander T. J.; Hogben, Hannah J.; Warren, John E; Pascu, Sofia I.; Kay, Christopher W. M.; Timmel, Christiane R.; Anderson, Harry L.

    2009-01-01

    A series of butadiyne-linked zinc porphyrin oligomers, with one, two, three, and four porphyrin units and lengths of up to 75 angstrom, have been spin-labeled at both ends with stable nitroxide TEMPO radicals. The pulsed EPR technique of double electron electron resonance (DEER) was used to probe the distribution of intramolecular end-to-end distances, under a range of conditions. DEER measurements were carried out at 50 K in two types of dilute solution glasses: deutero-toluene (with 10% deu...

  2. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    International Nuclear Information System (INIS)

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam (2x5 μm2) is successively tuned at 11 keV, below the LIII absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment

  3. Nuclear microbeam analysis of ICF target material made by GDP technique

    Energy Technology Data Exchange (ETDEWEB)

    Rong, C.; He, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Meng, J., E-mail: eleanor920@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Gao, D. [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Zhang, Y.; Li, X.; Lyu, H.; Zhu, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Zheng, Y. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Wang, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China)

    2015-04-01

    Germanium doped carbon–hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500–2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality.

  4. Fluid damping phenomena in a slender microbeam modelled on nonclassical theory

    Directory of Open Access Journals (Sweden)

    Belardinelli P.

    2014-01-01

    Full Text Available This work deals with the evaluation of the squeeze-film damping in an electrically-actuated microbeam considering the effects of an imposed static deflection. The model presents a reliable modelling of the mechanical behaviour by improving the classical approach with the features of the strain-gradient elasticity theory. Taking into account a correction of the electric actuation for the fringing field effects, a parametric analysis is performed. The work pays attention to evaluate the damping force on the beam surface both in small static deflection regime and near the static pull-in. The results show that the correction for the finiteness of beam edges and the high-order material parameters affect the response only at large deflections. A brief study on the static behaviour is carried out highlighting how the response is affected by the strain-gradient elasticity theory. A parametric analysis of the damping force is presented and the properties of the cut-off point are studied.

  5. X-Ray Microbeam Measurement of Local Texture and Strain in Metals

    International Nuclear Information System (INIS)

    Synchrotron x-ray sources provide high-brilliance beams that can be focused to submicron sizes with Fresnel zone-plate and x-ray mirror optics. With these intense, tunable or broad-bandpass x-ray microbeams, it is now possible to study texture and strain distributions in surfaces, and in buried or encapsulated thin films. The full strain tensor and local texture can be determined by measuring the unit cell parameters of strained material. With monochromatic or tunable radiation, at least three independent reflections are needed to determine the orientation and unit cell parameters of an unknown crystal. With broad-bandpass or white radiation, at least four reflections and one measured energy are required to determine the orientation and the unit cell parameters of an unknown crystal. Routine measurement of local texture and strain is made possible by automatic indexing of the Laue reflections combined with precision calibration of the monochromator-focusing mirrors-CCD detector system. Methods used in implementing these techniques on the MHA-IT-CAT beam line at the Advanced Photon Source will be discussed

  6. Alpha-particles microbeam irradiation: impact of reactive oxygen species in bystander effect

    International Nuclear Information System (INIS)

    Ionizing radiation-induced bystander effects arise in bystander cells that receive signals from directly irradiated cells. To date, free radicals are believed to play an active role in the bystander response, but this is incompletely characterized. To mark temporal and spatial impacts of bystander effect, we employed a precise α-particle microbeam to target a small fraction of sub-confluent osteoblastic cell cultures (MC3T3-E1). We identified the cellular membrane and mitochondria like two distinct places generating reactive oxygen species. The global oxidative stress observed after irradiation was significantly attenuated after filipin treatment, evidencing the pivotal role of membrane in MC3T3-E1 cells bystander response. To determine impact of bystander effect at a cell level, cellular consequences of this membrane-dependant bystander effect were then investigated. A variable fraction of the cell population (10 to 100%) was individually targeted. In this case, mitotic death and micronuclei yield both increased in bystander cells as well as in targeted cells demonstrating a role of bystander signals between irradiated cells in an autocrine or paracrine manner. Our results indicate a complex interaction of direct irradiation and bystander signals that lead to a membrane-dependant amplification of cell responses. (author)

  7. Nuclear microbeam analysis of ICF target material made by GDP technique

    International Nuclear Information System (INIS)

    Germanium doped carbon–hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500–2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality

  8. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    Science.gov (United States)

    Konishi, T.; Ishikawa, T.; Iso, H.; Yasuda, N.; Oikawa, M.; Higuchi, Y.; Kato, T.; Hafer, K.; Kodama, K.; Hamano, T.; Suya, N.; Imaseki, H.

    2009-06-01

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 μm in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si 3N 4 plate (2.5 mm × 2.5 mm area with 1 μm thickness) supported by a 7.5 mm × 7.5 mm frame of 200 μm thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against γ-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  9. Progress of in-air microbeam system at the Wakasa Wan Energy Research Center

    International Nuclear Information System (INIS)

    Modifications of an in-air microbeam system at the Wakasa Wan Energy Research Center designed to improve its performance are described. In the previous setup, a silicon nitride membrane (area: 1 x 1 mm2; thickness: 100 nm) was used for the beam exit window and the distance between the window and the sample was restricted to ≥1.7 mm. Due to this restriction, the beam spot size obtained using the previous setup was 13 x 13 μm2. To reduce the beam spot size, the beam exit window was replaced by a silicon nitride membrane (area: 3 (horizontal) x 2 (vertical) mm2; thickness: 200 nm). In this setup, the sample can be moved as close as 0.7 mm to the window, enabling a beam spot size of 7 x 6 μm2 to be achieved. An additional Si-PIN X-ray detector was installed to estimate the relative number of beam particles. It detects X-rays from the beam exit window. The number of the X-rays from the beam exit window (which is proportional to the number of beam particles) is used for quantitative analysis and for online monitoring of the beam current. This system has the potential to be used for simultaneous particle-induced X-ray emission (PIXE) and particle-induced gamma-ray emission (PIGE) measurements and for studying dental medicine.

  10. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    International Nuclear Information System (INIS)

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper

  11. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    Science.gov (United States)

    Povoli, M.; Alagoz, E.; Bravin, A.; Cornelius, I.; Bräuer-Krisch, E.; Fournier, P.; Hansen, T. E.; Kok, A.; Lerch, M.; Monakhov, E.; Morse, J.; Petasecca, M.; Requardt, H.; Rosenfeld, A. B.; Röhrich, D.; Sandaker, H.; Salomé, M.; Stugu, B.

    2015-11-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper.

  12. Nuclear microbeam analysis of ICF target material made by GDP technique

    Science.gov (United States)

    Rong, C.; He, X.; Meng, J.; Gao, D.; Zhang, Y.; Li, X.; Lyu, H.; Zhu, Y.; Zheng, Y.; Wang, X.; Shen, H.

    2015-04-01

    Germanium doped carbon-hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500-2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality.

  13. Production of excited electrons at TESLA and CLIC based $e\\gamma$ colliders

    CERN Document Server

    Aydin, Z Z; Kirca, Z

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron-photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions e gamma --> e gamma, e gamma --> eZ and e gamma --> nu W. Excited electrons can be discovered with the masses up to about 90% of the available collider energy.

  14. Highly sensitive hot electron bolometer based on disordered graphene.

    Science.gov (United States)

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 10(6) V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 10(5) V/W. The deduced electrical noise equivalent power is 1.2 fW/√Hz, corresponding to the optical noise equivalent power of 44 fW/√Hz. The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  15. Numerical Modeling of Microbial Fuel Cell Based on Redox Electron Mediator

    Institute of Scientific and Technical Information of China (English)

    Nanqi Ren

    2015-01-01

    To investigate the behavior of redox electron mediator and its impact to power generation of microbial fuel cell ( MFC ) , this study carries out the numerical modeling of a typical two⁃chamber MFC based on assumption of interfacial electron transfer via redox electron mediator and acetate as sole electron donor. The model simulates the development of cell voltage, current, substrate concentration, redox electron mediator concentration, polarization and power density output under defined conditions. The results demonstrate that the developed models can fit the experimental results well on a qualitative basis, and concentration of electron reduced mediator plays a dominant role in electron transfer process, and the mass transfer may constitute the limiting step when its concentration is at a relatively low level. This study not only provides a better understanding of electron redox mediator behavior during power generation, but also suggests a strategy to improve electron transfer in the anode of MFC.

  16. Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps

    Directory of Open Access Journals (Sweden)

    T. Gerzen

    2013-07-01

    Full Text Available Electron density is the major determining parameter of the ionosphere. Especially the maximum electron density of the F2 layer in the ionosphere, NmF2, is of particular interest with regard to the HF radio communication applications as well as for characterizing the ionosphere. In this paper we present a new method to generate global maps of NmF2. The main principle behind this approach is to use the information about the current state of the ionosphere included in global total electron content (TEC maps as well as the relationship between total electron content, equivalent slab thickness and F2 layer peak density. Modeling of slab thickness is an interim step in our reconstruction approach. Thus, results showing the diurnal and seasonal variations and effects of solar activity on the modeled slab thickness values are given. In addition a comparison of the reconstructed NmF2 maps with measurements from several ionosonde stations as well as with the global NmF2 model NPDM is presented. Since 2011 the described method has been used at DLR Neustrelitz to generate NmF2 maps as operational service. These maps are freely available via the Space Weather Application Center Ionosphere SWACI (http://swaciweb.dlr.de.

  17. A modularized electronic payment system for agent-based e-commerce

    OpenAIRE

    Guan, Su; Tan, SL; Hua, F

    2004-01-01

    With the explosive growth of the Internet, electronic-commerce (e-commerce) is an increasingly important segment of commercial activities on the web. The Secure Agent Fabrication, Evolution & Roaming (SAFER) architecture was proposed to further facilitate e-commerce using agent technology. In this paper, the electronic payment aspect of SAFER will be explored. The Secure Electronic Transaction (SET) protocol and E-Cash were selected as the bases for the electronic payment system implementatio...

  18. Electronic counterfeit detection based on the measurement of electromagnetic fingerprint Electronic counterfeit detection based on the measurement of electromagnetic fingerprint

    OpenAIRE

    H. Huang; Huang, He; Boyer, A; Boyer, Alexandre; Ben Dhia, Sonia

    2015-01-01

    International audience Counterfeit integrated circuits become a big challenge for the whole electronic industry. The use of electronic counterfeits can cause reduced performance of circuits, or failure of the whole system. New efficient approaches of counterfeit device detection are always required. Since the electromagnetic emission level of integrated devices depends on various circuit parameters like technology, manufacturing and aging, the electromagnetic emission measurement could be ...

  19. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... a significant effect on the coherent spin dynamics of the radicals. It is generally assumed that evolutionary pressure has led to protection of the electron spins from irreversible loss of coherence in order that the underlying quantum dynamics can survive in a noisy biological environment. Here, we address...

  20. Generation of an Electronic Signature Suite based on Cryptography Algorithms

    Directory of Open Access Journals (Sweden)

    Satyajit S. Uparkar

    2013-01-01

    Full Text Available The process of cryptography basically deals with protecting the information by transforming it (encrypting it into an unreadable format, called cipher text. Only those who possess a secret key can decipher (or decrypt the message into plain text. Electronic signature is one of the applications of the Cryptography algorithms. The electronic signature suite is a collection of various components such as, hash functions key generation algorithm, signing algorithms, verification algorithms and hash functions. This paper mainly deals with the maintenance activities for implementing cryptographic hash functions like Sha-1, RIPEMD-160, and WHIRLPOOL etc. and signature algorithms like RSA, DSA ,EC-GDSA etc.

  1. Electronic Warfare Simulation-based on Service Oriented Architecture

    Directory of Open Access Journals (Sweden)

    J. Nanda Kishore

    2012-07-01

    Full Text Available The realisation of service oriented architecture (SOA is embodied in the accomplishments of various simulation applicable functions in the form of service encapsulation and the interconnection and interoperation of services. In this paper, an electronic warfare (EW simulation is structured to SOA and achieved the effect of dynamic sharing and reusability. As a proof of concept, a radar electronic support (ES simulator, which intercepts and classifies radar signals is designed and explained in this paper.Defence Science Journal, 2012, 62(4, pp.219-222, DOI:http://dx.doi.org/10.14429/dsj.62.929

  2. An electron beam treatment planning system based on CT images

    International Nuclear Information System (INIS)

    This is a report on the computerization of the electron beam treatment planning system at the Cancer Institute Hospital. The computer aided calculation of electron beam dose distributions utilizes table look-up and interpolation of measured central axis depth doses and off-center ratios (OCR). Inhomogeneity correction is applied by the absorption equivalent thickness (AET) method. When OCR is expressed as a function of x-L instead of x/L, OCR is nearly independent of field size and shape, where x is the distance of the point from the central axis and L is half width. (author)

  3. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    Science.gov (United States)

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed. PMID:22380190

  4. The Electron Scattering Data Base - Is it Fit for Purpose ?

    International Nuclear Information System (INIS)

    Electron induced reactions in both the gaseous and condensed phases initiate and drive many of the basic physical and chemical processes in science and technology with applications from industrial plasmas to radiation damage in living tissue. For example, in contrast to previous hypotheses, collisions of very low energy secondary electrons with the components of DNA molecules (or to the water around them) has been shown to be a crucial process in inducing radiation damage in the DNA of living systems. Understanding electron interactions with larger biomolecules is therefore providing new insights to radiation damage and thence the development of new, alternative radiotherapies. In the technological field electron induced reactions underpin most of the multibillion dollar modern semiconductor industry since it is those reactive fragments produced by electron impact of etchant gases that react directly with the silicon substrate. Studies on electron scattering from molecules capable of improving the etch rate of surfaces are leading to development of new (environmentally cleaner) plasma technologies. Electron induced processes are also of extraordinary importance for determination of structure and chemical reactivity of species adsorbed on surfaces. Such research and technology is intricately linked to our knowledge of the key interactions between electosn and atoms and molecules and thus we require a database for characterizing electron interactions with atomic and molecular species. However the compilation of the electron collsion data required is rarely a coherent, planned research programme instead it is a parasitic process. Indeed today it is rare for researchers to be funded to measure fundamental collision processes since these are no longer regarded in themselves as 'cutting edge' research rather the field has developed to explore more exotic phenomena such as cold atoms; nanotechnology and chemical control. The fundamental research community, the providers

  5. The Challenge of Producing Fiber-Based Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Tobias Könyves-Toth

    2014-07-01

    Full Text Available The implementation of organic electronic devices on fibers is a challenging task, not yet investigated in detail. As was shown earlier, a direct transition from a flat device structure to a fiber substrate is in principle possible. However, a more detailed investigation of the process reveals additional complexities than just the transition in geometry. It will be shown, that the layer formation of evaporated materials behaves differently due to the multi-angled incidence on the fibers surface. In order to achieve homogenous layers the evaporation process has to be adapted. Additionally, the fiber geometry itself facilitates damaging of its surface due to mechanical impact and leads to a high surface roughness, thereby often hindering commercial fibers to be used as substrates. In this article, a treatment of commercial polymer-coated glass fibers will be demonstrated that allows for the fabrication of rather flexible organic light-emitting diodes (OLEDs with cylindrical emission characteristics. Since OLEDs rely the most on a smooth substrate, fibers undergoing the proposed treatment are applicable for other organic electronic devices such as transistors and solar cells. Finally, the technique also supports the future fabrication of organic electronics not only in smart textiles and woven electronics but also in bent surfaces, which opens a wide range of applications.

  6. Reconstruction of Model Based Electron Density Distribution from Ionosonde Data

    Czech Academy of Sciences Publication Activity Database

    Gok, G.; Arikan, O.; Arikan, F.; Mošna, Zbyšek

    Bangkok: COSPAR/URSI IRI Working Group and Faculty of Engineering (KMITL), 2015. 38O. [International Reference Ionosphere 2015 (IRI-2015) Workshop /18./.. 02.11.2015-13.11.2015, Bangkok] Institutional support: RVO:68378289 Keywords : reconstructing electron density * ionogram scaling * ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.iri2015.kmitl.ac.th/downloads/IRI2015_TechnicalProgram.pdf

  7. Simulation Tools for Power Electronics Courses Based on Java Technologies

    Science.gov (United States)

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  8. Secondary electron emission yield on poled silica based thick films

    DEFF Research Database (Denmark)

    Braga, D.; Poumellec, B.; Cannas, V.;

    2004-01-01

    Studies on the distribution of the electric field produced by a thermal poling process in a layer of Ge-doped silica on silicon substrate, by using secondary electron emission yield (SEEY) measurements () are presented. Comparing 0 between poled and unpoled areas, the SEEY at the origin of electr...

  9. Agent-Based Workflow Systems in Electronic Distance Education.

    Science.gov (United States)

    Dlodlo, Nomusa; Dlodlo, Joseph B.; Masiye, Bighton S.

    Current workflow systems largely assume a closed network where all the software is available on a homogenous platform and all participants are locally linked together at the same time. The field of Electronic Distance Education (EDE) on the other hand, requires the next-generation workflow that will integrate workflows from a distributed…

  10. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  11. Electronic states of emodin and its conjugate base

    DEFF Research Database (Denmark)

    Nguyen, Son Chi; Hansen, Bjarke Knud Vilster; Hoffmann, Søren Vrønning;

    2008-01-01

    the assignment of at least 7 excited electronic states in the region 15000 - 50000 cm-1 for each species. A recent assignment of the absorption spectrum of E to a superposition of contributions from 9,10- and 1,10-anthraquinoid tautomeric forms was not supported by the results of the present...

  12. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....

  13. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  14. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    International Nuclear Information System (INIS)

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å)−1 were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage

  15. Electronics

    International Nuclear Information System (INIS)

    Some of the electronic equipment used in pulse counting and mean current radiation detection systems is described. This includes the high voltage supply, amplifier, amplitude discriminator, scalers or counters, ratemeters, single-channel pulse height analyser, multi-channel pulse height analyser, d.c. amplifiers, coincidence and anticoincidence units and gain stabilisers

  16. Materials Meets Concepts in Molecule-Based Electronics

    KAUST Repository

    Ortmann, Frank

    2014-10-14

    In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance in various applications and devices demands for an extension of basic theoretical approaches to describe charge transport in molecular materials, including the accurate description of electron-phonon coupling. Starting with the simplest case of a molecular junction and moving on to larger aggregates of bulk organic semiconductors, charge-transport regimes from ballistic motion to incoherent hopping, which are frequently encountered in molecular systems under respective conditions, are discussed. Transport features of specific materials are described through ab initio material parameters whose determination is addressed. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.

  17. XUV free-electron laser-based projection lithography systems

    International Nuclear Information System (INIS)

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 μm to 0.05μm and with an adequate total depth of focus (1 to 2 μm). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs

  18. Electron accelerator based system for assay of transuranic waste barrels

    International Nuclear Information System (INIS)

    A complete assay system for 208-liter barrels contianing transuranic wastes has been developed. The system consists of an 8-MeV commercial electron accelerator, neutron moderating cavity housing the waste barrel and containing neutron detectors, high resolution germanium gamma spectrometer, and x-ray radiography camera (both film and real time). The electron linac is used to produce bremsstrahlung and high-intensity pulsed neutron flux, both of which are used to interrogate the fissionable materials. The Differential Dieaway Technique is used to assay the amounts of fissile and fertile materials. The neutron flux is also used in the Prompt Gamma Activation Assay to determine and to quantify the matrix elements present in the barrels. This information is then used to correct the assay of fissionable material. The bremsstrahlung too, is also used by x-ray radiography system to further identify the matrix

  19. Astigmatic intensity equation for electron microscopy based phase retrieval

    International Nuclear Information System (INIS)

    Phase retrieval, in principle, can be performed in a transmission electron microscope (TEM) using arbitrary aberrations of electron waves; provided that the aberrations are well-characterised and known. For example, the transport of intensity equation (TIE) can be used to infer the phase from a through-focus series of images. In this work an 'astigmatic intensity equation' (AIE) is considered, which relates phase gradients to intensity variations caused by TEM objective lens focus and astigmatism variations. Within the paraxial approximation, it is shown that an exact solution of the AIE for the phase can be obtained using efficient Fourier transform methods. Experimental requirements for using the AIE are the measurement of a through-focus derivative and another intensity derivative, which is taken with respect to objective lens astigmatism variation. Two quasi-experimental investigations are conducted to test the validity of the solution

  20. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  1. Hybrid electronics based InP and high temperature superconductors

    International Nuclear Information System (INIS)

    Current trend in high speed semiconductor electronics towards 77K operation coupled with the recent discovery of high temperature superconductivity above 77K has the potential of realizing ultra high speed electronics operating at 77K. Depending on the properties of high temperature superconductors, both active and passive hybrid superconductor and semiconductor three terminal devices can be fabricated. Using hybrid superconductor/SrF2/InP/SrF2 resonant tunnel transistor structure and a parallel architecture, the authors have designed a super fast 8 x 8 bit digital multiplier/accumulator operating at 77K with a multiplication/accumulation time of 152 ps, which represent the highest possible speed calculated for any multiplex/accumulation circuit reported to date. Processing of such hybrid devices is quite challenging. In this paper in addition to the theoretical results, the authors present preliminary experimental results of high Tc superconducting thin films formed by rapid isothermal assisted MOCVD technique

  2. Electronically Reconfigurable Liquid Crystal Based Mm-Wave Polarization Converter

    OpenAIRE

    Doumanis, E.; Goussetis, G.; Dickie, R.; CAHILL, R; Baine, P; Bain, M; V. Fusco; Encinar, J. A.; Toso, G

    2014-01-01

    An electronically tunable reflection polarizer which exploits the dielectric anisotropy of nematic liquid crystals (LC) has been designed, fabricated and measured in a frequency band centered at 130 GHz. The phase agile polarizing mirror converts an incident slant 45° signal upon reflection to right hand circular (RHCP), orthogonal linear (-45 °) or left hand circular (LHCP) polarization depending on the value of the voltage biasing the LC mixture. In the experimental set-up this is achieved ...

  3. Model-Based Analysis of Privacy in Electronic Services

    OpenAIRE

    Decroix, Koen

    2015-01-01

    Many stakeholders are involved in complex electronic services. Individuals release personal information to front-ends in advanced web services. However, to what extent the acquired information is distributed and processed, what other data is included and/or merged in user profiles, remains unclear. Much more personal information is often released than strictly necessary. As is well known, many authentication technologies release personal data and make transactions linkable. Service provid...

  4. Detection of Edible Oils Based on Voltammetric Electronic Tongue

    OpenAIRE

    Hong Men; Caiwa Zhang; Ke Ning; Donglin Chen

    2013-01-01

    A voltammetric electronic tongue to classify five different types of edible oil samples is described in this study. The standard three-electrode configuration composes the sensor array: gold electrode, platinum electrode and saturated calomel electrode. Using cyclic voltammetric measurement, respectively, on five different types of edible oil samples (peanut oil, corn oil, soybean oil, sesame oil and sunflower oil) collected data. The data extracted from the cyclic voltammetry are processed b...

  5. Electron dopable molecular wires based on the extended viologens

    Czech Academy of Sciences Publication Activity Database

    Kolivoška, Viliam; Gál, Miroslav; Pospíšil, Lubomír; Valášek, Michal; Hromadová, Magdaléna

    2011-01-01

    Roč. 13, č. 23 (2011), s. 11422-11429. ISSN 1463-9076 R&D Projects: GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400802; GA MŠk(CZ) MEB041006 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electron transfer * spectroelectrochemistry * molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.573, year: 2011

  6. Electronic health systems: challenges faced by hospital-based providers.

    Science.gov (United States)

    Agno, Christina Farala; Guo, Kristina L

    2013-01-01

    The purpose of this article is to discuss specific challenges faced by hospitals adopting the use of electronic medical records and implementing electronic health record (EHR) systems. Challenges include user and information technology support; ease of technical use and software interface capabilities; compliance; and financial, legal, workforce training, and development issues. Electronic health records are essential to preventing medical errors, increasing consumer trust and use of the health system, and improving quality and overall efficiency. Government efforts are focused on ways to accelerate the adoption and use of EHRs as a means of facilitating data sharing, protecting health information privacy and security, quickly identifying emerging public health threats, and reducing medical errors and health care costs and increasing quality of care. This article will discuss physician and nonphysician staff training before, during, and after implementation; the effective use of EHR systems' technical features; the selection of a capable and secure EHR system; and the development of collaborative system implementation. Strategies that are necessary to help health care providers achieve successful implementation of EHR systems will be addressed. PMID:23903942

  7. Superlattice Photocathodes for Accelerator-Based Polarized Electron Source Applications

    International Nuclear Information System (INIS)

    A major improvement in the performance of the SLC was achieved with the introduction of thin strained-layer semiconductor crystals. After some optimization, polarizations of 75-85% became standard with lifetimes that were equal to or better than that of thick unstrained crystals. Other accelerators of polarized electrons, generally operating with a much higher duty factor, have now successfully utilized similar photocathodes. For future colliders, the principal remaining problem is the limit on the total charge that can be extracted in a time scale of 10 to 100 ns. In addition, higher polarization is critical for exploring new physics, especially supersymmetry. However, it appears that strained-layer crystals have reached the limit of their optimization. Today strained superlattice crystals are the most promising candidates for better performance. The individual layers of the superlattice can be designed to be below the critical thickness for strain relaxation, thus in principle improving the polarization. Thin layers also promote high electron conduction to the surface. In addition the potential barriers at the surface for both emission of conduction-band electrons to vacuum and for tunneling of valence-band holes to the surface can be significantly less than for single strained-layer crystals, thus enhancing both the yield at any intensity and also decreasing the limitations on the total charge. The inviting properties of the recently developed AlInGaAs/GaAs strained superlattice with minimal barriers in the conduction band are discussed in detail

  8. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    International Nuclear Information System (INIS)

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole

  9. New linac based free electron laser projects using bright electron beams

    International Nuclear Information System (INIS)

    Due to the progress of accelerator technology in recent years it is now possible to consider the construction of a Free Electron Laser (FEL) that provides coherent radiation at wavelengths very far below the visible. In this paper, various projects are mentioned which are under way to establish the Self-Amplified Spontaneous Emission (SASE) principle at very short photon wavelengths as well as multiple harmonic generation. The basic principles are briefly explained and the expected performance is discussed. With respect to linac technology, the key prerequisite for such single-pass, high-gain FELs is a high intensity, diffraction limited, electron beam to be generated and accelerated without degradation. Key components are RF guns with photocathodes, bunch compressors, and related diagnostics. Once proven in the micrometer to nanometer regime, the SASE FEL scheme is considered applicable down to Angstrom wavelengths. It is pointed out that this latter option is particularly of interest in context with the construction of a linear collider, which requires very similar beam parameters. (author)

  10. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  11. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling

    International Nuclear Information System (INIS)

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped–clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. (paper)

  12. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.A.; Inoue, S.; Salmon, E.D.

    1989-03-01

    The molecular basis of microtubule dynamic instability is controversial, but is thought to be related to a GTP cap. A key prediction of the GTP cap model is that the proposed labile GDP-tubulin core will rapidly dissociate if the GTP-tubulin cap is lost. We have tested this prediction by using a UV microbeam to cut the ends from elongating microtubules. Phosphocellulose-purified tubulin was assembled onto the plus and minus ends of sea urchin flagellar axoneme fragments at 21-22 degrees C. The assembly dynamics of individual microtubules were recorded in real time using video microscopy. When the tip of an elongating plus end microtubule was cut off, the severed plus end microtubule always rapidly shortened back to the axoneme at the normal plus end rate. However, when the distal tip of an elongating minus end microtubule was cut off, no rapid shortening occurred. Instead, the severed minus end resumed elongation at the normal minus end rate. Our results show that some form of stabilizing cap, possibly a GTP cap, governs the transition (catastrophe) from elongation to rapid shortening at the plus end. At the minus end, a simple GTP cap is not sufficient to explain the observed behavior unless UV induces immediate recapping of minus, but not plus, ends. Another possibility is that a second step, perhaps a structural transformation, is required in addition to GTP cap loss for rapid shortening to occur. This transformation would be favored at plus, but not minus ends, to account for the asymmetric behavior of the ends.

  13. Application of imaging plate to micro-beam X-ray diffraction

    International Nuclear Information System (INIS)

    A new type of integrating area detector system with high sensitivity and high spatial resolution was recently developed for diagnostic radiography. In this detector system, a two dimensional X-ray image is temporarily stored as a distribution of F-centers in a photostimulable phosphor screen called the imaging plate (IP). The image in the IP is then read out by measuring the intensity of fluorescence which is stimulated by a focused He-Ne laser beam scanning the surface of the phosphor screen. The residual X-ray image in the IP can be erased simply by exposing it to a large dose of visible light and the IP can be used repeatedly. The detector has 100% detective quantum efficiency for 0-20 keV X-ray, a spatial resolution better than 0.15mm(fwhm), a dynamic range of 105 and no counting rate limitation. The exposure time can be shorten to 1/20-1/60 in comparison with the use of the X-ray film. In this study, we examined the possibility of the IP for the X-ray studies on the mechanical behaviour of materials by using the back-reflection X-ray technique. An exposure time of more than 30 minutes would be required for a conventional high sensitivity X-ray film in the case of αFe(211) diffraction by Cr-Kα X-rays. When the imaging plates were used in place of the film under the same X-ray condition, we could obtain visually similar patterns by exposing the time of less than 90 seconds. These diffraction patterns can be precisely analyzed with the help of the image processing analyzer. We conclude that this detector system is usable in almost the same way as an X-ray film. Especially, this will be more powerful means in the field of micro-beam X-ray diffraction. (author)

  14. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  15. Design of nuclear spectroscopy electronics based on the EUROsystem standard

    International Nuclear Information System (INIS)

    The development of modular nuclear instruments in the EUROcard system has been continued by the design of a staircase generator; such an instrument is needed for accurate testing of spectroscopy amplifiers. The generator provides very precisely defined steps with the period between them varying from 8 to 50 microseconds, the output voltage continuously variable from 2 to 5 V, and attenuated ion steps between 1 and 100. Great care was taken that individual steps exhibit no overshot, thus providing a very clean signal to the input of a tested amplifier. The circuitry is kept simple, and it can be easily constructed in any electronics laboratory. Figs

  16. Characterisation of a Sr-90 based electron monochromator

    CERN Document Server

    Arfaoui, S; CERN; Casella, C; ETH Zurich

    2015-01-01

    This note describes the characterisation of an energy filtered Sr-90 source to be used in laboratory studies that require Minimum Ionising Particles (MIP) with a kinetic energy of up to approx. 2 MeV. The energy calibration was performed with a LYSO scintillation crystal read out by a digital Silicon Photomultiplier (dSiPM). The LYSO/dSiPM set-up was pre-calibrated using a Na-22 source. After introducing the motivation behind the usage of such a device, this note presents the principle and design of the electron monochromator as well as its energy and momentum characterisation.

  17. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....... design of other materials as well. A central problem is how to treat the huge number of compounds that can be envisioned by varying the concentrations and the number of the elements involved. We discuss various strategies for approaching this problem and show how one strategy has led to the computational...

  18. Polymeric composites based on polysilanes for plastic electronics

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Pospíšil, Jan; Kratochvílová, Irena; Sworakowski, J.

    2008-01-01

    Roč. 484, - (2008), s. 265-290. ISSN 1542-1406 R&D Projects: GA AV ČR IAA100100622; GA MŠk OC 138; GA MŠk OC 137; GA AV ČR KAN401770651 Grant ostatní: Czech-Polish collaboration(PL) CZ-24 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : polysilane * electronic structure * charge transport * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  19. Inter-base Electronic Coupling for transport through DNA

    OpenAIRE

    Anantram, H. Mehrez M. P.

    2005-01-01

    We develop a new approach to derive single state tight binding (SSTB) model for electron transport in the vicinity of valence-conduction bands of poly(G)-poly(C) and poly(A)-poly(T) DNA. The SSTB parameters are derived from {\\it first principles} and are used to model charge transport through finite length DNA. We investigate the rigor of reducing the full DNA Hamiltonian to SSTB model to represent charge transport in the vicinity of valence-conduction band. While the transmission coefficient...

  20. Detection of electronically equivalent tautomers of adenine base: DFT study

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu2+ complexes. • Interaction of A-Cu2+ and rA-Cu2+ complexes with AlN modified fullerene (C60) have been studied briefly. • It is found that AlN modified C60 could be used as a nanoscale sensor to detect these two A-Cu2+ and rA-Cu2+ complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu2+ complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu2+ complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C60) have been studied. Theoretical investigations reveal that AlN-doped C60 may serve as a potentially viable nanoscale sensor for detection of the two Cu2+ complexes of adenine

  1. An active damper for stabilizing power-electronics-based AC systems

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Liserre, Marco;

    2014-01-01

    The interactions among the parallel grid-connected converters coupled through the grid impedance tend to result in stability and power quality problems. To address them, this paper proposes an active damper based on a high bandwidth power electronics converter. The general idea behind this proposal...... experimental tests on a three-converter-based setup are carried out. The results show that the active damper can become a promising way to stabilize the power-electronics-based ac power systems....

  2. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  3. Ballistic Hot Electron Transport in Heteroepitaxial SrRuO3 Metal-Base Transistors

    Science.gov (United States)

    Kim, Brian; Hikita, Yasuyuki; Yajima, Takeaki; Bell, Christopher; Hwang, Harold

    Perovskite oxide heterostructures is a rapidly emerging field significant for interface-induced electronic and magnetic reconstructions, resulting in novel phases distinct from those found in the bulk counterparts. Notably, utilizing device structures is an effective way to probe these interface-induced phases. One of the most prevalent device structures that has been adopted so far is a three-terminal field-effect geometry, used to probe in-plane electronic transport properties. However, the out-of-plane three-terminal device geometry, though less studied due to its complexity, is also useful in many aspects. In the metal-base transistor (MBT), for instance, ballistic transport of hot electrons injected across a Schottky diode emitter can be used to probe hot electron properties of the metal-base, providing information on inelastic scattering mechanisms, electron confinement effects, and intervalley transfer. One promising model system for the metal-base is SrRuO3 (SRO), characterized by intermediate electron correlations with unusual transport properties. Here we present an all-perovskite oxide heteroepitaxial MBT using SRO as a metal-base layer. Successful MBT operation for various metal-base layer thicknesses was achieved, from which the hot electron attenuation length of SRO was deduced. These results form a foundation on which to examine the properties of hot electrons in strongly correlated systems using the out-of-plane three-terminal device geometry.

  4. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  5. Monitoring of MMCA-based Military Electronic Information System

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-yu,; PAN Cheng-sheng; YANG Jing-yu

    2005-01-01

    A multiplex monitoring and control architecture (MMCA) for military supervision based on common information model (CIM) is put forward after analyzing the features of military system. Information format based on CIM can be compatible with other protocols by mapping data type into that of SNMP, DMI and CMIP, etc. And in order to realize transparence and dynamic expansibility of MMCA administrator, CIM object manager and CIM object provider are designed based on monitoring mechanism of agent extensibility--AgentX that MMCA agent uses.

  6. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    Science.gov (United States)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  7. Assessment of Proton Microbeam Analysis of 11B for Quantitative Microdistribution Analysis of Boronated Neutron Capture Agent Analogs in Biological Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bench, G; Grant, P G; Ueda, D L; Autry-Conwell, S A; Hou, Y; Boggan, J E

    2002-12-04

    Purpose: To assess the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction for quantitatively mapping the in-vivo sub-cellular distribution of boron within gliosarcoma tumors treated with boronated neutron capture therapy agent (NCTA) analogs. Materials and Methods: Intracranial tumors were produced in Fisher 344 rats using a 9L gliosarcoma model. Fourteen days later, the majority of rats were treated with f-boronophenylalanine and sacrificed 30 or 180 minutes after intravenous injection. Freeze dried tumor cryosections were imaged using the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction and proton microbeams obtained from the nuclear microprobe at Lawrence Livermore National Laboratory. Results/Discussion: With{sup 11}B(p, {alpha}){sup 8}Be* analysis, {sup 11}B distributions within cells can be quantitatively imaged with spatial resolutions down to 1.5 {micro}m, minimum detection limits of 0.8 mg/kg and acquisition times of several hours. These capabilities offer advantages over alpha track autoradiography, electron energy loss spectroscopy and secondary ion mass spectrometry (SIMS) for 'B quantitation in tissues. However, the spatial resolution, multi-isotope capability and analysis times achieved with SIMS are superior to those achieved with {sup 11}B(p, {alpha}){sup 8}Be* analysis. Conclusions: When accuracy in quantitation is crucial, the assessing the microdistribution of {sup 11}B. {sup 11}B(p, {alpha}){sup 8}Be* reaction is well suited for Otherwise, SIMS may well be better suited to image the microdistribution of boron associated with NCTAs in biological tissues.

  8. Compact, high power electron beam based terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  9. Electron scattering times in ZnO based polar heterostructures

    International Nuclear Information System (INIS)

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 106 cm2/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors

  10. ELECTRONIC BANKING SERVICES IN ECONOMY BASED ON KNOWLEDGE

    Directory of Open Access Journals (Sweden)

    Răbonţu Cecilia Irina

    2009-05-01

    Full Text Available The term "electronic banking" or "ebanking" covers both computer and telephone banking. Using computer banking, a charity’s computer either dials directly into its bank's computer or gains access to the bank’s computer over the internet. Using telephone banking, the charity controls its bank accounts by giving the bank instructions over the telephone. Both computer and telephone banking involve the use of passwords which give access to the charity’s accounts. Technological innovation and competition among existing banking organizations have allowed a wider array of banking products and services to become accessible and delivered through the Internet. The rapid development of e-banking capabilities carries risks as well as benefits. The bankers are to recognize, address and manage banking institutions in a prudent manner according to the fundamental characteristics and challenges of e-banking services

  11. Chemical bonding and electronic structure of fullerene-based compounds

    International Nuclear Information System (INIS)

    This talk will focus on the nature of bonding of fullerenes with other materials as demonstrated by synchrotron radiation and x-ray photoemission. Adsorption of C60 on metallic and semiconducting substrates occurs via charge transfer from the substrate to a LUMO-derived resonance, resulting in Fermi level alignment and dipole formation. Bonding of metal atoms to C60 depends on the metal work function and bulk cohesive energy. Evaporation of high cohesive energy materials onto a fullerene substrate results in metal cluster nucleation and limited C60 disruption for transition metals. Low cohesive energy metals form compounds with a degree of ionic character related to the metal work function. Photoemission results show the formation of ionic K-fulleride compounds while greater hybridization is observed for Ca-rich fullerides. Finally the electronic structure of fluorinated and hydrogenated fullerenes demonstrate changes in states derived from C60 π bonds due to reaction of dangling bonds

  12. Electron scattering times in ZnO based polar heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  13. Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires

    OpenAIRE

    Liu, Xiao-Yuan; Ma, Wei; Zhou, Hao; Cao, Xiao-Ming; Long, Yi-Tao

    2015-01-01

    Intramolecular electronic communications of molecular wires play a crucial role for developing molecular devices. In the present work, we describe different degrees of intramolecular electronic communications in the redox processes of three ubiquinone-based biomolecular wires (Bis-CoQ0s) evaluated by electrochemistry and Density Functional Theory (DFT) methods in different solvents. We found that the bridges linkers have a significant effect on the electronic communications between the two pe...

  14. Behavioral modelling and identification of power electronics converters and subsystems based on transient response

    OpenAIRE

    Valdivia Guerrero, Virgilio

    2013-01-01

    Nowadays, electrical engineers face significant changes in the way the electrical energy is generated and distributed to the consumers. On the one hand, the number of electronic and electrical loads in power distribution systems is continuously growing. Developments in power electronics technology during last decades have enabled the use of power-electronics-based subsystems as an alternative to mechanical, hydraulic and pneumatic subsystems, looking for more reliable and light systems, and a...

  15. The Reflective Type of Electronic Whiteboard Based on Cholesteric Liquid Crystal Display Technology

    OpenAIRE

    TianHua Li

    2013-01-01

    The study analyzes the basic principle and structure of cholesteric liquid crystal display technology and concludes features and requirements of reflective type of electronic whiteboard based on cholesteric liquid crystal display technology. The design of drive circuit of reflective type of electronic whiteboard; the make-up of large reflective type of cholesteric liquid crystal homogeneous display screen as the display equipment of electronic whiteboard; and the adoption of C language to edi...

  16. Electron spin relaxation in cryptochrome-based magnetoreception.

    Science.gov (United States)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-05-14

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have a significant effect on the coherent spin dynamics of the radicals. It is generally assumed that evolutionary pressure has led to protection of the electron spins from irreversible loss of coherence in order that the underlying quantum dynamics can survive in a noisy biological environment. Here, we address this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain dihedral angles. For Arabidopsis thaliana cryptochrome 1 (AtCry1) we find that spin relaxation implies optimal radical pair lifetimes of the order of microseconds, and that flavin-Z˙ pairs are less affected by relaxation than flavin-tryptophan pairs. Our results also demonstrate that spin relaxation in isolated AtCry1 is incompatible with the long coherence times that have been postulated to explain the disruption of the avian magnetic compass sense by weak radiofrequency magnetic fields. We conclude that a cryptochrome sensor in vivo would have to differ dynamically, if not structurally, from isolated AtCry1. Our results clearly mark the limits of the current hypothesis and lead to a better understanding of the operation of radical pair magnetic sensors

  17. Electronic correlations in hole- and electron-doped Fe-based superconductors

    Science.gov (United States)

    Hardy, Frederic; Boehmer, Anna; Schweiss, Peter; Wolf, Thomas; Heid, Rolf; Eder, Robert; Fisher, Robert A.; Meingast, Christoph

    2015-03-01

    High-temperature superconductivity in the cuprates occurs at the crossover from a highly-correlated Mott insulating state to a weaker correlated Fermi liquid as a function of hole doping. The iron pnictides were initially thought to be fairly weakly correlated. However, we have recently shown using transport and thermodynamic measurements that KFe2As2 is strongly correlated. Both the Sommerfeld coefficient and the Pauli susceptibility are strongly enhanced with respect to their bare DFT values. These correlations are even further enhanced in RbFe2As2andCsFe2As2. The temperature dependence of both the susceptibility and the thermal expansion provides strong experimental evidence for the existence of a coherence-incoherence crossover; similar to what is found in heavy-fermion compounds. Whereas the correlations in the cuprates result from a large value of the Hubbard U, recent works have stressed the particular relevance of Hund's coupling in the pnictides. Our data may be interpreted in terms of a close proximity of KFe2As2 to an orbital-selective Mott transition. We now have good thermodynamic data covering both the hole and electron sides of the BaFe2As2 system and we will discuss how these correlations are modified by doping.

  18. Note: Design and development of improved indirectly heated cathode based strip electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Namita; Patil, D. S.; Dasgupta, K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bade, Abhijeet; Tembhare, G. U. [Department of Mechanical Engineering, Veermata Jijabai Technological Institute, Matunga, Mumbai 400 019 (India)

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  19. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    Directory of Open Access Journals (Sweden)

    Vishakha Kaushik

    2015-09-01

    Full Text Available Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  20. Note: Design and development of improved indirectly heated cathode based strip electron gun

    International Nuclear Information System (INIS)

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length

  1. Chemical state analysis of Cu, Cu2O and CuO with WDX using an ion microbeam

    International Nuclear Information System (INIS)

    The possibility of chemical state analysis with a wavelength-dispersive X-ray spectrometer system for particle-induced X-ray emission (WDX-PIXE) using a light ion microbeam is described. High-resolution Cu Lα1,2 and Lβ1 X-ray spectra from Cu, Cu2O and CuO targets are measured using this spectrometer system. The incident microbeam is focused 2.0 MeV protons with a beam size of 100(H)x30(V) μm2. The Cu L X-ray spectra show two clear main peaks and their satellites. The main peaks are the Lα1,2 and the Lβ1 diagram lines, respectively. Due to a high detection efficiency of our spectrometer equipped with a position-sensitive detector for soft X-rays, the intensity ratio Lβ1/Lα1,2 is observable, which is the lowest for pure Cu metal, and the largest for CuO. Moreover, the Lα1,2 X-ray spectrum for CuO shows a large shoulder at the high energy side of the main peak, which is considered to be due to the chemical bonding between Cu and O atoms. The results show that this system can be used for chemical state analysis for various compound materials and for analyzing small areas of materials or small particles

  2. 3D-CT imaging using characteristic X-rays and visible lights produced by ion micro-beam bombardment

    Science.gov (United States)

    Ishii, K.; Matsuyama, S.; Yamazaki, H.; Watanabe, Y.; Kawamura, Y.; Yamaguchi, T.; Momose, G.; Kikuchi, Y.; Terakawa, A.; Galster, W.

    2006-08-01

    We improved the spatial resolution of a 3D-CT imaging system consisting of a micro-beam and an X-ray CCD camera of 1 mega pixels (Hamamatsu photonics C8800X), whose element size is 8 μm × 8 μm providing an image size of 8 mm × 8 mm. A small ant of ∼6 mm body length was placed in a small tube, rotated by a stepping motor, and a spatial resolution of 4 μm for X-ray micron-CT using characteristic Ti-K-X-rays (4.558 keV) produced by 3 MeV proton micro-beams was obtained. We applied the X-ray micron-CT to a small ant's head and obtained the fine structures of the head's interior. Because the CCD is sensitive to visible light, we also examined the capability of light micron-CT using visible red light from an Al2O3(Cr) ruby scintillator and applied the micron-CT to a small red tick. Though the red tick is highly transparent to Ti-K-X-rays, visible red light does not penetrate through the red tick. The most serious problem was dispersion of lights due to Thomson scattering resulting in obscure projection images.

  3. Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Stéphane [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Vianna, François [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); IRSN, BP 3, F-13115 Saint-Paul Lez Durance (France); Devès, Guillaume [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Atallah, Vincent [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Department of Radiation Oncology, Institut Bergonié, Bordeaux (France); Univ. Victor Segalen, Bordeaux (France); Moretto, Philippe; Seznec, Hervé [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Philippe, E-mail: barberet@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2014-04-01

    Charged particle microbeams provide unique features to study targeted and non-targeted radiation response and have recently emerged as a powerful tool to investigate radiation-induced DNA damage and repair. We have developed a charged particle microbeam delivering protons and alpha particles in the MeV energy range equipped with online time-lapse imaging capabilities. The beam is focused to a sub-micrometer beam spot under vacuum by means of a triplet of magnetic quadrupoles and extracted in air through a 200 nm Si{sub 3}N{sub 4} window. The end-station is equipped with an automated fluorescence microscope used for single cell targeting and online time-lapse imaging. Cells are kept in their medium during the irradiation procedure and the sample temperature is regulated to 37 °C. An overall targeting accuracy of 2.0 ± 0.7 μm has been measured by tracking the re-localization of the XRCC1 protein. First measurements of this re-localization shows the ability of our system to follow online the radiation-induced re-localization of proteins in the first minutes after irradiation.

  4. Problem-Based and Project-Oriented Learning. An Efficient Way to Implement Research Based Teaching in Power Electronic

    Science.gov (United States)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    Power electronics is an emerging technology. New applications are added every year as well as the power handling capabilities is steadily increasing. One example is renewable energy, which is efficiently enabled by power electronics. The demands to the education of engineers in this field are also increasing. Generally, the content of the curriculum should be more expanded without extra study time. This paper presents a teaching approach, which very fast makes it possible for the students to obtain in-depth skills into new research areas, and this method is the problem-oriented and project-based learning. The necessary skills for power electronic engineers are outlined that is followed up by a description on how the problem-oriented and project-based learning are implemented. A complete curriculum in power electronics and drives at Aalborg University is presented where different power electronics related projects at different study levels are finally presented.

  5. Cardiac auscultation training of medical students: a comparison of electronic sensor-based and acoustic stethoscopes

    OpenAIRE

    Jensen Torstein; Høyte Henning; Gjesdal Knut

    2005-01-01

    Background To determine whether the use of an electronic, sensor based stethoscope affects the cardiac auscultation skills of undergraduate medical students. Methods Forty eight third year medical students were randomized to use either an electronic stethoscope, or a conventional acoustic stethoscope during clinical auscultation training. After a training period of four months, cardiac auscultation sk...

  6. Clear as Glass: A Combined List of Print and Electronic Journals in the Knowledge Base

    Science.gov (United States)

    Lowe, M. Sara

    2008-01-01

    The non-standard practice at Cowles Library at Drake University has been to display electronic journals and some print journals in the Knowledge Base while simultaneously listing print journals and some electronic journals in the online public access catalog (OPAC). The result was a system that made it difficult for patrons to determine our…

  7. AC-ELECTROKINETICS BASED TOOLS IN NANOENGINEERING AND MOLECULAR ELECTRONICS

    Directory of Open Access Journals (Sweden)

    R. Durán

    2005-08-01

    Full Text Available Slllcon-based mlcroeledronics has been following the integration prognosls of MOORE's Law durlng the past decades and posslbly will do so for another decade or two. Physlcal, technological and also flnancialllmlts In the foreseeable future will slow down the contlnued expansiOn of this branch of mlcroeledronlcs and instead wlll force a new technological approach based on molecular-scale eledronics (MOLETRONICS. New tools are needed to allow molecular devlce manufaduring and nanoscale engineering with hlgh precision and produdivlty. One group of methods with the potentlal for use In such a manufaduring process Is based on a.c. eledrokinetlcs effeds, which are descrlbed and discussed in this paper.

  8. On the problem of electron-induced anisotropy effect in As2S3-based glasses

    International Nuclear Information System (INIS)

    Effect of electron-induced anisotropy was observed in glassy As2S3-based samples irradiated by accelerated electrons (E=2.8 MeV) in the perpendicular plane to the probe light. Spectral and compositional dependences of this effect and its time stability at room temperature were discussed. It was supposed that the microstructural mechanism of the anisotropy effect was connected with electron-induced formation of new oriented (relatively to the electron flow) defects in the form of broken chemical bonds

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Teaching Electronic Literacy A Concepts-Based Approach for School Library Media Specialists

    CERN Document Server

    Craver, Kathleen W

    1997-01-01

    School library media specialists will find this concepts-based approach to teaching electronic literacy an indispensable basic tool for instructing students and teachers. It provides step-by-step instruction on how to find and evaluate needed information from electronic databases and the Internet, how to formulate successful electronic search strategies and retrieve relevant results, and how to interpret and critically analyze search results. The chapters contain a suggested lesson plan and sample assignments for the school library media specialist to use in teaching electronic literacy skills

  11. Wireless based Operation and control of Electron Gun for Medical LINAC (Linear Accelerator)

    OpenAIRE

    Rupali V Satpute, Dr. Ram Chand Sethi, Prof. N S Killarikar

    2012-01-01

    This paper gives brief idea about wireless based operation and control of electron gun for medical LINAC. A medical LINAC that use to destroy tumors using high-energy beams. The electron gun is a source of electron beams. Todays leading technologies, such as ZigBee, Bluetooth, GPRS/GSM can help to make wireless operation and control which gives reliability and security as well reduce the wiring and cost.The aim of this project is to make operation and control of electron gun through a long d...

  12. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  13. Use and Characteristics of Electronic Health Record Systems among Office-Based Physician Practices: United States, ...

    Science.gov (United States)

    ... National Ambulatory Medical Care Survey Adoption of basic EHR systems by office-based physicians increased 21% between ... Survey, Electronic Health Records Survey. Adoption of basic EHR systems and any EHR system varied widely across ...

  14. Scope of Tunnel Junction Based Molecular Electronics and Spintronics Devices

    OpenAIRE

    Tyagi, Pawan; Friebe, Edwards; Baker, Collin

    2014-01-01

    Scope of molecule based devices may govern the advancement of the next generation logic and memory devices. Molecules have the potential to be unmatched device elements as chemists can mass produce an endless variety of molecules with novel optical, magnetic, and charge transport characteristics. However, the biggest challenge is to connect two metal leads to a target molecule(s) and develop a robust and versatile device fabrication technology that can be adopted for commercial scale mass pro...

  15. Technology Trust in Internet-Based Interorganizational Electronic Commerce

    OpenAIRE

    Pauline Ratnasingam; Paul A. Pavlou

    2003-01-01

    Trust in Internet-based Business-to-Business (B2B) e-commerce is an important issue for both practicioners and academicians. Whereas the traditional notion of dyadic interfirm trust primarily focuses on trust in a trading partner firm, trust in e-commerce also implicitly incorporates the notion of trust in the transaction infrastructure and underlying control mechanisms (technology trust), which deals with transaction integrity, authentication, confidentliality, non-repudiation, and best busi...

  16. Research on mobile electronic commerce security technology based on WPKI

    Science.gov (United States)

    Zhang, Bo

    2013-07-01

    Through the in-depth study on the existing mobile e-commerce and WAP protocols, this paper presents a security solution of e-commerce system based on WPKI, and describes its implementation process and specific implementation details. This solution uniformly distributes the key used by the various participating entities , to fully ensure the confidentiality, authentication, fairness and integrity of mobile e-commerce payments, therefore has some pract ical value for improving the security of e-commerce system.

  17. Enhanced Role Based Access Control Mechanism for Electronic Examination System

    Directory of Open Access Journals (Sweden)

    Adebukola Onashoga

    2014-02-01

    Full Text Available Over the years, e-learning and e-examination has become standard in many institutions of higher learning. It has been observed that examination questions and results can be easily intercepted by invalid users, thus the security of resources shared among valid users is not guaranteed. In order to solve these problems as it relates to access control, a Role based Examination System (RBES was designed, developed and evaluated. RBES attempted to solve the security issue by the combination of two authentication techniques: text-based authentication and graphical password authentication. The Text-based authentication utilizes two text-based parameters namely the username and password. The graphical password authentication makes use of a finite set of controls (RBES chooses radio buttons which are identified by numbers. These numbers constitute the password used for graphical authentication. To improve on resource sharing among users in the examination system, RBES proposes role management (role creation, role update, role removal and user management (user creation, user update and user removal. The developed system made use of asp.net, C#, IIS server, WAMP server, Mysql and other tools for its development. RBES was tested by some legitimate and illegitimate users and the performance of the system was found to be satisfactory, hence RBES shows an efficient and reliable scheme that can be deployed in any examination or e-learning system. Finally the potential threats to the system were modeled and the use of weak passwords was found to be the most likely threat the system could be vulnerable to.

  18. Optical sensor array platform based on polymer electronic devices

    OpenAIRE

    Koetse, M.M.; Rensing, P.A.; Sharpe, R.B.A.; Heck, G.T. van; Allard, B.A.M.; Meulendijks, N.N.M.M.; Kruijt, P.G.M.; Tijdink, M.W.W.J.; Zwart, R.M. de; Houben, R.J.; Enting, E.; Veen, S.J.J.F. van; Schoo, H.F.M.

    2007-01-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semi...

  19. Quantum heat engines based on electronic Mach-Zehnder interferometers

    OpenAIRE

    Hofer, Patrick P.; Sothmann, Björn

    2015-01-01

    We theoretically investigate the thermoelectric properties of heat engines based on Mach-Zehnder interferometers. The energy dependence of the transmission amplitudes in such setups arises from a difference in the interferometer arm lengths. Any thermoelectric response is thus of purely quantum mechanical origin. In addition to an experimentally established three-terminal setup, we also consider a two-terminal geometry as well as a four-terminal setup consisting of two interferometers. We fin...

  20. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.