WorldWideScience

Sample records for based electrolytic reduction

  1. Uranium manufacturing process employing the electrolytic reduction method

    International Nuclear Information System (INIS)

    Oda, Yoshio; Kazuhare, Manabu; Morimoto, Takeshi.

    1986-01-01

    The present invention related to a uranium manufacturing process that employs the electrolytic reduction method, but particularly to a uranium manufacturing process that employs an electrolytic reduction method requiring low voltage. The process, in which uranium is obtained by means of the electrolytic method and with uranyl acid as the raw material, is prior art

  2. Equilibrium calculation for the electrolytic reduction process of the ACP

    International Nuclear Information System (INIS)

    Park, Byung Heung; Seo, Chung Seok; Yoon, Ji Sup

    2006-01-01

    The electrolytic reduction process is the most critical process of the advanced spent fuel conditioning process (ACP) since most of the chemical reactions take place during this reduction process in a molten salt bath. However, it is very difficult to observe the behavior of all the spent fuel elements by experiments. Therefore, a perspective calculation is required to predict how much the chemicals are distributed between the phases and which forms are stable in each phase. Chemical equilibria take place during the electrolytic reduction process. The reduction process uses a porous magnesia filter and the materials to be reduced are loaded into the filter, which means the filter, the cathode of the electrolytic reduction cell, acts as a packed-bed reactor. Lithium metal is produced by an electrolytic reaction in a molten Li 2 O-LiCl cell and the reaction is denoted as Eq. In this work, attention has been paid to the chemical reactions of Eq. since an electrochemical reaction is controlled easily by the supplied current and the extents of the chemical reactions are determined by considering many candidates species. Uranium oxides, for example, can be reduced to U 4 O 9 , UO 2 , and/or U when U 3 O 8 is fed to the electrolytic reduction process

  3. F4U production by electrolytic reduction

    International Nuclear Information System (INIS)

    Esteban Duque, A.; Gispert Benach, M.; Hernandez Arroyo, F.; Montes Ponce de Leon, M.; Rojas de Diego, J. L.

    1974-01-01

    As a part of the nuclear fuel cycle program developed at the Spanish Atomic Energy Commission it has been studied the electrolytic reduction of U-VI to U-IV. The effect of the materials, electrolyte concentration, pH, current density, cell size and laboratory scale production is studied. The Pilot Plant and the production data are also described. (Author) 18 refs

  4. A study on the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Su, J. S.; Hu, J. M.; Hong, S. S.; Jang, D. S.; Park, S. W.

    2003-01-01

    New electrolytic reduction technology was proposed that is based on the integration of metallization of uranium oxide and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  5. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  6. A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Hur, Jin Mok; Seo, Chung Seok; Park, Seong Won

    2003-01-01

    This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  7. Electrolytic 99TcO4- reduction at inert electrodes

    International Nuclear Information System (INIS)

    Kremer, C.; Gambino, D.; Leon, A.; Kremer, E.

    1990-01-01

    Electrolytic pertechnetate reduction at inert electrodes was studied as an alternative procedure for synthesizing Tc complexes. Pertechnetate reduction was carried out in aqueous media using different aminated ligands (en, dien, trien and 1,3-dap) forming [TcO 2 (amine) 2 ] + type complexes. Simultaneously with synthesis of the desired Tc complex, TcO 2 was electrodeposited onto the cathode. Conversion of TcO 4 - to Tc complex and TcO 2 was studied as a function of several variables (kind and concentration of supporting electrolyte, ligand concentration, pH, current and electrolysis time). (author) 9 refs.; 6 figs.; 1 tab

  8. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    Science.gov (United States)

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-04-04

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  9. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  10. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  11. Searching for electrolytes and electrodes for CO2 reduction below 300 °C

    DEFF Research Database (Denmark)

    Vico, Federica

    Electrochemical CO2 reduction research is driven by the desire to reduce reliance on fossil fuels and lower greenhouse gas emissions. The conversion of CO2 into fuels and chemicals using energy derived from a renewable source, such as wind or solar, could replace the use of fossil fuels...... practical application for carbon dioxide reduction at high pressure. K-doped BaZr1-xYxO3-δ was successfully synthesized by hydrothermal technique, but the conductivity recorded in high pH2O and at 240 °C was too low (3 · 10-5 S/cm) to be considered as a suitable electrolyte. A literature survey showed...... and temperatures. A foam based CO2 conversion cell with gas diffusion electrodes and a ceramic porous structure in which the liquid electrolyte is immobilized by capillary forces was developed and tested up to 20 bar and to a maximum temperature of 50 °C. Potassium carbonate was selected as aqueous electrolyte...

  12. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li

  13. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  14. Chemical stability of {gamma}-butyrolactone-based electrolytes for aluminium electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Takeda, Masayuki [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Suzuki, Yoko [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1996-06-01

    {gamma}-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/{gamma}-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/{gamma}-butyrolactone electrolytes decomposed by SN2 reactions giving alkyl benzoates and trialkylamines. The deterioration of the carboxylate salt/{gamma}-butyrolactone electrolytes was accelerated by electrolysis. (orig.)

  15. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    Science.gov (United States)

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  16. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  17. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  18. Electrolytic reduction of nitroheterocyclic drugs leads to biologically important damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Pluijmackers-Westmijze, E.J.; Loman, H.

    1985-01-01

    The effects of electrolytic reduction of nitroimidazole drugs on biologically active DNA was studied. The results show that reduction of the drugs in the presence of DNA affects inactivation for both double-stranded (RF) and single-stranded phiX174 DNA. However, stable reduction products did not make a significant contribution to the lethal damage in DNA. This suggests that probably a short-lived intermediate of reduction of nitro-compounds is responsible for damage to DNA. (author)

  19. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  20. Electrolytic reduction of Lithium chloride from mixtures with Alkali and Alkali earth metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. H.; Lim, J. S.; Lee, C. S. [Korea Univ., Seoul (Korea, Republic of)

    1997-12-31

    Electrolytic reduction of lithium chloride in lithium/lithium chloride system was experimentally studied. The electrolytic cell was made of alumina in which graphite anode and stainless steel cathode were used. Cell and electrodes were placed in a glove box. Current was measured against the linearly varying applied potential. Preliminary results were presented. (author). 9 refs., 4 figs.

  1. Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li2O Molten Salts with an Integrated Cathode Assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    The electrolytic reduction of uranium oxide in a LiCl-Li 2 O molten salt system has been studied in a 10 g U 3 O 3 /batch-scale experimental apparatus with an integrated cathode assembly at 650 .deg. C. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt% Li 3 O system and the U 3 O 3 -LiCl-3 wt% Li 2 O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  2. A study on adsorption onto TODGA resin after electrolytic reduction in ERIX process for reprocessing spent FBR-MOX fuel

    International Nuclear Information System (INIS)

    Hoshi, Harutaka; Arai, Tsuyoshi; Wei, Yuezhou; Kumagai, Mikio; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    For reprocessing spent FBR-MOX fuel, an advanced aqueous reprocessing process ''ERIX process'' has been developed. In this system, hydrazine is used as reduction holding reagent for the valance adjustment of U by electrolytic reduction in nitric acid solution. Therefore, hydrazine is contained in high level liquid waste after separation of U, Pu and Np. Effect of hydrazine on adsorption of FP onto TODGA resin was examined. When hydrazine concentration was less than 0.3 M, effect on the distribution coefficient was negligibly small. After electrolytic reduction, some elements exist as lower valence state. Ru and Tc are most difficult elements to control their behavior in aqueous process. The distribution coefficient of both Ru and Tc onto TODGA decreased after electrolytic reduction, because they are reduced to lower valence. Hence, it is difficult for Ru or Tc to diffuse to allover the process and separation of MA from Tc and Ru was enhanced by electrolytic reduction. (author)

  3. Safeguard monitoring of direct electrolytic reduction

    Science.gov (United States)

    Jurovitzki, Abraham L.

    Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2

  4. Study on the electrolytic reduction of Uranium-VI to Uranium-IV in a nitrate system

    International Nuclear Information System (INIS)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S.; Matsuda, H.T.; Araujo, J.A. de.

    1981-05-01

    The determination of the best conditions to prepare hydrazine stabilized uranium (IV) nitrate solutions for utilization in Purex flowsheets is dealt with. Electrolytic reduction of U(VI) has been selected as the basic method, using an open electrolytic cell with titanum and platinum electrodes. The hydrazine concentration, the current density, acidity, U(VI) concentration and reduction time were the parameters studied and U(IV)/U(VI) ratio was used to evaluate the degree of reduction. From the results it could be concluded that the technique is reliable. The U(IV) solutions remains constant for at least two weeks and can be used in the chemical processing of irradiated uranium fuels. (Author) [pt

  5. The Proliferation Resistance of a Nuclear Fuel Cycle Using Fuel Recovered from the Electrolytic Reduction of Pressurized Water Reactor Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Min; Cochran, Thomas; Mckinzie, Matthew [NRDC, Washington, (United States)

    2016-05-15

    At some points in the fuel cycle, a level of intrinsic or technical proliferation-resistance can be provided by radiation barriers that surround weapons-usable materials. In this report we examine some aspects of intrinsic proliferation resistance of a fuel cycle for a fast neutron reactor that uses fuel recovered from the electrolytic reduction process of pressurized water reactor spent fuel, followed by a melt-refining process. This fuel cycle, proposed by a nuclear engineer at the Korea Advanced Institute of Science and Technology (KAIST), is being examined with respect to its potential merits of higher fuel utilization, lower production of radioactive byproducts, and better economics relative to a pyroprocesing-based fuel cycle. With respect to intrinsic proliferation resistance, however, we show that since europium is separated out during the electrolytic reduction process, this fuel cycle has little merit beyond that of a pyroprocessing-based fuel cycle because of the lower radiation barrier of its recovered materials containing weapons-usable actinides. Unless europium is not separated following voloxidation, the proposed KAIST fuel cycle is not intrinsically proliferation resistant and in this regard does not represent a significant improvement over pyroprocessing. We suggest further modification of the proposed KAIST fuel cycle, namely, omitting electrolytic reduction and melt reduction, and producing the fast reactor fuel directly following voloxidation.

  6. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  7. Electrolytic 99mTcO4- reduction: a different pathway to obtain 99mTc-labelled compounds

    International Nuclear Information System (INIS)

    Savio, E.; Kremer, C.; Gambino, D.; Kremer, E.; Leon, A.

    1991-01-01

    Electrolytic reduction of 99m TcO 4 - at inert electrodes to obtain 99m Tc cationic complexes and in vitro stability of labelled compounds were studied. Amines were used as neutral N-donor ligands and a systematic analysis of various parameters involved in the reduction process was performed. Usefulness of electrolytic reduction was proved as an alternative 99m Tc-labelling method. Its most important advantages are: production of complexes with a high radiochemical purity, negligible presence of red-hyd- 99m Tc, lack of foreign materials, simplicity of development and possibility of further applications. (author)

  8. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Rakhi, R.B.

    2016-10-16

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic electrolytes has never been reported before. Herein, two-dimensional nanosheets of VO2 are prepared by the simultaneous solution reduction and exfoliation from bulk V2O5 powder by hydrothermal method. A specific capacitance of 405 Fg−1 is achieved for VO2 based supercapacitor in an organic electrolyte, in three electrode configuration. The symmetric capacitor based on VO2 nanosheet electrodes and the liquid organic electrolyte exhibits an energy density of 46 Wh kg−1 at a power density of 1.4 kW kg−1 at a constant current density of 1 Ag−1. Furthermore, flexible solid-state supercapacitors are fabricated using same electrode material and Alumina-silica based gel electrolyte. The solid-state device delivers a specific capacitance of 145 Fg−1 and a device capacitance of 36 Fg−1 at a discharge current density of 1 Ag−1. Series combination of three solid state capacitors is capable of lighting up a red LED for more than 1 minute.

  9. Evaluation of a molten salt electrolyte for direct reduction of actinides

    International Nuclear Information System (INIS)

    Alangi, Nagaraj; Anupama, P.; Mukherjee, Jaya; Gantayet, L.M.

    2011-01-01

    Use of molten fluoride salt towards direct reduction of actinides and lanthanides by molten salt electrolysis is of interest for problems related to metallic nuclear fuels. The performance of the molten salt bath is dependent on the pre-conditioning of the molten salt. A procedure for conditioning of LiF-BaF 2 salt mixtures has been developed based on systematic electrochemical experimental investigations using voltammetry with graphite and platinum as electrode materials. We utilize the linear sweep voltammetry (LSV) as a diagnostic tool for assessment of the electrolyte condition. This technique is fast and offers the advantage of in-situ/online measurement eliminating the need for sampling. The conditioning procedure that was developed was tried on LiF-CaF 2

  10. F{sub 4}U production by electrolytic reduction; Obtencion de UF{sub 4} por reduccion electrolitica

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Duque, A; Gispert Benach, M; Hernandez Arroyo, F; Montes Ponce de Leon, M.; Rojas de Diego, J L

    1974-07-01

    As a part of the nuclear fuel cycle program developed at the Spanish Atomic Energy Commission it has been studied the electrolytic reduction of U-VI to U-IV. The effect of the materials, electrolyte concentration, pH, current density, cell size and laboratory scale production is studied. The Pilot Plant and the production data are also described. (Author) 18 refs.

  11. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  12. Electrochemical flue gas desulfurization: Reactions in a pyrosulfate-based electrolyte

    International Nuclear Information System (INIS)

    Scott, K.; Fannon, T.; Winnick, J.

    1988-01-01

    A new electrolyte has been found suitable for use in an electrochemical membrane cell for flue gas desulfurization (FGD). The electrolyte is primarily K/sub 2/S/sub 2/O/sub 7/ and K/sub 2/SO/sub 4/ with V/sub 2/O/sub 5/ as oxidation enhancer. This electrolyte has a melting point near 300/sup 0/C which is compatible with flue gas exiting the economizer of coal-burning power plants. Standard electrochemical tests have revealed high exchange current densities around 30 mA/cm/sup 2/, in the free electrolyte. Sulfur dioxide is found to be removed from simulated flue gas in a multiple-step process, the first of which is electrochemical reduction of pyrosulfate

  13. Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Sung Bin Park; Byung Heung Park; Sang Mun Jeong; Jin Mok Hur; Chung Seok Seo; Seong Won Park; Seung-Hoon Choi

    2006-01-01

    Electrochemical behavior of the reduction of uranium oxide was studied in a LiCl-Li 2 O molten salt system with an integrated cathode assembly. The mechanism for the electrolytic reduction of uranium oxide was studied through cyclic voltammetry. By means of a chronopotentiometry, the effects of the thickness of the uranium oxide, the thickness of the MgO membrane and the material of the conductor of an integrated cathode assembly on the overpotential of the cathode were investigated. From the voltamograms, the reduction potential of the uranium oxide and Li 2 O was obtained and the two mechanisms of the electrolytic reduction were considered with regard to the applied cathode potential. From the chronopotentiograms, the exchange current, the transfer coefficient and the maximum allowable current based on the Tafel behavior were obtained with regard to the thickness of the uranium oxide, and of the MgO membrane and the material of the conductor of an integrated cathode assembly. (author)

  14. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  15. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    OpenAIRE

    K. Huang; K. Bi; C. Liang; S. Lin; R. Zhang; W. J. Wang; H. L. Tang; M. Lei

    2015-01-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45?nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR acti...

  16. Carboxymethyl Carrageenan Based Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A.

    2015-01-01

    Highlights: • The paper highlights the potential of carboxymethyl carrageenan based on iota and kappa to be utilized as host polymer. • The highest conductivity were achieved up to ∼10 −3 S cm −1 by carboxymethyl carrageenan without the addition of plasticizer. • The electrochemical stability windows of the films were electrochemically stable up to 3.0 V. - Abstract: A series of biodegradable carboxymethyl carrageenan based polymer electrolytes, which are carboxymethyl kappa carrageenan (sulphate per disaccharide) and carboxymethyl iota carrageenan (two sulphates per disaccharide), have been prepared by a solution casting technique with different ratios of lithium nitrate (LiNO 3 ) salts. Interestingly, the lithium ions tended to interact with the carbonyl group in the different modes of symmetry, as observed from reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis. In the carboxymethyl kappa carrageenan electrolytes, as the concentration of LiNO 3 increased, the asymmetric stretching peak of the carbonyl bond became dominant because it can be observed clearly with the shifting of the peak from 1592 to 1602 cm −1 due to the interaction between the lithium ion and the carbonyl group, while the broad O-H stretching peak became sharp and intense. However, for the carboxymethyl iota carrageenan, the asymmetry stretching mode of the carbonyl group shifted from 1567 to 1599 cm −1 , as the salt concentration increased. The shifting of the C-O-C peak also occurred in the iota-based electrolytes. However, the changes in the peak that represented SO 4 2− symmetric stretching were only detected when the ion pair formation was observed. It was proposed that the peak shifting was due to the presence of the lithium ion pathway, forming a dative bond between the lithium and oxygen in the carbonyl group. Accordingly, as more peak shifting was observed, the number of the ion pathways also increased. This hypothesis was supported by the impedance

  17. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    Science.gov (United States)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  18. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-01-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2 O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, NiO, and (Al,Nb,Ti)O 2 ; those of as cast and heat treated high Si/low Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  19. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  20. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  1. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  2. Study of electrolytic reduction of uranium VI to uranium IV in nitrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S; Matsuda, H T; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Experimental parameters are optimized in order to obtain uranium (IV) nitrate solutions at maximum yield, using hydrazine as stabilizer. Uranium (VI) electrolytic reduction was chosen because: there is no increase in the volume of radioactive effluents; there are no secondary reactions; there is no need for further separations; all reagents used are not inflammable. The method is, therefore, efficient and of low cost.

  3. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  4. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Sung Bin [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Green Energy Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hur, Jin Mok; Lee, Han Soo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li{sub 2}O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, NiO, and (Al,Nb,Ti)O{sub 2}; those of as cast and heat treated high Si/low Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  5. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  6. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    Science.gov (United States)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  7. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  8. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Ross, Philip N.; Zhao, Hui; Liu, Gao; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2015-01-01

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  9. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2015-03-11

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  10. The electrochemical reduction rate of colloidal particles of silver halides as a function of the electrolyte composition

    International Nuclear Information System (INIS)

    Selivanov, V.N.

    1997-01-01

    Influence of silver halide colloid particles concentration (AgI), electrolyte composition and signs of the electrode and colloids charges on their reduction threshold current densities has been studied. It has been discovered that reduction threshold current densities of positively charged colloid particles exceed by a factor of 3-4 the threshold densities of silver ions diffusion current. It is shown that the threshold density of colloids reduction current is limited by the rates of their electrophoretic transfer and diffusion

  11. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    OpenAIRE

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Hur, Jin-Mok

    2017-01-01

    We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR)) can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch) was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as...

  12. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study on the mass transfer of oxygen in an electrolytic reduction process of ACP

    International Nuclear Information System (INIS)

    Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted

  14. Highly dispersed TaOx nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells

    KAUST Repository

    Seo, Jeongsuk; Zhao, Lan; Cha, Dong Kyu; Takanabe, Kazuhiro; Katayama, Masao; Kubota, Jun; Domen, Kazunari

    2013-01-01

    for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs). Electrodeposition conditions of Ta complexes and subsequent various heat treatments for the deposited TaOx were examined for the best performance of the ORR. TaOx particles

  15. The Electrolyte Factor in O2 Reduction Electrocatalysis

    Science.gov (United States)

    1993-04-23

    molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately

  16. Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device

    Science.gov (United States)

    Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi

    2017-10-01

    The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.

  17. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Chan Yeon Won; Dae-Seung Kang; Sung-Wook Kim; Ju-Sun Cha; Sung-Jai Lee; Wooshin Park; Hun Suk Im; Jin-Mok Hur

    2015-01-01

    Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl-Li 2 O electrolyte at 650 deg C, followed by the removal of the residual salt by vacuum distillation at 850 deg C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt. (author)

  18. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Science.gov (United States)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  19. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  20. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Science.gov (United States)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  1. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  2. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Science.gov (United States)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  3. Recent progress in sulfide-based solid electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: liu.dongqiang@ireq.ca; Zhu, W.; Feng, Z.; Guerfi, A.; Vijh, A.; Zaghib, K.

    2016-11-15

    Graphical abstract: Li{sub 2}S-GeS{sub 2}-P{sub 2}S{sub 5} ternary diagram showing various sulphide compounds as solid electrolytes for Li-ion batteries. - Highlights: • Recent progress of sulfide-based solid electrolytes is described from point of view of structure. • Thio-LISICON type electrolytes exhibited high ionic conductivity due to their bcc sublattice and unique Li{sup +} diffusion pathway. • “Mixed-anion effect” is also an effective way to modify the energy landscape as well as the ionic conductivity. - Abstract: Sulfide-based ionic conductors are one of most attractive solid electrolyte candidates for all-solid-state batteries. In this review, recent progress of sulfide-based solid electrolytes is described from point of view of structure. In particular, lithium thio-phosphates such as Li{sub 7}P{sub 3}S{sub 11}, Li{sub 10}GeP{sub 2}S{sub 12} and Li{sub 11}Si{sub 2}PS{sub 12} etc. exhibit extremely high ionic conductivity of over 10{sup −2} S cm{sup −1} at room temperature, even higher than those of commercial organic carbonate electrolytes. The relationship between structure and unprecedented high ionic conductivity is delineated; some potential drawbacks of these electrolytes are also outlined.

  4. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Science.gov (United States)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  5. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  6. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  7. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  8. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  9. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  10. Lithium current sources with an electrolyte based on aprotonic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, Ye.M.; Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Sokolov, L.A.; Strizhko, A.S.

    1984-01-01

    Lithium current sources with an electrolyte based on aprotonic solvents are examined. The effect of the composition of the electrolyte solution on the solubility of SO2 and the excess pressure of the gas above the electrolyte solution is established. The temperature characteristics of the electrolyte are studied from the standpoint of salt solubility, the association between the discharge conditions, the macrostructure of the porous inert cathode and the degree of usage of the active cathode substance of the SO2 as the necessary aspects for solving the problems of optimizing a lithium and SO2 system.

  11. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuya; Yoshida, Masumi; Taguchi, Yoshiaki; Habazaki, Hiroki; Suzuki, Ryosuke O.

    2014-01-01

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO 2 –70 at%ZrO 2 oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m 2 g −1 ) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed

  12. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  13. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  14. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  15. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  16. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  17. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  18. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery

    International Nuclear Information System (INIS)

    Haregewoin, Atetegeb Meazah; Leggesse, Ermias Girma; Jiang, Jyh-Chiang; Wang, Fu-Ming; Hwang, Bing-Joe; Lin, Shawn D.

    2014-01-01

    Mixed alkyl carbonates are widely used as solvent for a various lithium-ion battery applications. Understanding the behavior of each solvent in the mixed system is crucial for controlling the electrolyte composition. In this paper, we report a systematic electrochemical and spectroscopic comparison of the reduction of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) when used as single (PC), binary (EC/PC, EC/DEC), and ternary (EC/PC/DEC) solvent systems. The reduction products are identified based on Fourier transform infrared spectroscopy (FTIR) after employing linear sweep voltammetry to certain potential regions and their possible formation mechanisms are discussed. FTIR analyses revealed that the reduction of EC and PC was not considerably influenced by the presence of other alkyl carbonates. However, DEC exhibited a different reduction product when used in EC/DEC and EC/PC/DEC solvent systems. The reduction of EC occurred before that of PC and DEC and produced a passivating surface film that prevented carbon exfoliation caused by PC. Battery performance test, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscope is employed to study the surface films formed. The binary EC/DEC solvent system demonstrated more favorable performance, smaller impedance, and higher Li + ion diffusivity than did the other solvent systems used in this study

  19. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data

    CSIR Research Space (South Africa)

    Chauke, L

    2013-07-01

    Full Text Available Interaction between electrolyte and carbon cathodes during the electrolytic production of aluminium decreases cell life. This paper describes the interaction between carbon cathode materials and electrolyte, based on industrial and laboratory data...

  20. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  1. A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen Junnian; Xia Jiangbin; Fan Ke; Peng Tianyou

    2011-01-01

    Highlights: → A novel CuI-based iodine-free gel electrolyte for DSSC is firstly prepared. → Such CuI-based electrolyte has relative high conductivity and stability. → Addition amount of LiClO 4 and PEO in the electrolyte is optimized. → Cell performance is improved by 116.2% compared with the cell without LiClO 4 . - Abstract: A novel CuI-based iodine-free gel electrolyte using polyethylene oxide (PEO, MW = 100,000) as plasticizer and lithium perchlorate (LiClO 4 ) as salt additive was developed for dye-sensitized solar cells (DSSCs). Such CuI-based gel electrolyte can avoid the problems caused by liquid iodine electrolyte and has relative high conductivity and stability. The effects of PEO and LiClO 4 concentrations on the viscosity and ionic conductivity of the mentioned iodine-free electrolyte, as well as the performance of the corresponding quasi solid-state DSSCs were investigated comparatively. Experimental results indicate that the performance of DSSCs can be dramatically improved by adding LiClO 4 and PEO, and there are interactions (Li + -O coordination) between LiClO 4 and PEO, these Li + -O coordination interactions have important influence on the structure, morphology and ionic conductivity of the present CuI-based electrolyte. Addition of PEO into the electrolyte can inhibit the rapid crystal growth of CuI, and enhance the ion and hole transportation property owing to its long helix chain structure. The optimal efficiency (2.81%) was obtained for the quasi solid-state DSSC fabricated with CuI-based electrolyte containing 3 wt% LiClO 4 and 20 wt% PEO under AM 1.5 G (1 sun) light illumination, with a 116.2% improvement in the efficiency compared with the cell without addition of LiClO 4 , indicating the promising application in solar cells of the present CuI-based iodine-free electrolyte.

  2. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  3. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  4. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Stoermer, M.; Dietzel, W.

    2009-01-01

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  5. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  6. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  7. A study for an electrolytic reduction of tantalum oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology for handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in a molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. The ER process can be applicable to the reduction of other metal oxides. Metal tantalum powder has attracted attention for a variety of applications. A tantalum capacitor made from superfine and pliable tantalum powders is very small in size and it has a higher-capacitance part, therefore it is useful for microelectronic devices. By the ER process the metal tantalum can be obtained from tantalum pentoxide. In this work, a 40 g Ta 2 O 5 /batch electrochemical reactor was used for the synthesis of the metal tantalum. From the results of the cyclic voltammograms for the Ta 2 O 5 -LiCl-Li 2 O system, the mechanism of the tantalum reduction in a molten LiCl-Li 2 O salt system was investigated. Tantalum pentoxide is chemically reduced to tantalum metal by the lithium metal which is electrochemically deposited into an integrated cathode assembly in the LiCl-Li 2 O molten salt. The experiments for the tantalum reduction were performed with a chronopotentiometry in the reactor cell, the reduced products were analyzed from an analysis of the X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM-EDX). From the results, the electrolytic reduction process is applicable to the synthesis of metal tantalum

  8. Development of corrosion resistant materials for an electrolytic reduction process of a spent nuclear fuel

    International Nuclear Information System (INIS)

    Jong-Hyeon Lee; Soo-Haeng Cho; Jeong-Gook Oh; Eung-Ho Kim

    2008-01-01

    New alloys were designed and prepared to improve their corrosion resistance in an electrolytic reduction environment for a spent oxide fuel on the basis of a thermodynamical assessment. A considerable solubility of Si was confirmed in the Ni alloys and their corrosion resistance was drastically increased with the addition of Si. It was confirmed that a protective oxide layer was formed during a corrosion test due to a reaction among the alloying elements such as Cr, Al and Si. (authors)

  9. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  10. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  11. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  12. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  13. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  14. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder. Then, at a room temperature, the complete separation of the reduction product from the cathode basket was achieved by inverting it without damaging or deforming the basket. Finally, the emptied cathode basket obtained after the separation was reused for the second OR run by loading a fresh simulated oxide fuel. We also succeeded in the separation of the metallic product from the reused cathode basket for the second OR run.

  15. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarfraz, Mansoor; Aboud, Mohamed F.A.; Shakir, Imran, E-mail: shakir@skku.edu

    2015-11-25

    Orthorhombic molybdenum trioxide (α-MoO{sub 3}) nanowires as an electrode for electrochemical supercapacitors in ethylammonium nitrate (EAN) electrolyte exhibits a high specific capacitance of 288 Fg{sup −1}, which is 8 times higher than the specific capacitance obtained from MoO{sub 3} nanowires in water based electrolyte. MoO{sub 3} nanowires in EAN electrolyte exhibit energy density of 46.32 Wh kg{sup −1} at a power density of 20.3 kW kg{sup −1} with outstanding cycling stability with specific capacitance retention of 96% over 3000 cycles. We believe that the superior performance of the MoO{sub 3} nanowires in EAN based electrolyte is primarily due to its relatively low viscosity (0.28 P at 25 °C), high electrical conductivity (20 mS cm{sup −1} at 25 °C) and large working voltage window. The results clearly demonstrate that EAN as electrolyte is one of the most promising electrolyte for high performance large scale energy storage devices. - Highlights: • Synthesis of single crystalline molybdenum oxide nanowires. • Ethylammonium Nitrate as an electrolyte for high performance large scale psuedocapacitor based energy storage devices. • Molybdenum oxide nanowires based electrodes shows 8 fold enhancement in Ethylammonium Nitrate electrolyte as compared to water based electrolytes. • The devices in Ethylammonium Nitrate exhibit excellent stability, retaining 96% of its initial capacity after 3000 cycles.

  16. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, whil...

  17. Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Gi; Koo, Ja Yang; Ahn, Min Woo; Lee, Won Young [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    We systematically investigated the effects of grain boundaries (GBs) at the electrolyte/cathode interface of two conventional electrolyte materials, i.e., yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC). We deposited additional layers by pulsed laser deposition to control the GB density on top of the polycrystalline substrates, obtaining significant improvements in peak power density (two-fold for YSZ and three-fold for GDC). The enhanced performance at high GB density in the additional layer could be ascribed to the accumulation of oxygen vacancies, which are known to be more active sites for oxygen reduction reactions (ORR) than grain cores. GDC exhibited a higher enhancement than YSZ, due to the easier formation, and thus higher concentration, of oxygen vacancies for ORR. The strong relation between the concentration of oxygen vacancies and the surface exchange characteristics substantiated the role of GBs at electrolyte/cathode interfaces on ORR kinetics, providing new design parameters for highly performing solid oxide fuel cells.

  18. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  19. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  20. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  1. Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

    Directory of Open Access Journals (Sweden)

    Mohd Saiful Asmal Rani

    2014-09-01

    Full Text Available A cellulose derivative, carboxymethyl cellulose (CMC, was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4 were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC–CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10−4 S cm−1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.

  2. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  3. Electrolyte materials - Issues and challenges

    International Nuclear Information System (INIS)

    Balbuena, Perla B.

    2014-01-01

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes

  4. Cosolvent electrolytes for electrochemical devices

    Science.gov (United States)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-01-23

    A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  5. Electrolytic treatment of liquid waste containing ammonium nitrate

    International Nuclear Information System (INIS)

    Komori, R.; Ogawa, N.; Ohtsuka, K.; Ohuchi, J.

    1981-01-01

    A study was made on the safe decomposition of ammonium nitrate, which is the main component of α-liquid waste from plutonium fuel facilities, by means of electrolytic reduction and thermal decomposition. In the first stage, ammonium nitrate is reduced to ammonium nitrite by electrolytic reduction using an electrolyser with a cation exchange membrane as a diaphragm. In the second stage, ammonium nitrite is decomposed to N 2 and H 2 O. The alkaline region and a low temperature are preferable for electrolytic reduction and the acidic region and high temperature for thermal decomposition. A basis was established for an ammonium nitrate treatment system in aqueous solution through the operation of a bench-scale unit, and the operating data obtained was applied to the basic design of a 10-m 3 /a facility. (author)

  6. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  7. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  8. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis; Wei, Shuya; Ma, Lin; Yang, Yuan; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long

  9. Distillation of LiCl from the LiCl-Li2O molten salt of the electrolytic reduction process

    International Nuclear Information System (INIS)

    Kim, I.S.; Oh, S.C.; Im, H.S.; Hur, J.M.; Lee, H.S.

    2013-01-01

    Electrolytic reduction of the uranium oxide in LiCl-Li 2 O molten salt for the treatment of spent nuclear fuel requires the separation of the residual salt from the reduced metal product, which contains about 20 wt% salt. In order to separate the residual salt and reuse it in the electrolytic reduction, a vacuum distillation process was developed. Lab-scale distillation equipment was designed and installed in an argon atmosphere glove box. The equipment consisted of an evaporator in which the reduced metal product was contained and exposed to a high temperature and reduced pressure; a receiver; and a vertically oriented condenser that operated at a temperature below the melting point of lithium chloride. We performed experiments with LiCl-Li 2 O salt to evaluate the evaporation rate of LiCl salt and varied the operating temperature to discern its effect on the behavior of salt evaporation. Complete removal of the LiCl salt from the evaporator was accomplished by reducing the internal pressure to <100 mTorr and heating to 900 deg C. We achieved evaporation efficiency as high as 100 %. (author)

  10. Physics of failure based analysis of aluminium electrolytic capacitor

    International Nuclear Information System (INIS)

    Sahoo, Satya Ranjan; Behera, S.K.; Kumar, Sachin; Varde, P.V.; Ravi Kumar, G.

    2016-01-01

    Electrolytic capacitors are one of the important devices in various power electronic systems, such as motor drives, uninterruptible power supply, electric vehicles and dc power supply. Electrolytic capacitors are also the integral part of many other electronic devices. One of the primary function of electrolytic capacitors is the smoothing of voltage ripple and storing electrical energy. However, the electrolytic capacitor has the shortest lifespan of components in power electronics. Past experiences show that electrolytic capacitor tends to degrade and fail faster under high electrical or thermal stress conditions during operations. The primary failure mechanism of an electrolytic capacitor is the evaporation of the electrolyte due to electrical or thermal overstress. This leads to the drift in the values of two important parameters-capacitance and equivalent series resistance (ESR) of the electrolytic capacitor. An attempt has been made to age the electrolytic capacitor and validate the results. The overall goal is to derive the accurate degradation model of the electrolytic capacitor. (author)

  11. Neurologic complications of electrolyte disturbances and acid-base balance.

    Science.gov (United States)

    Espay, Alberto J

    2014-01-01

    Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia. © 2014 Elsevier B.V. All rights reserved.

  12. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  13. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  14. Cosolvent electrolytes for electrochemical devices

    Science.gov (United States)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-02-13

    A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  15. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  16. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  17. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    Directory of Open Access Journals (Sweden)

    You Zhang

    2016-08-01

    Full Text Available Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode.

  18. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  19. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  20. High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes

    Directory of Open Access Journals (Sweden)

    Omar Moudam

    2014-01-01

    Full Text Available The performance of a flexible and glass dye-sensitized solar cell (DSSC with water-based electrolyte solutions is described. High concentrations of alkylamidazoliums were used to overcome the deleterious effect of water and, based on this variable, pure water-based electrolyte DSSCs were tested displaying the highest recorded efficiency so far of 3.45% and 6% for flexible and glass cells, respectively, under a simulated air mass 1.5 solar spectrum illumination at 100 mWcm−2. An improvement in the Jsc with high water content and the positive impact of GuSCN on the enhancement of the performance of pure water-based electrolytes were also observed.

  1. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  2. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  3. Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Imran Jafri, Razack; Sujatha, N.; Ramaprabhu, S. [Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai (India); Rajalakshmi, N. [Center for Fuel Cell Technology (ARCI), Madavakkam, Chennai (India)

    2009-08-15

    Bi-functional catalysts based on Au supported on oxide based nanomaterials for use in fuel cells were evaluated by electrochemical methods for oxygen reduction reaction (ORR) in Polymer Electrolyte Membrane Fuel Cell (PEMFC). Metal oxide coated multi walled carbon nanotubes (MWNTs) (MnO{sub 2}/MWNT and ZnO/MWNT) were prepared by reduction of potassium permanganate and oxidation of Zn powder on MWNT surface respectively. Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT were prepared by chemical reduction of chloroauric acid on MnO{sub 2}/MWNT and ZnO/MWNT. The samples were characterized and linear sweep voltammetric studies were performed in N{sub 2} saturated, O{sub 2} saturated and methanol containing 1 M KOH solution and the results have been discussed. A single fuel cell was also constructed using Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT as ORR electrocatalysts. A maximum power density of 45 mW/cm{sup 2} and 56 mW/cm{sup 2} was obtained with Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT respectively. Additionally, the methanol tolerance of these electrocatalysts has been investigated and results have been discussed. (author)

  4. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  5. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  6. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbona...

  7. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  8. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  9. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  10. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  11. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  12. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  13. In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries

    International Nuclear Information System (INIS)

    Liu, M.; Jiang, H.R.; Ren, Y.X.; Zhou, D.; Kang, F.Y.; Zhao, T.S.

    2016-01-01

    Graphical abstract: We present a freestanding acrylate-based hierarchical electrolyte. This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The prepared polymer battery renders a suppressed shuttle effect and much enhanced cycle life. - Highlights: • A freestanding Acrylate-based Hierarchical Electrolyte was in-situ crafted. • The high conductivity is due to strong uptake ability and elimination of separator. • The polymer battery renders a superior high rate capability and excellent retention. • First-principle calculations prove anchoring ability of ester functional groups. • Cell modeling shows geometric design effectively suppresses polysulfide flux. - Abstract: A number of methods have been attempted to suppress the shuttle effect in lithium-sulfur (Li-S) batteries to improve battery performance. Conventional methods, however, reduce the ionic conductivity, sacrifice the overall energy density and increase the cost of production. Here, we report a facile synthesis of an acrylate-based hierarchical electrolyte (AHE). This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The structural similarity and synergetic compatibility between the electrospun network and GPE provide the AHE an ester-rich robust structure with a high ionic conductivity of 1.02 × 10 −3 S cm −1 due to the strong uptake ability and the elimination of commercial separator. The S/AHE/Li polymer battery also renders a high rate capability of 645 mAh g −1 at 3C, while maintaining excellent retention at both high and low current densities (80.3% after 500 cycles at 0.3C and 91.9% after 500 cycles at 3C). First-principle calculations reveal that the reduced shuttle effect can be

  14. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  15. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  16. A Model-Based Prognostics Methodology For Electrolytic Capacitors Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  17. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  18. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  19. Acid-Base and Electrolyte Disorders in Patients with and without Chronic Kidney Disease: An Update.

    Science.gov (United States)

    Dhondup, Tsering; Qian, Qi

    2017-12-01

    Kidneys play a pivotal role in the maintenance and regulation of acid-base and electrolyte homeostasis, which is the prerequisite for numerous metabolic processes and organ functions in the human body. Chronic kidney diseases compromise the regulatory functions, resulting in alterations in electrolyte and acid-base balance that can be life-threatening. In this review, we discuss the renal regulations of electrolyte and acid-base balance and several common disorders including metabolic acidosis, alkalosis, dysnatremia, dyskalemia, and dysmagnesemia. Common disorders in chronic kidney disease are also discussed. The most recent and relevant advances on pathophysiology, clinical characteristics, diagnosis, and management of these conditions have been incorporated.

  20. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    Science.gov (United States)

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  1. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Sarker, Subrata; Nath, Narayan Chandra Deb [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Choi, Seung-Woo [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Ahammad, A.J. Saleh [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Lee, Jae-Joon, E-mail: jjlee@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of)

    2010-01-25

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  2. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Dong-Wan; Sarker, Subrata; Nath, Narayan Chandra Deb; Choi, Seung-Woo; Ahammad, A.J. Saleh; Lee, Jae-Joon; Kim, Whan-Gi

    2010-01-01

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  3. Polymer Gel Electrolytes Based on 49 % Methyl-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A.; Yahya, M.Z.A.

    2011-01-01

    Polymer gel electrolytes (PGEs) based on 49 % methyl-grafted natural rubber (MG49) were first prepared by dissolving ammonium triflate (NH 4 CF 3 SO 3 ) in propylene carbonate (PC) by various molar concentrations of NH 4 CF 3 SO 3 to obtain liquid electrolytes and were characterized by AC electrical impedance spectroscopy (EIS) measurements to study their conducting behaviour. The liquid electrolyte with optimum conductivity (0.7 M) was then gelled with MG49 and their conductivity was also studied. The highest conductivity of liquid electrolyte was 3.6 x 10 -3 Scm -1 and 2.9x10 -2 Scm -1 for PGEs. The molecular interactions between components of NH 4 CF 3 SO 3 , PC, and MG49 have been observed by ATR-FTIR spectroscopy study. The downshifting of C=O stretching frequency of PC from 1785 cm -1 to 1780 cm -1 and NH 4+ band from 1634 cm -1 to 1626 cm -1 that has been obtained by spectroscopic data in addition of NH 4 CF 3 SO 3 confirmed the complexation occurrence. Interaction between NH 4 CF 3 SO 3 and MG49 has also been investigated. This study is focused on the interactions between components in the PGE system and relates them with their conducting behavior. (author)

  4. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Han [Chemical; Maglia, Filippo [BMW Group, Munich 80788, Germany; Lamp, Peter [BMW Group, Munich 80788, Germany; Amine, Khalil [Chemical; Chen, Zonghai [Chemical

    2017-12-13

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.

  5. Electrical transport study of potato starch-based electrolyte system-II

    International Nuclear Information System (INIS)

    Tiwari, Tuhina; Kumar, Manindra; Srivastava, Neelam; Srivastava, P.C.

    2014-01-01

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10 −3 Scm −1 . • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10 −3 S/cm and ionic transference number (t ion ) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity

  6. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  7. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  8. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    Science.gov (United States)

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  9. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  10. Effects of fabrication conditions on mechanical properties and microstructure of duplex β″-Al2O3 solid electrolyte

    International Nuclear Information System (INIS)

    Canfield, Nathan L.; Kim, Jin Y.; Bonnett, Jeff F.; Pearson, R.L.; Sprenkle, Vincent L.; Jung, Keeyoung

    2015-01-01

    Highlights: • The concept of duplex BASEs is presented as a method to lower the ASR for NBBs. • Duplex BASEs consist of thin dense electrolyte and porous support. • Strength of converted BASEs shows a different trend from as-sintered samples. • Cell orientation gives significant impact on strength of duplex BASEs. - Abstract: Na-beta batteries are an attractive technology as a large-scale electrical energy storage for grid applications. However, additional improvements in performance and cost are needed for wide market penetration. To improve cell performance by minimizing polarizations, reduction of electrolyte thickness was attempted using a duplex structure consisting of a thin dense electrolyte layer and a porous support layer. In this paper, the effects of sintering conditions, dense electrolyte thickness, and cell orientation on the flexural strength of duplex BASEs fabricated using a vapor phase approach were investigated. It is shown that sintering at temperatures between 1500 and 1550 °C results in fine grained microstructures and the highest flexural strength after conversion. Increasing thickness of the dense electrolyte has a small impact on flexural strength, while the orientation of load such that the dense electrolyte is in tension instead of compression has major effects on strength for samples with a well-sintered dense electrolyte

  11. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  12. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  13. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  14. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  15. Instability of Ionic Liquid-Based Electrolytes in Li−O2 Batteries

    DEFF Research Database (Denmark)

    Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm

    2015-01-01

    Ionic liquids (ILs) have been proposed as promising solvents for Li−air battery electrolytes. Here, several ILs have been investigated using differential electrochemical mass spectrometry (DEMS) to investigate the electrochemical stability in a Li−O2 system, by means of quantitative determination...... of the rechargeability (OER/ORR), and thereby the Coulombic efficiency of discharge and charge. None of the IL-based electrolytes are found to behave as needed for a functional Li−O2 battery but perform better than commonly used organic solvents. Also the extent of rechargeability/reversibility has been found...

  16. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Kim, Woong; Chung, Haegeun; Han, Chi-Hwan

    2012-01-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf 2 ]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g −1 at a current density of 2 A g −1 , when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg −1 and 41 Wh kg −1 , respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications. (paper)

  17. Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Yusuf

    2014-01-01

    Full Text Available Phthaloylchitosan-based gel polymer electrolytes were prepared with tetrapropylammonium iodide, Pr4NI, as the salt and optimized for conductivity. The electrolyte with the composition of 15.7 wt.% phthaloylchitosan, 31.7 wt.% ethylene carbonate (EC, 3.17 wt.% propylene carbonate (PC, 19.0 wt.% of Pr4NI, and 1.9 wt.% iodine exhibits the highest room temperature ionic conductivity of 5.27 × 10−3 S cm−1. The dye-sensitized solar cell (DSSC fabricated with this electrolyte exhibits an efficiency of 3.5% with JSC of 7.38 mA cm−2, VOC of 0.72 V, and fill factor of 0.66. When various amounts of lithium iodide (LiI were added to the optimized gel electrolyte, the overall conductivity is observed to decrease. However, the efficiency of the DSSC increases to a maximum value of 3.71% when salt ratio of Pr4NI : LiI is 2 : 1. This cell has JSC, VOC and fill factor of 7.25 mA cm−2, 0.77 V and 0.67, respectively.

  18. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Koeun; Park, Inbok; Ha, Se-Young; Kim, Yeonkyoung; Woo, Myung-Heuio; Jeong, Myung-Hwan; Shin, Woo Cheol; Ue, Makoto; Hong, Sung You; Choi, Nam-Soon

    2017-01-01

    Highlights: • The FEC in LiPF 6 -based electrolytes thermally decomposes at elevated temperatures. • Lewis acids in the electrolyte promote de-fluorination of the FEC to form HF. • The HF causes the SEI destruction and severe metal ion dissolution from the cathode. - Abstract: The cycling and storage performances of LiCoO 2 (LCO)-LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM)/pitch-coated silicon alloy-graphite (Si-C) full cells with ethylene carbonate (EC)–based and fluoroethylene carbonate (FEC)–based electrolytes are investigated at elevated temperatures. Excess FEC (used as a co-solvent in LiPF 6 -based electrolytes), which is not completely consumed during the formation of the solid electrolyte interphase (SEI) layer on the electrodes, is prone to defluorination in the presence of Lewis acids such as PF 5 ; this reaction can generate unwanted HF and various acids (H 3 OPF 6 , HPO 2 F 2 , H 2 PO 3 F, H 3 PO 4 ) at elevated temperatures. Our investigation reveals that the HF and acid compounds that are formed by FEC decomposition causes significant dissolution of transition metal ions (from the LCO-NCM cathode) into the electrolyte at elevated temperatures; as a result, the reversible capacity of the full cells reduces because of the deposition of the dissolved metal ions onto the anode. Moreover, we demonstrate possible mechanisms that account for the thermal instability of FEC in LiPF 6 -based electrolytes at elevated temperatures using model experiments.

  19. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  20. Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes

    International Nuclear Information System (INIS)

    Wei, Youxiu; Chen, Mu; Liu, Weiming; Li, Lei; Yan, Yue

    2017-01-01

    Highlights: •ECDs based on NiO and WO 3 films using different electrolytes were fabricated. •Effect of different electrolytes on films and ECDs was investigated. •Applied voltage distribution on NiO and WO 3 electrodes in an ECD was studied. •Voltage distribution on films was unbalanced and associated with electrolyte. •Films have different impedance behavior in different states and electrolytes. -- Abstract: Electrochromic devices (ECDs) with different liquid electrolytes were fabricated using NiO film as counter electrode, WO 3 film as working electrode. The effect of liquid electrolytes containing different lithium salts (LiClO 4 , LiPF 6 , LiTFSI) on films and ECDs was investigated, such as transmittance change, charge density, memory effect and cyclic stability. Films or ECDs using LiPF 6 electrolyte have excellent electrochromic properties but low cyclic stability, compared with LiClO 4 and LiTFSI electrolytes. In order to deeply understand the effect of electrolyte on films and devices, the voltage distribution of films based on an analog cell and electrochemical impedance spectroscopy (EIS) were measured and analyzed in different lithium salts electrolytes. Results show that voltage distribution and EIS characteristics of films have obvious difference in liquid LiClO 4 , LiPF 6 and LiTFSI electrolytes. Voltage distribution on NiO and WO 3 films is unbalanced and the impedance of films in bleached and colored states is different in the same electrolyte.

  1. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach.

    Science.gov (United States)

    Jiménez, José Víctor; Carrillo-Pérez, Diego Luis; Rosado-Canto, Rodrigo; García-Juárez, Ignacio; Torre, Aldo; Kershenobich, David; Carrillo-Maravilla, Eduardo

    2017-08-01

    Electrolyte and acid-base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid-base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid-base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid-base spectrum. Because most electrolyte and acid-base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

  2. Electrical transport study of potato starch-based electrolyte system-II

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Tuhina; Kumar, Manindra [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, Neelam, E-mail: neelamsrivastava_bhu@yahoo.co.in [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, P.C. [Department of Physics, Banaras Hindu University, Varanasi (India)

    2014-03-15

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10{sup −3} Scm{sup −1}. • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10{sup −3} S/cm and ionic transference number (t{sub ion}) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity.

  3. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  4. An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Liang; Ferrandon, Magali; Barton, John L.; de la Rosa, Noel Upia; Vaughey, John T.; Brushett, Fikile R.

    2017-08-01

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemical and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.

  5. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  6. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  7. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  8. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method

    Science.gov (United States)

    Wang, Ke; Liu, Le; Xi, Jingyu; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Electrolyte imbalance is a major issue with Vanadium flow batteries (VFBs) as it has a significant impact on electrolyte utilization and cycle life over extended charge-discharge cycling. This work seeks to reduce capacity decay and prolong cycle life of VFBs by adopting a novel electrolyte-reflow method. Different current density and various start-up time of the method are investigated in the charge-discharge tests. The results show that the capacity decay rate is reduced markedly and the cycle life is prolonged substantially by this method. In addition, the coulomb efficiency, voltage efficiency and energy efficiency remain stable during the whole cycle life test, which indicates this method has little impact on the long lifetime performance of the VFBs. The method is low-cost, simple, effective, and can be applied in industrial VFB productions.

  9. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  10. Effects of fabrication conditions on mechanical properties and microstructure of duplex β″-Al{sub 2}O{sub 3} solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, Nathan L. [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kim, Jin Y., E-mail: Jin.Kim@pnnl.gov [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Bonnett, Jeff F.; Pearson, R.L.; Sprenkle, Vincent L. [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Jung, Keeyoung [Energy Storage Materials Research Center, Research Institute of Industrial Science and Technology (RIST), Pohang (Korea, Republic of)

    2015-07-15

    Highlights: • The concept of duplex BASEs is presented as a method to lower the ASR for NBBs. • Duplex BASEs consist of thin dense electrolyte and porous support. • Strength of converted BASEs shows a different trend from as-sintered samples. • Cell orientation gives significant impact on strength of duplex BASEs. - Abstract: Na-beta batteries are an attractive technology as a large-scale electrical energy storage for grid applications. However, additional improvements in performance and cost are needed for wide market penetration. To improve cell performance by minimizing polarizations, reduction of electrolyte thickness was attempted using a duplex structure consisting of a thin dense electrolyte layer and a porous support layer. In this paper, the effects of sintering conditions, dense electrolyte thickness, and cell orientation on the flexural strength of duplex BASEs fabricated using a vapor phase approach were investigated. It is shown that sintering at temperatures between 1500 and 1550 °C results in fine grained microstructures and the highest flexural strength after conversion. Increasing thickness of the dense electrolyte has a small impact on flexural strength, while the orientation of load such that the dense electrolyte is in tension instead of compression has major effects on strength for samples with a well-sintered dense electrolyte.

  11. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  12. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  13. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    Science.gov (United States)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  14. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  15. The incidence of electrolyte and acid-base abnormalities in critically ...

    African Journals Online (AJOL)

    Background: Electrolytes and acid-base disorders are common challenges seen in the intensive care unit (ICU) resulting in difficulty in weaning patients off the ventilator, prolonged admission periods, preventable cardiac arrhythmias and cardiac arrest. These require prompt lab results most of which are done serially, ...

  16. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Suri, Poonam; Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India)

    2007-03-23

    The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation-reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br{sub 2}, LiI+I{sub 2}, tetrapropylammonium iodide +I{sub 2} in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br{sup -}/Br{sub 3}{sup -} offers high impedance as compared to I{sup -}/I{sub 3}{sup -} couple. The oxidation-reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br{sup -}/Br{sub 3}{sup -} is more suitable than an I{sup -}/I{sub 3}{sup -} couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br{sup -}/Br{sub 3}{sup -}. The gain in V{sub oc} was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (E{sub f}) of ZnO and the suppressed charge recombination as well. (author)

  17. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  18. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  19. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  20. Initial study of Nickel Electrolyte for EnFACE Process

    Directory of Open Access Journals (Sweden)

    Tri Widayatno

    2015-03-01

    Full Text Available Nickel electrolyte for a micro-pattern transfer process without photolithography, EnFACE, has been developed. Previous work on copper deposition indicated that a conductivity of ~2.7 Sm-1 is required. Electrochemical parameters of electrolyte i.e. current density and overpotential are also crucial to govern a successful pattern replication. Therefore, the investigation focused on the measurement of physicochemical properties and electrochemical behaviour of the electrolyte at different nickel concentrations and complexing agents of chloride and sulfamate. Nickel electrolytes containing sulfamate, chloride and combined sulfamate-chloride with concentrations between 0.14 M and 0.3 M were investigated. Physicochemical properties i.e. pH and conductivity were measured to ensure if they were in the desired value. The electrochemical behaviour of the electrolytes was measured by polarisation experiments in a standard three-electrode cell. The working electrode was a copper disc (surface area of 0.196 cm2 and the counter electrode was platinum mesh. The potential was measured againts a saturated calomel reference electrode (SCE. The experiments were carried out at various scan rate and Rotating Disc Electrode (RDE rotation speed to see the effect of scan rate and agitation. Based on the measured physicochemical properties, the electrolyte of 0.19 M nickel sulfamate was chosen for experimentation. Polarisation curve of agitated solution suggested that overall nickel electrodeposition reaction is controlled by a combination of kinetics and mass transfer.  Reduction potential of nickel was in the range of -0.7 to -1.0 V. The corresponding current densities for nickel deposition were in the range of -0.1 to -1.5 mA cm-2.

  1. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  2. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte

    Science.gov (United States)

    Tang, Qianqiu; Chen, Mingming; Wang, Gengchao; Bao, Hua; Saha, Petr

    2015-06-01

    A facile prestrain-stick-release assembly strategy for the stretchable supercapacitor device is developed based on a novel Na2SO4-aPUA/PAAM hydrogel electrolyte, saving the stretchable rubber base conventionally used. The Na2SO4-aPUA/PAAM hydrogel electrolyte exhibits high stretchability (>1000%), electrical conductivity (0.036 S cm-1) and stickiness. Due to the unique features of the hydrogel electrolyte, the carbon nanotube@MnO2 film electrodes can be firmly stuck to two sides of the prestrained hydrogel electrolyte. Then, by releasing the hydrogel electrolyte, homogenous buckles are formed for the film electrodes to get a full stretchable supercapacitor device. Besides, the high stickiness of the hydrogel electrolyte ensures its strong adhesion with the film electrodes, facilitating ion and electronic transfer of the supercapacitor. As a result, excellent electrochemical performance is achieved with the specific capacitance of 478.6 mF cm-2 at 0.5 mA cm-2 (corresponding to 201.1 F g-1) and capacitance retention of 91.5% after 3000 charging-discharging cycles under 150% strain, which is the best for the stretchable supercapacitors.

  3. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  4. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes

    International Nuclear Information System (INIS)

    Herath, Mahesha B.; Creager, Stephen E.; Rajagopal, Rama V.; Geiculescu, Olt E.; DesMarteau, Darryl D.

    2009-01-01

    We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 x 10 -6 S/cm at 30 deg. C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.

  5. Fluid, electrolyte, and acid-base balances in three-day, combined-training horses.

    Science.gov (United States)

    White, S L

    1998-04-01

    Horses competing in 3-day, combined-training events develop a metabolic acidosis that is partially compensated for by a respiratory alkalosis immediately after phases B and D. By the end of phase C and 30 minutes to 2 hours after phase D, the acidosis is resolved by the oxidation of lactate, and a metabolic alkalosis prevails. A reduction in TBW and cation content occurs, which often is not replenished 12 to 24 hours after the event, even though the serum or plasma concentration of various constituents may be within normal limits. Hypochloremia and hypocalcemia, however, may persist 12 or more hours after the speed and endurance test. All of the data cited in this article are from horses that successfully completed their respective tests. Nevertheless, some horses developed substantial fluid and cation losses. In horses that are not well conditioned or in competitions in which terrain, footing, or hot environments increase the thermal load or decrease heat loss, greater losses of fluids and electrolytes can be expected. Body weight losses exceeding 5% and cation losses exceeding 4000 mEq/L occur in endurance horses suffering from exhaustion and synchronous diaphragmatic flutter. In one study, two thirds of the Na+ lost during exercise-induced sweating in cool, dry conditions was replenished from salt supplements added to a balanced forage and concentrated diet. Consequently, horses in regular training and competition may benefit from salt supplementation. The composition of the salt supplement and the amount fed should be based on the composition of the horse's diet, degree of work, and environmental conditions. Horses competing in a 3-day, combined-training event may be expected to have persistent losses of weight and cations, particularly if conditions result in heavy sweating. Many horses in the field studies had minimal changes in weight and cation balance compared with pre-event values. The diet and electrolyte supplementation of the horses in the majority of

  6. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  7. Properties of ENR-50 Based Electrolyte System

    International Nuclear Information System (INIS)

    Zainal, N.; Mohamed, N.S.; Zainal, N.; Idris, R.

    2013-01-01

    In this work, epoxidized natural rubber 50 (ENR-50) has been used as a host polymer for the preparation of electrolyte system. Attenuated total reflection-fourier transform infrared spectroscopic analyses showed the presence of lithium salt-ENR interactions. The glass transition temperature displayed an increasing trend with the increase in salt concentration indicating that the ionic conductivity was not influenced by segmental motion of the ENR-50 chains. The increase in glass transition temperature with the addition of salt was due to the formation of transient cross-linking between ENR-50 chains via the coordinated interaction between ENR-50 chains and salt. The highest room temperature ionic conductivity obtained was in the order of 10 -5 S cm -1 for the film containing 50 wt % of lithium salt. The ionic conductivity of this electrolyte system increased with increasing temperature and obeyed the Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with salt concentration could also be correlated to the charge carriers concentration and/ or migration rate of charge carriers. (author)

  8. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  9. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  10. Electrochemical reduction of phthalide at carbon cathodes in dimethylformamide: Effects of supporting electrolyte and gas chromatographic injector-port chemistry on the product distribution

    International Nuclear Information System (INIS)

    Pasciak, Erick M.; Hochstetler, Spencer E.; Mubarak, Mohammad S.; Evans, Dennis H.; Peters, Dennis G.

    2013-01-01

    Highlights: • Reduction of phthalide gives a radical-anion that undergoes ring-opening in 3.5 s. • Phthalide reduction gives 2-methylbenzoate esters with electrolyte-derived moieties. • Electrolysis of phthalide affords products that depend on the method of analysis. • Upon reduction, phthalide undergoes deuteration in the presence of deuterium oxide. -- Abstract: Cyclic voltammetry and controlled-potential (bulk) electrolysis have been used to investigate the direct reduction of phthalide at carbon electrodes in dimethylformamide (DMF) containing 0.10 M tetramethylammonium perchlorate (TMAP) or tetra-n-butylammonium perchlorate (TBAP). Cyclic voltammograms recorded with a glassy carbon electrode exhibit a single cathodic peak and a corresponding anodic peak that arise, respectively, from one-electron reduction of phthalide to generate a radical-anion intermediate and from reoxidation of the intermediate. At a scan rate of 100 mV s −1 , quasi-reversible behavior is observed (due to ring-opening of the radical-anion), whereas fully reversible behavior is seen at 5 V s −1 or higher. Digital simulation of cyclic voltammograms indicates that the lifetime of the radical-anion is 3.5 s. Bulk electrolysis of phthalide at a reticulated vitreous carbon cathode affords products that depend on the procedure used to analyze the catholyte. Direct injection of catholyte into a gas chromatograph shows phthalide and a 2-methylbenzoate ester bearing an alkyl moiety from the supporting-electrolyte cation. However, if the catholyte is partitioned between diethyl ether and aqueous hydrochloric acid before gas chromatographic analysis, phthalide and 2-methylbenzoic acid are observed. Thermally induced reactions that occur in the injector port of the gas chromatograph are responsible for the formation of the 2-methylbenzoate ester as well as for the phthalide found in all electrolyzed solutions

  11. Neutronic measurements on electrolytic cells with deuterated palladium in a submarine environment

    International Nuclear Information System (INIS)

    Granada, J.R.; Mayer, R.E.; Florido, P.C.; Gillette, V.H.; Gomez, S.E.

    1990-01-01

    Using a high efficiency system for the neutron thermal detection and a pulsed electrolytic current procedure, measurements were made on cells containing Pd cathodes and electrolytes at a D 2 O and H 2 O base. The peculiarity of these experiments is that they were carried out on board of the A.R.A. Santa Cruz submarine, at a depth of 50m under sea level, attaining ultra deep-down conditions in the measurements, corresponding to a reduction in a factor = 50 in relation to lab conditions. The mean level of the signal -obtained from counting combination of deuterated cathodes- results to be separated from the deep-down level by four standard deviations. (Author) [es

  12. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    Science.gov (United States)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  13. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.

    Science.gov (United States)

    Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong

    2014-11-26

    We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.

  14. Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries

    International Nuclear Information System (INIS)

    Li, Bin; Xu, Mengqing; Li, Benzhen; Liu, Yanlin; Yang, Liang; Li, Weishan; Hu, Shejun

    2013-01-01

    Highlights: • SEI formed by PES on NG was characterized with charge/discharge test, SEM, FTIR, and XPS. • NG in PC-based electrolyte can be well protected using PES. • Sulfur-containing species is the main component of the SEI formed by PES. • Preferable reduction of PES results in the formation of protective SEI on NG. -- Abstract: The physical and chemical properties of the solid electrolyte interphase (SEI) formed by prop-1-ene-1,3-sultone (PES) on graphite anode in propylene carbonate (PC) based electrolyte for lithium ion battery were investigated by charge–discharge test, scanning electron spectroscopy with energy dispersive X-ray spectroscopy (SEM–EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It is found that the charge–discharge performance of the cell LiCoO 2 /natural graphite (NG) using PC-based electrolyte containing 3 wt% PES is superior to that containing 6 wt% propane sultone (PS), an SEI formation additive that has the similar molecular structure to PES but is reduced not as easily as PES. The results from SEM–EDS, FTIR and XPS show that the structure of graphite has been protected and some S-containing species are proven to be components of the SEI, suggesting that the preferable reduction of PES plays an important role in the formation of a protective SEI on NG

  15. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    International Nuclear Information System (INIS)

    Kim, Byungwoo; Kim, Woong; Chung, Haegeun

    2012-01-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ∼75 F g −1 , ∼987 kW kg −1 and ∼27 W h kg −1 , respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (∼158 F g −1 ) and energy density (∼53 W h kg −1 ). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. (paper)

  16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  17. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  18. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    Science.gov (United States)

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  19. Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether

    International Nuclear Information System (INIS)

    Lu, Hai; Zhang, Kai; Yuan, Yan; Qin, Furong; Zhang, Zhian; Lai, Yanqing; Liu, Yexiang

    2015-01-01

    Highlights: • Electrolyte based on fluorinated ether of ETFE is used in Li/S battery. • ETFE improves cycling, rate and self-discharging performances of Li/S battery. • Surface film on Li anode modified by ETFE inhibits the shuttle of polysulfides. - Abstract: Fluorinated ether of ethyl 1,1,2,2-tetrafluoroethyl ether (ETFE) was selected as electrolyte solvent for lithium/sulfur battery, and the influence of ETFE in electrolyte on cell properties was first investigated. The enhanced stability of electrolyte/anode interface and improved electrochemical performances (cycling, rate and self-discharging) of the Li/S cell are presented by using ETFE-containing electrolyte, especially for complete replacement of tetraethylene glycol dimethyl ether (TEGDME) by ETFE in combine with 1,3-dioxolane (DOL). It is found that ETFE plays a key role in modifying the surface composition and structure of the metallic Li, forming a strengthened protective film on the anode during cycling. Besides, ETFE is considered to decrease the dissolution of polysulfides in the electrolyte. These factors together restrict the contact and reaction between polysulfides and Li anode

  20. Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices

    International Nuclear Information System (INIS)

    Mustapa, Siti Rosnah; Aung, Min Min; Ahmad, Azizan; Mansor, Ahmad; TianKhoon, Lee

    2016-01-01

    Jatropha-oil based polyurethane is one of the initiative for replacing conventional petroleum based polyurethane. The vegetable oil-based polyurethane is more cost-effective and synthesize from renewable resources. Polyurethane was synthesized through prepolymerization method between jatropha oil-based polyol and diphenylmethane 4, 4’diisocyanate, (MDI) in inert condition. Then, lithium perchloride ion (LiClO 4 ) was added to the polyurethane system to form electrolyte film via solution casting technique. The polymer electrolytes were prepared by varying the amount of LiClO 4 ion 10 wt.% to 30 wt. %. The highest conductivity is achieved at 25 wt.% of LiClO 4 salt content, which is 1.29 × 10 −4 S/cm at room temperature 30 °C. The FTIR results showed the shifting of carbonyl group (C=O) (1750 cm −1 – 1730 cm −1 ), ether and ester group (C-O-C) (1300 cm −1 –1000 cm −1 ) and amine functional groups (N-H) (1650 cm −1 –1500 cm −1 ) in polyurethane electrolytes from the blank polyurethane shows that oxygen and nitrogen atom acts as electron donor in the electrolytes system. It also confirmed that the intermolecular reaction had occurred in the electrolytes system. While, the XRD analysis showed the semi-crystalline properties of polyurethane have been reduced to amorphous phase upon the increasing addition of lithium ion. SEM results revealed the morphology analysis of the polyurethane electrolytes. There is homogenous and smooth surface in polyurethane and the dissociation of salt was observed after the addition of salt indicates there was interaction between salt and the polymer host.

  1. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mustain, William E.; Kepler, Keith; Prakash, Jai

    2007-01-01

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm 2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd 3 , exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd 3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd 3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd 3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  2. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  3. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  4. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors

    Science.gov (United States)

    Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi

    2015-04-01

    An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.

  5. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    Science.gov (United States)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  6. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  7. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  8. Determination of the extent of reduction of dense UO{sub 2} cathodes from direct electrochemical reduction studies in molten chloride medium

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D.; Sanil, N. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Murugesan, N. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Shakila, L. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramesh, C. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mohandas, K.S., E-mail: ksmd@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nagarajan, K. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    Electro-reduction of solid UO{sub 2} to U has been studied with molten CaCl{sub 2} or LiCl as the electrolyte medium. Electro-reduction of thick (>3 mm), powder compacted and sintered pellets of UO{sub 2} showed incomplete reduction resulting in a mixture of uranium metal and UO{sub 2}. The extent of reduction of UO{sub 2} to U was determined by employing a novel method called 'metal estimation by hydrogen sensor (MEHS)', in which the hydrogen evolved during the reaction of U metal in the reduced product with con. HBr was measured using an in-house developed polymer electrolyte based amperometric hydrogen sensor. The results of our investigations on incompletely reduced UO{sub 2} pellets in both CaCl{sub 2} and LiCl melts showed that the extent of reduction of different regions of the oxide pellet was different. It varied from 88.3% on the surface of the pellet as against 3.7% towards the centre bulk during electro-reduction in CaCl{sub 2} (at 1173 K). The metallisation was found restricted to the surface of the pellets reduced in LiCl melt (at 923 K). Electro-reduction of small chunks of UO{sub 2} pellet in CaCl{sub 2} melt resulted in products with lower extent of reduction. Based on the measurements, a probable mechanism on the propagation of reduction through the solid UO{sub 2} matrix during the electrochemical reduction process has been proposed.

  9. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  10. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  11. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  12. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  13. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  14. Fabrication of WO3-based electrochromic displays using solid or gel-like organic electrolytes

    International Nuclear Information System (INIS)

    Vasilopoulou, M; Aspiotis, G; Kostis, I; Argitis, P; Davazoglou, D

    2005-01-01

    New all solid-state electrochromic displays were fabricated by chemically vapor depositing and patterning a tungsten oxide film on SnO 2 :F covered glass substrates. Aluminum sheets were used as counter electrodes to form electrochromic displays using solid or gel-like organic electrolytes. These ionically conductive and electronically insulating electrolytes were based on poly(methyl methacrylate) (PMMA) and poly(2-hydrohyethyl methacrylate) (PHEMA) into which phospho-tungstic acid was added at various concentrations. In some devices the electrolyte was formed by addition of photoacid generator into the polymeric matrix and exposure at deep UV light. It was found that displays exhibit an intense, reversible electrochromic effect with reflectivity varying by a factor of five between the uncolored to the colored state. The coloring voltage depends strongly on the polymeric matrix, the thickness of the electrolyte and post-apply baking conditions and is of the order of 6-9 V. The response time was found to be of the order of 500 ms; coloration and bleaching times were comparable

  15. A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting

    Science.gov (United States)

    2013-07-01

    A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting by Matthew H. Ervin, Carlos M. Pereira, John R...Capacitors and Supercapacitors for Piezo-Based Energy Harvesting Matthew H. Ervin Sensors and Electronic Devices Directorate, ARL Carlos M. Pereira... Supercapacitors for Piezo-Based Energy Harvesting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew H

  16. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  17. Composite, Polymer-Based Electrolytes for Advanced Batteries

    National Research Council Canada - National Science Library

    Ratner, Mark A

    2001-01-01

    .... Several substantive advances towards new, improved performance electrolyte materials both for low temperature fuel cell applications and for advanced secondary lithium battery materials have been reported...

  18. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  19. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives

    International Nuclear Information System (INIS)

    Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Gachot, Grégory; Mathiron, David; Armand, Michel; Laruelle, Stephane

    2013-01-01

    Lithium bis(fluorosulfonyl) imide (LiFSI) is regarded as an alternative to the classical LiPF 6 salt in today's LiFePO 4 /graphite-based Li-ion batteries electrolyte owing to its slightly higher conductivity and lower fluorine content. In an attempt to better evaluate the safety issues, here we report the comparative study of the LiFSI and LiPF 6 based electrolyte/lithiated graphite interface thermal behavior. DSC measurements with LiFSI-based electrolyte reveal a sharp exotherm with large heat release though at higher onset and peak temperatures compared to LiPF 6 -based electrolyte. With the help of GC/MS, 19 F NMR and ESI-HRMS analyses, we assume that this highly energetic peak around 200 °C, which is dependant upon the lithium content, is mainly related to electrochemical reduction of FSI − anion. In a strategy to limit the probability and damage of thermal runaway event, electrolyte additives such as vinylene carbonate (VC), fluoro ethylene carbonate (FEC), di-isocyanato hexane (DIH) and toluene di-isocyanate (TDI) have been investigated and shown to significantly lower the energy associated with the exothermic phenomenon

  20. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  1. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  2. A device for reduction of metal oxides generated in electrokinetic separation equipment

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won

    2015-01-01

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time

  3. A device for reduction of metal oxides generated in electrokinetic separation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time.

  4. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  5. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    Science.gov (United States)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  6. Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE)

    Science.gov (United States)

    Girija, T. C.; Virkar, Anil V.

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium β″-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu 2+) while zinc in contact with its ions (Zn/Zn 2+) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF 4 was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl 2(DMSO)(0.1 M), NaBF 4(1 M)/BASE/NaBF 4(1 M), CuCl 2(DMSO)(0.1 M)/Cu(s). The cell was subjected to charge-discharge cycles at 100 °C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF 3SO 3 in place of NaBF 4.

  7. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer

    International Nuclear Information System (INIS)

    Stoeva, Zlatka; Lu, Zhibao; Ingram, Malcolm D.; Imrie, Corrie T.

    2013-01-01

    A discotic liquid crystal triblock copolymer consisting of a central main chain triphenylene-based liquid crystal block capped at both ends by blocks of poly(ethylene oxide) (PEO) (M W = 2000 g mol −1 ) has been doped with lithium perchlorate in an EO:Li 6:1 ratio. The polymer electrolyte exhibits a phase separated morphology consisting of a columnar hexagonal liquid crystal phase and PEO-rich regions. The polymer electrolyte forms self-supporting, solid-like films. The ionic conductivity on initial heating of the sample is very low below ca. 60 °C but increases rapidly above this temperature. This is attributed to the melting of crystalline PEO-rich regions. Crystallisation is suppressed on cooling, and subsequent heating cycles exhibit higher conductivities but still less than those measured for the corresponding lithium perchlorate complex in poly(ethylene glycol) (M W = 2000 g mol −1 ). Instead the triblock copolymer mimics the behaviour of high molecular weight poly(ethylene oxide) (M W = 300,000 g mol −1 ). This is attributed, in part, to the anchoring of the short PEG chains to the liquid crystal block which prevents their diffusion through the sample. Temperature and pressure variations in ion mobility indicate that the ion transport mechanism in the new material is closely related to that in the conventional PEO-based electrolyte, opening up the possibility of engineering enhanced conductivities in future

  8. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  9. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  10. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  11. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  12. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  13. The ionic conductivity, mechanical performance and morphology of two-phase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qihang; Yang, Jiping, E-mail: jyang08@163.com; Yu, Yalin; Tian, Fangyu; Zhang, Boming; Feng, Mengjie; Wang, Shubin

    2017-05-15

    Highlights: • Structural electrolytes based on PEG-epoxy resins were prepared. • Factors of influencing ionic conductivity and mechanical properties were studied. • Co-continuous morphology was benefit for improved structural electrolyte property. • Efficiently optimized multifunctional electrolyte performance was achieved. - Abstract: As one of significant parts of structural power composites, structural electrolytes have desirable mechanical properties like structural resins while integrating enough ionic conductivity to work as electrolytes. Here, a series of polyethylene glycol (PEG)-epoxy-based electrolytes filled with nano-silica were prepared. The ionic conductivity and mechanical performance were studied as functions of PEG content, lithium salt concentration, nano-silica content and different curing agents. It was found that, PEG-600 and PEG-2000 content in the epoxy electrolyte system had a significant effect on their ionic conductivity. Furthermore, increasing the nano-silica content in the system induced increased ionic conductivity, decreased glass transition temperature and mechanical properties, and more interconnected irregular network in the cured systems. The introduction of rigid m-xylylenediamine resulted in enhanced mechanical properties and reasonably decreased ionic conductivity. As a result, these two-phase epoxy structural electrolytes have great potential to be used in the multifunctional energy storage devices.

  14. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li{sub 2}O-LiCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Wooshin, E-mail: wooshin@kaeri.re.kr; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-15

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li{sub 2}O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li{sub 2}O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO{sub 2} would be effective when a relatively small amount was included in a metal oxide mixture.

  15. Universal low-temperature MWCNT-COOH-based counter electrode and a new thiolate/disulfide electrolyte system for dye-sensitized solar cells.

    Science.gov (United States)

    Hilmi, Abdulla; Shoker, Tharallah A; Ghaddar, Tarek H

    2014-06-11

    A new thiolate/disulfide organic-based electrolyte system composed of the tetrabutylammonium salt of 2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole-3-thiol (S(-)) and its oxidized form 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole) (DS) has been formulated and used in dye-sensitized solar cells (DSSCs). The electrocatalytic activity of different counter electrodes (CEs) has been evaluated by means of measuring J-V curves, cyclic voltammetry, Tafel plots, and electrochemical impedance spectroscopy. A stable and low-temperature CE based on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) was investigated with our S(-)/DS, I(-)/I3(-), T(-)/T2, and Co(II/III)-based electrolyte systems. The proposed CE showed superb electrocatalytic activity toward the regeneration of the different electrolytes. In addition, good stability of solar cell devices based on the reported electrolyte and CE was shown.

  16. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  17. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    Science.gov (United States)

    2015-10-07

    composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel...stability of the composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the...2.3. Testing methods and equipment Impedance testing using the Solartron 1260A Impedance/ Gain- phase Analyzer was performed on each cell at

  18. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  19. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  20. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwin raj, S.; Sowmya, G.; Kalaiselvimary, J.; Ramesh Prabhu, M., E-mail: mkram83@gmail.com

    2016-03-15

    Highlights: • Polymer blends based on PVdF-HFP/PEO were prepared for Li-ion battery applications. • Structural and electrochemical studies were carried out on prepared electrolytes. • The electrolytes can be used as electrolyte in the possible device fabrications. - Abstract: Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2–10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 × 10{sup −4} S cm{sup −1} has been obtained for PEO (6.25)–PVdF-HFP (18.75)–LiClO{sub 4} (8)–PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM.

  1. Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate

    International Nuclear Information System (INIS)

    Itoh, Takahito; Fujita, Katsuhito; Inoue, Kentaro; Iwama, Hiroki; Kondoh, Kensaku; Uno, Takahiro; Kubo, Masataka

    2013-01-01

    Graphical abstract: - Highlights: • Synthesis of alternating copolymers of vinyl ethers and vinylene carbonate. • Preparation of polymer electrolytes based on the alternating copolymers with LiTFSI. • Structure-property relationship for alternating copolymers-based electrolytes. • Interfacial stability between polymer electrolytes with lithium metal electrode. - Abstract: Alternating copolymers (poly(1a-g-alt-VC)) of vinyl ethers with various methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate (VC) were prepared, and the thermal and electrochemical properties of their polymer electrolytes with LiTFSI and interfacial stability between the polymer electrolyte and Li metal electrode were investigated. T g 's increased linearly with salt contents, and decreased with an increase in the chain length of methoxy oligo(ethyleneoxy)ethyl groups in the vinyl ethers at constant salt concentration. The slopes of T g vs. [Li]/[O] were identical, independent of the polymer structure. The ionic conductivities of the polymer electrolytes increased with increasing the side-chain ethyleneoxy (EO) unit length of the vinyl ether unit in the alternating copolymers, and also their temperature dependences became relatively smaller in the polymer electrolytes having longer EO units in the vinyl ethers. The highest ionic conductivity, 1.2 × 10 −4 S/cm at 30 °C, was obtained in the alternating copolymer with a side-chain EO unit length of 23.5 in the vinyl ether unit. Ion transport coupled with the segmental motion of the polymer is dominant in these polymer electrolytes. Interfacial resistance increased gradually with contact time, indicative of the formation of passivation films on the Li metal electrode. These polymer electrolytes are thermally stable and have large electrochemical windows of use

  2. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.

    Science.gov (United States)

    Borodin, Oleg; Ren, Xiaoming; Vatamanu, Jenel; von Wald Cresce, Arthur; Knap, Jaroslaw; Xu, Kang

    2017-12-19

    Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared

  3. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  4. Lanthanum germanate-based apatites as electrolyte for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D.; Diaz-Carrasco, P.; Ramos-Barrado, J.R. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain)

    2011-02-15

    Germanate apatites with composition La{sub 10-x}Ge{sub 5.5}Al{sub 0.5}O{sub 26.75-3x/2} have been evaluated for the first time as possible electrolytes for solid oxide fuel cells (SOFCs). Different electrode materials have been considered in this study, i.e. manganite, ferrite, nickelates and cobaltite as cathode materials; and NiO-CGO composite and chromium-manganite as anodes. The chemical compatibility and electrochemical performance of these electrodes with La{sub 9.8}Ge{sub 5.5}Al{sub 0.5}O{sub 26.45} have been studied by X-ray powder diffraction (XRPD) and impedance spectroscopy. The XRPD analysis did not reveal appreciable bulk reactivity with the formation of reaction products between the germanate electrolyte and these electrodes up to 1,200 C. However, a significant cation interdiffusion was observed by energy dispersive spectroscopy (EDS) at the electrode/electrolyte interface, which leads to a significant decrease of the performance of these electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

    International Nuclear Information System (INIS)

    Park, Byung Heung; Kang, Dae Seung; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF). These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li 2 O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  6. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  7. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  8. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  9. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    National Research Council Canada - National Science Library

    Cochran, Joe

    2004-01-01

    The program objective is to develop SOFCs, operating in the 500-700 degrees C range, based on Metal/Electrolyte square cell honeycomb formed by simultaneous powder extrusion of electrolyte and metal...

  10. Modular cathode assemblies and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.; Willit, James L.

    2018-03-20

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  11. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei

    2015-07-17

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton-conducting SOECs due to its excellent chemical stability under H2O conditions, but few reports on this aspect has been made due to the processing difficulty for BaZrO3. Our recent pioneering work has demonstrated the feasibility of using BaZrO3-based electrolyte for SOECs and the fabricated cell achieves relatively high cell performance, which is comparable or even higher than that for BaCeO3-based SOECs and offers better chemical stability. Cell performance can be further improved by tailoring the electrolyte and electrode. © The Electrochemical Society.

  12. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    International Nuclear Information System (INIS)

    Yu Shicheng; Chen Lie; Chen Yiwang; Tong Yongfen

    2012-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF 3 SO 3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10 -3 S cm -1 ) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li + , and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO 4 is up to 156 mAh g -1 .

  13. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  14. Effect of Cross-Linking on the Performances of Starch-Based Biopolymer as Gel Electrolyte for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Pavithra Nagaraj

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSCs have become a validated and economically credible competitor to the traditional solid-state junction photovoltaic devices. DSSCs based on biopolymer gel electrolyte systems offer the perspective of competitive conversion efficiencies with a very low-cost fabrication. In this paper, a new starch-based biopolymer gel electrolyte system is prepared by mixing lithium iodide and iodine with bare and citric acid cross-linked potato starches with glycerol as the plasticizing agent. The effect of the preparation methods on the starch cross-linking degree as well as the photoconversion efficiency of the resulting DSSC cells is carefully analyzed. Fourier transform spectroscopy, X-ray diffraction, and scanning electron microscopy were used to characterize the morphology and conformational changes of starch in the electrolytes. The conductivity of the biopolymer electrolytes was determined by electrochemical impedance spectroscopy. DSSC based on the starch-gel polymer electrolytes were characterized by photovoltaic measurements and electrochemical impedance spectroscopy. Results clearly show that the cross-linking increases the recombination resistance and open circuit voltage (VOC of the DSSC, and thereby the photoconversion efficiency of the cell. In particular, electrolytes containing 1.4 g bare and cross-linked starches showed ionic conductivities of σ = 1.61, 0.59, 0.38, and 0.35 S cm−1, and the corresponding DSSCs showed efficiencies of 1.2, 1.4, 0.93, and 1.11%, respectively.

  15. Electrical and morphological analysis of chitosan:AgTf solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Shujahadeen B., E-mail: shujaadeen78@yahoo.com [School of Physics, Faculty of Science and Science Education, University of Sulaimani, Kurdistan Regional Government, Sulaimani (Iraq); Abidin, Zul Hazrin Z. [Centre for Ionics University of Malaya (CIUM), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-01

    Solution cast technique is employed to prepare solid polymer electrolyte films based on chitosan (host polymer) and silver triflate (AgCF{sub 3}SO{sub 3}, doping salt) using (1%) acetic acid as a common solvent. The effect of salt concentration on both EP and bulk materials dielectric properties has been analyzed. Physically the original relationship between the bulk dielectric constant and DC conductivity has been interpreted. It is demonstrated that the dielectric constant and dielectric loss values decrease at higher temperatures due to the reduction of silver ions. Scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) indicate the presence of metallic silver particles. The ac conductivity spectra shows three distinct regions and obeys the Jonscher's power law at high frequency regions. The temperature dependence of frequency exponent (s) shows the crossover from CBH model to SP model. - Highlights: • A strong relationship exists between DC conductivity and dielectric constant. • The decrease of ε′ and ε″ is due to the reduction of silver ions (Ag{sup +} → Ag{sup o}). • The morphological results reveal the formation of silver particles. • The AC conduction models can be applicable for ion conducting polymer electrolytes.

  16. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  17. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    Science.gov (United States)

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  18. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  19. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  20. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  1. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    Science.gov (United States)

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  2. Low temperature electrochemical cells with sodium {beta}''-alumina solid electrolyte (BASE)

    Energy Technology Data Exchange (ETDEWEB)

    Girija, T.C.; Virkar, Anil V. [Department of Materials Science and Engineering, 122 S. Central Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2008-05-15

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium {beta}''-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu{sup 2+}) while zinc in contact with its ions (Zn/Zn{sup 2+}) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF{sub 4} was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl{sub 2}(DMSO)(0.1 M), NaBF{sub 4}(1 M)/BASE/NaBF{sub 4}(1 M), CuCl{sub 2}(DMSO)(0.1 M)/Cu(s) The cell was subjected to charge-discharge cycles at 100 C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF{sub 3}SO{sub 3} in place of NaBF{sub 4}. (author)

  3. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA

    2016-02-16

    Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.

  4. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    Science.gov (United States)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  5. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  6. Underscreening in concentrated electrolytes.

    Science.gov (United States)

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  7. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  8. The potential role of electrolytic hydrogen in Canada

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-03-01

    The potential role of electrolytic hydrogen in Canada is assessed for the period 1980 to 2025 for large-scale uses only. Present uses of hydrogen, and specifically electrolytic hydrogen, are discussed briefly and hydrogen production processes are summarized. Only hydrogen derived from natural gas, coal, or electrolysis of sater are considered. Cost estimates of electrolytic hydrogen are obtained from a parametric equation, comparing values for unipolar water elecctrklyser technologies with those for bipolar electrolysers. Both by-products of electrolytic hydrogen production, namely heavy water and oxygen, are evaluated. Electrolytic hydrogen, based on non-fossil primary energy sources, is also considered as ankther 'liquid fuel option' for Canada along with the alcohols. The market potential for hydrogen in general and electrolytic hydrogen is assessed. Results show that the market potential for electrolytic hydrogen is large by the year 2025

  9. Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Kim, Dong Won; Kang, Yong Ku

    2012-01-01

    We investigated the cycling behavior of Li 4 Ti 5 O 12 electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The Li 4 Ti 5 O 12 electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %

  10. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  11. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  12. Preparation of Ferrotitanium Alloys by Electrolysis-Assisted Calciothermic Reduction of Ilmenite in Equimolar CaCl2-NaCl Electrolyte: Effect of Calcium Oxide

    Science.gov (United States)

    Zhou, Zhongren; Zhang, Yingjie; Hua, Yixin; Xu, Cunying; Dong, Peng; Zhang, Qibo; Wang, Ding

    2018-04-01

    The effect of CaO content on the preparation of ferrotitanium alloys from ilmenite with the method of the electrolysis-assisted calciothermic reduction has been investigated by use of ilmenite powders as raw materials that positions them next to the cathodic molybdenum plate, equimolar CaCl2-NaCl molten salt with 2-7 mol.% CaO as electrolyte and graphite as anode at 700°C with cell voltage of 2.8 V under argon atmosphere. It is demonstrated that increasing the reactant CaO content is beneficial to the calciothermic reduction of ilmenite and the intermediate CaTiO3. Experimental results also show that after 14 h of calciothermic reduction process, the products are ferrotitanium alloys and the specific energy consumption is only about 10.21 kWh kg-1 when adding 5 mol.% CaO into equimolar CaCl2-NaCl molten salt and approximately 14.40 kWh kg-1 when CaO content is increased to 7 mol.%.

  13. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  14. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  15. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Junnian; Peng, Tianyou; Shi, Wenye; Li, Renjie; Xia, Jiangbin

    2013-01-01

    A novel binary ionic liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and binary ionic liquids, which is composed of 1-butyl-3-methylimidazolium iodide (BMII) and 1-butyl-3-methylimidazolium thiocyanate (BMISCN), is developed for dye-sensitized solar cells (DSSCs). It is found that incorporation of LiTFSI as charge transfer promoter with BMII has positive effect on the interfacial charge transfer of the dye/TiO 2 film, further addition of BMISCN into the above composite electrolyte can take advantage of its low viscosity to enhance the ionic conductivity and reduce the interfacial charge transfer resistance, and a photovoltaic conversion efficiency of 5.55% is obtained from the solar cell fabricated with the optimized binary ionic liquid electrolyte without iodine participation under AM 1.5 illumination at 100 mW cm −2 , with a 108.6% improvement in the efficiency with lower resistance and higher ionic conductivity as compared to the solar cell fabricated with single BMII ionic liquid-based electrolyte. The above results should be attributed to the reduced charge recombination and the effective interfacial charge transfer in the solar cell

  16. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  17. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  18. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  19. Influence of polyoxyethylene phytosterol addition in ionic liquid-based electrolyte on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sato, Kei; Sakurai, Sho; Kobayashi, Koichi

    2016-01-01

    Highlights: • The ionic liquid solution of less solvophilic BPS exhibits a better surface active property and a weaker dye-desorption effect. • Photovoltaic performances of the N719- and NKX2677-sensitized DSSCs can be improved by the BPS addition to the IL-based electrolyte. • BPS added to the electrolyte plays a key role in reducing charge-transfer resistance and increasing electron lifetime in the TiO 2 electrode. - Abstract: In this work, we studied influence of polyoxyethylene phytosterol (BPS) addition in ionic liquid (IL)-based electrolyte on photovoltaic performance of dye-sensitized solar cells (DSSCs) using 1-methyl-3-propylimidazolium iodide as an IL. Surface tension, photocurrent density-voltage characteristics and electrochemical impedance spectra were measured to clarify the role of BPS in the DSSCs using three different dyes. The results showed that the IL solution of less solvophilic BPS-EO5 exhibited a better surface active property and a weaker dye-desorption effect than BPS-EO30 and BPS-PO7/EO30. Short-circuit current densities of the N719- and NKX2677-sensitized cells were found to be noticeably increased by the addition of either BPS-EO5 or BPS-EO30 to the IL-based electrolyte in the concentration range of 0.001–0.01 mol dm −3 . Enhanced photovoltaic conversion efficiencies were obtained for these DSSCs, which most likely resulted from the effects of BPS on reducing charge-transfer resistance at the TiO 2 /dye/electrolyte interface and on increasing electron lifetime within the TiO 2 photoanode.

  20. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  1. Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Johansson, Tobias Peter; Malacrida, Paolo

    2014-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation of this tec......Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation...... using electrochemical measurements, low energy electron diffraction, ion scattering spectroscopy, angle resolved X-ray photoelectron spectroscopy, temperature programmed desorption of CO, and synchrotron based X-ray absorption spectroscopy and surface sensitive X-ray diffraction. These measurements were...

  2. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  3. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  4. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  5. Mindfulness-Based Stress Reduction

    Science.gov (United States)

    ... R S T U V W X Y Z Mindfulness-Based Stress Reduction (MBSR) Information 6 Things You ... Disease and Dementia (12/20/13) Research Spotlights Mindfulness-Based Stress Reduction, Cognitive-Behavioral Therapy Shown To ...

  6. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  7. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  8. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  9. Plasma electrolytic oxidation of AMCs

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  10. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    Science.gov (United States)

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  11. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    Science.gov (United States)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-03-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  12. Towards A Model-based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Directory of Open Access Journals (Sweden)

    Gautam Biswas

    2012-12-01

    Full Text Available This paper presents a model-driven methodology for predict- ing the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter approach in conjunction with an empirical state-based degradation model to predict the degradation of capacitor parameters through the life of the capacitor. Electrolytic capacitors are important components of systems that range from power supplies on critical avion- ics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their critical role in the system, they are good candidates for component level prognostics and health management. Prognostics provides a way to assess remain- ing useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. This paper proposes and empirical degradation model and discusses experimental results for an accelerated aging test performed on a set of identical capacitors subjected to electrical stress. The data forms the basis for developing the Kalman-filter based remaining life prediction algorithm.

  13. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  14. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    Energy Technology Data Exchange (ETDEWEB)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  15. New operational modes for the Ta2O5-based electrolyte conductance cell

    NARCIS (Netherlands)

    Olthuis, Wouter; Smith, A.; van der Zalm, R.A.J.; Bergveld, Piet

    1994-01-01

    Based on the recently presented conductance cell, two specific operational modes are proposed. In the oscillator mode, the conductivity of the electrolyte determines the frequency of an oscillator, experimentally obtaining a shift from 10 to 27 kHz for a KCl concentration range from 0.5 to 100 mM.

  16. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  17. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid-base equilibria.

    Science.gov (United States)

    Persat, Alexandre; Suss, Matthew E; Santiago, Juan G

    2009-09-07

    We present elements of electrolyte dynamics and electrochemistry relevant to microfluidic electrokinetics experiments. In Part I of this two-paper series, we presented a review and introduction to the fundamentals of acid-base chemistry. Here, we first summarize the coupling between acid-base equilibrium chemistry and electrophoretic mobilities of electrolytes, at both infinite and finite dilution. We then discuss the effects of electrode reactions on microfluidic electrokinetic experiments and derive a model for pH changes in microchip reservoirs during typical direct-current electrokinetic experiments. We present a model for the potential drop in typical microchip electrophoresis device. The latter includes finite element simulation to estimate the relative effects of channel and reservoir dimensions. Finally, we summarize effects of electrode and electrolyte characteristics on potential drop in microfluidic devices. As a whole, the discussions highlight the importance of the coupling between electromigration and electrophoresis, acid-base equilibria, and electrochemical reactions.

  18. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  19. Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yan, Huijun; Bai, Jianwei; Wang, Bin; Yu, Lei; Zhao, Lin; Wang, Jun; Liu, Qi; Liu, Jingyuan; Li, Zhanshuang

    2015-01-01

    Highlights: • 3D graphene foam is synthesized by a simple electrochemical reduction method. • The 3D graphene/Ni(OH) 2 composite is used as a monolithic free-standing electrode material. • The 3D conductive graphene network improves the contact between electrode and electrolyte. • Compositing graphene with Ni(OH) 2 sheets take full advantage of the synergistic effects. • Results show that the as-synthesized products have good electrochemical property. - Abstract: Using a simple electrochemical reduction approach, we have produced three-dimensional (3D) graphene foam having high conductivity and well-defined macroporous structure. Through a hydrothermal process, Ni(OH) 2 sheets are grown in-situ onto the graphene surface. This monolithic 3D graphene/Ni(OH) 2 composite is used as the free-standing electrode for supercapacitor application; it shows a high specific capacitance of 183.1 F g −1 (based on the total mass of the electrode), along with excellent rate capability and cycle performance. The asymmetric supercapacitor based on the 3D graphene/Ni(OH) 2 as a positive electrode and active carbon (AC) as a negative electrode is also assembled and it exhibits a specific capacitance of 148.3 F g −1 at 0.56 A g −1 and a high energy density of 52.7 W h kg −1 at a power density of 444.4 W kg −1 . Moreover, 3D graphene/Ni(OH) 2 //AC has a good cycle stability (87.9% capacitance retention after 1000 cycles), making it promising as one of the most attractive candidates for electrochemical energy storage. This excellent electrochemical performance results from the multiplexed 3D graphene network facilitating electron transport; the interlaced Ni(OH) 2 sheets shorten ion diffusion paths and facilitate the rapid migration of electrolyte ions

  20. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang Hui; Wan, Qing, E-mail: wanqing@nju.edu.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Qiang Zhu, Li, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Shi, Yi [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  1. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  2. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives

    International Nuclear Information System (INIS)

    Kim, Huikyong; Grugeon, Sylvie; Gachot, Grégory; Armand, Michel; Sannier, Lucas; Laruelle, Stéphane

    2014-01-01

    The ethylene bis-carbonate compounds formation is responsible for the earliest change in electrolyte composition which can be one of the reasons for battery performance decay. In this study, liquid GC/MS technique is used to detect their formation in electrolytes based on solvent mixtures of EC and different linear carbonates (DMC, DEC and EMC), after the first cycle in full cells composed of synthetic graphite powder/commercial positive films. These compounds stem from linear carbonate electrochemical reduction leading to alkoxide compounds and can be quantified using a selective bicyclic boron ester Lewis acid as an electrolyte additive. Moreover, a quantitative study on ethylene bis-carbonate compounds for which the generation profile is different depending on the linear carbonate type, shows that either in batteries or in a simple chemical mixture of electrolyte and lithium alkoxide, their formation stops when it reaches a threshold concentration due to the thermodynamic equilibrium. The overall information is useful for investigating the passivation ability and the dissolution of the Solid Electrolyte Interphase (SEI) that is formed on the negative electrode material. Finally, the passivation property of the SEI freshly formed with four additives - Vinylene Carbonate (VC), Vinyl Ethylene Carbonate (VEC), Fluoro Ethylene Carbonate (FEC) and 1,3-Propane Sultone (1,3-PS)- is studied

  3. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  4. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    Science.gov (United States)

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  5. Evaluation of the revised electrolytic reduction reactor from a remote operability aspect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Jik; Yoon, K. H.; Kim, K. H. (and others)

    2008-01-15

    This report presents an evaluation of the remote operability of the revised electrolytic reduction (ER) reactor installed in the ACP at KAERI. All operations have to be implemented in a fully remote manner since the ACPF is a hotcell for handling highly radioactive materials such as spent nuclear fuels. In particular, the ER process is a key process of the Advanced spent fuel Conditioning Process (ACP) and it needs a lot of other auxiliary equipment to perform it. Also, since the ER equipment is too big and complicated, and contrarily the ACPF is not big enough, and one common rail is allotted for a bridge transported servo manipulator, an in-cell crane and a gate crane, a remote handling of the ER reactor is accompanied by a difficulty for a remote operation. For an easy understanding, short overview of the ER process, the remote handling equipment, the structural configuration of the ACPF and the detail drawings of the ER equipment are presented. Through 4 month-remote operational tests, detailed operational procedures are presented along with pictures. The remote handling equipment and tools required in each operation are addressed in detail. Also, the procedure to implement each remote operation, and a task difficulty are evaluated from a remote operability aspect. All the remote tasks are distinguished according to whether a remote operation can be performed or not. Finally, partial improvement or an idea to solve the suggested problems is presented. This report will assist in modifying or scaling up the ER reactor.

  6. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  7. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  8. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  9. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  10. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  11. Electrodeposition of uranium metal by reduction of uranium oxides in molten Lif-KF=NaF-CaF 2-UF4

    International Nuclear Information System (INIS)

    Pao, D.S.; Burris, L.; Steunenberg, R.K.; Tomczuk, Z.

    1990-01-01

    Although electrolytic reduction of uranium oxides was shown to be feasible in the early 1960's it is recognized that considerable improvement in the electrolytic reduction technology must be achieved for practical applications. This exploratory work on electrolytic reduction of uranium oxide was undertaken to investigate potential improvements in the technology. The approach taken was to deposit solid uranium metal directly on a solid cathode at temperatures below the melting point of uranium (1132 degrees C). The lower temperature electrolytic reduction process has several advantages over the existing chemical reduction processes. It lessens materials problems and special heating and insulating requirements associated with high-temperature operations. It removes most impurities. It does not produce the large quantities of byproduct oxides wastes typical of chemical reduction processes

  12. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  13. Anode-supported single-chamber SOFCs based on gadolinia doped ceria electrolytes

    Directory of Open Access Journals (Sweden)

    Morales, M.

    2008-12-01

    Full Text Available The utilization of anode supported electrolytes is a useful strategy to increase the electrical properties of the solid oxide fuel cells, because it is possible to decrease considerably the thickness of the electrolytes. We have prepared successfully singlechamber fuel cells of gadolinia doped ceria electrolytes Ce1-xGdxO2-y (CGO supported on an anode formed by a cermet of Ni-CGO. Mixtures of precursor powders of NiO and gadolinium doped ceria with different particle sizes and compositions were analyzed to obtain optimal bulk porous anodes to be used as anode supported fuel cells. Doped ceria electrolytes were prepared by sol-gel related techniques. Then, ceria based electrolytes were deposited by dip coating at different thickness (15-30 µm using an ink prepared with nanometric powders of electrolytes dispersed in a commercial liquid polymer. Cathodes of La1-xSrxCoO3-s (LSCO were also prepared by sol-gel related techniques and were deposited by dip coating on the electrolyte thick films. Finally, electrical properties were determined in a single-chamber reactor where propane as fuel was mixed with synthetic air above the higher explosive limit. Stable density currents were obtained in these experimental conditions, but flow rates of the carrier gas and propane partial pressure were determinants for the optimization of the electrical properties of the fuel cells.

    La utilización de electrolitos soportados en el ánodo es una estrategia muy útil para mejorar las propiedades eléctricas de las pilas de combustible de óxido sólido, debido a que permiten disminuir considerablemente el espesor de los electrolitos. Para este trabajo, se han preparado exitosamente pilas de combustible de óxido sólido con electrolitos de ceria dopada con Gd, Ce1-xGdxO2-y (CGO soportados sobre un ánodo formado por un cermet de Ni/CGO. Dichas pilas se han

  14. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  16. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Serawati Jafirin; Ishak Ahmad; Azizan Ahmad; Ishak Ahmad; Azizan Ahmad

    2014-01-01

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF 3 SO 3 ) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10 -6 Scm -1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  17. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  18. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    Science.gov (United States)

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  19. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    Science.gov (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  20. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  1. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  2. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Univ. of Idaho, Moscow, ID (United States)

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  3. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  4. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    Science.gov (United States)

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  5. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  6. Low temperature electrochemistry at normal conductor/frozen electrolyte interface

    International Nuclear Information System (INIS)

    Borkowska, Z.; Stimming, U.

    1991-01-01

    The frozen electrolyte technique (FREECE = FRozen Electrolyte ElectroChEmistry) is based on the experimental result that frozen electrolytes are suitable for electrochemical studies. This technique has been used in our laboratory and also by others to investigate interfacial electrochemical behavior. An argument will be given as to why the FREECE technique is advantageous in a number of respects and what kind of electrolyte systems can be used. Reference is made to electrochemical results such as interfacial reactions and double layer properties. 26 refs

  7. Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids

    International Nuclear Information System (INIS)

    Barghamadi, Marzieh; Best, Adam S.; Bhatt, Anand I.; Hollenkamp, Anthony F.; Mahon, Peter J.; Musameh, Mustafa; Rüther, Thomas

    2015-01-01

    The electrochemical behaviour and electrical performance are investigated for a series of lithium-sulfur (Li-S) cells in which the electrolyte solutions are organic solvent-ionic liquid mixtures that are based on the 1-butyl-1-methylpyrrolidinium (C 4 mpyr) cation with a range of anions. In each case, performance is compared with cells that are based on a standard mixed-ether organic electrolyte. The capacity of cells assembled with electrolytes containing 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (C 4 mpyr-FAP), 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate (C 4 mpyr-OTf), or 1-butyl-1-methylpyrrolidinium tricyanomethanide (C 4 mpyr-TCM) decline rapidly due to low conductivity, high polysulfide solubility and side reaction of electrolyte with electrodes, respectively. Our results confirm that polysulfide solubility is strongly controlled by the anion of the ionic liquid and verify that not all ionic liquids decrease polysulfide solubility. In agreement with previous reports, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (C 4 mpyr-TFSI) shows the best compatibility in Li-S batteries and has a higher coulombic efficiency of greater than 99% over 100 cycles. Furthermore, impedance spectroscopy confirms that electrolyte composition influences the SEI layer formed on the lithium anode and its subsequent impedance.

  8. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  9. Hydrothermal synthesis of Fe_2O_3/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte

    International Nuclear Information System (INIS)

    Ren, Suzhen; Ma, Shaobo; Yang, Ying; Mao, Qing; Hao, Ce

    2015-01-01

    Graphical abstract: Fe_2O_3/polypyrrole/graphene oxide electrocatalysts for oxygen reduction reaction (ORR) are successfully prepared through one simple polypyrrole-assisted hydrothermal method and possess very high ORR activity and are able to selectively reduce O_2 to water through the four-electron transfer reaction mechanism in alkaline electrolyte. - Abstract: Advantages in low cost, and excellent catalytic activity of Fe-based nanomaterials dispersed on nitrogen-doped graphene supports render them to be good electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Here, Fe_2O_3/polypyrrole/graphene oxide (Fe_2O_3/Ppy/GO) composites with the Fe_2O_3 embedded in the Ppy modified GO are synthesized using hydrothermal method. With an optimal iron atom content ratio of 1.6% in graphene oxide and heat treatment at 800 °C, the Fe_2O_3/Ppy/GO exhibited enhanced catalytic performance for ORR with the onset potential of −0.1 V (vs SCE), cathodic potential of −0.24 V (vs SCE), an approximate 4e"− transfer process in O_2-saturated 0.1 M KOH, and superior stability that only reduced 5% catalytic activity after 5000 cycles. The decisive factors in improving the electrocatalytic and durable performance are the intimate and large contact interfaces between nanocrystallines of Fe_2O_3 and Ppy/GO, in addition to the high electron withdrawing/storing ability and the high conductivity of GO doped with nitrogen from Ppy during the hydrothermal reaction. The Fe_2O_3/Ppy/GO showed significantly improved ORR properties and confirmed that Fe-N-C-based electrocatalysts played a key role in fuel cells.

  10. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  11. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  12. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  13. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    Energy Technology Data Exchange (ETDEWEB)

    Small, Leo J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pratt, Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Staiger, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Rachel Irene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chalamala, Babu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soundappan, Thiagarajan [Univ. of Washington, Seattle, WA (United States); Tiwari, Monika [Univ. of Washington, Seattle, WA (United States); Subarmanian, Venkat R. [Univ. of Washington, Seattle, WA (United States)

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  14. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  15. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Han, Junyoung

    2016-01-01

    Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolysers and as anion conducting component...

  16. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  17. Optofluidic interferometry chip designs of differential NIR absorbance based sensors for identification and quantification of electrolytes

    NARCIS (Netherlands)

    Steen, Gerrit W.; Wexler, Adam D.; Offerhaus, Herman L.

    2014-01-01

    Design and optimization of integrated photonic NIR absorbance based sensors for identification and quantification of aqueous electrolytes was performed by simulation in MATLAB and Optodesigner. Ten designs are presented and compared for suitability.

  18. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  19. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  20. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers.

    Science.gov (United States)

    Persat, Alexandre; Chambers, Robert D; Santiago, Juan G

    2009-09-07

    We review fundamental and applied acid-base equilibrium chemistry useful to microfluidic electrokinetics. We present elements of acid-base equilibrium reactions and derive rules for pH calculation for simple buffers. We also present a general formulation to calculate pH of more complex, arbitrary mixtures of electrolytes, and discuss the effects of ionic strength and temperature on pH calculation. More practically, we offer advice on buffer preparation and on buffer reporting. We also discuss "real world" buffers and likely contamination sources. In particular, we discuss the effects of atmospheric carbon dioxide on buffer systems, namely, the increase in ionic strength and acidification of typical electrokinetic device buffers. In Part II of this two-paper series, we discuss the coupling of acid-base equilibria with electrolyte dynamics and electrochemistry in typical microfluidic electrokinetic systems.

  1. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li{sub 4}Ti{sub 5}O{sub 12} supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ionica-Bousquet, C.M.; Munoz-Rojas, D.; Palacin, M.R. [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, E-08193 Bellaterra (Spain); Casteel, W.J. Jr.; Pearlstein, R.M.; Kumar, G. Girish; Pez, G.P. [Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195 (United States)

    2011-02-01

    Solutions of novel fluorinated lithium dodecaborate (Li{sub 2}B{sub 12}F{sub x}H{sub 12-x}) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li{sub 4}Ti{sub 5}O{sub 12} as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF{sub 6} dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors. (author)

  2. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  3. All-Solid-State Lithium-Sulfur Battery based on a nanoconfined LiBH 4 Electrolyte

    NARCIS (Netherlands)

    Das, Supti; Ngene, Peter; Norby, Poul; Vegge, Tejs; de Jongh, P.E.; Blanchard, Didier

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4in mesoporous silica as solid electrolytes. The nano-confined LiBH4has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport

  4. Organic electrolytes for sodium batteries. Final report, 1 April 1990-31 March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Vestergaard, B.

    1992-09-01

    This final report for the project 'Organic Electrolytes for Sodium Batteries' contains a summary of earlier given status reports in connection with the project. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  5. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes. Electrolysis in a Laboratory-Scale Cell

    Science.gov (United States)

    Martinez, Ana Maria; Osen, Karen Sende; Støre, Anne; Gudbrandsen, Henrik; Kjos, Ole Sigmund; Solheim, Asbjørn; Wang, Zhaohui; Oury, Alexandre; Namy, Patrick

    2018-04-01

    Electrolytic production of light rare earth elements and rare earth alloys with transition elements takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds and side cathode reactions could largely be minimized by good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The Dy2O3 feed rate needed for stable cell operation was studied by following up the anode voltage and gas analysis. On-line analysis of the cell off-gases by FTIR showed that the electrochemical reaction for the formation of Dy-Fe alloy gives mainly CO gas and that CF4 is starting to evolve gradually at anode voltages of ca. 3.25 V. The limiting current density for the discharge of the oxide ions at the graphite anode was in the range of 0.1 to 0.18 A cm-2 at dissolved Dy2O3 contents of ca. 1 wt pct. Modeling of the laboratory cell reactor was also carried out by implementing two models, i.e., an electrical model simulating the current density distribution at the electrodes and a laminal bubbly flow model that explains the electrolyte velocity induced by gas bubble production at the anode.

  6. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  7. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-04-02

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  8. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    Science.gov (United States)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  9. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  10. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  12. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  13. Extraction of manganese from electrolytic manganese residue by bioleaching.

    Science.gov (United States)

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004 (India)

    2016-05-06

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  15. Proton-conducting polymer electrolytes based on methacrylates

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Velická, Jana; Míka, M.

    2008-01-01

    Roč. 53, č. 26 (2008), s. 7769-7774 ISSN 0013-4686 R&D Projects: GA ČR GA106/04/1279; GA AV ČR KJB400320701; GA MŠk LC523; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * proton conductivity * phosporic acid Subject RIV: CA - Inorganic Chemistry Impact factor: 3.078, year: 2008

  16. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  17. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  18. A NOVEL GEL ELECTROLYTE FOR VALVE-REGULATED LEAD ACID BATTERY

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2017-03-01

    Full Text Available A novel gel electrolyte system used in lead-acid batteries was investigated in this work. The gel systems were prepared by addition different amount of Al2O3, TiO2 and B2O3 into the gelled system consisting of 6 wt% fumed silica and 30 wt% sulfuric acid solution. The anodic peak currents and peak redox capacities of the gel electrolytes were characterized by cyclic voltammetric method. They decreased by the time B2O3 and Al2O3 were used as additives in fumed silica based gel electrolyte system. However, these values increased by the adding 3.0 wt% of TiO2. The solution and charge transfer resistances of the gel electrolytes were investigated by electrochemical impedance spectroscopy. While the solution resistances were lower in gel systems having different amount additives than pure fumed silica based gel, the charge transfer resistance was the lowest in gel electrolytes consisting fumed silica and fumed silica-TiO2. The battery performances were studied by obtaining discharge curves of prepared gel electrolytes. The performance of gelled systems were higher than that of non-gelled electrolyte at room temperature. The mixture of fumed silica-TiO2 was suggested an alternative gel formulation for gel VRLA batteries.

  19. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Science.gov (United States)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  20. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru [The Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-choume, Amagasaki, Hyogo 661-0974 (Japan); Akbay, Taner; Hosoi, Kei [Mitsubishi Materials Corporation, Corporate Technology and Development Division, 1002-14 Mukohyama, Naka, Ibaraki 311-0102 (Japan)

    2008-07-01

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system. (author)

  1. Acid-base and electrolyte status during normovolemic hemodilution with succinylated gelatin or HES-containing volume replacement solutions in rats.

    Directory of Open Access Journals (Sweden)

    Johanna K Teloh

    Full Text Available BACKGROUND: In the past, several studies have compared different colloidal replacement solutions, whereby the focus was usually on the respective colloid. We therefore systematically studied the influence of the carrier solution's composition of five approved colloidal volume replacement solutions (Gelafundin, Gelafusal, Geloplasma, Voluven and Volulyte on acid-base as well as electrolyte status during and following acute severe normovolemic hemodilution. The solutions differed in the colloid used (succinylated gelatin vs. HES and in the presence and concentration of metabolizable anions as well as in their electrolyte composition. METHODS: Anesthetized Wistar rats were subjected to a stepwise normovolemic hemodilution with one of the solutions until a final hematocrit of 10%. Subsequent to dilution (162 min, animals were observed for an additional period (150 min. During dilution and observation time blood gas analyses were performed eight times in total. Additionally, in the Voluven and Volulyte groups as well as in 6 Gelafundin animals, electrolyte concentrations, glucose, pH and succinylated gelatin were measured in urine and histopathological evaluation of the kidney was performed. RESULTS: All animals survived without any indications of injury. Although the employed solutions differed in their respective composition, comparable results in all plasma acid-base and electrolyte parameters studied were obtained. Plasma pH increased from approximately 7.28 to 7.39, the plasma K(+ concentration decreased from circa 5.20 mM to 4.80-3.90 mM and the plasma Cl(- concentration rose from approximately 105 mM to 111-120 mM. Urinary analysis revealed increased excretion of K(+, H(+ and Cl(-. CONCLUSIONS: The present data suggest that the carrier solution's composition with regard to metabolizable anions as well as K(+, Ca(2+ only has a minor impact on acid-base and electrolyte status after application of succinylated gelatin or HES-containing colloidal

  2. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  3. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  4. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  5. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanyung [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ve Cheah, Chang [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Jeong, Namjo [Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Lee, Junghoon, E-mail: jleenano@snu.ac.kr [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  7. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Science.gov (United States)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  8. Direct printing and reduction of graphite oxide for flexible supercapacitors

    International Nuclear Information System (INIS)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-01-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm 3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications

  9. Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: An effective recombination suppressant?

    International Nuclear Information System (INIS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2013-01-01

    Highlights: ► MgO loaded electrolyte retards recombination at titania/electrolyte interface. ► Recombination reactions are retarded by adsorption of anions on MgO in electrolyte. ► Zeta potential measurements show anionic adsorption on the surface of MgO. ► MgO loaded electrolyte performs efficiently than TBP containing electrolyte. -- Abstract: Recombination reactions at the photoanode/electrolyte interface reduce the photovoltaic conversion efficiency of dye sensitized solar cells (DSSCs). Unlike modification of titania photoanode by coating with MgO which act as a barrier layer toward recombination, addition of MgO nanopowder to electrolyte prevents recombination through adsorption of anions (triiodide/iodide) from electrolyte. In the present study, the surface charge of MgO has been utilized to adsorb anions from electrolyte. This anionic adsorption onto the MgO nanopowders in electrolyte has been confirmed by zeta potential measurements. MgO retards the recombination reaction as efficiently as 4-tert-butylpyridine (TBP) which is the most widely used additive in the electrolyte. Higher photocurrent and conversion efficiency is achieved by using MgO loaded electrolyte as compared to TBP added electrolyte. Dark current measurements show that recombination reactions are effectively retarded by use of MgO loaded electrolytes. Open circuit voltage decay measurements also confirm higher electron lifetime at the titania/electrolyte interface in MgO loaded electrolyte based cell as compared to additive free electrolyte based cell

  10. Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Muthuraaman, B.; Will, Geoffrey; Wang, Hongxia; Moonie, Paul; Bell, John

    2013-01-01

    A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.

  11. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    International Nuclear Information System (INIS)

    Hirschfeld, Julian Arndt

    2012-01-01

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  12. Liquid / liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile / aqueous electrolyte systems

    International Nuclear Information System (INIS)

    Watkins, John D.; Amemiya, Fumihiro; Atobe, Mahito; Bulman-Page, Philip C.; Marken, Frank

    2010-01-01

    Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid / liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid / liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase. A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile / aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH 3 ) 6 3+ in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

  13. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  14. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  15. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  16. In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance

    Science.gov (United States)

    Ye, Xingke; Zhu, Yucan; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-08-01

    For practical applications of graphene-based materials in flexible supercapacitors, a technological breakthrough is currently required to fabricate high-performance graphene paper by a facile method. Herein, highly conductive (∼6900 S m-1) graphene paper with loose multilayered structure is produced by a high-efficiency in-situ chemical reduction process, which assembles graphite oxide suspensions into film and simultaneously conducts chemical reduction. Graphene papers with different parameters (including different types and doses of reductants, different thicknesses and areas of films) are successfully fabricated through this in-situ chemical reduction method. Meanwhile, the influences of the graphene papers with different parameters upon the supercapacitor performance are systematically investigated. Flexible supercapacitor based on the graphene paper exhibits high areal capacitance (152.4 mF cm-2 at current density of 2.0 mA cm-2 in aqueous electrolyte), and excellent rate performance (88.7% retention at 8.0 mA cm-2). Furthermore, bracelet-shaped all-solid supercapacitor with fascinating cycling stability (96.6% retention after 10 000 cycles) and electrochemical stability (an almost negligible capacity loss under different bending states and 99.6% retention after 4000 bending cycles) is established by employing the graphene paper electrode material and polymer electrolyte.

  17. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  18. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  19. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  20. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  1. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt using metal anode shrouds

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Hong, Sun Seok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-06-15

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance. - Highlights: •Electrolytic reduction runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. •Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. •The upper nonporous shrouds made up of noble metal-lined nickel showed excellent corrosion resistance to hot oxygen gas.

  2. Chemical stability of conductive ceramic anodes in LiCl–Li{sub 2}O molten salt for electrolytic reduction in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wook; Kang, Hyun Woo; Jeon, Min Ku; Lee, Sang Kwon; Choi, Eun Young; Park, Woo Shin; Hong, Sun Seok; Oh, Seung Chul; Hur, Jin Mok [Nuclear Fuel Cycle Process Development Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La{sub 0.33}Sr{sub 0.67}MnO{sub 3} in LiCl–Li{sub 2}O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La{sub 0.33}Sr{sub 0.67}MnO{sub 3} anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  3. Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S battery

    International Nuclear Information System (INIS)

    Barghamadi, Marzieh; Best, Adam S.; Hollenkamp, Anthony F.; Mahon, Peter; Musameh, Mustafa; Rüther, Thomas

    2016-01-01

    In the context of lithium-sulfur (Li-S) battery technology, LiNO 3 is known to improve performance by protecting the lithium anode via the formation of an optimized solid electrolyte interphase (SEI) as well as suppressing the associated lithium polysulfides shuttle effect during cycling. Herein, the concentration of added LiNO 3 (0.05–0.4 mol kg −1 ) in a C 4 mpyr-TFSI- organic mixed electrolyte has been varied, with any changes in cell performance monitored against the physical (viscosity) and ion-transport (NMR-based ion diffusion and conductivity) properties of each variant. We find that an electrolyte with 0.1 mol kg −1 LiNO 3 shows the best performance and that this is because this electrolyte has the highest conductivity, lowest viscosity and shows the lowest glass transition temperature (T g ), measured with differential scanning calorimetry (DSC). While the long-term benefits of adding lithium nitrate to the electrolyte of Li-S cells are known to be related to effects centred on the lithium anode, the short-term influence of this additive on capacity performance is clearly related to promoting better access to the porous cathode. The range of concentration over which this effect is operative (0.05–0.20 mol kg −1 ) overlaps with the range recommended for optimum performance of the lithium anode.

  4. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  5. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  6. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  7. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    Science.gov (United States)

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-02-07

    Electrolytic--usually referred to as electrochemical--exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.

  8. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  9. The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Drvarič Talian, Sara; Bešter-Rogač, Marija; Dominko, Robert

    2017-01-01

    Electrolyte choice is an important decision on the quest for higher-energy batteries. Besides general guidelines on the required properties of an electrolyte suitable for use in lithium–sulfur batteries, the influence of more specific physicochemical properties on its characteristics is not well understood. For this purpose, binary mixtures based on the [DEME][TFSI] and dioxolane electrolyte system for lithium–sulfur batteries was investigated in this work. Selected physicochemical properties were determined for different mixtures of solvents and lithium salt concentrations. All the electrolytes prepared were also tested in the lithium–sulfur battery system. The capacity, Coulombic efficiency, overpotentials and impedance spectra were analyzed and a connection between them and the determined electrolyte properties elucidated. We show that the electrolyte's conductivity does not have a direct connection to any of the battery system properties measured. The highest specific capacities were obtained with batteries compromising 1.0 M LiTFSI and the highest ratio of dioxolane in the binary solvent mixture. On the other hand, the best Coulombic efficiencies were obtained with batteries having high ratios of ionic liquid. Resistance and overpotential are connected parameters and are a function of the ionic liquid content. None of the monitored parameters prevail, since the best electrochemical performance in terms of specific capacity and stability was obtained with the 1.0 M LiTFSI in X[DEME][TFSI] = 0.199 electrolyte.

  10. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  11. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  12. Electrolytic polishing system for space age materials

    International Nuclear Information System (INIS)

    Coons, W.C.; Iosty, L.R.

    1976-01-01

    A simple electrolytic polishing technique was developed for preparing Cr, Co, Hf, Mo, Ni, Re, Ti, V, Zr, and their alloys for structural analysis on the optical microscope. The base electrolyte contains 5g ZnCl 2 and 15g AlCl 3 . 6H 2 O in 200 ml methyl alcohol, plus an amount of H 2 SO 4 depending on the metal being polished. Five etchants are listed

  13. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  14. Non-precious electrocatalysts for polymer electrolyte fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chung, H.T.; Zelenay, P. [Los Alamos National Laboratory, Los Alamos, NM (United States). Materials Physics and Applications

    2009-07-01

    This study investigated the feasibility of reducing the high cost of polymer electrolyte fuel cell stacks by using non-precious catalysts for the oxygen reduction reaction (ORR). Most research interest has focused on ORR catalysts based on heat-treated precursors of transition metals, nitrogen and carbon. While initial ORR activity of such catalysts has improved in recent years, it is not sufficient for automotive use. The long-term stability of these catalysts is also insufficient. The activity and durability of the catalysts must be improved significantly in order to overcome these limitations. In addition, innovative electrode structures must be developed to allow for operation with thick catalyst layers. The ORR reaction mechanism must also be well understood in terms of the active reaction site. This presentation summarized non-precious ORR catalysis research at Los Alamos, with particular focus on catalysts obtained by heat treatment of polymers (such as polyaniline) on high-surface-area carbon in the presence of transition metals, cobalt and iron. These heat-treated catalysts achieve respectable ORR activity and improved stability in both aqueous and polymer electrolytes. Electrochemical and non-electrochemical techniques such as XPS, XANES and XAFS were used to examine the source of ORR activity of these heat-treated catalysts.

  15. A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors

    Science.gov (United States)

    Batisse, N.; Raymundo-Piñero, E.

    2017-04-01

    The development of safe flexible supercapacitors implies the use of new non-liquid electrolytes for avoiding device leakage which combine mechanical properties and electrochemical performance. In this sense, hydrogel electrolytes composed of a solid non-conductive matrix holding an aqueous electrolytic phase are a reliable solution. In this work, we propose a green physical route for producing self-standing hydrogel films from a PVA polymer based on the freezing/thawing method without using chemical cross-linking agents. Moreover, a neutral electrolytic phase as Na2SO4 is used for reaching higher cell voltages than in an acidic or basic electrolyte. Such new PVA-Na2SO4 hydrogel electrolyte, which also acts as separator, allows reaching voltages windows as high as 1.8 V in a symmetric carbon/carbon supercapacitor with optimal capacitance retention through thousands of cycles. Additionally, in reason of the fast mobility of the ions inside of the polymeric matrix, the hydrogel electrolyte based supercapacitor keeps the power density of the liquid electrolyte device.

  16. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  17. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    for carbon based commercial catalyst, when HClO4 is used as electrolyte. The Pt (110) & Pt (111) facets are shown to have higher electrochemical activities than Pt (100) facets. To the best of our knowledge, methanol oxidation studies and the comparison of peak deconvolutions of the H desorption region in CV...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...... cyclic studies are here reported for the first time for SiC based catalysts. The reaction kinetics for the oxygen reduction and for methanol oxidation with Pt/SiC are observed to be similar to the carbon based catalysts. The SiC based catalyst shows a higher specific surface activity than BASF (Pt...

  18. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  19. Thermal stability of the DSC ruthenium dye C106 in robust electrolytes

    DEFF Research Database (Denmark)

    Lund, Torben; Phuong, Nguyen Tuyet; Pechy, Peter

    2014-01-01

    We have investigated the thermal stability of the heteroleptic ruthenium complex C106 employed as a sensitizer in dye-sensitized solar cells. The C106 was adsorbed on TiO2 particles and exposed to 2 different iodide/triidode based redox electrolytes A and B at 80 °C for up to 1500 h in sealed glass......) substitution products 3 and 4 formed by replacement of the thiocyanate ligand by NBB after 1500 h of heating at 80 °C. Samples prepared under ambient conditions gave a steady state C106 concentration of 60% of the initial value and 40% substitution products. The C106 degradation was found to be independent...... of the degree of dye loading of the TiO2 particles and the ratio between the amount of dyed TiO2 particles and electrolyte volume. Assuming that this substitution is the predominant loss mechanism in a DSC during thermal stress, we estimate the reduction in the DSC efficiency after long term heat to be 12...

  20. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  1. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  2. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  3. Benchmarking of electrolyte mass transport in next generation lithium batteries

    Directory of Open Access Journals (Sweden)

    Jonas Lindberg

    2017-12-01

    Full Text Available Beyond conductivity and viscosity, little is often known about the mass transport properties of next generation lithium battery electrolytes, thus, making performance estimation uncertain when concentration gradients are present, as conductivity only describes performance in the absence of these gradients. This study experimentally measured the diffusion resistivity, originating from voltage loss due to a concentration gradient, together with the ohmic resistivity, obtained from ionic conductivity measurements, hence, evaluating electrolytes both with and without the presence of concentration gradients. Under galvanostatic conditions, the concentration gradients, of all electrolytes examined, developed quickly and the diffusion resistivity rapidly dominated the ohmic resistivity. The electrolytes investigated consisted of lithium salt in: room temperature ionic liquids (RTIL, RTIL mixed organic carbonates, dimethyl sulfoxide (DMSO, and a conventional Li-ion battery electrolyte. At steady state the RTIL electrolytes displayed a diffusion resistivity ~ 20 times greater than the ohmic resistivity. The DMSO-based electrolyte showed mass transport properties similar to the conventional Li-ion battery electrolyte. In conclusion, the results presented in this study show that the diffusion polarization must be considered in applications where high energy and power density are desired.

  4. Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid

    Science.gov (United States)

    Zulkepeli, Nik A. S. Nik; Winie, Tan; Subban, R. H. Y.

    2017-09-01

    In this work, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMCF3SO3) is employed as ionic liquid in PVC-based polymer electrolyte system with lithium triflate (LiCF3SO3) as doping salt. The samples in film form were prepared by quantitatively varying the concentration of BMIMCF3SO3 to a fixed ratio of PVC-LiCF3SO3 using solution cast technique. The highest room temperature ionic conductivity of 1.120 × 10-7 Scm-1 was exhibited by PVC-LiCF3SO3-BMIMCF3SO3 containing 3 wt. % BMIMCF3SO3. FTIR spectra of the polymer electrolytes were examined to study the complexation of the PVC-based polymer electrolytes. Intensity of free ions, ion pairs, and ion aggregates were obtained from FTIR deconvolution in an attempt to correlate with ionic conductivity results. The intensity of free ions was found to be high for sample with 3 wt. % BMIMCF3SO3.

  5. Brightness coatings of zinc-cobalt alloys by electrolytic way

    International Nuclear Information System (INIS)

    Julve, E.

    1993-01-01

    Zinc-cobalt alloys provide corrosion resistance for the ferrous based metals. An acidic electrolyte for zinc-cobalt electrodeposition is examined in the present work. The effects of variations in electrolyte composition, in electrolyte temperature, pH and agitation on electrodeposit composition have been studied, as well as the current density influence. It was found that the following electrolyte gave the optimum results: 79 g.1''-1 ZnCl 2 , 15.3 g.1''-1 CoCl 2 .6H 2 O, 160 g.1''-1 KCl, 25 g.1''-1 H 3 BO 3 and 5-10 cm''3.1''-1 of an organic additive (caffeine, coumarin and sodium lauryl-sulphonate). The operating conditions were: pH=5,6 temperature: 30 degree centigree, current density: 0,025-0,035 A. cm''2, anode: pure zinc, agitation: slowly with air and filtration: continuous. The throwing power and cathode current efficiency of the electrolyte were also studied. This electrolyte yielded zinc-cobalt alloys white and lustrous and had a cobalt content of 0,5-0,8% (Author) 3 refs. 5 fig

  6. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.

    Science.gov (United States)

    Suo, Liumin; Oh, Dahyun; Lin, Yuxiao; Zhuo, Zengqing; Borodin, Oleg; Gao, Tao; Wang, Fei; Kushima, Akihiro; Wang, Ziqiang; Kim, Ho-Cheol; Qi, Yue; Yang, Wanli; Pan, Feng; Li, Ju; Xu, Kang; Wang, Chunsheng

    2017-12-27

    Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

  7. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices

    Directory of Open Access Journals (Sweden)

    Federico Bella

    2016-05-01

    Full Text Available Redox mediators based on cobalt complexes allowed dye-sensitized solar cells (DSCs to achieve efficiencies exceeding 14%, thus challenging the emerging class of perovskite solar cells. Unfortunately, cobalt-based electrolytes demonstrate much lower long-term stability trends if compared to the traditional iodide/triiodide redox couple. In view of the large-scale commercialization of cobalt-based DSCs, the scientific community has recently proposed various approaches and materials to increase the stability of these devices, which comprise gelling agents, crosslinked polymeric matrices and mixtures of solvents (including water. This review summarizes the most significant advances recently focused towards this direction, also suggesting some intriguing way to fabricate third-generation cobalt-based photoelectrochemical devices stable over time.

  8. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  10. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2015-01-01

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton

  11. Room temperature rechargeable polymer electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. [EIC Labs., Inc., Norwood, MA (United States); Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-03-01

    Polyacrylonitrile (PAN)- and poly(vinyl chloride) (PVC)-based Li{sup +}-conductive thin-film electrolytes have been found to be suitable in rechargeable Li and Li-ion cells. Li/Li{sub x}Mn{sub 2}O{sub y} and carbon/LiNiO{sub 2} cells fabricated with these electrolytes have demonstrated rate capabilities greater than the C-rate and more than 375 full depth cycles. Two-cell carbon/LiNiO{sub 2} bipolar batteries could be discharged at pulse currents as high as 50 mA/cm{sup 2}. (orig.)

  12. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs

    Directory of Open Access Journals (Sweden)

    Rongguo Yan

    2016-10-01

    Full Text Available There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electrodes in medical laboratory electrolytic ion tests, from conventional ISEs, solid-contact ISEs, carbon nanotube based ISEs, to graphene-based ISEs.

  13. Constructions of aluminium electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to constructions of aluminium electrolytic cells. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  14. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  15. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  16. Electrolytic decontamination of conductive materials for hazardous waste management

    International Nuclear Information System (INIS)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-01-01

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L -1 and higher. Stirring was also observed to increase the uniformity of the stripping process

  17. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  18. The effect of microwave drying on polymer electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Latham, R.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Linford, R.G. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Pynenburg, R.A.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom))

    1993-03-01

    The morphology and conductivity of polymer electrolytes based on PEO are often substantially modified by the presence of water. A number of different approaches have commonly been used to eliminate water from polymer electrolyte films. The work reported here extends our earlier investigations of the use of microwaves for the rapid drying of solvent cast polymer electrolyte films. Films of PEO[sub n]:NiBr[sub 2] and PEO[sub n]:ZnCl[sub 2] have been prepared by normal casting techniques and then studied using EXAFS, DSC and ac conductivity measurements. (orig.)

  19. Efficient Electrolytes for Lithium–Sulfur Batteries

    International Nuclear Information System (INIS)

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  20. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  1. Efficient Electrolytes for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, Natarajan [Department of Materials Science and Engineering, Politecnico di Torino, Turin (Italy); Stephan, Arul Manuel, E-mail: arulmanuel@gmail.com [Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi (India)

    2015-05-21

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  2. Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors

    International Nuclear Information System (INIS)

    Hashmi, S A; Kumar, Ashok; Tripathi, S K

    2007-01-01

    Studies have been carried out on gel polymer electrolytes comprising poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-salts, LiClO 4 , NaClO 4 and (C 2 H 5 ) 4 NClO 4 (TEAClO 4 ) with a view to using them as electrolytes in electrical double layer capacitors (EDLCs) based on activated charcoal powder electrodes. The optimum composition of gel electrolytes, PMMA (20 wt%)-EC : PC (1 : 1 v/v)-1.0 M salts exhibit high ionic conductivity of the order of ∼10 -3 S cm -1 at room temperature with good mechanical/dimensional stability, suitable for their application in EDLCs. The EDLCs have been characterized using linear sweep cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy. The values of capacitance of 68-151 mF cm -2 (equivalent to single electrode specific capacitance of 38-78 Fg -1 of activated charcoal powder) have been observed. These values correspond to a specific energy of 5.3-10.8 Wh kg -1 and a power density of 0.19-0.22 kW kg -1 . The capacitance values have been observed to be stable up to 5000 voltammetric cycles or even more. A comparison of studies shows the predominant role of anions of the gel electrolytes in the capacitive behaviour of EDLCs

  3. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  4. The preparation and properties of a novel electrolyte of electrochemical double layer capacitors based on LiPF6 and acetamide

    International Nuclear Information System (INIS)

    Li Qi; Zuo Xiaoxi; Liu Jiansheng; Xiao Xin; Shu Dong; Nan Junmin

    2011-01-01

    A novel electrolyte applied in electrochemical double-layer capacitors (EDLCs) has been prepared based on lithium hexafluorophosphate (LiPF 6 ) and acetamide and subsequently characterized by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), electrochemical techniques and so on. The mixtures of LiPF 6 and acetamide at the molar ratios of 1:4 to 1:6 exist as liquids below 25 °C, which is attributed to the melting point depression of mixture and the coordination of the polar groups (C=O and NH groups) of acetamide with Li + and PF 6 − ions. The strong interaction between LiPF 6 and acetamide results in the rupture of the electrovalent bond of LiPF 6 and the breakage of hydrogen bonds among the acetamide molecules, leading to the formation of a liquid electrolyte. The LiPF 6 /acetamide electrolyte with a molar ratio of 1:5.5 exhibits a 5.2 V electrochemical window and suitable ionic conductivity at room temperature. In particular, the coin-type cells with carbon electrodes and LiPF 6 /acetamide electrolyte possess high thermal stability and electrochemical properties, showing that the as-prepared LiPF 6 /acetamide electrolyte is a promising candidate for EDLCs.

  5. Highly dispersed TaOx nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells

    KAUST Repository

    Seo, Jeongsuk

    2013-06-06

    Based on the chemical stability of group IV and V elements in acidic solutions, TaOx nanoparticles prepared by electrodeposition in an ethanol-based Ta plating bath at room temperature were investigated as novel nonplatinum electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs). Electrodeposition conditions of Ta complexes and subsequent various heat treatments for the deposited TaOx were examined for the best performance of the ORR. TaOx particles on carbon black (CB), electrodeposited at a constant potential of -0.5 V Ag/AgCl for 10 s and then heat-treated by pure H2 flow at 523 K for 1 h, showed excellent catalytic activity with an onset potential of 0.93 VRHE (for 2 μA cm-2) for the ORR. Surface characterizations of the catalysts were performed by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The loading amounts of the electrodeposited material on the CB were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). All the physical results suggested that high dispersion of TaOx particles on the CB surface with 2-3 nm size was critical and key for high activity. The chemical identity and modified surface structure for the deposited TaOx catalysts before and after H 2 heat treatment were analyzed by X-ray photoelectron spectroscopy (XPS). The formation of more exposed active sites on the electrode surface and enhanced electroconductivity of the tantalum oxide promoted from the H 2 treatment greatly improved the ORR performance of the electrodeposited TaOx nanoparticles on CB. Finally, the highly retained ORR activity after an accelerated durability test in an acidic solution confirmed and proved the chemical stability of the oxide nanoparticles. The high utilization of the electrodeposited TaOx nanoparticles uniformly dispersed on CB for the ORR was comparable to that of commercial Pt/CB catalysts

  6. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  7. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  8. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  9. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-07

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.

  10. Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.

    Science.gov (United States)

    Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang

    2017-12-08

    Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interactions between lanthanum gallate based solid electrolyte and ceria

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.; Ahmad-Khanlou, A.; Samardzija, Z.; Holc, J.

    1999-10-01

    Possible interactions between La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} and Gd{sub 2}O{sub 3}-doped CeO{sub 2} (solid electrolyte and anode binding materials, respectively, for solid oxide fuel cells (SOFC)) at 1,300 C were studied with diffusion couples and fired powder mixtures. The SrLaGa{sub 3}O{sub 7} compound was detected and its formation was attributed to the diffusion of La{sub 2}O{sub 3} from La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} into Ce{sub 1{minus}x}La{sub x}O{sub 2{minus}x/2} solid solution. As the resistivity of SrLaGa{sub 3}O{sub 7} is rather high, around 1 M{center_dot}ohm at 800 C, its presence in the solid electrolyte/anode interface could significantly increase the internal resistivity of an SOFC.

  12. High-performance electrolyte in the presence of dextrose and its derivatives for aluminum electrolytic capacitors

    Science.gov (United States)

    Tsai, Ming-Liao; Lu, Yi-Fang; Do, Jing-Shan

    Dextrose and its derivatives (e.g. glucose, gluconic acid and gluconic lactone) are added to modify the characteristics of electrolytes used in aluminum electrolytic capacitors. The results show that the conductivity and sparking voltage of the electrolytes are severely affected by the concentration of dextrose gluconic acid and gluconic lactone. In addition, the pH of the electrolyte is only slightly affected by the quantity of gluconic acid and gluconic lactone. The capacitance, dissipation factor, and leakage current of capacitors impregnated with the electrolytes prepared in this work are periodically measured under storage conditions and loading at 105 °C.

  13. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    Directory of Open Access Journals (Sweden)

    Sugiharto

    2010-08-01

    Full Text Available Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury’s are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error

  14. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    International Nuclear Information System (INIS)

    Sugiharto; Santoso, S.B.; Santoso, G.B.

    2010-01-01

    Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury's are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203 Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error mentioned above, it was

  15. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Orebaugh, E.G.; Propst, R.C.

    1980-04-01

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  16. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  17. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  18. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  19. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  20. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  1. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte

    International Nuclear Information System (INIS)

    Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo

    2009-01-01

    Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced

  2. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    An Yongxin; Cheng Xinqun; Zuo Pengjian; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO) 20 LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO 4 /Li and Li 4 Ti 5 O 12 /Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  3. Characterization of electrical discharges during spark anodization of zirconium in different electrolytes

    International Nuclear Information System (INIS)

    Santos, Janaina S.; Lemos, Sherlan G.; Gonçalves, Wesley N.; Bruno, Odemir M.; Pereira, Ernesto C.

    2014-01-01

    The evolution of the electrical discharges parameters during spark anodization of metallic Zr under galvanostatic regime have been investigated by image analysis in phosphoric and oxalic acid electrolytes. The experiments were recorder using a high-speed video camera during the entire anodization with a resolution of 1.7 ms for determination of discharge lifetime and a standard resolution of 33 ms (real-time imaging) for determination of the average area and discharge population density. The discharge behavior was dependent of the current density, electrolyte composition and anodization time. During breakdown process, sparks discharges are progressively turned to micro-arcs, which can be seen by enlargement of discharge area, gradual increase of lifetime and reduction of discharge population density. A factorial design was used to estimate the effects of experimental conditions on the discharge behavior. The current density and electrolyte composition were the most important factors that affected the discharge population density. The anodization time and the electrolyte composition were the main factor that influenced the discharge area and lifetime. In comparison with the voltage vs. time curve, the results demonstrate important features of the process and the changes of the electrical discharges characteristics during the experiments

  4. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  5. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    Science.gov (United States)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  6. Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Goncalves, Agnaldo D.; Benedetti, Joao E.; Nogueira, Ana F.

    2010-01-01

    Core-shell electrodes based on TiO 2 covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO 2 electrodes were prepared from TiO 2 powder (P25 Degussa) and coated with thin layers of Al 2 O 3 , MgO, Nb 2 O 5 , and SrTiO 3 prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO 2 electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO 2 /MgO core-shell electrodes: fill factor of ∼0.60, short-circuit current density J sc of 12 mA cm -2 , open-circuit voltage V oc of 0.78 V and overall energy conversion efficiency of ∼5% (under illumination of 100 mW cm -2 ).

  7. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  8. Study of ageing mechanisms of organic electrolyte super-capacitors based on activated carbons; Recherche des causes du vieillissement de supercondensateurs a electrolyte organique a base de carbones actives

    Energy Technology Data Exchange (ETDEWEB)

    Azais, Ph

    2003-11-15

    The energy which is stored in electrochemical capacitors is proportional to the square of voltage. Consequently, the most attractive super-capacitors are those which operate in organic electrolyte medium, with an electrolyte potential window which theoretically can easily reach more than 3 V. However, even using lower values of voltage, there is a remarkable fading of the electrochemical characteristics with operating time, that is mainly characterized by capacitance loss and resistance increase. On a commercial point of view, these capacitors must be improved in order to reach the expected criterion of long operating life. In the presented work, we will determine some reasons of super-capacitors ageing in organic electrolyte (1 M solution of Et{sub 4}N{sup +} BF{sub 4}{sup -} in acetonitrile) and we will propose a treatment of activated carbon which noticeably improves the performance. A prolonged charging of electrochemical capacitors at 2.5 V, so called floating, results in gases formation and to a noticeable mass uptake of the electrodes. XPS and NMR analysis performed on carefully washed electrodes demonstrated the existence of decomposition products from the electrolyte, which are trapped in the pores of the activated carbon. These products block the pores, limiting the ions access to the active surface that causes the decay of electrochemical performances. Electrolyte decomposition is especially very high when the electrodes are constituted of carbons with a rich surface functionality, i.e. surface oxygenated groups and free radicals. Therefore, activated carbons have been submitted to thermal treatment, both in nitrogen and hydrogen atmosphere, allowing the oxygenated surface functionality to be noticeably depressed. Super-capacitors built with the treated materials have been submitted to floating during more than 2000 hours. Extremely good electrochemical performance are preserved with the electrodes obtained from activated carbons treated under hydrogen

  9. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  10. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Science.gov (United States)

    Lee, Kuang-Tsin; Wu, Nae-Lih

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO 2· nH 2O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H 2O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10 -1 S cm -1. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg).

  11. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuang-Tsin; Wu, Nae-Lih [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China)

    2008-04-15

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO{sub 2}.nH{sub 2}O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H{sub 2}O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10{sup -1} S cm{sup -1}. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg). (author)

  12. Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Gun [Seoul Nat' l Univ., Seoul (Korea, Republic of); Jeon, Dong Hyup [Dongguk Univ., Seoul (Korea, Republic of)

    2014-04-15

    The electrolyte wetting phenomena in the electrode of lithium ion battery is studied numerically using a multiphase lattice Boltzmann method (LBM). When a porous electrode is compressed during roll-pressing process, the porosity and thickness of the compressed electrode are changed, which can affect its wettability. In this study, the change in electrolyte distribution and degree of saturation as a result of varying the compression ratio are investigated with two-dimensional LBM approach. We found that changes in the electrolyte transport path are caused by a reduction in through-plane pore size and result in a decrease in the wettability of the compressed electrode.

  13. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    Science.gov (United States)

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  14. Cu{sub 2−x}S films as counter-electrodes for dye solar cells with ferrocene-based liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, M., E-mail: mirko.congiu@fc.unesp.br [UNESP, Univ. Estadual Paulista, POSMAT — Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Av. Eng. Luiz Edmundo Carrijo Coube14-01, 17033-360 Bauru, SP (Brazil); Nunes-Neto, O. [UNESP, Univ. Estadual Paulista, POSMAT — Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Av. Eng. Luiz Edmundo Carrijo Coube14-01, 17033-360 Bauru, SP (Brazil); De Marco, M.L.; Dini, D. [University of Rome “La Sapienza”, Department of Chemistry, Piazzale Aldo Moro 5, Rome, RM (Italy); Graeff, C.F.O. [UNESP, Univ. Estadual Paulista, POSMAT — Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Av. Eng. Luiz Edmundo Carrijo Coube14-01, 17033-360 Bauru, SP (Brazil); DC-FC, UNESP, Univ. Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube14-01, 17033-360 Bauru, SP (Brazil)

    2016-08-01

    In this work, the application of hexagonal CuS nanoparticle layers as counter electrodes for dye sensitized solar cells has been studied. A fast, cheap and reliable deposition method was proposed for the one-step preparation of Cu{sub 2−x}S layers on F-doped SnO{sub 2} within 30 min through an ink-based technique. The electrodes prepared with our method were tested with iodine/iodide electrolyte, Co(II)/(III) bipyridine redox shuttle and Fe(II)/(III) ferrocene-based liquid electrolyte. The Cu{sub 2−x}S layers showed high efficiency and stability with the ferrocene/ferrocenium redox couple, showing a fast charge recombination kinetic, low charge transfer resistance (R{sub ct} = 0.73 Ω cm{sup 2}), reasonably high limiting current (11.8 mA cm{sup −2}) and high stability in propylene carbonate. - Highlights: • We proposed a low-cost Cu{sub 2−x}S electrode for dye solar cells. • Easy deposition and processing • Suitable for large-area applications • Advantages and limitations of Cu{sub 2−x}S with three different redox electrolytes • High electro-catalytic efficiency and stability with the ferrocene/ferrocenium redox couple.

  15. Transient current distributions in porous zinc electrodes in KOH electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.B.; Yamazaki, Y.; Cook, G.M.; Yao, N.P.

    1981-02-01

    A zero-resistance ammeter circuit with a 10-channel operational amplifier was used to measure the current distribution during a discharge of 10 to 100 mA with simulated zinc porous electrodes in 7.24 M KOH saturated with ZnO. The reaction distribution was found to be highly nonuniform, with 70 to 78% of the charge transfer reaction completed in a depth of 0.01 cm. The high nonuniformity of the initial reaction profile was believed to be due to low conductivity of the electrolyte in the electrode pores. The current distribution changes during passivation of the electrode were experimentally obtained. A mathematical model based upon a macroscope averaging technique was used to predict the time dependence of charge transfer reaction profiles. With mathematical model, current distributions and overpotentials were predicted as a function of time for the segmented zinc electrode discharged at a current of 10 to 100 mA; for these predictions, assumed values of both precipitation rate constants for porous ZnO and diffusion coefficients for hydroxide and zincate ions were used. A gradual decrease in the specific conductivity of the pore electrolyte to 20% of the initial value during discharge yields predictions of current distributions and overpotentials in good agreement with the experimental data. The extent of reduction in the specific conductivity of the pore electrolyte implies a supersaturation of zincate of four times chemical saturation, which was been observed experimentally.At high discharge current (25 to 100 mA), the passivation behavior of the electrode has been simulated. The results of the experiments and mathematical model show that the effective reaction penetration depth is less than 0.02 cm.

  16. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  17. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  18. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  19. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  1. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  2. Changes of Chlorophyll Index (SPAD, Relative Water Content, Electrolyte Leakage and Seed Yield in Spring Safflower Genotypes under Irrigation Termination

    Directory of Open Access Journals (Sweden)

    B.E. Moosavifar

    2012-04-01

    Full Text Available In order to evaluate the effect of irrigation termination and genotype on chlorophyll index (SPAD, relative water content, electrolyte leakage and seed yield in spring safflower, an experiment was conducted, in a spilt plot arrangement based on randomized complete block design with four replications at Research Farm, Faculty of Agriculture, the University of Birjand, during 2008. Irrigation regimes (full irrigation (whole season irrigation, irrigation until grain filling, flowering and heading-bud and genotypes (Mahali Isfahan (a local variety, Isfahan28 and IL111 were arranged in main and subplots, respectively. Results showed chlorophyll content, relative water content, cell membrane stability and seed yield were influenced by irrigation termination. Provided that with terminating irrigation at an earlier stage, an increase in electrolyte leakage and reduction in relative water content and seed yield was observed in plants. There were negative relations between electrolyte leakage from plants leaf cells and seed yield. Plants which experienced irrigation termination in an earlier growth stage, suffered more damage to their cell membranes, leading to depression of their production potential. Based on the results, Mahali Isfahan and Isfahan28 can be introduced as drought resistant genotypes, because of their lower electrolyte leakage and higher relative water content. But, in general, Mahali Isfahan had the highest seed yield due to its nativeness and high adaptation to arid conditions southern of Khorasan, and therefore this genotype suggests for planting in the region.

  3. Double-membrane triple-electrolyte redox flow battery design

    Science.gov (United States)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  4. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  5. Electrodeposition of compact zinc from the hydrophobic Brønsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation

    International Nuclear Information System (INIS)

    Chen, Yi-Han; Yeh, Hsin-Wen; Lo, Nai-Chang; Chiu, Chen-Wei; Sun, I-Wen; Chen, Po-Yu

    2017-01-01

    Highlights: • Compact Zn with no crack is deposited from protic ionic liquid-based electrolytes. • The ionic liquid is composed of the protonated betaine ion. • This ionic liquid is hydrophobic and zinc oxide is soluble in it. • The effects of co-solvents, propylene carbonate and water, are studied. • The Zn stripping/deposition efficiency can be manipulated via acidity adjustment. - Abstract: Compact crystalline zinc was electrodeposited on stainless-steel electrode (SS) via potentiostatic/galvanostatic electrolysis from the hydrophobic Brønsted acidic ionic liquid, protonated betaine bis((trifluoromethyl)sulfonyl)imide (IL [Hbet][TFSI]), −based electrolytes containing ZnCl 2 or ZnO under argon or ambient air atmosphere. Approximate 10 wt% of propylene carbonate and water, respectively, were used as the co-solvents for [Hbet][TFSI] to form the IL-based electrolytes. The efficiency of zinc deposition/stripping, which is significantly affected by the Brønsted acidity of the IL-based electrolytes, was studied at glassy carbon electrode (GC) to evaluate the stability of the zinc electrodeposits along with the electrolyte acidity. The stability is very poor for the zinc electrodeposits obtained from ZnCl 2 solution. However, it increases with increasing the quantity of ZnO or urea in the electrolytes; the former neutralize the dissociable protons in [Hbet] cations to form water, and the latter may form H-bonding with [Hbet] or be protonated to form the weakly acidic cations [HUrea]. Both suppress the reaction between the Zn electrodeposits and protons. The stability of the Zn electrodeposits, therefore, can be improved via the manipulation of the IL acidity.

  6. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  7. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  9. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Omed Gh. Abdullah

    Full Text Available Solid polymer electrolyte films of polyvinyl alcohol (PVA doped with a different weight percent of potassium permanganate (KMnO4 were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content. Keywords: Solid polymer electrolyte, XRD analysis, FTIR study, Optical band gap, Dielectric constant, Refractive index

  10. Some laws governing the electrosynthesis of organic compounds with a solid polymetric electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, N.A.; Avrutskaya, I.A.; Fioshin, M. Ya.; Khrizolitova, M.A.

    1986-01-01

    The electrosynthesis of organic compounds with a solid polymetric electrolyte (SPE) makes it possible to carry out the process in the absence of a supporting electrolyte. This facilitates the recovery of the desired product, eliminates the inorganic waste products, and allows a small interelectrode distance, and the absence of the accumulation of gases lowers the voltage in the cell. Some laws governing syntheses of SPE were studied in the example cases of the electrochemical reduction of 2,2,6,6-tetramethyl-4-oxopiperidine to 2,2,6,6-tetramethyl-4-hydroxy-piperidine, the reduction of triacetonamine oxime and triacetonamine azine to 2,2,6,6-tetramethyl-4- aminopiperidine and the oxidation of isobutanol to isobutyric acid. The electrolysis with an SPE was carried out under galvanostatic conditions in an electrolyzer of the filter-press type with forced circulation of the catholyte and anolyte. Low reaction rates are found to be characteristic of all the compounds investigated when the electrolysis is carried out with an SPE.

  11. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    Science.gov (United States)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  12. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, K., E-mail: kesavanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Mathew, Chithra M. [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Ulaganathan, M. [Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637 553 (Singapore)

    2014-05-01

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for PEO(90 wt%)/PVP(10 wt%)/LiClO{sub 4}(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO{sub 4}) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for 8 wt% of LiClO{sub 4} based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO{sub 4}(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm.

  13. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    Science.gov (United States)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  14. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  15. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  16. Measuring oxygen activity in liquid sodium with the use of solid electrolytes

    International Nuclear Information System (INIS)

    Jakes, D.; Skvor, F.

    1976-01-01

    Doped Y 2 O 3 (CaO or MgO up to 20 mol.%) was studied as a possible electrolyte. La 2 O 3 did not prove advantageous. The proposed version of an analyzer is described and the problems of calibration discussed. The reduction of the chemical gradient and the increase in material purity of the electrolytical tube significantly reduced the difference between the theoretical and experimentally obtained emf value, so that measurements may be carried out under these conditions even without calibration. The dependence of log σsub(T) on partial O 2 pressure is given for doped La and Y oxides at a temperature of 700 degC. (M.K.)

  17. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  18. Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Saradh Prasad

    2018-01-01

    Full Text Available Platinum-free counter electrodes (CE were developed for use in efficient and cost-effective energy conversion devices, such as dye-sensitized solar cells (DSSCs. Electrochemical deposition of CoS2 on fluorine-doped tin oxide (FTO formed a hierarchical sheet-like structured CoS2 thin film. This film was engaged as a cost-effective platinum-free and high-efficiency CE for DSSCs. High stability was achieved using a phthaloychitosan-based gel-polymer electrolyte as the redox electrolyte. The electrocatalytic performance of the sheet-like CoS2 film was analyzed by electrochemical impedance spectroscopy and cyclic voltammetry. The film displayed improved electrocatalytic behavior that can be credited to a low charge-transfer resistance at the CE/electrolyte boundary and improved exchange between triiodide and iodide ions. The fabricated DSSCs with a phthaloychitosan-based gel-polymer electrolyte and sheet-like CoS2 CE had a power conversion efficiency (PCE, η of 7.29% with a fill factor (FF of 0.64, Jsc of 17.51 mA/cm2, and a Voc of 0.65 V, which was analogous to that of Pt CE (η = 7.82%. The high PCE of the sheet-like CoS2 CE arises from the enhanced FF and Jsc, which can be attributed to the abundant active electrocatalytic sites and enhanced interfacial charge-transfer by the well-organized surface structure.

  19. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  20. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    Science.gov (United States)

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries.

    Science.gov (United States)

    Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno

    2017-06-09

    Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  3. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  4. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  5. Performance of intermediate temperature (600-800 °C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    The solid electrolyte chosen for this investigation was La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800 °C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La 0.6Sr 0.4Co 0.8Fe 0.2O 3-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSCF-LSGM) composite cathode and nickel-Ce 0.6La 0.4O 2 (Ni-LDC) composite anode having a barrier layer of Ce 0.6La 0.4O 2 (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800 °C.

  6. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  7. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    Science.gov (United States)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  8. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  9. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    OpenAIRE

    Oyunbileg G; Batnyagt G; Enkhsaruul B; T Takeguchi

    2018-01-01

    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the ...

  10. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  11. Assimilation of NH₄Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity.

    Science.gov (United States)

    Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R

    2018-06-01

    Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.

  12. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

    Science.gov (United States)

    Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue

    2018-03-01

    A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

  13. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    Science.gov (United States)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  14. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF

    National Research Council Canada - National Science Library

    Greenbaum, Steven

    1998-01-01

    .... In the first reported attempt to exploit 17O NMR to study lithium battery electrolytes, we have prepared 17O-enriched Li triflate and several electrolytes containing the isotopically enriched salt...

  15. Evaluation of electrolytes for redox flow battery applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.

    2007-01-01

    A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac) 3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy) 3 ](ClO 4 ) 2 in acetonitrile was found to exhibit poor charge/discharge performance

  16. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  17. Proton Conductivity Studies on Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-01-01

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.

  18. Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte

    Science.gov (United States)

    Singh, Arvinder; Chandra, Amreesh

    2015-10-01

    Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g-1 with corresponding specific energy of ~89 Wh kg-1 at 1 A g-1. The proposed composite systems have shown great potential in fabricating high performance supercapacitors.

  19. Poly(oxyethylene) electrolytes based on lithium pentafluorobenzene sulfonate

    International Nuclear Information System (INIS)

    Paillard, E.; Iojoiu, C.; Alloin, F.; Guindet, J.; Sanchez, J.-Y.

    2007-01-01

    Lithium pentafluorobenzene sulfonate was synthesized by a protocol whereby pollution by aromatic nucleophilic substitutions on the perfluorinated ring was avoided. Its poly(oxyethylene) complexes, although less conductive than lithium imide complexes, provided cationic transference numbers higher than 0.5. Surprisingly, even at fairly low concentrations, this salt markedly increased the mechanical properties of the polymer electrolyte. This effect was attributed to telechelic interactions of the ion pairs with distinct polyether chains and is in agreement with the high cationic transference numbers

  20. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.