WorldWideScience

Sample records for based electrocatalysts prepared

  1. Photocatalytic methods for preparation of electrocatalyst materials

    Science.gov (United States)

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  2. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  3. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2015-04-21

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  4. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Miao, Mao; Pan, Jing; He, Ting; Yan, Ya; Xia, Bao Yu; Wang, Xin

    2017-08-16

    Electrocatalytic water splitting is a promising approach for clean and sustainable hydrogen production. Its large-scale application relies on the availability of low cost and efficient electrocatalysts. Earth-abundant transition-metal carbides, especially molybdenum carbides (Mo x C), are regarded as potential candidates to replace state-of-art but expensive platinum-group electrocatalysts. In this Review, we summarize recent progress in Mo x C electrocatalysts for hydrogen evolution reaction (HER). Nanostructure engineering on the design and preparation of highly efficient electrocatalysts based on Mo x C is presented, followed by the comparison and discussion of HER performance on Mo x C-based electrocatalysts. Finally, we offer a perspective on the future development of Mo x C-based electrocatalysts towards HER. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2012-01-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  6. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  7. PtRu/C electrocatalysts prepared using electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Dionísio Furtunato da Silva

    2007-12-01

    Full Text Available PtRu/C electrocatalysts (carbon-supported PtRu nanoparticles were prepared submitting water/ethylene glycol mixtures containing Pt(IV and Ru(III ions and the carbon support to electron beam irradiation. The electrocatalysts were characterized by energy dispersive X ray analysis (EDX, X ray diffraction (XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts showed superior performance for methanol electro-oxidation at room temperature compared to commercial PtRu/C electrocatalyst.

  8. PtRu/C electrocatalysts prepared using γ-irradiation

    Science.gov (United States)

    Silva, Dionísio F.; Neto, Almir Oliveira; Pino, Eddy S.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C electrocatalysts (carbon-supported PtRu nanoparticles) were prepared submitting water/ethylene glycol solutions containing Pt(IV) and Ru(III) ions and the carbon support to γ-irradiation. The water/ethylene glycol ratio (v/v) and the total dose (kGy) were evaluated as synthesis parameters. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C electrocatalyst at ambient temperature and the electrocatalytic activity depends on the water/ethylene glycol ratio used in the preparation.

  9. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    OpenAIRE

    Zehui Yang; Naotoshi Nakashima

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2?-(2,6-pyridine)-5,5?-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphon...

  10. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  11. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    Science.gov (United States)

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  12. Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst

    Science.gov (United States)

    Wang, Zhuang; Zuo, Pengjian; Fan, Liquan; Han, Jianan; Xiong, Yueping; Yin, Geping

    2016-04-01

    A novel electrochemical catalyst of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers (Cosbnd Nsbnd P-CNFs) is prepared by a facile and cost-effective electrospinning technique. Excellent features of the porous carbon nanofibers with large amounts of Co atoms, N/P-doping effect, abundant pyridinic-N and Cosbnd Nx clusters as catalytic active sites, and the advantages of the structure and composition result in a high catalytic efficiency. In alkaline or acidic media, Cosbnd Nsbnd P-CNFs exhibits remarkable electrocatalytic activities and kinetics for oxygen reduction reaction (ORR), superior methanol tolerance and stability, and a similar four-electron pathway. In addition, Cosbnd Nsbnd P-CNFs also shows excellent performance for hydrogen evolution reaction (HER), offering a low onset potential of -0.216 V and a stable current density of 10 mA cm-2 at potential of -0.248 V. The mechanism of ORR and HER catalytic active site arises from the doping of N/P atoms in the Co-based CNFs, which is responsible for the excellent electrocatalytic performance. Due to the excellent catalytic efficiencies, Cosbnd Nsbnd P-CNFs act as a promising catalyst material for fuel cells and water splitting technologies.

  13. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction; Electrocatalizadores a base de platino, cobalto y niquel preparados por aleado mecanico y CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M. A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H{sub 2}SO{sub 4} 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H{sub 2}O{sub 2}. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic

  14. Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method

    International Nuclear Information System (INIS)

    Ramaswamy, N.; Arruda, T.M.; Wen, W.; Hakim, N.; Saha, M.; Gulla, A.; Mukerjee, S.

    2009-01-01

    Ultra low loading noble metal (0.04-0.12 mg Pt /cm 2 ) based electrodes were obtained by direct metallization of non-catalyzed gas diffusion layers via dual ion beam assisted deposition (IBAD) method. Fuel cell performance results reported earlier indicate significant improvements in terms of mass specific power density of 0.297 g Pt /kW with 250 A thick IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V in contrast to the state of the art power density of 1.18 g Pt /kW using 1 mg Pt(MEA) /cm 2 at 0.65 V. In this article we report the peroxide radical initiated attack of the membrane electrode assembly utilizing IBAD electrodes in comparison to commercially available E-TEK (now BASF Fuel Cell GmbH) electrodes and find the pathway of membrane degradation as well. A novel segmented fuel cell is used for this purpose to relate membrane degradation to peroxide generation at the electrode/electrolyte interface by means of systematic pre and post analyses of the membrane are presented. Also, we present the results of in situ X-ray absorption spectroscopy (XAS) experiments to elucidate the structure/property relationships of these electrodes that lead to superior performance in terms of gravimetric power density obtained during fuel cell operation.

  15. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  16. Preparation and characterization of PT-rare earth/C electrocatalysts for PEM fuel cells

    International Nuclear Information System (INIS)

    Santoro, Thais Aranha de Barros

    2009-01-01

    Pt-rare earth/C electrocatalysts (rare earth = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, and Lu) were prepared (20 wt.% and Pt-to-RE atomic ratio of 50:50) by an alcohol reduction process using H 2 PtCl 6 .6H 2 O (Aldrich) and rare earth (III) chlorides (Aldrich) as metal sources, ethylene glycol as solvent and reducing agent, and Vulcan XC72 as support. The electrocatalysts were characterized by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffractometry (XRD) and Transmission Electron Microscopy (TEM). The energy dispersive x-ray spectroscopy analysis showed that the Pt-Rare Earth atomic ratios obtained for all electrocatalysts were similar to those used in the preparations. In all diffractograms, it was observed a broad peak at about 25 degree which was associated to the Vulcan XC72 support material and four peaks at approximately 28=40 degree, 47 degree, 67 degree and 82 degree, which were associated to the (111), (200), (220), (311), and (222) planes, respectively, of the face-centered cubic (fcc) structure characteristic of platinum and platinum alloys. For the Pt-Rare Earth/C electrocatalysts, it was also observed peaks related to the rare earth oxides on the X ray diffractograms. PtLa/C electrocatalysts were prepared at different atomic ratio. Transmission electronic microscopy micrographs of electrocatalysts showed a reasonable distribution of the Pt particles on the carbon support with some agglomerations, which is in agreement with x-ray diffractometry result. The performance for CO, methanol and ethanol oxidation was investigated by cyclic voltammetry, chronoamperometry and Fourier transform infrared spectroscopy spectroscopy. The electrocatalytic activity of the Pt-Rare Earth/C electro catalyst, specially PtLa/C, were higher than that of the Pt/C electrocatalyst. Fourier transform infrared spectroscopy studies for ethanol oxidation on Pt-Rare Earth/C electrocatalyst showed that acetaldehyde and acetic acid were the main products. The PtLa/C (30

  17. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  18. Three-Dimensional Graphene-Based Nanomaterials as Electrocatalysts for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Xuan Ji

    2015-01-01

    Full Text Available In recent years, three-dimensional (3D graphene-based nanomaterials have been demonstrated to be efficient and promising electrocatalysts for oxygen reduction reaction (ORR in fuel cells application. This review summarizes and categorizes the recent progress on the preparation and performance of these novel materials as ORR catalysts, including heteroatom-doped 3D graphene network, metal-free 3D graphene-based nanocomposites, nonprecious metal-containing 3D graphene-based nanocomposites, and precious metal-containing 3D graphene-based nanocomposites. The challenges and future perspective of this field are also discussed.

  19. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    Garcia C, M. A.

    2008-01-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H 2 SO 4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H 2 O 2 . All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70

  20. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  1. On the stability of platinum-composite electrocatalysts prepared with different substrate materials

    Directory of Open Access Journals (Sweden)

    Milica G. Košević

    2016-04-01

    Full Text Available Cyclic voltammetry (CV measurements were conducted and analyzed for a preliminary estimation of the stability of composite electrocatalysts based on Pt. The changes in CV currents of platinum nanoparticles supported on TiO2 were compared to the changes of those supported on commercial carbon. TiO2 was synthesized by sol-gel method and Pt was deposited from Pt colloidal dispersion synthesized by microwave-assisted polyol process. It was found that Pt component in both Pt/TiO2 and Pt/C behaves similarly with respect to stability and activity during the cycling. The loss in activity with cycling was linear and strongly depended on sweep rate, i.e., the relative loss is higher at lower sweep rates. The steady state activities for both electrocatalysts were reached at the level of 65 % of initial activity and required more than 100 voltammetric cycles.

  2. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts

    DEFF Research Database (Denmark)

    Hartl, Katrin Gabriele; Hanzlik, Marianne; Arenz, Matthias

    2012-01-01

    In the present work the identical location transmission electron microscopy (IL-TEM) approach is used for a comparative study of the degradation of several standard Pt-based electrocatalysts for low temperature proton conducting membrane fuel cells (PEMFCs). The paper discusses the mechanisms...... responsible for the Pt surface area loss of carbon supported electrocatalysts. It is demonstrated that seemingly similar catalysts can exhibit under identical treatment pronounced differences in their degradation behaviour. As a consequence individual steps in the synthesis of electrocatalysts can have...

  3. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    Science.gov (United States)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and

  4. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  5. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  6. Highly dispersed TaOx nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells

    KAUST Repository

    Seo, Jeongsuk

    2013-06-06

    Based on the chemical stability of group IV and V elements in acidic solutions, TaOx nanoparticles prepared by electrodeposition in an ethanol-based Ta plating bath at room temperature were investigated as novel nonplatinum electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs). Electrodeposition conditions of Ta complexes and subsequent various heat treatments for the deposited TaOx were examined for the best performance of the ORR. TaOx particles on carbon black (CB), electrodeposited at a constant potential of -0.5 V Ag/AgCl for 10 s and then heat-treated by pure H2 flow at 523 K for 1 h, showed excellent catalytic activity with an onset potential of 0.93 VRHE (for 2 μA cm-2) for the ORR. Surface characterizations of the catalysts were performed by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The loading amounts of the electrodeposited material on the CB were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). All the physical results suggested that high dispersion of TaOx particles on the CB surface with 2-3 nm size was critical and key for high activity. The chemical identity and modified surface structure for the deposited TaOx catalysts before and after H 2 heat treatment were analyzed by X-ray photoelectron spectroscopy (XPS). The formation of more exposed active sites on the electrode surface and enhanced electroconductivity of the tantalum oxide promoted from the H 2 treatment greatly improved the ORR performance of the electrodeposited TaOx nanoparticles on CB. Finally, the highly retained ORR activity after an accelerated durability test in an acidic solution confirmed and proved the chemical stability of the oxide nanoparticles. The high utilization of the electrodeposited TaOx nanoparticles uniformly dispersed on CB for the ORR was comparable to that of commercial Pt/CB catalysts

  7. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction

    Science.gov (United States)

    Ai, Kelong; Li, Zelun; Cui, Xiaoqiang

    2017-11-01

    Heat-treated metal-nitrogen-carbon (M-N-C) materials are emerging as promising non-precious catalysts to replace expensive Pt-based materials for oxygen reduction reaction (ORR) in energy conversion and storage devices. Despite recent progress, their activity and durability are still far from satisfactory. The activity site and particle size are among the most important factors for the ORR activity of M-N-C catalysts. Extensive efforts have been made to reveal the correlation of active site and activity. However, it remains unclear to what extent the particle size will influence the ORR activity of M-N-C materials. Moreover, to the best of our knowledge, controllable synthesis of M-N-C catalysts with high-density activity sites remains elusive. Herein, we develop a straightforward method to produce a monodisperse and size-controlled Co-N-C (Nano-P-ZIF-67) electrocatalyst, and systemically investigate its catalytic mechanisms. Only by optimizing the particle size, Nano-P-ZIF-67 outperforms the commercial 20 wt% Pt/C regarding all evaluating indicators for ORR catalysts in alkaline media including higher catalytic activity, durability, and stronger methanol tolerance. Nano-P-ZIF-67 is assembled into a cell, and the cell shows a power density of 45.5 mW/cm2, which is the highest value among currently studied cathode catalysts. We expect Nano-P-ZIF-67 to be a highly interesting candidate for the next generation of ORR catalysts.

  8. A PEM fuel cell based on electrocatalyst and membrane materials modified by PANAM dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Chapman, T.W.; Godinez, L.A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico)

    2008-10-15

    Due to its high energy conversion efficiency and low emission of pollutants, fuel-cell technology has been generally recognized as a key twenty-first century energy source. For polymer electrolyte membrane fuel cells (PEMFC), it has been found that platinum and its alloys exhibit the best electrocatalytic activity for oxygen reduction. The highest electrocatalytic activity of platinum and its alloys can be achieved when the particles are produced in the nanometer range. In this context, organic molecules have been adopted as templates to control the size of metal nanoparticles. Dendrimers, in particular, have shown promising properties for this application, and strategies that include direct adsorption, electrostatic attachment and covalent bonding have been developed for connecting metal-bearing dendrimers to conducting substrates. This paper reported on the preliminary results of a study that involved the construction and testing of a hydrogen-oxygen PEM fuel cell based on carbon-fiber-paper electrodes coated with hydroxyl-terminated dendrimers that encapsulated nanoparticles of platinum. This prototype cell also employed an ion exchange membrane comprising a cellulose acetate filter functionalized with proton-exchanging dendrimers. A proton-exchange membrane was prepared by binding duplex amine-carboxylate dendrimers to a cellulose-acetate support. With these dendrimer-based materials, a hydrogen-oxygen fuel cell was assembled and the performance compared with cells prepared with Nafion-based membranes. The voltage-current profiles and the power-density curves from the new cell provide encouragement to continue work with these dendrimer-modified materials. The paper discussed the experimental methods, with particular reference to materials; electrode preparation and characterization; proton-exchange membrane preparation; and PEM fuel-cell assembly and testing. It was concluded that the use of the dendritic macromolecules as supports for the nanoparticulate

  9. Preparation of PtRu/C and PtSn/C electrocatalysts using electron beam irradiation for direct and ethanol fuel cell

    International Nuclear Information System (INIS)

    Silva, Dionisio Furtunato da

    2009-01-01

    PtRu/C and PtSn/C electrocatalysts were prepared using electron beam irradiation. The metal ions were dissolved in water/2-propanol and water/ethylene glycol solutions and the carbon support was added. The resulting mixtures were irradiated under stirring. The effect of water/ethylene glycol and water/2-propanol (v/v) ratio, Pt:Ru and Pt:Sn atomic ratios, the irradiation time and dose rate were studied. The obtained materials were characterized by Energy dispersive analysis of X-rays (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV) and Moessbauer spectroscopy. The electro-oxidation of methanol and ethanol were studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were also tested on the Direct Methanol and Ethanol Fuel Cells. PtRu/C electrocatalysts prepared in water/ethylene glycol showed Pt:Ru atomic ratios different from the nominal ones. The results suggested that part of the Ru(III) ions were not reduced. The obtained materials showed the face-centered cubic (fcc) structure of Pt and Pt alloys with crystallite sizes of 2-3 nm. PtRu/C electrocatalysts prepared in water/2-propanol showed Pt:Ru atomic ratios similar to the nominal ones. The obtained materials also showed the fcc structure of platinum and platinum alloys with crystallite sizes of 3-4 nm. PtSn/C electrocatalysts prepared in water/ethylene glycol and water/2-propanol showed Pt:Sn atomic ratios similar to the nominal ones. The obtained materials showed the platinum (fcc) phase with crystallite sizes in the range of 2 - 4 nm and a SnO 2 (cassiterite) phase. The obtained PtRu/C and PtSn/C electrocatalysts showed similar or superior performance for methanol and ethanol electro-oxidation compared to commercial PtRu/C (E-TEK) and PtSn/C (BASF) electrocatalysts. (author)

  10. Bimetallic Carbides-Based Nanocomposite as Superior Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Tang, Yu-Jia; Liu, Chun-Hui; Huang, Wei; Wang, Xiao-Li; Dong, Long-Zhang; Li, Shun-Li; Lan, Ya-Qian

    2017-05-24

    The development of highly efficient and low-cost oxygen evolution electrocatalysts is extremely imperative for the new energy technology. Transition metal carbides have been investigated as remarkable hydrogen evolution reaction (HER) electrocatalysts but undesired oxygen evolution reaction (OER) electrocatalysts and need further study. Here, a cobalt-molybdenum-based bimetallic carbide coated by N-doped porous carbon and anchored on N-doped reduced graphene oxide film (Co 6 Mo 6 C 2 /NCRGO) is synthesized by directly carbonizing the Co-doped polyoxometalate/conductive polymer/graphene oxide (Co-PCG) precursors. The precise control of the Co/Mo molar ratio in the Co-PCG precursor is of critical importance to synthesize pure phase bimetallic carbide of Co 6 Mo 6 C 2 . As the highly active and robust OER electrocatalyst, the Co 6 Mo 6 C 2 /NCRGO composite exhibits excellent activity in alkaline solution, affording a low overpotential of 260 mV versus RHE at 10 mA cm -2 , a small Tafel slope of 50 mV dec -1 , as well as long-term stability. The superior OER performances are strongly associated with the active Co 6 Mo 6 C 2 particles, polypyrrole (PPy)-derived N-doped porous carbon, and the conductive RGO films. Remarkably, it is the first evidence that the bimetallic carbides were used as the OER catalysts with such high OER activity.

  11. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Santos, Mauro Coelho dos

    2015-01-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm -2 and 31 mW.cm -2 for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  12. LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-07

    A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, which released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.

  13. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  14. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  15. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.

    Science.gov (United States)

    Su, Liang; Jia, Wenzhao; Li, Chang-Ming; Lei, Yu

    2014-02-01

    As a new generation of power sources, fuel cells have shown great promise for application in transportation. However, the expensive catalyst materials, especially the cathode catalysts for oxygen reduction reaction (ORR), severely limit the widespread commercialization of fuel cells. Therefore, this review article focuses on platinum (Pt)-based electrocatalysts for ORR with better catalytic performance and lower cost. Major breakthroughs in the improvement of activity and durability of electrocatalysts are discussed. Specifically, on one hand, the enhanced activity of Pt has been achieved through crystallographic control, ligand effect, or geometric effect; on the other hand, improved durability of Pt-based cathode catalysts has been realized by means of the incorporation of another noble metal or the morphological control of nanostructures. Furthermore, based on these improvement mechanisms, rationally designed Pt-based nanoparticles are summarized in terms of different synthetic strategies such as wet-chemical synthesis, Pt-skin catalysts, electrochemically dealloyed nanomaterials, and Pt-monolayer deposition. These nanoparticulate electrocatalysts show greatly enhanced catalytic performance towards ORR, aiming not only to outperform the commercial Pt/C, but also to exceed the US Department of Energy 2015 technical target ($30/kW and 5000 h). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction.

    Science.gov (United States)

    Seo, Bora; Joo, Sang Hoon

    2017-01-01

    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts.

  17. Effects of microstructure and composition of anode Pt based electrocatalysts on performance of direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, H.; Yan, S.; Sun, G. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Xin, Q. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Dalian Inst. of Chemical Physics, Dalian (China). State Key Laboratory of Catalysis

    2008-07-01

    This paper reported on a study in which platinum (Pt)-based electrocatalysts were synthesized and characterized by XRD, TEM and EDS. The focus of the study was on the relationship between the microstructure and components of PtRu and PtSn catalysts and the performance of direct alcohol fuel cells (DAFCs). All of the Pt-based electrocatalysts were prepared by a modified polyol method. XRD patterns of the 2 catalysts showed that both catalysts have an fcc pattern of Pt. This was also confirmed by the shift of diffraction peaks of Pt in both catalysts. Electrochemical measurements were carried out using an EG and G model 273A potentiostat/galvanostat and a three-electrode test cell at room temperature. Membrane electrode assemblies (MEAs) were fabricated with a pair of stainless steel plates with parallel flow-fields. The MEAs were activated by 1 M methanol/ethanol at 75 degrees C for 3 hours before all the data were collected. The study showed that PtRu is active to methanol electrooxidation while PtSn is active to ethanol electrooxidation. Based on the above experimental analysis, it was determined that the dilatation of Pt lattice parameter is favourable for ethanol adsorption, while the suitable contract of Pt lattice parameter is favorable for methanol electrooxidation. Since Pt is more electronegative than Sn, the partial electrons of Sn atom could be transferred to Pt atom leading to filling of Pt d band. Although Ru is as electronegative as Pt, the electric effect of Pt and Ru may not be as pronounced. 4 refs., 4 figs.

  18. Application of in situ techniques for the characterization of NiFe based oxygen evolution reaction (OER) electrocatalysts.

    Science.gov (United States)

    Yang, Weishen; Zhu, Kaiyue; Zhu, Xuefeng

    2018-04-17

    Developing high-efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2). In recent years, NiFe based materials have demonstrated to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this review, the recent advances on in situ techniques for the characterization of NiFe based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, Mӧssbauer spectroscopy, Ultraviolet-visible spectroscopy, differential electrochemical mass spectrometry and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrocatalysts of Pt-TiO2 prepared by sol-gel and microwave-assisted polyol method for the oxygen reduction reaction in 0.5 M H2SO4.

    Science.gov (United States)

    García-Contreras, Miguel A; Fernández-Valverde, Suilma M

    2011-01-01

    Electrocatalysts of Pt-TiO2 were prepared by sol-gel and microwave assisted polyol method for the oxygen reduction reaction in acid media. The prepared electrocatalysts were morphologically and structurally characterized by X-Ray Diffraction, Scanning Electronic Microscopy and EDX analysis. Cyclic voltammetry and rotating disk electrode techniques were employed for electrocatalytic evaluation. It was found that electrocatalysts consisted of crystalline particles with nanometric size, and those obtained at pH = 9 showed an acceptable activity for the oxygen reduction reaction in acid media.

  20. High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Young-Woo Lee

    2015-01-01

    Full Text Available Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt- based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.

  1. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  2. Electrochemically Stable Titanium Oxy-Nitride Support for Platinum Electro-Catalyst for PEM Fuel Cell Applications

    International Nuclear Information System (INIS)

    Seifitokaldani, A.; Savadogo, O.

    2015-01-01

    Titanium Oxy-Nitride is prepared by an in-situ urea-based sol-gel method as a support for the platinum electro-catalyst for the oxygen reduction reaction (ORR). XRD, BET, SEM and EDX are used to analyze the physicochemical properties of the prepared Pt/TiON catalyst; and its electrochemical properties are evaluated by CV and RDE tests. Electrochemical active surface area is determined and compared to that of the commercial Pt/C electro-catalyst. Pt/TiON electro-catalyst showed a better electrochemical stability than those of the commercial Pt/C electro-catalyst. It is also found that the ORR proceeds via four electron transfer mechanism on both Pt/C and Pt/TiON electro-catalysts

  3. Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongfang; Liao, Shijun; Fu, Zhiyong [College of Chemistry, South China University of Technology, Guangzhou 510641 (China); Ji, Shan [South Africa Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town (South Africa)

    2008-04-15

    Novel ternary palladium based alloy catalysts, PdFeIr/C, for oxygen reduction reaction (ORR) have been successfully prepared via an organic colloid method with ethylene glycol as solvent and sodium citrate as complexing agent. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). Electrochemical activity of the catalysts for ORR was evaluated by steady state polarization measurements, which were carried out on an ultra thin layer rotating disk electrode (RDE). Compared to pure Pd/C and Pd{sub 3}Fe/C, results showed that the ORR activity of PdFeIr/C was highest, and its methanol tolerance was better than Pt/C catalyst. (author)

  4. Preparation and characterization of Pt–CeO{sub 2}/C and Pt–TiO{sub 2}/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, R.M. Abdel [Chemistry Department, Faculty of Science, Cairo University, Giza (Egypt); Amin, R.S. [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt); El-Khatib, K.M., E-mail: Kamelced@hotmail.com [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt); Fetohi, Amani E. [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt)

    2016-03-30

    Graphical abstract: - Highlights: • Adding TiO{sub 2} or CeO{sub 2} to Pt/C reduced its Pt particle size. • Methanol oxidation current density decreased as Pt–CeO{sub 2}/C > Pt–TiO{sub 2}/C > Pt/C. • Decreased R{sub ct} values were observed at Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C. - Abstract: Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C electrocatalysts were synthesized by solid state reaction of TiO{sub 2}/C and CeO{sub 2}/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt–CeO{sub 2}/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt–metal oxide/C electrocatalysts.

  5. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    Science.gov (United States)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  6. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  7. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  8. Synthesis of ordered mesoporous carbon/tungsten carbides as a replacement of platinum-based electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Zheng, Huajun; Chen, Zuo; Li, Yang; Ma, Chun’an

    2013-01-01

    The mesoporous material ordered mesoporous carbon/tungsten carbide (OMC/WC) was prepared and used as electrocatalyst for methanol electro-oxidation. WC embedded OMCs was synthesized through carbothermal reactions with a blow of argon and hydrogen by employing ammonium metatungstate as a precursor. In this method, because OMC acted both as the support and the carbon sources, not only the surface area of materials is enlarged, but also the generation of deposit carbon which covers the active sites can be effectively avoided. The characterization, which carried out by X-ray diffraction, Transmission electron microscopy and N 2 adsorption–desorption measurement showed a homogeneous distribution of WC throughout the surface of the mesoporous carbon and the surface area of OMC/WCs was up to 344 m 2 /g. Electro-catalytic properties and mechanism of methanol oxidation on the OMC/WCs electrode has been investigated using cyclic voltammetry and in situ FTIR technique. The results showed that there was only one characteristic methanol oxidation peak during the whole potential scan on the OMC/WCs electrode surface, it also showed an improved CO tolerance of the WC surface. It proved that tungsten carbide had good electro-catalytic property close to that of the Pt-based materials for methanol oxidation and provided a new idea for developing electrode materials in the future

  9. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    Directory of Open Access Journals (Sweden)

    Chunguang Suo

    2014-03-01

    Full Text Available The electrocatalysts used in micro direct methanol fuel cell (μDMFC, such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt:n(Ru:n(Mo = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  10. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    Science.gov (United States)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  11. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based

  12. Microwave synthesis of an electrocatalyst based on CoFeRu for the oxygen reduction reaction in the absence and presence of methanol

    Science.gov (United States)

    Sandoval González, Antonia; Paraguay Delgado, Francisco; Sebastian, Pathiyamattom Joseph; Borja Arco, Edgar

    2014-12-01

    In this work a simple and rapid synthesis method for obtaining (CoFeRu) based electrocatalyst for the oxygen reduction reaction (ORR) in the absence and presence of methanol is reported. The electrocatalyst is synthesized by microwave thermal heating method in a mixture of ethylene glycol/water as reaction media at 220 °C during 30 min, and 600 W of power radiation. The material is characterized by the rotating disk electrode technique. The electrocatalyst shows tolerance to the presence of 1 mol L-1 methanol during the ORR. The material is structurally characterized by X-ray diffraction and its chemical composition is determined by energy-dispersive spectroscopy analysis. The electrocatalyst is a potential candidate to be used as cathode in DMFC.

  13. Preparation of PtRu/C anode electrocatalysts using gamma radiation for methanol electro-oxidation; Preparacao de eletrocatalisadores PtRu/C utilizando radiacao gama para aplicacao como anodo na oxidacao direta de metanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio Fortunato da

    2006-07-01

    Pt Ru/C (carbon-supported Pt Ru nanoparticles) anode electrocatalysts were prepared using radiolytic process (gamma radiation) and tested for methanol electro-oxidation. In this process, water/2-propanol and water/ethylene glycol solutions containing the metallic ions and the carbon support were submitted to gamma radiation under stirring. The water/alcohol ratio (v/v) and the total dose (kGy) were studied. A nominal Pt Ru atomic ratio of 50:50 were used in all experiments. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts prepared in water/2-propanol showed crystallite size in the range of 3-5 nm and Pt Ru atomic ratio of 50:50. The electrocatalysts prepared in water/ethylene glycol showed crystallite size (2-3 nm) smaller than the ones obtained in water/2-propanol, however, the Pt Ru atomic ratios obtained were approximately 80:20, showing that only part of ruthenium ions were reduced. For methanol oxidation the electrocatalytic activity depends on the water/2-propanol and water/ethylene glycol ratio used in the reaction medium. The electrocatalysts prepared in water/2-propanol showed inferior performance to the ones prepared in water/ethylene glycol, which showed similar or superior performances (amperes per gram of platinum) to the commercial electrocatalyst from E-TEK. (author)

  14. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  15. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  16. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers

    Science.gov (United States)

    Yoon, Ki Ro; Choi, Jinho; Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Cheong, Jun Young; Kim, Il-Doo

    2018-03-01

    Efficient electrocatalyst for oxygen reduction reaction (ORR) is an essential component for stable operation of various sustainable energy conversion and storage systems such as fuel cells and metal-air batteries. Herein, we report a facile preparation of meso/macroporous Co and N co-doped carbon nanofibers (Co-Nx@CNFs) as a high performance and cost-effective electrocatalyst toward ORR. Co-Nx@CNFs are simply obtained from electrospinning of Co precursor and bicomponent polymers (PVP/PAN) followed by temperature controlled carbonization and further activation step. The prepared Co-Nx@CNF catalyst carbonized at 700 °C (Co-Nx@CNF700) shows outstanding ORR performance, i.e., a low onset potential (0.941 V) and half wave potential (0.814 V) with almost four-electron transfer pathways (n= 3.9). In addition, Co-Nx@CNF700 exhibits a superior methanol tolerance and higher stability (>70 h) in Zn-air battery in comparison with Pt/C catalyst (∼30 h). The outstanding performance of Co-Nx@CNF700 catalysts is attributed to i) enlarged surface area with bimodal porosity achieved by leaching of inactive species, ii) increase of exposed ORR active Co-Nx moieties and graphitic edge sites, and iii) enhanced electrical conductivity and corrosion resistance due to the existence of numerous graphitic flakes in carbon matrix.

  17. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes.

    Science.gov (United States)

    Li, Yanguang; Zhou, Wu; Wang, Hailiang; Xie, Liming; Liang, Yongye; Wei, Fei; Idrobo, Juan-Carlos; Pennycook, Stephen J; Dai, Hongjie

    2012-05-27

    Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis.

  18. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  19. Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    Science.gov (United States)

    Pourreza, M.; Naseri, N.

    2017-11-01

    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes’ electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm-2) and duration time (2000 s) revealed the highest density (7.6  ×  108 cm-2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP  =  324 mV) and charge transfer resistance (14 Ω). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.

  20. A facile approach to prepare crumpled CoTMPyP/electrochemically reduced graphene oxide nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Juanjuan, E-mail: majj0518@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Liu, Lin; Chen, Qian; Yang, Min [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Wang, Danping [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Tong, Zhiwei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore)

    2017-03-31

    Highlights: • Crumpled CoTMPyP/ERGO hybrid was successfully prepared by a facile two-step process. • CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. • CoTMPyP/ERGO hybrid film shows good electrocatalytic activity and stability for HER. - Abstract: Elaborate design and synthesis of efficient and stable non-Pt electrocatalysts for some renewable energy related conversion/storage processes are one of the major goals of sustainable chemistry. Herein, we report a facile method to fabricate Co porphyrin functionalized electrochemically reduced graphene oxide (CoTMPyP/ERGO) thin film by direct assembly of oppositely charged tetrakis(N-methylpyridyl) porphyrinato cobalt (CoTMPyP) and GO nanosheets under mild conditions followed by an electrochemical reduction procedure. STEM analysis confirms that CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. The electrochemical properties of CoTMPyP/ERGO were investigated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. The results demonstrate that CoTMPyP/ERGO nanohybrid film can serve as excellent electrocatalyst for hydrogen evolution in alkaline solution with high activity and stability. The intimate contact and efficient electron transfer between CoTMPyP and ERGO, as well as the crumpled structure, contribute to the improvement of the electrocatalytic performance.

  1. Performance PtSnRh electrocatalysts supported on carbon-Sb2O5.SbO2 for the electro-oxidation of ethanol, prepared by an alcohol-reduction process

    International Nuclear Information System (INIS)

    Castro, Jose Carlos

    2013-01-01

    PtSnRh electrocatalysts supported on carbon-Sb 2 O 5 .SnO 2 , with metal loading of 20 wt%, were prepared by an alcohol-reduction process, using H 2 PtCl 6 .6H 2 O (Aldrich), RhCl 3 .xH 2 O (Aldrich) and SnCl 2 .2H 2 O (Aldrich), as source of metals; Sb 2 O 5 .SnO 2 (ATO) and carbon Vulcan XC72, as support; and ethylene glycol as reducing agent. The electrocatalysts obtained were characterized physically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The diffractograms showed which PtSnRh/C-ATO electrocatalysts had FCC structure of Pt and Pt alloys, besides several peaks associated with SnO 2 and ATO. The average sizes of crystallites were between 2 and 4 nm. TEM micrographs showed a good distribution of the nanoparticles on the support. The average sizes of particles were between 2 and 3 nm, with good agreement for the average size of the crystallites. The performances of the electrocatalysts were analyzed by electrochemical techniques and in real conditions of operation using single direct ethanol fuel cell. In the chronoamperometry at 50 deg C, the electrocatalysts with carbon (85 wt%) and ATO (15 wt%) support, showed the best activity, and the atomic proportions which achieved the best results were PtSnRh(70:25:05) e (90:05:05). PtSnRh(70:25:05)/85C+15ATO electrocatalysts showed the best performance in a direct ethanol fuel cell. (author)

  2. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly exposed Fe-N4active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode.

    Science.gov (United States)

    Anandhababu, Ganesan; Abbas, Syed Comail; Lv, Jiangquan; Ding, Kui; Liu, Qin; Babu, Dickson D; Huang, Yiyin; Xie, Jiafang; Wu, Maoxiang; Wang, Yaobing

    2017-02-14

    Progress in the development of efficient electrocatalysts for oxygen reduction reactions is imperative for various energy systems such as metal-air batteries and fuel cells. In this paper, an innovative porous two-dimensional (2D) poly-iron-phthalocyanine (PFe-Pc) based oxygen reduction electrocatalyst created with a simple solid-state chemical reaction without pyrolysis is reported. In this strategy, silicon dioxide nanoparticles play a pivotal role in preserving the Fe-N 4 structure during the polymerization process and thereby assist in the development of a porous structure. The new polymerized phthalocyanine electrocatalyst with tuned porous structure, improved specific surface area and more exposed catalytic active sites via the 2D structure shows an excellent performance towards an oxygen reduction reaction in alkaline media. The onset potential (E = 1.033 V) and limiting current density (I = 5.58 mA cm -2 ) are much better than those obtained with the commercial 20% platinum/carbon electrocatalyst (1.046 V and 4.89 mA cm -2 ) and also show better stability and tolerance to methanol crossover. For practical applications, a zinc-air (Zn-air) battery and methanol fuel cell equipped with the PFe-Pc electrocatalyst as an air cathode reveal a high open circuit voltage and maximum power output (1.0 V and 23.6 mW cm -2 for a methanol fuel cell, and 1.6 V and 192 mW cm -2 for the liquid Zn-air battery). In addition, using the PFe-Pc electrocatalyst as an air cathode in a flexible cable-type Zn-air battery exhibits excellent performance with an open-circuit voltage of 1.409 V. This novel porous 2D PFe-Pc has been designed logically using a new, simple strategy with ultrahigh electrochemical performances in Zn-air batteries and methanol fuel cell applications.

  4. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes

    Science.gov (United States)

    Zhang, Yuxia; Xiao, Qingqing; Guo, Xin; Zhang, Xiaoxue; Xue, Yifei; Jing, Lin; Zhai, Xue; Yan, Yi-Ming; Sun, Kening

    2015-03-01

    Cobalt carbonate hydroxide hydrate (CCHH) nanosheets have been densely and strongly anchored onto mildly oxidized multiwalled carbon nanotubes with the assistance of diethylenetriamine (DETA). The resulted hybrid (CCHH/MWCNT) is used as high efficient electrocatalyst for water oxidation with an extremely low onset potential of ∼1.47 V vs. RHE and an overpotential of 285 mV to achieve a current density of 10 mA cm-2 in 1.0 mol L-1 KOH. The CCHH/MWCNT electrode affords a Tafel slope of 51 mV/decade and an exchange current density of 2.5 × 10-7 A cm-2. Moreover, the CCHH/MWCNT catalyst delivers a high faradic efficiency of 95% and possesses remarkable stability for long-term electrolysis of water. By contrast, neither MWCNT nor CCHH exhibits apparent catalytical activity towards water oxidation. Importantly, we demonstrate that DETA plays crucial role in determining the morphology, structure of the CCHH/MWCNT, therefore resulting in an enhanced performance for water oxidation. This work not only provides a novel cobalt-based electrocatalyst for oxygen evolution, but also offers a useful and viable approach to deliberately synthesize functional nanocomposites for applications in energy conversion and storage.

  5. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  6. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-01-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403

  7. Highly selective and active CO2reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures.

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-08

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm -2 and a turnover frequency of 4.1 s -1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  8. Preparation and characterization of PtRu/C, PtBi/C, PtRuBi/C electrocatalysts for direct electro-oxidation of ethanol in PEM fuels cells using the method of reduction by sodium borohydride

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2010-01-01

    Pt/C, PtBi/C, PtRu/C and PtRuBi/C electrocatalysts were prepared by a borohydride reduction methodology and tested for ethanol oxidation. This methodology consists in mix a solution with sodium hydroxide and sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. It was studied the addition method of borohydride (drop by drop addition or rapid addition). The obtained electrocatalysts were characterized by energy dispersive X ray spectroscopy (EDX), thermogravimetric analysis (TGA), X ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry. The ethanol electro-oxidation was studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were tested in real conditions of operation by unit cell tests. The stability of PtRuBi/C electrocatalysts was evaluated by cyclic voltammetry, chronoamperometry using the ultra-thin porous coating technique and ring-disk electrode. The PtRuBi/C electro catalyst apparently presented a good performance for ethanol electro-oxidation but experimental evidences showed accentuated bismuth dissolution. (author)

  9. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...... our experimental methods to provide the most optimal compromise between the ease of carrying out the measurements and for ensuring comparability with PEMFC conditions. For the ORR, the effect of temperature, scan rate, Ohmic drop correction and background subtraction on the catalyst activity...

  10. Development of plurimetallic electrocatalysts prepared by decomposition of polymeric precursors for EtOH/O{sub 2} fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Livia M.; Almeida, Thiago S.; Andrade, Adalgisa R. de, E-mail: ardandra@ffclrp.usp.br [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil)

    2012-03-15

    This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L{sup -1}H{sub 2}SO{sub 4}), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt{sub 64}Sn{sub 15}Ru{sub 13}Ni{sub 8}/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt{sub 64}Sn{sub 15}Ru{sub 13}Ni{sub 8}/C catalyst displayed the best performance for DEFC. (author)

  11. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  12. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  13. Bimetallic electrocatalysts on titanium dioxide-based supports for methanol oxidation and oxygen evolution

    Science.gov (United States)

    Fuentes, Roderick Eliel

    Electrocatalysts are essential for the development of active and durable fuel cells and hydrogen production technologies. Generally, electrochemical processes of energy conversion and hydrogen generation in a Proton Exchange Membrane (PEM) utilize precious metals, such as platinum, iridium and ruthenium, as electrocatalysts. For the methanol oxidation and oxygen evolution reaction, a bimetallic structure can be used to enhance kinetics and increase stability. It is desired to support electrocatalysts to disperse nanoparticles on the surface and promote better catalyst utilization. Traditionally, carbon has been used as an electrochemical support because it has a high surface area and high electrical conductivity. The problem with carbon is that it is not a very stable material and can corrode at voltages more than 0.9 V, affecting performance of the electrochemical reaction. Therefore, it would be useful to support electrocatalysts in a stable material with suitable conductivity. Using titanium dioxide as a support can be advantageous due to its corrosion-resistant capability. TiO2 exhibit different crystalline structures, such as anatase and rutile, which can have an effect on catalytic activity. Unfortunately, it is not conductive; hence, it is not used in electrochemical applications. However, it can be doped with niobium to increase electronic conductivity; but, it usually come at the expense of surface area. In this work, TiO 2 and Nb-TiO2 were studied as platinum/ruthenium and iridium/ruthenium nanoparticles supports for the electrochemical oxidation of methanol and oxygen evolution, respectively. Even though the conductivity of our supports was very low, adding a considerable loading of nanoparticles increased conductivity of the composite material (support + catalyst) to acceptable levels. Using cyclic voltammetry (CV) and direct methanol fuel cell tests creating a membrane electrode assembly (MEA), Pt-Ru supported on Nb-TiO2 and TiO 2 showed superior

  14. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Mýrdal, Jón Steinar Garðarsson; Hansen, Heine Anton

    2015-01-01

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core–shell nano-particle consists of a copper core interspersed....... This shows that the mixed Cu135@Au174 core–shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates....... that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles...

  15. Oxygen reduction reaction on a highly-alloyed Pt-Ni supported carbon electrocatalyst in acid solution

    CSIR Research Space (South Africa)

    Zheng, H

    2010-08-31

    Full Text Available of these electrocatalysts during the ORR was attributed to a composition effect, disordered stucture and low activity for methanol oxidation reaction. Most Pt alloy electrocatalysts were prepared via a complex procedure or by high temeperature thermal reduction...

  16. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction.

    Science.gov (United States)

    Hu, Chao; Yu, Chang; Li, Mingyu; Wang, Xiuna; Dong, Qiang; Wang, Gang; Qiu, Jieshan

    2015-02-25

    An all-carbon hybrid, composed of coal-based nitrogen-doped carbon dots decorated on graphene, was prepared via hydrothermal treatment. The hybrid possesses comparable electrocatalytic activity, better durability and methanol tolerance than those of the commercial Pt-based electrocatalysts for oxygen reduction reaction, indicative of its great potential in fuel cells.

  17. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad

    2017-08-08

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  18. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes.

    Science.gov (United States)

    Liang, Yongye; Wang, Hailiang; Diao, Peng; Chang, Wesley; Hong, Guosong; Li, Yanguang; Gong, Ming; Xie, Liming; Zhou, Jigang; Wang, Jian; Regier, Tom Z; Wei, Fei; Dai, Hongjie

    2012-09-26

    Electrocatalyst for oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and energy-intensive industries. The design and synthesis of highly active ORR catalysts with strong durability at low cost is extremely desirable but remains challenging. Here, we used a simple two-step method to synthesize cobalt oxide/carbon nanotube (CNT) strongly coupled hybrid as efficient ORR catalyst by directly growing nanocrystals on oxidized multiwalled CNTs. The mildly oxidized CNTs provided functional groups on the outer walls to nucleate and anchor nanocrystals, while retaining intact inner walls for highly conducting network. Cobalt oxide was in the form of CoO due to a gas-phase annealing step in NH(3). The resulting CoO/nitrogen-doped CNT (NCNT) hybrid showed high ORR current density that outperformed Co(3)O(4)/graphene hybrid and commercial Pt/C catalyst at medium overpotential, mainly through a 4e reduction pathway. The metal oxide/carbon nanotube hybrid was found to be advantageous over the graphene counterpart in terms of active sites and charge transport. Last, the CoO/NCNT hybrid showed high ORR activity and stability under a highly corrosive condition of 10 M NaOH at 80 °C, demonstrating the potential of strongly coupled inorganic/nanocarbon hybrid as a novel catalyst system in oxygen depolarized cathode for chlor-alkali electrolysis.

  19. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    Science.gov (United States)

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  20. Tuning crystal phase of NiS{sub x} through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Rao, Yi [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Hu, Wen-Hui; Liu, Yan-Ru; Yan, Kai-Li; Chi, Jing-Qi; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-02-28

    Highlights: • Electro-oxidized nickel foam as a support has been used to prepare NiS{sub x} phases. • Ni(OH){sub 2} layer on electro-oxidized NF is responsible for the growth of β-NiS. • NiS{sub x}/NF(Ox) composed of β-NiS and Ni{sub 3}S{sub 2} has enhanced electrocatalytic activity. • The growth mechanisms of mixed NiS{sub x} phases of NiS{sub x}/NF(Ox) have been discussed. - Abstract: A facile solvothermal sulfurization using electro-oxidized nickel foam (NF(Ox)) as support has been applied to prepare NiS{sub x}/NF(Ox) electrocatalyst with highly efficient activity for oxygen evolution reaction (OER). XRD patterns confirm the composition of NiS{sub x}/NF(Ox): two kinds of crystal phase including β-NiS and Ni{sub 3}S{sub 2}. While using bare NF as support under identical conditions, only Ni{sub 3}S{sub 2} phase can be detected. SEM images reveal two kinds of morphologies of NiS{sub x}/NF(Ox) including pyramids structure of β-NiS and nanorod-like structure of Ni{sub 3}S{sub 2}, which implies the tuning effect of electro-pretreatment of NF on the selective preparation of NiS{sub x} crystal phase. It can be speculated that Ni(OH){sub 2} layer derived from electro-oxidized NF is responsible for the growth of β-NiS while metallic Ni is transformed into Ni{sub 2}S{sub 3} during sulfurization. Electrochemical measurements for OER indicate the enhanced electrocatalytic activity of NiS{sub x}/NF(Ox) with a small overpotential of 72 mV to reach 10 mA cm{sup −2} compared with Ni{sub 3}S{sub 2}/NF, which may be ascribed to the improved electron-transfer kinetics relating to the unique atomic configurations and crystalline structures of β-NiS. The electro-oxidation pretreatment of nickel foam provides a simple and convenient method by tuning different NiS{sub x} crystal phases for preparing excellent OER eletrocatalysts.

  1. Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis

    DEFF Research Database (Denmark)

    Zhong, Lijie; Hu, Yang; Cleemann, Lars Nilausen

    2017-01-01

    Non-precious metal catalysts (NPMCs) are candidate materials to replace platinum for proton exchange membrane fuel cells (PEMFCs). Herein we reported a type of iron-based NPMCs prepared by high pressure pyrolysis for the oxygen reduction reaction (ORR) in acidic media. The catalysts are in form...... of carbon microspheres in a sub-microscale consisting of iron-containing nanoparticles encapsulated by graphitic layers. By tailoring temperatures and duration of pyrolysis, the best ORR catalyst was achieved at 700 degrees C and 75 min, which exhibits an onset potential of 0.85 V at 0.1 mA cm(-2...

  2. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    Science.gov (United States)

    Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan

    2016-01-01

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116

  3. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sandesh Y. Sawant

    2016-12-01

    Full Text Available Microbial fuel cells (MFCs are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR. Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored.

  4. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells.

    Science.gov (United States)

    Sawant, Sandesh Y; Han, Thi Hiep; Cho, Moo Hwan

    2016-12-24

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored.

  5. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts

    OpenAIRE

    Brault , Pascal

    2016-01-01

    Review article; International audience; The present review is describing recent advances in plasma deposition and treatment of low temperature proton exchange membrane fuel cells electrocatalysts. Interest of plasma processing for growth of platinum based, non-precious and metal free electrocatalysts is highlighted. Electrocatalysts properties are tentatively correlated to plasma parameters.

  6. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Niu, Wenhan; Li, Ligui; Liu, Xiaojun; Wang, Nan; Liu, Ji; Zhou, Weijia; Tang, Zhenghua; Chen, Shaowei

    2015-04-29

    Thermally removable nanoparticle templates were used for the fabrication of self-supported N-doped mesoporous carbons with a trace amount of Fe (Fe-N/C). Experimentally Fe-N/C was prepared by pyrolysis of poly(2-fluoroaniline) (P2FANI) containing a number of FeO(OH) nanorods that were prepared by a one-pot hydrothermal synthesis and homogeneously distributed within the polymer matrix. The FeO(OH) nanocrystals acted as rigid templates to prevent the collapse of P2FANI during the carbonization process, where a mesoporous skeleton was formed with a medium surface area of about 400 m(2)/g. Subsequent thermal treatments at elevated temperatures led to the decomposition and evaporation of the FeO(OH) nanocrystals and the formation of mesoporous carbons with the surface area markedly enhanced to 934.8 m(2)/g. Electrochemical measurements revealed that the resulting mesoporous carbons exhibited apparent electrocatalytic activity for oxygen reduction reactions (ORR), and the one prepared at 800 °C (Fe-N/C-800) was the best among the series, with a more positive onset potential (+0.98 V vs RHE), higher diffusion-limited current, higher selectivity (number of electron transfer n > 3.95 at +0.75 V vs RHE), much higher stability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 M KOH solution. The remarkable ORR performance was attributed to the high surface area and sufficient exposure of electrocatalytically active sites that arose primarily from N-doped carbons with minor contributions from Fe-containing species.

  7. Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges.

    Science.gov (United States)

    Wang, Hou; Wu, Yan; Yuan, Xingzhong; Zeng, Guangming; Zhou, Jin; Wang, Xin; Chew, Jia Wei

    2018-03-01

    MXene, an important and increasingly popular category of postgraphene 2D nanomaterials, has been rigorously investigated since early 2011 because of advantages including flexible tunability in element composition, hydrophobicity, metallic nature, unique in-plane anisotropic structure, high charge-carrier mobility, tunable band gap, and favorable optical and mechanical properties. To fully exploit these potentials and further expand beyond the existing boundaries, novel functional nanostructures spanning monolayer, multilayer, nanoparticles, and composites have been developed by means of intercalation, delamination, functionalization, hybridization, among others. Undeniably, the cutting-edge developments and applications of clay-inspired 2D MXene platform as electrochemical electrode or photo-electrocatalyst have conferred superior performance and have made significant impact in the field of energy and advanced catalysis. This review provides an overview of the fundamental properties and synthesis routes of pure MXene, functionalized MXene and their hybrids, highlights the state-of-the-art progresses of MXene-based applications with respect to supercapacitors, batteries, electrocatalysis and photocatalysis, and presents the challenges and prospects in the burgeoning field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene

    Science.gov (United States)

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-11-01

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.

  9. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene

    Science.gov (United States)

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-01-01

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295

  10. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    International Nuclear Information System (INIS)

    Gacutan, E M; Tongol, B J; Climaco, M I; Telan, G J; Malijan, F; Hsu, H Y; Garcia, J; Fulo, H

    2012-01-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm −2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H 2 SO 4 :HNO 3 . The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0–15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd–NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst. (paper)

  11. Nanofibrous electrocatalysts

    Science.gov (United States)

    Liu, Di Jia; Shui, Jianglan; Chen, Chen

    2016-05-24

    A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

  12. Preparation of Bimetallic Pd-Co Nanoparticles on Graphene Support for Use as Methanol Tolerant Oxygen Reduction Electrocatalysts

    Directory of Open Access Journals (Sweden)

    R. N. Singh

    2012-12-01

    Full Text Available Graphene-supported (40-x wt% Pd x wt% Co (0≤x≤13.33 alloys/composites have been prepared by a microwave-assisted polyol reduction method and been investigated for their structural and electrocatalytic properties for the oxygen reduction reaction (ORR in 0.5 M H2SO4 at 298 K. The study demonstrated that the bimetallic Pd-Co composite nanoparticles are, in fact, alloy nanoparticles with fcc crystalline structure. Partial substitution of Pd by Co (from 3.64 to 13.33 wt% in 40 wt% Pd/graphene decreases the lattice parameter as well as the crystallite size and increases the apparent catalytic activity, the latter, however, being the greatest with 8 wt% Co. The ORR activity of the active 32 wt% Pd 8wt% Co is found to be considerably low when it was deposited on the support multiwall carbon nanotubes under similar conditions. The rotating disk electrode study indicated that the ORR on 32 wt% Pd 8 wt% Co/GNS in 0.5 M H2SO4 follows approximately the four-electron pathway.

  13. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    Science.gov (United States)

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier

  14. Facile Spray-Pyrolysis Synthesis of Yolk-Shell Earth-Abundant Elemental Nickel-Iron-Based Nanohybrid Electrocatalysts for Full Water Splitting.

    Science.gov (United States)

    Li, Hao; Ci, Suqin; Zhang, Mengtian; Chen, Junxiang; Lai, Keyuan; Wen, Zhenhai

    2017-12-08

    The development of high-activity electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical but remains a daunting challenge. In this work, yolk-shell Ni 3 Fe/Ni 3 FeN was prepared by a spray-pyrolysis technique, which could be scaleable. The yolk-shell Ni 3 Fe/Ni 3 FeN presents excellent catalytic activity for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) with overpotentials of 268 and 166 mV at 10 mA cm -2 , respectively, and bears a prominent electrochemical durability. Overall water splitting with an electrolyzer containing the yolk-shell Ni 3 Fe/Ni 3 FeN as the cathode and anode only requires a cell voltage of 1.62 V to reach a current density of 10 mA cm -2 . The present research not only introduces a new route for the synthesis of advanced functional electrocatalysts for overall water splitting but also sheds light on their potential commercial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of method of preparation of Pt Ru/C electrocatalysts on the catalytic activity for the ethanol oxidation reaction in acidic medium; Influencia do metodo de preparacao de eletrocatalisadores PtRu/C sobre a atividade catalitica frente a reacao de oxidacao de etanol em meio acido

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Walber dos Santos; Silva, Uriel Lean Valente; Souza, Jose Pio Iudice de, E-mail: jpio@ufpa.br [Universidade Federal do Para, (UFPA), Belem, PA (Brazil). Instituto de Ciencias Exatas e Naturais. Faculdade de Quimica

    2013-09-01

    In this work the influence of variations in the borohydrate reduction method on the properties of Pt Ru/C electrocatalysts was investigated. The electrocatalysts were prepared using 1:1 ; 2:1; 5:1; 50:1 and 250:1 molar ratios of NaBH{sub 4} to metals. The reduction was also performed by dripping or by fast addition of the solution. The results showed that Pt Ru nanoparticles obtained by fast addition had the smallest crystallite sizes. It was also noted that the catalytic activity increased as the borohydrate:metal molar ratio increased. The Pt Ru/C electrocatalysts (50:1) obtained by fast addition presented the best catalytic activity for ethanol electro-oxidation. (author)

  16. Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hui Meng

    2015-07-01

    Full Text Available This review selectively summarizes the latest developments in the Pd-based cataysts for low temperature proton exchange membrane fuel cells, especially in the application of formic acid oxidation, alcohol oxidation and oxygen reduction reaction. The advantages and shortcomings of the Pd-based catalysts for electrocatalysis are analyzed. The influence of the structure and morphology of the Pd materials on the performance of the Pd-based catalysts were described. Finally, the perspectives of future trends on Pd-based catalysts for different applications were considered.

  17. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  19. Electrocatalysts based on Ru nanoparticles : effect of methanol on the ORR Tafel slope

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Leyva-Noyola, F.; Galvan-Valencia, M. [Univ. Autonoma de Zacatecas, Guadalupe, Zacatecas (Mexico). U.A. de Ciencias Quimicas; Solorza-Feria, O. [Centro de Investigacion y Estudios Avanzados del I.P.N., Col. San Pedro Zacatenco (Mexico). Depto. de Quimica

    2008-04-15

    Proton Exchange Membrane Fuel Cells (PEMFCs) are promising candidates in systems that require small-sized power sources such as non-stationary electronic equipment and transportation. However, the scientific and technical challenges of PEMFC which include diminution of catalytic charges, catalyst substitution, membrane development, optimization of bipolar plates and a global cost decrease require further study. A strategic approach that will help with the diffusion and assimilation of the PEMFC technology involves the use of fuel other than hydrogen in cells such as methanol. However, the use of methanol in direct methanol fuel cells (DMFC) presents further challenges including slow kinetics in both anodic and cathodic reactions, and fuel crossover due to exchange membrane alcohol permeability, meaning a lower global efficiency of DMFC as compared with the hydrogen fuel cell. This article provided a contribution to the synthesis and characterization of novel catalytic materials research for DMFC. A series of materials based on ruthenium (Ru) nanoparticles were produced and catalytically studied in a multielectron charge transfer process. These materials are electroactive for the oxygen reduction reaction (ORR) in acid medium and methanol tolerant as well. The Ru nanoparticles and some binary and ternary mixtures with platinum (Pt) and cobalt (Co) were obtained by a pyrolysis procedure of solid precursors at 190 degrees Celsius. Physiochemical characterization was conducted by using a scanning electronic microscopy and energy dispersion spectroscopy mapping. Kinetic parameters of the cathodic reaction in a 0.5M sulfuric acid solution at different methanol concentrations were compared using electrochemical characterization with cyclic voltammetry and rotating disc electrodes. It was concluded that methanol has a major effect on the ORR electrocatalytic activity on binary Ru-Pt materials with a higher Pt proportion. In addition, the methanol effect on the Tafel slope

  20. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei

    2016-05-01

    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characteristics of NixFe1−xOy Electrocatalyst on Hematite as Photoanode for Solar Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2017-11-01

    Full Text Available The use of hematite as the photoanode for photoelectrochemical hydrogen production by solar energy has been actively studied due to its abundance, stability, and adequate optical properties. Deposition of an electrocatalyst overlayer on the hematite may increase kinetics and lower the onset potential for water splitting. NixFe1−xOy is one of the most effective electrocatalysts reported for this purpose. However, the condition and results of the previous reports vary significantly, and a comprehensive model for NixFe1−xOy/hematite is lacking. Here, we report a simple and novel chemical bath deposition method for depositing low-onset-potential NixFe1−xOy electrocatalyst on hematite. With a Ni percentage of 80% and an immersion time of 2 min, the as-prepared NixFe1−xOy overlayer raised the photovoltage from 0.2 V to 0.7 V, leading to a cathodic shift of the onset potential by 400 mV, while maintaining the same level of current density. The dependence of the electrochemical and photoelectrochemical characteristics of the photoanode on the condition of the electrocatalyst was studied systematically and explained based on energy level diagrams and kinetics.

  2. Preparation, characterization and evaluation of electrocatalysts supported on functionalized carbon black for polymer exchange membrane fuel cell applications; Preparacao, caracterizacao e avaliacao de eletrocatalisadores suportados em carbono funcionalizado para aplicacao em celulas a combustivel tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Marcelo do

    2008-12-18

    The fuel cell technology associated with the growing exigency of low environmental impact energy became prosperous in the world energy scenery. The fuel cell is basically a device that converts directly the chemical energy of a fuel into electrical and thermal energy with a continuous operation by the constant feed of a fuel. Especially, the carbon black Vulcan XC72 is usually employed as an electro catalyst support, and some factors as an accessible and high surface area in order to get maximum particles dispersion, pore size, adequate pore distribution and the presence of functional groups in the carbon black surface are considered fundamental characteristics for an innovative materials development. However, the Vulcan XC72 still reveals insufficient conditions for these purposes. This study consists in the preparation and in the physical chemical characterization of functionalized carbon black by hydrogen peroxide and by polymeric chains with proton conduction properties, and its posterior utilization as electro catalyst support for PEMFC and DMFC application. After the carbon functionalization, an improvement in the carbon black dispersion in water media was observed, a beneficial effect for electro catalyst preparation. It was also observed, that the functional groups and the polymeric chains worked as stabilizers in the particle growing, producing much more homogeneous electrocatalysts, exhibiting smaller average particle size. Especially, in the case of polymeric chains functionalization, a decrease in the ohmic drop was observed for this system, attributed to an improvement in the proton transference. (author)

  3. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  4. A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Peipei Huo

    2018-01-01

    Full Text Available Based on its unique features including 2D planar geometry, high specific surface area and electron conductivity, graphene has been intensively studied as oxygen reduction reaction (ORR electrocatalyst and supercapacitor material. On the one hand, graphene possesses standalone electrocatalytic activity. It can also provide a good support for combining with other materials to generate graphene-based electrocatalysts, where the catalyst-support structure improves the stability and performance of electrocatalysts for ORR. On the other hand, graphene itself and its derivatives demonstrate a promising electrochemical capability as supercapacitors including electric double-layer capacitors (EDLCs and pseudosupercapacitors. A hybrid supercapacitor (HS is underlined and the advantages are elaborated. Graphene endows many materials that are capable of faradaic redox reactions with an outstanding pseudocapacitance behavior. In addition, the characteristics of graphene-based composite are also utilized in many respects to provide a porous 3D structure, formulate a novel supercapacitor with innovative design, and construct a flexible and tailorable device. In this review, we will present an overview of the use of graphene-based composites for sustainable energy conversion and storage.

  5. A molecular molybdenum–schiff base electro-catalyst for generating hydrogen from acetic acid or water

    International Nuclear Information System (INIS)

    Cao, Jie-Ping; Fang, Ting; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-01-01

    Highlights: • The reaction of ligand, H 2 L and MoCl 5 gives a Mo(VI) complex [MoL(O) 2 ] 1. • Complex 1 is capable of catalyzing hydrogen evolution from acetic acid and water. • TOF reaches a maximum of 68 (DMF) and 356 (buffer, pH 6) moles/h, respectively. • Sustained proton reduction catalysis occurs over a 69 h period and no decomposition of 1. - ABSTRACT: The reaction of 2-pyridylamino-N,N-bis(2-methylene-4-ethyl-6-tert-butylphenol) (H 2 L) and MoCl 5 gives a molybdenum(VI) complex [MoL(O) 2 ] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that complex 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 68 (in N,N-Dimethylformamide (DMF)) and 356 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H 2 over a 69 h electrolysis period and no observable decomposition of the catalyst

  6. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide

    Science.gov (United States)

    Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

    2013-12-01

    High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 μM was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material

  7. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  8. Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction

    Science.gov (United States)

    Liu, Yuchuan; Huang, Baobing; Xie, Zailai

    2018-01-01

    Cost-effective electrocatalysts for hydrogen evolution reaction are attractive for energy conversion and storage processes. Herein, a variety of molybdenum-based catalysts have been synthesized by means of a simple hydrothermal method using cyclodextrin as structural guiding agent and carbon source. With optimizing the usage of cyclodextrin, both molybdenum oxidate and α-type molybdenum carbide can be controllable synthesized in terms of phase composition, morphology and porosity. X-ray diffraction patterns and high resolution transition electronic images show that the as-prepared sample appears a core-shell structure of MoO2/α-Mo2C heterojunction. Surprisingly, such heterojunction as an electrocatalyst exhibits a remarkable hydrogen evolution reaction (HER) performance with low overpotential of 100 mV in alkaline electrolyte, and of 152 mV in acidic condition at a current density 10 mA/cm2, with very low Tafel slope of 50 mV/dec and 65 mV/dec, respectively. This specific activity of presented material is found to be superior to those of the most active Mo-based electrocatalysts reported so far. We believe that our finding of cost-effective electrocatalysts for hydrogen evolution reaction would open the door for future studies and applications of molybdenum compounds.

  9. Pt, PtCo and PtNi electrocatalysts prepared with mechanical alloying for oxygen reduction reaction in alkaline medium; Electrocatalizadores de Pt, PtCo y PtNi preparados por aleado mecanico para la reaccion de reduccion de oxigeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A.; Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: miguel.garcia@inin.gob.mx; Vargas-Garcia, J.R. [ESIQIE-IPN, Mexico D.F. (Mexico

    2009-09-15

    Pt, PtCo and PtNi electrocatalysts were prepared using mechanical alloying and their electrocatalytic activity was investigated for oxygen reduction reaction (ORR) in KOH 0.5 M using cyclic voltametry and rotary disc electrode (RDE) techniques. The electrocatalysts were characterized using x-ray diffraction, sweep electron microscopy, dispersive x-ray transmission and chemical analysis. The physical characterization indicated that all the electrocatalysts are alloys formed by agglomerated particles composed of nanocrystals. The chemical analysis showed the presence of iron in the alloys. For the electrocatalytic evaluation, polarization curves and Koutecky-Levich and Tafel graphs were obtained to determine the kinetic parameters of the electrocatalysts in the study. With the same experimental conditions, the PtCo presented better electrocatalytic performance with a higher exchange current density. [Spanish] Se prepararon electrocatalizadores de Pt, PtCo y PtNi por aleado mecanico y se investigo su actividad electrocatalitica para la reaccion de reduccion de oxigeno (RRO) en KOH 0.5 M utilizando las tecnicas de Voltametria ciclica y Electrodo de Disco Rotatorio. Los electrocatalizadores se caracterizaron por difraccion de rayos X, Microscopia electronica de Barrido, de Transmision y analisis quimico por dispersion de rayos X. La caracterizacion fisica indico que todos los electrocatalizadores son aleaciones formadas de particulas aglomeradas, compuestas de nanocristales. El analisis quimico mostro la presencia de hierro en las aleaciones. Para la evaluacion electrocatalitica se obtuvieron curvas de polarizacion, graficas de Koutecky-Levich y de Tafel para determinar los parametros cineticos de los electrocatalizadores en estudio. En las mismas condiciones experimentales, el PtCo presento el mejor desempeno electrocatalitico con la densidad de corriente de intercambio mas alta.

  10. Performance PtSnRh electrocatalysts supported on carbon-Sb{sub 2}O{sub 5}.SbO{sub 2} for the electro-oxidation of ethanol, prepared by an alcohol-reduction process; Desempenho de eletrocatalisadores PtSnRh suportados em carbono-Sb{sub 2}O{sub 5}.SnO{sub 2} para a oxidacao eletroquimica do etanol, preparados pelo metodo de reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Jose Carlos

    2013-07-01

    PtSnRh electrocatalysts supported on carbon-Sb{sub 2}O{sub 5}.SnO{sub 2}, with metal loading of 20 wt%, were prepared by an alcohol-reduction process, using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), RhCl{sub 3}.xH{sub 2}O (Aldrich) and SnCl{sub 2}.2H{sub 2}O (Aldrich), as source of metals; Sb{sub 2}O{sub 5}.SnO{sub 2} (ATO) and carbon Vulcan XC72, as support; and ethylene glycol as reducing agent. The electrocatalysts obtained were characterized physically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The diffractograms showed which PtSnRh/C-ATO electrocatalysts had FCC structure of Pt and Pt alloys, besides several peaks associated with SnO{sub 2} and ATO. The average sizes of crystallites were between 2 and 4 nm. TEM micrographs showed a good distribution of the nanoparticles on the support. The average sizes of particles were between 2 and 3 nm, with good agreement for the average size of the crystallites. The performances of the electrocatalysts were analyzed by electrochemical techniques and in real conditions of operation using single direct ethanol fuel cell. In the chronoamperometry at 50 deg C, the electrocatalysts with carbon (85 wt%) and ATO (15 wt%) support, showed the best activity, and the atomic proportions which achieved the best results were PtSnRh(70:25:05) e (90:05:05). PtSnRh(70:25:05)/85C+15ATO electrocatalysts showed the best performance in a direct ethanol fuel cell. (author)

  11. Bifunctional electrocatalyst for oxygen/air electrodes

    International Nuclear Information System (INIS)

    Sasikala, N.; Ramya, K.; Dhathathreyan, K.S.

    2014-01-01

    Highlights: • Nano-Silver powder was prepared by chemical method. • Ag catalyst was characterized by SEM and XRD studies. • Ag was investigated as bi-functional electrocatalyst for oxygen/air electrodes. • Ag shows good electrochemical activity towards OER and ORR reactions. - Abstract: Nano-Silver powder has been studied as bi-functional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Ag nano-powder has been prepared by a simple wet chemical method with Silver nitrate as precursor and Glucose as reducing agent. X-ray Diffraction and Scanning Electron Microscopy studies were carried out to characterize the Silver catalyst. Electrochemical oxygen evolution characterization shows anodic peak typically at the range between 0.350 and 0.514 V Vs Hg/HgO corresponding to Silver oxidation followed by the onset of oxygen evolution at 0.706 V. Oxygen reduction reaction studies carried out using Rotating Disc Electrode (RDE) confirm the four electron reaction mechanism. Ag catalyst shows promising characteristics for oxygen evolution and oxygen reduction

  12. Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance.

    Science.gov (United States)

    Lo Vecchio, Carmelo; Alegre, Cinthia; Sebastián, David; Stassi, Alessandro; Aricò, Antonino S; Baglio, Vincenzo

    2015-11-25

    Next generation cathode catalysts for direct methanol fuel cells (DMFCs) must have high catalytic activity for the oxygen reduction reaction (ORR), a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/Ti n O 2 n -1 ) were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB) and 30% Pd/Vulcan (Pd/Vul) were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/Ti n O 2 n -1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/Ti n O 2 n -1 catalysts in DMFC cathodes.

  13. Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance

    Directory of Open Access Journals (Sweden)

    Carmelo Lo Vecchio

    2015-11-01

    Full Text Available Next generation cathode catalysts for direct methanol fuel cells (DMFCs must have high catalytic activity for the oxygen reduction reaction (ORR, a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/TinO2n–1 were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB and 30% Pd/Vulcan (Pd/Vul were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/TinO2n–1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/TinO2n–1 catalysts in DMFC cathodes.

  14. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

    Science.gov (United States)

    Zhang, Jian; Wang, Tao; Liu, Pan; Liao, Zhongquan; Liu, Shaohua; Zhuang, Xiaodong; Chen, Mingwei; Zschech, Ehrenfried; Feng, Xinliang

    2017-05-01

    Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm-2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.

  15. Recent Progress on Fe/N/C Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-07-01

    Full Text Available In order to reduce the overall system cost, the development of inexpensive, high-performance and durable oxygen reduction reaction (ORRN, Fe-codoped carbon-based (Fe/N/C electrocatalysts to replace currently used Pt-based catalysts has become one of the major topics in research on fuel cells. This review paper lays the emphasis on introducing the progress made over the recent five years with a detailed discussion of recent work in the area of Fe/N/C electrocatalysts for ORR and the possible Fe-based active sites. Fe-based materials prepared by simple pyrolysis of transition metal salt, carbon support, and nitrogen-rich small molecule or polymeric compound are mainly reviewed due to their low cost, high performance, long stability and because they are the most promising for replacing currently used Pt-based catalysts in the progress of fuel cell commercialization. Additionally, Fe-base catalysts with small amount of Fe or new structure of Fe/Fe3C encased in carbon layers are presented to analyze the effect of loading and existence form of Fe on the ORR catalytic activity in Fe-base catalyst. The proposed catalytically Fe-centered active sites and reaction mechanisms from various authors are also discussed in detail, which may be useful for the rational design of high-performance, inexpensive, and practical Fe-base ORR catalysts in future development of fuel cells.

  16. Co(OH)2 @PANI Hybrid Nanosheets with 3D Networks as High-Performance Electrocatalysts for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Feng, Jin-Xian; Ding, Liang-Xin; Ye, Sheng-Hua; He, Xu-Jun; Xu, Han; Tong, Ye-Xiang; Li, Gao-Ren

    2015-11-25

    Hybrid electrocatalysts with excellent electrocatalytic activity for hydrogen reduction are fabricated using an efficient and facile electrochemical route. The electronic and synergistic effects between Co(OH)2 and polyaniline (PANI) in the composite structure are the key factors that generate the high electrocatalytic activity and excellent stability. A highly efficient, non-precious metal-based flexible electrocatalyst for high-performance electrocatalysts is shown, which reveals a novel route for the design and synthesis of electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    Science.gov (United States)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  18. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.

    Science.gov (United States)

    Su, Chao; Wang, Wei; Chen, Yubo; Yang, Guangming; Xu, Xiaomin; Tadé, Moses O; Shao, Zongping

    2015-08-19

    The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient stability of the state-of-the-art IrO2 electrocatalyst for the OER inhibits its use in practical devices. Here, SrM0.9Ti0.1O3-δ (M = Co, Fe) perovskites with different B-site transition metal elements were investigated as potentially cheaper OER electrocatalysts. They were prepared through a typical sol-gel route, and their catalytic activities for the OER in alkaline medium were comparatively studied using rotating disk electrodes. Both materials show high initial intrinsic activities in alkaline electrolyte for the OER, comparable to the benchmark perovskite-type electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), but SrCo0.9Ti0.1O3-δ (SCT) possessed more operational stability than SrFe0.9Ti0.1O3-δ (SFT), even better than BSCF and IrO2 catalysts. Based on the X-ray photoelectron spectra analysis of the oxidation states of the surface Co/Fe in both SFT and SCT before and after the OER tests, an explanation for their different operational stabilities was proposed by adopting a reported activity descriptor correlated to the eg occupancy of the 3d electron of the surface transition metal cations in the perovskite oxides. The above results indicate that SCT is a promising alternative electrocatalyst for the OER and can be used in electrochemical devices for water oxidation.

  19. Study of the oxygen reduction reaction using Pt-Rare earths (La, Ce, Er) electrocatalysts for application of PEM fuel cells; Estudo da reacao de reducao do oxigenio utilizando eletrocatalisadores a base de Pt-terras raras (La, Ce, Er) para aplicacao em celulas a combustivel tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Thiago Bueno

    2013-07-01

    The complexity of the oxygen reduction reaction (ORR) and its potential losses make it responsible for the most part of efficiency losses at the Fuel Cells. For this reaction the electrocatalyst witch is most appropriated and shows better performance is platinum, a noble metal that elevates the cost, raising barriers for Fuel Cells technology to enter the market. First this work focuses on reducing the amount of platinum used in the cathode, by being replaced by rare earths. The most common methods of synthesis involves a large amount of steps and this work proposed to prepare the electrocatalyst through a simpler way that would not take so many steps and time to be done. Using an ultrasound mixer the electrocatalyst was prepared mixing platinum supported on carbon black and the rare earths lanthanum, cerium and erbium oxides to be applied in a half-cell study of the ORR. The Koutecky-Levich plots shows that among the electrocatalysts prepared the Pt80Ce20/C had the catalytic activity close to the commercial BASF platinum on carbon black, suggesting that the reaction was taken by the 4-electron path. As found in some works in literature, among the rare earth used to study the ORR, cerium is the one witch shows the better performance because it is able to store and provide oxygen. This feature is of great interest for the ORR because this reaction is first order to the oxygen concentration. Results show that is possible to reduce the amount of platinum maintaining the same electrocatalyst activity. (author)

  20. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  1. Electroless plating of Ni–B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiao-Ping; Dai, Hong-Bin, E-mail: mshbdai@scut.edu.cn; Wu, Lin-Song; Wang, Ping, E-mail: mspwang@scut.edu.cn

    2017-07-01

    Graphical abstract: A Ni–B film was grown on Ni foam to form a binder-free highly efficient electrocatalyst for hydrazine oxidation in alkaline medium. The newly-developed Ni–B/Ni foam electrocatalyst may promote the practical application of hydrazine as a viable energy carrier for fuel cells. - Highlights: • A Ni–B film grown on Ni foam electrocatalyst is prepared by the electrless plating. • The Ni–B film shows high activity and stability for N{sub 2}H{sub 4} electrooxidation reaction. • The improved catalytic property is ascribed to B-tuned electronic structure of Ni. • The resultant catalyst may promote application of N{sub 2}H{sub 4} as a viable energy carrier. - Abstract: Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni–B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni–B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.

  2. Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst

    DEFF Research Database (Denmark)

    Zhu, Nan; Han, Shuang; Gan, Shiyu

    2013-01-01

    Along with reduced graphene oxide (RGO), water soluble Prussian blue nanoparticles (PBNPs, around 6 nm) are synthesized and broadly characterized. These two types of highly stable, low‐cost and chemically compatible nanomaterials are exploited as building ingredients to prepare electrically...... enhanced and functionally endorsed nanohybrid electrocatalysts, which are further transformed into free‐standing graphene papers. PBNPs doped graphene papers show highly efficient electrocatalysis towards reduction of hydrogen peroxide and can be used alone as flexible chemical sensors for potential...... applications in detection of hydrogen peroxide or/and other organic peroxides. The as‐prepared PBNPs–RGO papers are further capable of biocompatible accommodation of enzymes for development of free‐standing enzyme based biosensors. In this regard, glucose oxidase is used as an example for electrocatalytic...

  3. Oxygen reduction using platinum electrocatalysts prepared by liquid phase photo-deposition; Reduccion de oxigeno mediante electrocatalizadores de platino preparados por foto-deposicion en fase liquida

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Camacho, B.; Perez-Galindo, J. A.; Valenzuela, M. A.; Gonzalez-Huerta, R. G. [Instituto Politecnico Nacional, ESIQIE, Mexico D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    This work presents the synthesis and characterization of nanometric-sized Pt/C electrochemical catalysts using impregnation and liquid phase photo-deposition methods. Two platinum precursors were used, C{sub 10}H{sub 14}O{sub 4}Pt (Pt acetylacetonate, Pt(acac){sub 2}) and H{sub 2}PtCl{sub 6} (hexachloroplatinic acid) to study the effect on the particle size and the electrocatalytic behavior in the oxygen reduction reaction. The characterization of the catalysts was done using x-ray diffraction, hydrogen chemisorption and transmission electron microscopy. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques. Pt (E-tek) was used as a reference catalyst. The peaks of the platinum were identified based on the x-ray diffraction results, and correspond to crystalline phases (111) and (200), whose intensity was greater when using H{sub 2}PtCl{sub 6} versus Pt(acac){sub 2}. The hydrogen chemisorption and transmission electron microscopy tests found that the larger-sized particle (1-5 nm) and greater metallic dispersion was obtained using Pt(acac){sub 2} as a platinum precursor and liquid phase photo-deposition. It was also found that this material presented the best electrochemical response, showing a open-circuit potential of 0.96 V and over-potential of 0.05 V with respect to H{sub 2}PtCl{sub 6} and of 0.22 V with respect to the catalyst obtained using impregnation. [Spanish] En este trabajo se presenta la sintesis y caracterizacion electroquimica de catalizadores de tamano nanometrico de Pt/C empleando los metodos de impregnacion y foto-deposicion en fase liquida. Se utilizaron dos precursores del platino C{sub 10}H{sub 14}O{sub 4}Pt (acetil-acetonato de Pt, Pt(acac){sub 2}) y H2PtCl6 (acido hexacloroplatinico), para estudiar el efecto que tienen sobre el tamano de particula y el comportamiento electrocatalitico en la reaccion de reduccion de oxigeno. La caracterizacion de los catalizadores se realizo mediante

  4. High-Efficiency Co/CoxSy@S,N-Codoped Porous Carbon Electrocatalysts Fabricated from Controllably Grown Sulfur- and Nitrogen-Including Cobalt-Based MOFs for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Liu, Shengwen; Zhang, Xian; Wang, Guozhong; Zhang, Yunxia; Zhang, Haimin

    2017-10-04

    Developing bifunctional oxygen electrocatalysts with superior catalytic activities of oxygen reduction reaction (ORR) and oxygen revolution reaction (OER) is crucial to their practical energy storage and conversion applications. In this work, we report the fabrication of Co/Co x S y @S,N-codoped porous carbon structures with various morphologies, specific surface areas, and pore structures, derived from controllably grown Co-based metal-organic frameworks with S- and N-containing organic ligands (thiophene-2,5-dicarboxylate, Tdc; and 4,4'-bipyridine, bpy) utilizing solvent effect (e.g., water and methanol) under room temperature and hydrothermal conditions. The results demonstrate that Co/Co x S y @S,N-codoped carbon fibers fabricated at a pyrolytic temperature of 800 °C (Co/Co x S y @SNCF-800) from Co-MOFs fibers fabricated in methanol under hydrothermal conditions as electrocatalysts exhibit superior bifunctional ORR and OER activities in alkaline media, endowing them as air cathodic catalysts in rechargeable zinc-air batteries with high power density and good durability.

  5. A facile lyophilization synthesis of MoS{sub 2} QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenzhu; Li, Feng; Wang, Xiang; Tang, Yu; Yang, Yuanyuan; Gao, Wenbin [State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Li, Rong, E-mail: liyirong@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2017-04-15

    Highlights: • The target catalyst was prepared by a facile and novel lyophilization method. • The HER activity of various morphologies of MoS{sub 2}-based catalysts were studied. • The catalyst owns superior dispersion, large active sites and high conductivity. • The catalyst exhibits superior HER activity and long-term stability. - Abstract: The development of robust, active and nonprecious electrocatalysts for hydrogen evolution reaction is quite urgent but still challenging. Here MoS{sub 2} QDs@Graphene is prepared via a facile lyophilization method, which leads to a better dispersion of MoS{sub 2} QDs on the graphene and optimizes the electronic mobility between the MoS{sub 2} layers. Impressively, the electrocatalyst MoS{sub 2} QDs@Graphene demonstrates the remarkable activity for HER in 0.5 M H{sub 2}SO{sub 4} solution, with a current density of 10 mA cm{sup −2} at a low overpotential of 140 mV and strong stability in acid condition. The achieved excellent performance is attributed to its morphology with large amount of active sites fabricated by the lyophilization method. This new method opens new pathway for the fabrication of non-precious metal electrocatalysts achieving high activity.

  6. Design of oxide electrocatalysts for efficient conversion of CO2 into liquid fuels

    DEFF Research Database (Denmark)

    Bhowmik, Arghya

    Electrochemical conversion of CO2 into high energy density liquid fuels utilizing renewable electricity can usher in a carbon neutral society without limiting the energy consumption. Lack of active and efficient electrocatalysts for this reaction remains a challenge. Research efforts towards...... of atomic scale reaction thermodynamic needed to engineer efficient and active oxide electrocatalysts. Rutile oxides are explored for CO2 reduction reaction (CO2RR) through density functional theory based simulation of reaction thermodynamics. Oxygen atom coordinated intermediates constitute the reaction...

  7. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution.

    Science.gov (United States)

    Cui, Shengsheng; Qian, Manman; Liu, Xiang; Sun, Zijun; Du, Pingwu

    2016-09-08

    Scalable and robust catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for the implementation of water splitting technologies as a globally applicable method of producing renewable hydrogen. Herein, we report nitrogen-enriched porous carbon materials containing copper/copper oxide, derived from copper porphyrin-based conjugated mesoporous polymers (CMPs), as a bifunctional catalyst for both HER and OER. These catalysts have a high surface area, unique tubular structure, and strong synergistic effect of copper/copper oxide and porous carbons, resulting in excellent performance for water splitting. Under optimal conditions, the catalyst exhibits a quite low overpotential for OER (350 mV to reach 1.0 mA cm(-2) and 450 mV to reach 10 mA cm(-2) ) in alkaline media, which places it among the best copper-based water oxidation catalysts reported in the literature. Furthermore, the catalyst shows good catalytic activity for HER at a low overpotential (190 mV to reach 1.0 mA cm(-2) ) as well as a high current density (470 mV to reach 50 mA cm(-2) ). The results suggest that hybridized copper/carbon materials are attractive noble-metal-free catalysts for water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ni-based electrocatalyst for water oxidation developed In-situ in a HCO3 -/CO2 system at near-neutral pH

    KAUST Repository

    Joya, Khurram Saleem

    2014-03-10

    Electrochemically generated NiOx nanoworms from a neutral bicarbonate system split water into dioxygen and protons with tremendous efficiency and stability. The NiOx electrocatalyst follows a pH-potential dependence, revealing a PCET (proton coupled electron transfer) mechanism of one electron and one proton oxidation. It does not require proton abstracting phosphate or borate buffers for electrogeneration and catalysis, and shows promising activity for anodic oxidation of water in phosphate, borate, and carbonate buffers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile one-pot synthesis of CoS{sub 2}-MoS{sub 2}/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2016-10-30

    Highlights: • Ternary hybrid CoS{sub 2}-MoS{sub 2}/CNTs electrocatalysts have been prepared. • CNTs as support may provide good conductivity and low the agglomeration of MoS{sub 2}. • CoS{sub 2} with intrinsic metallic conductivity may enhance the activity for HER. • Ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity and stability for HER. - Abstract: Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS{sub 2}-MoS{sub 2}/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS{sub 2} structure. CoS{sub 2} with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS{sub 2} and amorphous MoS{sub 2}. Scanning electron microscopy (SEM) images show that strong combination between MoS{sub 2}, CNTs and regular orthohexagonal CoS{sub 2} has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS{sub 2}/CNTs and MoS{sub 2}/CNTs, the ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec{sup −1}, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS{sub 2}-based electrocatalysts for HER.

  10. Activity and Stability of RuOx Based Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Paoli, Elisa Antares

    The focus of this Ph.D. thesis is on the electrocatalytic oxygen evolution reaction (OER) in acidic media for Proton Exchange Membrane (PEM) Electrolyser applications. This technology is an attractive alternative for storage of renewable energy, such as from solar and wind power, in small scale...... delocalized hydrogen refueling stations. The sluggish kinetics of OER and the high costs of the materials represent some of the biggest technological challenges for PEM electrolysers. The current technology relies on Pt group based materials and in particular ruthenium and iridium are the most active....... By coupling Electrochemical Quartz Crystal Microbalance (EQCM) measurements with Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) analyses of the electrolyte, we emphasize the importance of monitoring the mass loss. Finally, the thesis focuses on improving the stability of ruthenium dioxide under OER...

  11. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  12. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis for their th......Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis......-film method was used for electrochemical analysis of the prepared electrocatalysts. SEMEDX, BET and powder conductivity measurements were used as complementary techniques to complete characterisation of the electrocatalysts. Additionally, they were compared in their properties with previously reported data...

  14. Three-Dimensional Framework of Graphene Nanomeshes Shell/Co3O4Synthesized as Superior Bifunctional Electrocatalyst for Zinc-Air Batteries.

    Science.gov (United States)

    Wang, Congwei; Zhao, Zheng; Li, Xiaofeng; Yan, Rui; Wang, Jie; Li, Anni; Duan, Xiaoyong; Wang, Junying; Liu, Yong; Wang, Junzhong

    2017-11-29

    The synthesis of durable and low-cost electrocatalyst is crucial but challenging. Here, we developed a one-pot pyrolysis approach toward the preparation of heteroatom-doped hierarchical porous three-dimensional (3D) graphene frameworks decorated with multilayer graphene shell-coated cobalt oxide nanocrystal. Large literal sheet size of graphene nanomeshes may stimulate rapid thermolysis with cobalt-oleate complex to form Co 3 O 4 nanocrystals and in situ growth of multilayer graphene coating co-doped by boron and nitrogen with controlling heating rate up to 600 °C. This new material worked as superior bifunctional electrocatalyst on oxygen reduction reaction and oxygen evolution reaction to commercial Pt/C with better onset potential/half-wave potentials, larger current density, better stability, and stronger methanol tolerance. The heteroatom co-doping into porous/curved graphene confined nanocrystals in 3D porous walls provided adequate accessibility of created catalytic active sites and ideal mass transport route for the excellent catalytic activity on redox reaction of oxygen. The synthesized material-based Zn-air battery further confirmed its superior electrolytic activity with high specific capacity and smaller overpotential. This one-pot pyrolysis method shows a great potential of scalable synthesis of high-performance practical electrocatalyst for metal-air batteries and fuel cells at a low cost.

  15. Development of Fe-Ni/YSZ-GDC electro-catalysts for application as SOFC anodes. XRD and TPR characterization, and evaluation in ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Electro-catalysts based on Fe-Ni alloys were prepared using physical mixture and modified Pechini methods; they were supported on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC). The composites had compositions of 35% metal load and 65% support (70% wt. YSZ and 30% wt. GDC mixture) (cermets). The samples were characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in ethanol steam reforming at 650 C for six hours and in the temperature range 300 - 900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) in spinel structure; after reducing the sample in hydrogen, Ni-Fe alloys were formed. The presence of Ni decreased the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of Fe to Ni anchored to YSZ-GDC increased the hydrogen production and inhibits the carbon deposition. The bimetallic 30Fe5Ni samples reached an ethanol conversion of about 95%, and a hydrogen yield up to 48% at 750 C. In general, the ethanol conversion and hydrogen production were independent of the metal content in the electro-catalyst. However, the substitution of Ni for Fe significantly reduced the carbon deposition on the electro-catalyst: 74, 31 and 9 wt. % in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (orig.)

  16. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4 carbu...

  17. Electrocatalyst for alcohol oxidation in fuel cells

    Science.gov (United States)

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  18. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  19. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  20. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  1. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.

    Science.gov (United States)

    Chaudhari, Nitin K; Jin, Haneul; Kim, Byeongyoon; Lee, Kwangyeol

    2017-08-31

    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H 2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

  2. Electrocatalyst for alcohol oxidation at fuel cell anodes

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  3. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    Science.gov (United States)

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.

    Science.gov (United States)

    Rasul, Shahid; Anjum, Dalaver H; Jedidi, Abdesslem; Minenkov, Yury; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-02-09

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst.

    Science.gov (United States)

    Chung, Dong Young; Jun, Samuel Woojoo; Yoon, Gabin; Kim, Hyunjoong; Yoo, Ji Mun; Lee, Kug-Seung; Kim, Taehyun; Shin, Heejong; Sinha, Arun Kumar; Kwon, Soon Gu; Kang, Kisuk; Hyeon, Taeghwan; Sung, Yung-Eun

    2017-05-17

    A highly active and stable non-Pt electrocatalyst for hydrogen production has been pursued for a long time as an inexpensive alternative to Pt-based catalysts. Herein, we report a simple and effective approach to prepare high-performance iron phosphide (FeP) nanoparticle electrocatalysts using iron oxide nanoparticles as a precursor. A single-step heating procedure of polydopamine-coated iron oxide nanoparticles leads to both carbonization of polydopamine coating to the carbon shell and phosphidation of iron oxide to FeP, simultaneously. Carbon-shell-coated FeP nanoparticles show a low overpotential of 71 mV at 10 mA cm -2 , which is comparable to that of a commercial Pt catalyst, and remarkable long-term durability under acidic conditions for up to 10 000 cycles with negligible activity loss. The effect of carbon shell protection was investigated both theoretically and experimentally. A density functional theory reveals that deterioration of catalytic activity of FeP is caused by surface oxidation. Extended X-ray absorption fine structure analysis combined with electrochemical test shows that carbon shell coating prevents FeP nanoparticles from oxidation, making them highly stable under hydrogen evolution reaction operation conditions. Furthermore, we demonstrate that our synthetic method is suitable for mass production, which is highly desirable for large-scale hydrogen production.

  6. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO{sub 2} to formate

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Zhang, Rui, E-mail: zhangrui@ycit.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Lei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin, 150080 (China); Xu, Qi [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Wei, E-mail: wangw@ycit.edu.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China)

    2017-01-30

    Highlights: • Bi/Cu electrode was prepared by depositing nano-sized Bi catalyst on Cu foil. • The Bi/Cu electrode can reduce CO{sub 2} to formate with a low overpotential. • The energy efficiency for reduction of CO{sub 2} to formate can reach to 50%. • A Tafel slope of 128 mV decade{sup −1} was observed for producing formate. - Abstract: Electrochemical reduction of carbon dioxide (CO{sub 2}) to formate is energetically inefficient because high overpotential is required for reduction of CO{sub 2} to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO{sub 2} to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO{sub 2} which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO{sub 2} to formate can reach to 50% when an Ir{sub x}Sn{sub y}Ru{sub z}O{sub 2}/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  7. A hydrogen-evolving Ni(P2N2)2 electrocatalyst covalently attached to a glassy carbon electrode: preparation, characterization, and catalysis. comparisons with the homogeneous analogue.

    Science.gov (United States)

    Das, Atanu K; Engelhard, Mark H; Bullock, R Morris; Roberts, John A S

    2014-07-07

    A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 × 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 × 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)2 complexes in electrochemical or photoelectrochemical devices.

  8. Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Vargas-Garcia, J.R. [Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Cortes-Jacome, M.A.; Toledo-Antonio, J.A.; Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Mexico, D.F.,0 7730 (Mexico)

    2008-11-15

    Electrocatalysts of Pt, PtCo and PtNi powders for the oxygen reduction reaction (ORR) were processed by Mechanical Alloying. Physical characterization was made by X-ray diffraction, scanning electron microscopy and scanning transmission electron microscopy. It was found that milled powders formed agglomerates in the range of 0.2-20 {mu}m formed by nanometric size crystallites. The synthesized powders were alloys of PtFe, PtCoFe and PtNiFe due to iron incorporation during the milling process. The binding energies of Pt in the alloys were determined by XPS. Polarization curves were obtained by Rotating Disk Electrode technique in 0.5 M H{sub 2}SO{sub 4} to determine the electrocatalytic activity of the mechanically alloyed powders. Tafel curves were plotted and kinetic parameters for the ORR were calculated. The PtFe alloy showed the highest electrocatalytic activity for the ORR. However, the lowest overpotential was found for the PtCoFe alloy and it also showed a higher current exchange density. A linear relationship was found between the Pt-binding energy in the alloys and the overpotential at the same current density independent of the Pt alloy composition. (author)

  9. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  10. Polymer Based Thin Film Screen Preparation Technique

    Science.gov (United States)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  11. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    Science.gov (United States)

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  12. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  13. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst

    DEFF Research Database (Denmark)

    Polonský, J.; Mazúr, P.; Paidar, M.

    2014-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is an attractive way of producing carbon-free hydrogen. One of the drawbacks of this method is the need for precious metal-based electrocatalysts. This calls for a highly efficient utilization of the precious metal, which can be obtained by di...

  14. Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Ma, Chun’an; Liu, Weiming; Shi, Meiqin; Lang, Xiaoling; Chu, Youqun; Chen, Zhaoyang; Zhao, Di; Lin, Wenfeng; Hardacre, Chris

    2013-01-01

    In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price

  15. Perovskites As Electrocatalysts for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; De La Osa Puebla, Ana Raquel; Jensen, Jens Oluf

    2014-01-01

    Water electrolysis is a promising technology for the production of hydrogen as a sustainable energy storage source, combined with solar or wind power. In this work various electrocatalysts for the Oxygen Evolution Reaction (OER) electrode were synthesized and characterized by several techniques s...

  16. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  17. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2001-07-06

    Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for space and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. The carbon monoxide (CO) contamination of H{sub 2} greatly affects electrocatalysts used at the anode of PEMFCs and decrease the cell performance. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H{sub 2}-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO-tolerant catalyst is needed. In this work, we have synthesized several novel electrocatalysts (Pt/C, Pt/Ru/C Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell. The concentration of CO in the H{sub 2} fuel varied from 10 ppm to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effect of temperature, catalyst compositions, and electrode film preparation methods on the performance of PEM fuel cell has also been studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalysts (10 wt % Pt/Ru/C, 20 wt % Pt/Mo/C) were more CO-tolerant than 20 wt % Pt catalyst alone. It was also observed that spraying method is better for the preparation of electrode film than the brushing technique. Some of these results are summarized in this report.

  18. Metal oxide electrocatalysts for alternative energy technologies

    Science.gov (United States)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  19. HIGH THROUGHPUT STUDIES OF HYDROGEN EVOLUTION ELECTROCATALYST FOR WATER ELECTROLYSIS

    OpenAIRE

    Putri, Radwinda Kurnia; Hayden, Brian; Prasetya, Agus; -, Sihana

    2013-01-01

    This thesis presents a study of hydrogen evolution electrocatalyst for alkaline water electrolysis. Hydrogen production through the electrolysis of water requires the development of new electrocatalysts in order to reduce the hydrogen evolution over-potential of the cathode in order to make water electrolysis more competitive and efficient. An alternative approach in the optimisation of water splitting electrocatalyst may Be the modification of the metal electrocatalytic behaviour by supporti...

  20. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS) Electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Digraskar, Renuka V.; Mulik, Balaji B. [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India); Walke, Pravin S. [National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai 400098, MH (India); Ghule, Anil V. [Department of Chemistry, Shivaji University, Kolhapur, 416004, MH (India); Sathe, Bhaskar R., E-mail: bhaskarsathe@gmail.com [Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MH (India)

    2017-08-01

    Graphical abstract: CZTS nano-electrocatalyst (2.6 ± 0.4 nm) for HER is synthesized by one step sonochemical method with uniform size distribution, which shows promisingly lower onset potential with higher current density and longer stability. - Highlights: • The nanostructured Cu{sub 2}ZnSnS{sub 4} (CZTS; ∼3 nm) based electrocatalytic systems were developed by facile sonochemical method. • The novel Cu{sub 2}ZnSnS{sub 4} based nanoclustered cathode improves the electrocatalytic performance toward hydrogen generation reaction (HER). • The electrocatalytic result exhibits lower Tafel slope, higher exchange current density, excellent current stability and lower charge transfer resistance. • The high activity due to synergetic effect of Cu, Zn, Sn and S from their internal cooperative supports. - Abstract: A novel and facile one-step sonochemical method is used to synthesize Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer−Emmett−Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density −130 mA/cm{sup 2}, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm{sup 2}, excellent

  1. Characterization of composite materials of electroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Millan, W.; Toledano Thompson, T.; Smit, Mascha A. [Centro de Investigacion Cientifica de Yucatan (CICY), Unidad de Materiales, Calle 43 No. 130, Col. Chuburna de Hidalgo, 97200 Merida, Yucatan (Mexico); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ), Parque Tecnologico Queretaro, 76700 Queretaro Sanfandila, Queretaro (Mexico)

    2009-01-15

    Platinum-free electrocatalysts based on electroconductive polymer, modified with cobalt, were prepared and characterized for the oxygen reduction reaction (ORR). The carbon-supported materials were: carbon/polyaniline/cobalt, carbon/polypyrrole/cobalt and carbon/poly(3-methylthiophene)/cobalt. Also the corresponding cobalt-free precursors were studied. EDAX studies show that in cobalt-modified catalysts, significant percentages of cobalt, between 5 and 7% in weight, are present. FTIR, TGA, and EDAX studies confirmed that the addition of cobalt modifies the chemical structure of C-Pani, C-Ppy, and C-P3MT materials. Cyclic voltammetry shows reduction peaks corresponding to the ORR for all materials and kinetic parameters were calculated based on lineal voltammetry using RDE at different rotating speeds. It was found that C-P3MT-Co has highest exchange current densities, followed by C-Ppy and C-Ppy-Co. All samples have Tafel slopes between -110 and -120 V/dec, indicating that the first electron transfer is the decisive step in the global ORR. Potentiostatic tests showed an adequate stability of cobalt-modified samples in acid medium at ORR potentials. Based on the potential range at which ORR occurs, the exchange current density and stability tests, it is concluded that the best material for potential application as fuel cell cathode catalyst is C-Ppy-Co. (author)

  2. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei

    2016-10-11

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  3. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    DEFF Research Database (Denmark)

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik

    2012-01-01

    study an approach to utilising a suitable electrocatalyst support was followed. Of the materials selected from a literature review, TaC has proved to be stable under the conditions of the accelerated stability test proposed in this study. The test involved dispersing each potential support material...... in a mixture of trifluoromethanesulfonic acid (TFMSA) and hydrogen peroxide at 130 °C. The liquid phase was subsequently analysed using ICP-MS with respect to the occurrence of ions potentially originating from the support material tested. The TaC support selected was additionally characterised...... by thermogravimmetric and differential thermal analysis to prove its thermal stability. A modified version of the Adams fusion method was used to deposit IrO2 on the support surface. A series of electrocatalysts was prepared with a composition of (IrO2)x(TaC)1−x, where x represents the mass fraction of IrO2...

  4. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  5. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  6. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    Science.gov (United States)

    Wang, Zhaoyang; Li, Jiantao; Tian, Xiaocong; Wang, Xuanpeng; Yu, Yang; Owusu, Kwadwo Asare; He, Liang; Mai, Liqiang

    2016-08-03

    Exploring non-noble and high-efficiency electrocatalysts is critical to large-scale industrial applications of electrochemical water splitting. Currently, nickel-based selenide materials are promising candidates for oxygen evolution reaction due to their low cost and excellent performance. In this work, we report the porous nickel-iron bimetallic selenide nanosheets ((Ni0.75Fe0.25)Se2) on carbon fiber cloth (CFC) by selenization of the ultrathin NiFe-based nanosheet precursor. The as-prepared three-dimensional oxygen evolution electrode exhibits a small overpotential of 255 mV at 35 mA cm(-2) and a low Tafel slope of 47.2 mV dec(-1) and keeps high stability during a 28 h measurement in alkaline solution. The outstanding catalytic performance and strong durability, in comparison to the advanced non-noble metal catalysts, are derived from the porous nanostructure fabrication, Fe incorporation, and selenization, which result in fast charge transportation and large electrochemically active surface area and enhance the release of oxygen bubbles from the electrode surface.

  7. Development of molecular electrocatalysts for energy storage.

    Science.gov (United States)

    DuBois, Daniel L

    2014-04-21

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high- and low-energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition-metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition-metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intra- and intermolecular proton-transfer steps, and coupling of proton- and electron-transfer steps. Studies also indicate an important role for the outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton-transfer reactions and their associated energy barriers is key to the design of faster and

  8. Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst

    Science.gov (United States)

    Jeng, King-Tsai; Chien, Chun-Ching; Hsu, Ning-Yih; Huang, Wan-Min; Chiou, Shean-Du; Lin, Su-Hsine

    In this study, the fabrication of a direct methanol fuel cell (DMFC) anode with the incorporation of a multiwalled carbon nanotube (CNT)-supported high-metal-content Pt/Ru electrocatalyst, i.e., 40 wt%Pt-20 wt%Ru/CNT, using a novel approach and the resultant DMFC performances were investigated. Employing a vacuum filtration method, we were able to successfully fabricate the DMFC anode with a good electrode structure using an in-house prepared Pt-Ru/CNT electrocatalyst. The catalyst layer was formed directly on a Teflon-treated carbon cloth having a buckypaper texture with a catalyst loading of 4.0 mg cm -2. From single-cell tests, excellent cell performances were obtained. At 80 °C, the power density was found to be as high as >100 mW cm -2. This can be attributed to a thinner catalyst layer formed with a more efficient utilization of the catalyst than that using a low-metal-content counterpart, i.e., 20 wt%Pt-10 wt%Ru/CNT, as reported in an earlier study. However, the Nafion ® ionomer content in the catalyst layer played a key role in the anode fabrication to obtain a good cell performance. In addition, the electrochemical impedance spectroscopy (EIS) with a constant phase element (CPE)-based equivalent-circuit model was employed to analyze the fabricated anode. It distinctively revealed some specific characteristics in the resistances and the interface properties. Overall, the obtained impedance results are somewhat different from those of a conventional DMFC anode with the catalyst layer coated onto a porous gas diffusion layer (GDL) on a carbon backing material. Based on the experimental results and the impedance analyses, the high-metal-content Pt-Ru/CNT catalyst was found to be much more favorable and suitable for use as a DMFC anode catalyst.

  9. Vanadium doped WS2 nanosheets grown on carbon cloth as highly efficient electrocatalyst for hydrogen evolution reaction.

    Science.gov (United States)

    Jiang, Anning; Zhang, Baohua; Li, Zhonghao; Jin, Guoxia; Hao, Jingcheng

    2018-04-01

    Two-dimensional transition metal dichalcogenides have been widely studied as electrocatalysts for hydrogen evolution reaction. However, the limited active sites and poor conductivity hinder their application. To solve these disadvantages, heteroatom doping has attracted wide attention, which can not only increases the active sites but also affects the intrinsic catalytic properties of the electrocatalysts. Herein, we grew vanadium doped WS2 nanosheets on carbon cloth (V-WS2/CC) as electrocatalyst for HER under acidic and alkaline conditions respectively. With proper vanadium doping concentration, the electrochemical surface areas of V0.065-WS2/CC are 9.6 and 2.6 times as large as that of pure WS2 electrocatalyst under acidic and alkaline conditions, respectively. In addition, the charge-transfer resistance also decreases with moderate vanadium doping. Based on this, the synthesized vanadium doped WS2 nanosheets exhibited good stability with high HER catalytic activity that can reach the current density of 10 mA cm-2 at the overpotential of 148 and 134 mV in 0.5 H2SO4 and 1 M KOH solution, respectively. The corresponding Tafel slopes are 71 and 85 mV dec-1. Therefore, our synthesized vanadium doped WS2 nanosheets can be a promising electrocatalyst for the production of hydrogen over a wide pH range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction

    Science.gov (United States)

    Yang, Shuting; Mao, Xinxin; Cao, Zhaoxia; Yin, Yanhong; Wang, Zhichao; Shi, Mengjiao; Dong, Hongyu

    2018-01-01

    Onion-derived nitrogen, sulfur self-doped nanoporous carbon spheres (NSC) as efficient metal-free electrocatalyst were synthesized via a facile hydrothermal and subsequent pyrolysis process. The typical NSC with a high BET specific surface area of 1558 m2 g-1, contains 6.23 at.% N and 0.36 at.% S, and possesses high concentration of pyridinic and graphitic nitrogen species. Experimentally, the best performance was the NSC-A2 which showed excellent catalytic activity to oxygen reduction reaction via a 4 electron mechanism with an onset potential of 0.88 V (vs. RHE), and a superior stability comparable to commercial Pt/C catalyst. The high electrocatalytic activity is attributed to not only the synergistic effect of N and S dual doping in carbon and the sufficient active sites, but also its high BET specific surface area and suitable microporous structure. The results demonstrate that it is a simple and scalable approach for preparing efficient and low-cost carbon-based electrocatalysts for oxygen reduction reaction.

  11. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  12. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance

    Science.gov (United States)

    Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming

    2017-09-01

    Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.

  13. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction

    Science.gov (United States)

    Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan

    2018-03-01

    Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.

  15. Hierarchically scaffolded CoP/CoP2 nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting.

    Science.gov (United States)

    Li, Wan; Zhang, Shilin; Fan, Qining; Zhang, Fazhi; Xu, Sailong

    2017-05-04

    Transition metal phosphide (TMP) nanostructures have stimulated increasing interest for use in water splitting owing to their abundant natural sources and high activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Typically, the preparation of hierarchical TMPs involves the utilization of expensive or dangerous phosphorus sources, and, in particular, the understanding of topotactic transformations of the precursors to crystalline phases-which could be utilized to enhance electrocatalytic performance-remains very limited. We, herein, report a controllable preparation of CoP/CoP 2 nanoparticles well dispersed in flower-like Al 2 O 3 scaffolds (f-CoP/CoP 2 /Al 2 O 3 ) as a bifunctional electrocatalyst for the HER and OER via the phosphorization of a flower-like CoAl layered double hydroxide precursor. Characterization by in situ X-ray diffraction (XRD) monitored the topotactic transformation underlying the controllable formation of CoP/CoP 2 via tuning the phosphorization time. Electrocatalytic tests showed that an f-CoP/CoP 2 /Al 2 O 3 electrode exhibited a lower onset potential and higher electrocatalytic activity for the HER and OER in the same alkaline electrolyte than electrodes of flower-like and powdered CoP/Al 2 O 3 . The enhanced electrochemical performance was experimentally supported by measuring the electrochemically active surface area. The f-CoP/CoP 2 /Al 2 O 3 composite further generated a current density of 10 mA cm -2 at 1.65 V when used as a bifunctional catalyst for overall water splitting. Our results demonstrate that the preparation route based on the LDH precursor may provide an alternative for investigating diverse TMPs as bifunctional electrocatalysts for water splitting.

  16. A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jiang, Yuanyuan; Lu, Yizhong; Wang, Xiaodan; Bao, Yu; Chen, Wei; Niu, Li

    2014-11-01

    The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous distribution of abundant Co-Nx active sites, and a well-defined three-dimensional mesoporous structure of the N-doped graphene support. The high activity and long-term stability of the low cost g-VB12 make it a promising ORR electrocatalyst in alkaline fuel cells.The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous

  17. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.

    Science.gov (United States)

    Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mira; Kim, Byoung-Suhk [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shin, Hye Kyoung [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Kim, Hak-Yong, E-mail: khy@jbnu.ac.kr [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2013-12-01

    The biocompatible and highly porous keratin-based hydrogels were prepared using electron beam irradiation (EBI). The conditions for keratin-based hydrogel formation were investigated depending on several conditions, including the presence of poly(vinyl alcohol) (PVA), concentration of keratin solution, EBI dose, and poly(ethylene imine) (PEI) additives. The pure keratin (human hair and wool) aqueous solution was not gelled by EBI, while the aqueous keratin solutions blended with PVA were gelled at an EBI dose of more than 90 kGy. Furthermore, in the presence of PEI, the aqueous keratin solution blended with PVA could be gelled at a considerably lower EBI dose, even at 10 kGy. This finding suggests that the PEI additives significantly influence the rate of gelation and that PEIs function as an accelerator during gelation. The resulting keratin-based hydrogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), gel fraction, degree of swelling, gel strength, and kinetics of swelling analyses. - Highlights: • The biocompatible and highly porous keratin-based hydrogels were prepared using EBI. • The conditions for keratin-based hydrogel formation were examined. • PEI would play an accelerator role in the formation of keratin-based hydrogels. • The resulting keratin-based hydrogels are expected to be more environmentally friendly.

  19. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    Science.gov (United States)

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  20. Implementation of an office-based semen preparation method (SEP ...

    African Journals Online (AJOL)

    Implementation of an office-based semen preparation method (SEP-D Kit) for intra-uterine insemination (IUI): A controlled randomised study to compare the IUI pregnancy outcome between a routine (swim-up) and the SEP-D Kit method.

  1. Preparation and characterization of polymer composites based on ...

    Indian Academy of Sciences (India)

    Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting behaviour as the ...

  2. Preparation and characterization of polymer composites based on ...

    Indian Academy of Sciences (India)

    Unknown

    2003-11-29

    Nov 29, 2003 ... Abstract. Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting ...

  3. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  4. Preparation of Bismuth- and Thallium-Based Cuprate Superconductors

    Science.gov (United States)

    1991-10-01

    erage work period (29); early symptoms of thallium - poisoning include hair loss. Safety considerations in handling thallium compounds should include... Thallium -Based Cuprate Superconductors by S. A. Sunshine and T. A. Vanderah Chemistry Division, Research Department Naval Weapons Center, China Lake, CA...Technical Report #2 10/90-9/91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Preparation of Bismuth- and Thallium -Based Cuprate Suoerconductors NOOO14-91 WX

  5. Polyaniline Derived N-Doped Carbon-Coated Cobalt Phosphide Nanoparticles Deposited on N-Doped Graphene as an Efficient Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Ma, Jingwen; Wang, Min; Lei, Guangyu; Zhang, Guoliang; Zhang, Fengbao; Peng, Wenchao; Fan, Xiaobin; Li, Yang

    2018-01-01

    The development of highly efficient and durable non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) is significant for clean and renewable energy research. This work reports the synthesis of N-doped graphene nanosheets supported N-doped carbon coated cobalt phosphide (CoP) nanoparticles via a pyrolysis and a subsequent phosphating process by using polyaniline. The obtained electrocatalyst exhibits excellent electrochemical activity for HER with a small overpotential of -135 mV at 10 mA cm -2 and a low Tafel slope of 59.3 mV dec -1 in 0.5 m H 2 SO 4 . Additionally, the encapsulation of N-doped carbon shell prevents CoP nanoparticles from corrosion, exhibiting good stability after 14 h operation. Moreover, the as-prepared electrocatalyst also shows outstanding activity and stability in basic and neutral electrolytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction

    Science.gov (United States)

    Li, Wenzhu; Li, Feng; Wang, Xiang; Tang, Yu; Yang, Yuanyuan; Gao, Wenbin; Li, Rong

    2017-04-01

    The development of robust, active and nonprecious electrocatalysts for hydrogen evolution reaction is quite urgent but still challenging. Here MoS2 QDs@Graphene is prepared via a facile lyophilization method, which leads to a better dispersion of MoS2 QDs on the graphene and optimizes the electronic mobility between the MoS2 layers. Impressively, the electrocatalyst MoS2 QDs@Graphene demonstrates the remarkable activity for HER in 0.5 M H2SO4 solution, with a current density of 10 mA cm-2 at a low overpotential of 140 mV and strong stability in acid condition. The achieved excellent performance is attributed to its morphology with large amount of active sites fabricated by the lyophilization method. This new method opens new pathway for the fabrication of non-precious metal electrocatalysts achieving high activity.

  7. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Science.gov (United States)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  8. Fuel cell membrane preparation: effects of base polymer

    Energy Technology Data Exchange (ETDEWEB)

    Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radiation grafted films and membranes prepared from the partially fluorinated base copolymer poly(ethylene-alt-tetrafluoroethylene) or ETFE have better mechanical properties than those prepared from poly(tetrafluoroethylene-co-hexafluoropropylene) or FEP. The influence of the base copolymer film type on the grafting rate and yields is reported in the present investigation. An understanding of the effects of these parameters is important so that the grafting process can be carried out reproducibly in as short a time as possible. The grafting rate and yield as a function of the irradiation dose has been found to be much higher for the partially fluorinated base copolymer ETFE. (author) 2 figs., 1 tab., 5 refs.

  9. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Yongjiao; Zang, Jianbing; Dong, Liang; Pan, Hong; Yuan, Yungang; Wang, Yanhui

    2013-01-01

    Highlights: • The graphitized nanodiamond (GND) showed a higher oxidation-resistance than XC-72. • The PtNi/GND electrocatalytic exhibited greater stability than PtNi/XC-72. • The PtNi/GND had a better catalytic activity for MOR and ORR than Pt/GND. -- Abstract: Surface graphitized nanodiamond (GND) with a diamond core covered by a graphitic carbon shell was prepared by annealing ND at the temperature of 1300 °C in a vacuum of 10 −3 Pa. PtNi electrocatalysts were prepared by a microwave heating polyol method using the prepared GND as a support. The composition and morphology of the PtNi electrocatalysts supported on GND (PtNi/GND) were characterized by X-ray diffraction, transmission electron microscopy and energy dispersion spectra. The results showed that nano-scaled PtNi alloy particles with an atomic ratio of approximately 1:1 were uniformly deposited on the GND through co-reduction process. The electrocatalytic activities of the PtNi/GND electrocatalysts for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) were investigated by cyclic voltammetry, chronoamperometry and linear sweep voltammetry. The PtNi/GND exhibited better electrocatalytic activities than the Pt/GND either for MOR and ORR. In comparison with traditional carbon support Vulcan XC-72, GND showed higher oxidation-resistance, and consequently led to greater stability for the PtNi/GND than PtNi/XC-72

  10. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts.

    Science.gov (United States)

    Zhang, Yun; Jiang, Wen-Jie; Zhang, Xing; Guo, Lin; Hu, Jin-Song; Wei, Zidong; Wan, Li-Jun

    2014-07-21

    The importance of the oxygen reduction reaction (ORR) in fuel cells and high energy density metal-air batteries has attracted intense research interests in looking for low-cost ORR catalysts as substitutes for expensive and scarce Pt-based catalysts. N-doped graphene and carbon nanotubes prepared in a low-cost and scalable way have demonstrated their potential although the performance still needs to be improved. In view of the requirements for a high-performance ORR electrocatalyst, this work focused on developing the nanocomposites of N-doped reduced graphene oxide (N-rGO) and N-doped carbon nanotubes (N-CNT) as low-cost efficient ORR catalysts by integrating the advantages of abundant highly-active sites from N-rGO and a three-dimensional conductive network for efficient mass and electron transport from N-CNT. By optimizing the preparation method and dedicatedly tuning the composition, the much enhanced ORR activity and superior durability and tolerance to methanol were achieved for the self-assembled N-doped composite (N-rGO-CNT) at a mass ratio of 1 : 5 rGO/CNT. Further improvement of the ORR electrocatalytic activity of the composite was also demonstrated by introducing iron into the composite.

  11. Electrocatalysts for fuel cells; Electrocatalizadores para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M. A.; Fernandez V, S. M. [ININ, Depto. de Quimica, Apdo. Postal 18-1027, Col. Escandon, Mexico 11801, D. F. (Mexico); Vargas G, J. R. [IPN, Depto. de Ingenieria Metalurgica, Mexico 07300, D. F. (Mexico)

    2008-07-01

    It was investigated the oxygen reduction reaction (fundamental reaction in fuel cells) on electrocatalysts of Pt, Co, Ni and their alloys CoNi, PtCo, PtNi, PtCoNi in H{sub 2}SO{sub 4} 0.5 M and KOH 0.5 M as electrolyte. The electrocatalysts were synthesized using mechanical alloying processes and chemical vapor deposition. The electrocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray spectroscopy. The evaluation was performed using electrocatalytic technique of rotating disk electrode and kinetic parameters were determined for each electro catalyst. We report the performance of all synthesized electrocatalysts in acid and alkaline means. (Author)

  12. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    Science.gov (United States)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  13. Spherical α-MnO2 Supported on N-KB as Efficient Electrocatalyst for Oxygen Reduction in Al–Air Battery

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2018-04-01

    Full Text Available Traditional noble metal platinum (Pt is regarded as a bifunctional oxygen catalyst due to its highly catalytic efficiency, but its commercial availability and application is often restricted by high cost. Herein, a cheap and effective catalyst mixed with α-MnO2 and nitrogen-doped Ketjenblack (N-KB (denoted as MnO2-SM150-0.5 is examined as a potential electrocatalyst in oxygen reduction reactions (ORR and oxygen evolution reactions (OER. This α-MnO2 is prepared by redox reaction between K2S2O8 and MnSO4 in acid conditions with a facile hydrothermal process (named the SM method. As a result, MnO2-SM150-0.5 exhibits a good catalytic performance for ORR in alkaline solution, and this result is comparable to a Pt/C catalyst. Moreover, this catalyst also shows superior durability and methanol tolerance compared with a Pt/C catalyst. It also displays a discharge voltage (~1.28 V at a discharge density of 50 mA cm−2 in homemade Al–air batteries that is higher than commercial 20% Pt/C (~1.19 V. The superior electrocatalytic performance of MnO2-SM150-0.5 could be attributed to its higher Mn3+/Mn4+ ratio and the synergistic effect between MnO2 and the nitrogen-doped KB. This study provides a novel strategy for the preparation of an MnO2-based composite electrocatalyst.

  14. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jianhuang; Chen, Jianjun [C711, Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen High-Tech Industrial Park, Shenzhen, Guangdong 518057 (China); Lee, Jim Yang [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2008-10-01

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica: Pt=1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1. (author)

  15. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    Science.gov (United States)

    Zeng, Jianhuang; Chen, Jianjun; Lee, Jim Yang

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica:Pt = 1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1.

  16. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    International Nuclear Information System (INIS)

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; Fezzaa, Kamel

    2016-01-01

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubble evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.

  17. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol; Preparacao de eletrocatalisadores PtRu/C + terras raras pelo metodo da reducao por alcool para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  18. Preparation of electrocatalysts by reduction of precursors with sodium citrate

    OpenAIRE

    Briskeby, Stein Trygve; Tsypkin, Mikhail; Tunold, Reidar; Sunde, Svein

    2014-01-01

    In this work synthesis of Pt/C catalysts by reduction of H2PtCl6 with sodium citrate has been investigated. The strong pH-dependence of citrate as a reducing and stabilizing agent has been explored, and an optimum pH range for production of well dispersed catalysts is proposed. To achieve stabilizing and reducing conditions, the presence of both citrate anions and protonated citrates are required. This is achieved in an intermediate pH range between pKa2 and pKa3 (4.76 and 6.4) of citric acid...

  19. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    Science.gov (United States)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  20. Perovskites As Electrocatalysts for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; De La Osa Puebla, Ana Raquel; Jensen, Jens Oluf

    2014-01-01

    Water electrolysis is a promising technology for the production of hydrogen as a sustainable energy storage source, combined with solar or wind power. In this work various electrocatalysts for the Oxygen Evolution Reaction (OER) electrode were synthesized and characterized by several techniques...... such as X-ray diffraction, electrical conductivity, scanning electron microscopy (SEM), energy dispersive microscopy (EDX) and rotating disk electrode. The perovskites tested in this work were both produced by a ball-milling technique and by an auto-combustion synthesis, which appeared to be a fast...... powder electric conductivity which varied by several orders of magnitude, as shown on Figure 3. 1 H. Nijjar, J. Lamonier, O. Mentr'e, J. Giraudon, H. Batis, Appl. Catal. B, 106, 149–159, 2011 2 J.O’M. Bockris and T. Otagawa J. Phys. Chem. 87:2960-2971, 1983. [Formula]...

  1. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer.

    Science.gov (United States)

    Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing

    2016-09-08

    The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO₂:Al₂O₃:Na₂O:NaOH:H₂O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.

  2. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2016-09-01

    Full Text Available The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.

  3. Preparation and Characterization of Sugar Based Catalyst on Various Supports

    Directory of Open Access Journals (Sweden)

    Jidon Adrian Janaun

    2017-04-01

    Full Text Available A novel structured carbon-based acid catalyst was prepared by depositing the carbon precursor onto glass, ceramic and aluminum supports via dip-coating method, followed by carbonization process for converting the d-glucose layer into black carbon char in an inert nitrogen environment at 400 °C. Then, the –SO3H group was introduced into the framework of the carbon char by multiple vapor phase sulfonation. Four different carbonization methods were carried out (dry pyrolysis and hydrothermal carbonization with or without pressurized in the catalyst preparation while among the carbonization methods, the samples which prepared from dry pyrolysis without pressurized process showed the strong acidity due to highest adsorption of acid group in the catalyst surface although the catalyst attached onto the support was the least compared to other preparation methods. Among the catalysts, the sulfonated carbon-base catalyst that is attached on the ceramic support exhibited the highest aci-dity (1.327 mmol/g followed by the catalyst deposited on the glass (0.917 mmol/g and aluminum (0.321 mmol/g supports. The porous structure of ceramic surface, allowed a better interaction between reactants and –SO3H site in the carbon. Through the FT-IR analysis, it was observed that the functional groups –COOH, –OH, and –SO3H were present in the active sites of the catalysts. The surface areas of  glass (Si–SC, ceramic (Ce–SC and aluminum (Al–SC catalysts were larger than 1 m2/g, whereas the pore size belongs to macroporous as the average pore size is more than 50 nm. It is also stable within the temperature of 400 °C as there was less than 10% weight loss revealed from the TGA analysis. Copyright © 2017 BCREC GROUP. All rights reserved Received: 20th April 2016; Revised: 14th October 2016; Accepted: 17th October 2016 How to Cite: Janaun, J.A., Mey, T.J., Bono, A., Krishnaiah, D. (2017. Preparation and Characterization of Sugar Based Catalyst on Various

  4. Preparation and properties of copper-oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Wenjie

    2011-01-01

    Full Text Available Abstract In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  5. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  6. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  7. Study of the oxygen reduction reaction using Pt-Rare earths (La, Ce, Er) electrocatalysts for application of PEM fuel cells

    International Nuclear Information System (INIS)

    Gomes, Thiago Bueno

    2013-01-01

    The complexity of the oxygen reduction reaction (ORR) and its potential losses make it responsible for the most part of efficiency losses at the Fuel Cells. For this reaction the electrocatalyst witch is most appropriated and shows better performance is platinum, a noble metal that elevates the cost, raising barriers for Fuel Cells technology to enter the market. First this work focuses on reducing the amount of platinum used in the cathode, by being replaced by rare earths. The most common methods of synthesis involves a large amount of steps and this work proposed to prepare the electrocatalyst through a simpler way that would not take so many steps and time to be done. Using an ultrasound mixer the electrocatalyst was prepared mixing platinum supported on carbon black and the rare earths lanthanum, cerium and erbium oxides to be applied in a half-cell study of the ORR. The Koutecky-Levich plots shows that among the electrocatalysts prepared the Pt80Ce20/C had the catalytic activity close to the commercial BASF platinum on carbon black, suggesting that the reaction was taken by the 4-electron path. As found in some works in literature, among the rare earth used to study the ORR, cerium is the one witch shows the better performance because it is able to store and provide oxygen. This feature is of great interest for the ORR because this reaction is first order to the oxygen concentration. Results show that is possible to reduce the amount of platinum maintaining the same electrocatalyst activity. (author)

  8. Preparation and Evaluation of Inhalable Itraconazole Chitosan Based Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Esmaeil Moazeni

    2012-12-01

    Full Text Available Background: This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA.Methods: Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering andtransmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.Results: The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.Conclusions: In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.

  9. Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wang, Wei; Xue, Shouyuan; Li, Jinmei; Wang, Fengxia; Kang, Yumao; Lei, Ziqiang

    2017-08-01

    In this study, cerium carbide embedded in nitrogen-doped carbon (CeCx-NC) has been prepared by a facile pyrolysis of melamine formaldehyde resin containing rare-earth element. The as-prepared CeCx-NC catalyst shows high electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline electrolyte, with the half wave potential being almost equal to commercial Pt/C, nearly four electron transfer number, good toxicity tolerance durability and cycle stability. This rare-earth metal carbide opens a novel avenue for advanced electrocatalyst.

  10. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    Science.gov (United States)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  11. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    Science.gov (United States)

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.

  12. Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability.

    Science.gov (United States)

    Yang, Hongchao; Zhang, Yejun; Hu, Feng; Wang, Qiangbin

    2015-11-11

    High-performance electrocatalysts with superior stability are critically important for their practical applications in hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate urchin-like CoP nanocrystals (NCs) as catalyst for both HER and ORR with desirable electrocatalytic activities and long-term stability. The urchin-like CoP NCs with a diameter of 5 μm were successfully prepared by a hydrothermal reaction following a phosphidation treatment in N2 atmosphere and present excellent HER catalytic performance with a low onset overpotential of 50 mV, a small Tafel slope of 46 mV/decade, and an exceptional low overpotential of ~180 mV at a current density of 100 mA cm(-2) with a mass loading density of 0.28 mg/cm(2). Meanwhile, a remarkable ORR catalytic activity was observed with a half-potential of 0.7 V and an onset potential of 0.8 V at 1600 rpm and a scan rate of 5 mV s(-1). More importantly, the urchin-like CoP NCs present superior stability and keep their catalytic activity for at least 10 000 CV cycles for HER in 0.5 M H2SO4 and over 30 000 s for ORR in 0.1 M KOH, which is ascribed to their robust three-dimensional structure. This urchin-like CoP NCs might be a promising replacement to the Pt-based electrocatalysts in water splitting and fuel cells.

  13. A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect.

    Science.gov (United States)

    Zhu, Yinlong; Su, Chao; Xu, Xiaomin; Zhou, Wei; Ran, Ran; Shao, Zongping

    2014-11-17

    Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as-formed Pt/C-oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C-BSCF; BSCF=Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-δ ), due to the synergistic effect. The electronic transfer mechanism and the rate-determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high-energy and efficient electrochemical energy storage and conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In Situ Synthesis and Characterization of Polyethyleneimine-Modified Carbon Nanotubes Supported PtRu Electrocatalyst for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2015-01-01

    Full Text Available PtRu bimetallic nanoparticles were successfully synthesized on polyethyleneimine- (PEI- functionalized multiwalled carbon nanotubes (MWCNTs via an effective and facile polyol reduction approach. Noncovalent surface modification of MWCNTs with PEI was confirmed by FTIR and zeta potential measurements. The morphology, crystalline structure, and composition of the hybrid material were characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, and energy dispersive X-ray spectroscopy (EDX, respectively. According to SEM and TEM observations, PtRu nanoparticles with narrow size distribution were homogeneously deposited on PEI-MWCNTs. Cyclic voltammetry tests demonstrated that the as-prepared PtRu/PEI-MWCNTs nanocomposite had a large electrochemical surface area and exhibited enhanced electrocatalytic activity towards methanol oxidation in comparison with oxidized MWCNTs as catalyst support. PEI-functionalized CNTs, as useful building blocks for the assembly of Pt-based electrocatalyst, may have great potential for applications such as direct methanol fuel cell (DMFC.

  15. Control of the composition of Pt-Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine.

    Science.gov (United States)

    Zhang, Na; Tsao, Kai-Chieh; Pan, Yung-Tin; Yang, Hong

    2016-02-07

    This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm(-2) for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change in the composition could be attributed to the effect of CO on the formation of uniform nuclei at the initial stage, and a different deposition rate between Pt and Ni metals during the growth. The well-defined Pt-Ni nanoparticle catalysts show strong composition-dependent catalytic behavior in ORR, highlighting the important role of controlling the growth kinetics in the preparation of active Pt-Ni ORR catalysts.

  16. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Song, Min Young; Park, Hyean Yeol; Yang, Dae-Soo; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-06-01

    We report the template-free pyrolysis of easily available natural seaweed, Undaria pinnatifida, as a single precursor, which results in "seaweed carbon" (SCup). Interestingly, thus-obtained SCup not only contains heteroatoms such as nitrogen and sulfur in its framework, but it also possesses a well-developed porous structure with high surface area. The heteroatoms in SCup originate from the nitrogen- and sulfur-containing ingredients in seaweed, whereas the porosity is created by removal of salts inherently present in the seaweed. These essential and fundamental properties make seaweed a prime choice as a precursor for heteroatom-containing highly porous carbon as a metal-free efficient electrocatalyst. As-synthesized SCup showed excellent electrocatalytic activity in the oxygen reduction reaction (ORR) in alkaline medium, which can be addressed in terms of the presence of the nitrogen and sulfur heteroatoms, the well-developed porosity, and the electrical conductivity in the carbon framework. The pyrolysis temperature was a key controlling parameter that determined the trade-off between heteroatom doping, surface properties, and electrical conductivity. In particular, SCup prepared at 1000 °C showed the best ORR performance. Additionally, SCup exhibited enhanced durability and methanol tolerance relative to the state of the art commercial Pt catalyst, which demonstrates that SCup is a promising alternative to costly Pt-based catalysts for the ORR. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of carboxymethyl cellulose based microgels for cell encapsulation

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2014-11-01

    Full Text Available Biocompatible and biodegradable carboxymethyl cellulose (CMC has been modified with 4-hydroxybenzylamine (CMC-Ph in order to prepare CMC-based microgels through the horseradish peroxidise/hydrogen peroxide enzymatic reaction. CMC-Ph was identified as a blend, and the amount of the grafted 4-hydroxybenzylamine per 100 units of CMC was between 17 and 23 according to the molecular weight of CMC. Through a special designed co-flowing microfluidic device, CMC-Ph microgels were prepared with the radius from 100 to 500 μm via adjusting the flow rates of the disperse phase and the continuous phase, respectively. The chondrocytic cell line ATDC5 was encapsulated in the CMC-Ph microgels. The cell-laden microgels were cultured for up to 40 days, illustrating the biocompatibility of CMC-Ph and the microfluidic approach through the enzymatic crosslinking reaction primarily. CMC-Ph showed a great promise to encapsulate the cells for further fabrication of the injectable scaffolds.

  18. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting.

    Science.gov (United States)

    Wang, Yueqing; Zhang, Baohua; Pan, Wei; Ma, Houyi; Zhang, Jintao

    2017-08-30

    Exploring highly efficient and durable bifunctional electrocatalysts from earth-abundant low-cost transition metals is central to obtaining clean hydrogen energy through large-scale electrolytic water splitting. Porous nickel-cobalt nitride nanosheets on macroporous Ni foam (NF) are synthesized through facile electrodeposition followed by a one-step annealing process in a NH 3 atmosphere. The transformation from a metal hydroxide into a metal nitride could efficiently enhance the electrocatalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Interestingly, the incorporation of nickel further boosts the catalytic activity of cobalt nitride. When used as bifunctional electrocatalysts, the obtained nickel-cobalt nitride electrocatalyst shows good stability and superior catalytic performance toward both HER and OER with low overpotentials of 0.29 and 0.18 V, respectively, to achieve a current density of 10 mA cm -2 . The good electrocatalytic performance was also evidenced by the fabrication of an electrolyzer for overall water splitting, which exhibits a high gas generation rate for hydrogen and oxygen with excellent stability during prolonged alkaline water electrolysis. The present work provides an efficient approach to prepare a 3 D interconnected porous nickel-cobalt nitride network with exposed inner active sites for overall water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap

    Directory of Open Access Journals (Sweden)

    Ramesh Karunagaran

    2018-01-01

    Full Text Available Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF and carbon microspheres (N-CMS synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  20. A selective and efficient electrocatalyst for carbon dioxide reduction

    Science.gov (United States)

    Lu, Qi; Rosen, Jonathan; Zhou, Yang; Hutchings, Gregory S.; Kimmel, Yannick C.; Chen, Jingguang G.; Jiao, Feng

    2014-01-01

    Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2 - intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.

  1. A selective and efficient electrocatalyst for carbon dioxide reduction.

    Science.gov (United States)

    Lu, Qi; Rosen, Jonathan; Zhou, Yang; Hutchings, Gregory S; Kimmel, Yannick C; Chen, Jingguang G; Jiao, Feng

    2014-01-01

    Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2 (-) intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.

  2. Polyoxometalate-Surfactant Hybrids Directed Assembly of Ni3S2 into Hollow Microsphere as Pt-Comparable Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Medium.

    Science.gov (United States)

    Tian, Bin; Lei, Jinlong; Wang, Jiahai

    2017-11-22

    A large surface area of catalytic sites and low electric resistance are desirable properties for electrocatalysts that lower the overpotential required for electrochemical reactions, such as the hydrogen evolution reaction (HER), in this study. In the presence of polyoxometalate (POM) and triblock copolymer pluronic (P123) as a hybrid soft template, the hydrothermal sulfurization of nickel foam leads to the formation of a hollow microsphere, assembled from the Ni 3 S 2 motif. Sonication for preparing POM+P123 hybrids, while adjusting the POM content, is an effective strategy for synthesizing a Pt-like electrocatalyst with excellent hydrogen evolution efficiency. The reason is that both sonication and optimal POM content can simultaneously enhance the electroactive surface area and electron transfer of the Ni 3 S 2 electrocatalyst. Adopting the optimal conditions, the three-dimensional porous network, composed of Ni 3 S 2 hollow microspheres on the nickel foam, shows that the HER in an alkaline medium requires only 77 mV overpotential for a current density of 10 mA cm -2 , with a robust long-term stability during a 25 h test. The performance at a large current density outperforms the current benchmark electrocatalyst (Pt) for HER.

  3. Use of PtAu/C electrocatalysts toward formate oxidation: electrochemical and fuel cell considerations

    Directory of Open Access Journals (Sweden)

    Sirlane G. da Silva

    2016-09-01

    Full Text Available Abstract This study reports the use of PtAu/C electrocatalysts with different atomic ratios (90:10, 70:30 and 50:50 supported on Vulcan XC 72 carbon and prepared by the sodium borohydride method toward formate electro-oxidation in alkaline media. The materials were characterized by X-ray diffraction, showing peaks characteristics of Pt and Au face-centered-cubic structures, and also by transmission electron micrographs that show the nanoparticles well dispersed on carbon and a mean particle size between 4 and 5 nm for all electrocatalysts. Electrochemical experiments show PtAu/C as promising catalysts toward formate oxidation, while single cell experiments reveal PtAu/C 90:10 as the best material since it provides a power density higher than Pt/C. The incorporation of Au could increase formate oxidation for more than one reason: (i a facilitated rupture of C–H bond; (ii the Au/oxide interface or (iii by regenerating active sites.

  4. Effect of copper oxide electrocatalyst on CO2 reduction using Co3O4 as anode

    Directory of Open Access Journals (Sweden)

    V.S.K. Yadav

    2016-09-01

    Full Text Available The reduction of carbon dioxide (CO2 to products electrochemically (RCPE in 0.5 M NaHCO3 and Na2CO3 liquid phase electrolyte solutions was investigated. Cobalt oxide (Co3O4 as anode and cuprous oxide (Cu2O as the cathode were considered, respectively. The impacts of applied potential with time of reaction during reduction of CO2 to products were studied. The anode and cathode were prepared by depositing electrocatalysts on the graphite plate. Ultra-fast liquid chromatography (UFLC was used to analyze the products obtained from the reduction of CO2. The feasible way of reduction by applying voltages with current densities was clearly correlated. The results illustrate the capability of electrocatalyst successfully to remove atmospheric CO2 in the form of valuable chemicals. Maximum Faradaic efficiency of ethanol was 98.1% at 2 V and for formic acid (36.6% at 1.5 V was observed in NaHCO3. On the other hand, in Na2CO3 electrolyte solution maximum efficiency for ethanol was 55.21% at 1.5 V and 25.1% for formic acid at 2 V. In both electrolytes other end products like methanol, propanol, formaldehyde and acetic acid were formed at various applied voltage and output current densities.

  5. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    Science.gov (United States)

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  6. Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Chung, Dong Young; Park, Subin; Jeong, Juwon; Yoo, Ji Mun; Shin, Heejong; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun

    2018-01-01

    Demands for sustainable production of hydrogen are rapidly increasing because of environmental considerations for fossil fuel consumption and development of fuel cell technologies. Thus, the development of high-performance and economical catalysts has been extensively investigated. In this study, a nanoporous Mo carbide electrode is prepared using a top-down electrochemical process and it is applied as an electrocatalyst for the hydrogen evolution reaction (HER). Anodic oxidation of Mo foil followed by heat treatment in a carbon monoxide (CO) atmosphere forms a nanostructured Mo carbide with excellent interconnections, and these structural characteristics lead to high activity and durability when applied to the HER. Additionally, characteristic behavior of Mo is observed; metallic Mo nanosheets form during electrochemical anodization by exfoliation along the (110) planes. These nanosheets are viable for chemical modification, indicating their feasibility in various applications. Moreover, the role of carbon shells is investigated on the surface of the electrocatalysts, whereby it is suggested that carbon shells serve as a mechanical barrier against the oxidative degradation of catalysts that accompanies unavoidable volume expansion.

  7. Optimizing Carbonaceous Nanostructure Composition as a Substrate to Grow Co Electrocatalysts

    Directory of Open Access Journals (Sweden)

    M Pourreza

    2018-02-01

    Full Text Available Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn nanostructures. Herein, cobalt nanostructures on steel-mesh substrate were applied. Electrochemical method was used for growth of Co nanoflakes because of its simplicity and scalability for commercial approach. On the other hand, using carbonaceous support layers including nanomaterials such as graphene and carbon nanotubes, can reduce overpotential and increase efficiency of the electrocatalyst.  According to the results, 40 wt% of graphene oxide and 60 wt% of carbon nanotubes in prepared carbon paste led to better growth for cobalt oxide nanoflakes. For the mentioned layer, cobalt was detected in metallic crystalline phase and the overpotential and electrical resistance measured 305 mV and 20 Ω, respectively.

  8. Preparation of antimicrobial fabric using magnesium-based PET masterbatch

    Science.gov (United States)

    Zhu, Yimin; Wang, Ying; Sha, Lin; Zhao, Jiao

    2017-12-01

    The magnesium-based antimicrobial polyethylene terephthalate (PET) masterbatch (MAPM) was extruded from twin screw extruder by melting-and-mixing method, using magnesium-based antimicrobial agent (MAA) as the functional material for the first time. The magnesium-based antimicrobial fabric (MAPF) was prepared using MAPM and pure PET resin by high-speed melt-spinning technology and weaving technology for the first time. The materials used in this work were healthy to human body and friendly to environment. The characteristics of MAA, MAPM and MAPF were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When the MAPM (MAA) content reached to 25 wt.% (5 wt.%) in MAPF, the MAA had excellent dispersion and compatibility in MAPF, and the MAPF had good physico-mechanical properties. Then the MAPF presented excellent spinnability and antimicrobial property against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans) and Aspergillus niger (A. niger), with pretty good laundering durability.

  9. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  10. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting

    Science.gov (United States)

    Govindhan, Maduraiveeran; Mao, Brennan; Chen, Aicheng

    2016-01-01

    A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ~3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g-1 at a low overpotential (η) of 0.37 V, a small Tafel slope of ~37 mV dec-1 and a turnover frequency (TOF) of 0.188 s-1 in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in first-rate electrocatalytic properties toward the OER. These merits coupled with the higher stability of the nanocomposite hold great promise for triggering breakthroughs in electrocatalysis for water splitting.A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ~3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g-1 at a low overpotential (η) of 0.37 V, a small Tafel slope of ~37 mV dec-1 and a turnover frequency (TOF) of 0.188 s-1 in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in

  11. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H{sub 2}SO{sub 4} 0.5M; Electrocatalizadores de Platino, Cobalto y Niquel preparados por Aleado Mecanico para la reaccion de reduccion de oxigeno en H{sub 2}SO{sub 4} 0.5M

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R. [lNIN, Depto. de Quimica, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H{sub 2}SO{sub 4} 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  12. Preparation and characterization of iron oxide and hydroxide based nanomaterials

    Science.gov (United States)

    Carbajal Franco, Guillermo

    Iron (Fe) oxides and hydroxides are common and abundant materials. They exhibit diverse crystal structures, properties and phenomena by virtue of which they find a wide range of scientific and technological applications. Controlled growth and manipulation of the specific structure and electronic behavior to meet the requirements of a given application is a challenging problem in view of many possible phases and composition of the resulting materials. The preparation method and experimental conditions will, therefore, significantly affect the properties and performance of Fe oxides and hydroxides. The goal of the project is to obtain Fe-based oxide/hydroxide catalytic materials and to derive a comprehensive understanding of the microstructure and electronic properties. The obvious relevance of the work it to optimize conditions to produce high quality Fe- based nanomaterials capable of dissociating the water molecules and produce hydrogen. The present approach to synthesize Fe oxides and hydroxides is based on a chemical route involving Fe-containing compounds. First step involved is the precipitation of Fe hydroxide/oxide particles from iron salts in an aqueous and non-aqueous media. The resultant precipitates consist of agglomerated nanoparticles. The size of the resulting Fe oxide and hydroxide nanoparticle depends on the concentration of the original solutions. After precipitation, a weak organic acid is added to obtain different concentrations. The samples were obtained at different intervals of time. Structure modification and dispersion of nanoparticles have been achieved and correlated with the concentration of the organic acid. It is demonstrated that the microstructure can be controlled in order to tune the materials' electronic behavior. In addition, the incorporation of various metal ions into the host matrix is explored in order to control the structure and electronic properties. The results are presented and discussed in detail in this dissertation.

  13. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  14. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate

    Science.gov (United States)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing; Zhang, Rui; Wang, Lei; Xu, Qi; Wang, Wei

    2017-01-01

    Electrochemical reduction of carbon dioxide (CO2) to formate is energetically inefficient because high overpotential is required for reduction of CO2 to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO2 to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO2 which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO2 to formate can reach to 50% when an IrxSnyRuzO2/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  15. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media

    Science.gov (United States)

    Su, Jianwei; Yang, Yang; Xia, Guoliang; Chen, Jitang; Jiang, Peng; Chen, Qianwang

    2017-04-01

    The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graphene layers. The catalysts display remarkable performance with low overpotentials of only 28 and 218 mV at 10 and 100 mA cm-2, respectively, and excellent stability of 10,000 cycles. Ruthenium is the cheapest platinum-group metal and its amount in the catalyst is only 3.58 wt.%, showing the catalyst high activity at a very competitive price. Density functional theory calculations reveal that the introduction of ruthenium atoms into cobalt core can improve the efficiency of electron transfer from alloy core to graphene shell, beneficial for enhancing carbon-hydrogen bond, thereby lowing ΔGH* of HER.

  16. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction.

    Science.gov (United States)

    Fei, Huilong; Ye, Ruquan; Ye, Gonglan; Gong, Yongji; Peng, Zhiwei; Fan, Xiujun; Samuel, Errol L G; Ajayan, Pulickel M; Tour, James M

    2014-10-28

    The scarcity and high cost of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) has limited the commercial and scalable use of fuel cells. Heteroatom-doped nanocarbon materials have been demonstrated to be efficient alternative catalysts for ORR. Here, graphene quantum dots, synthesized from inexpensive and earth-abundant anthracite coal, were self-assembled on graphene by hydrothermal treatment to form hybrid nanoplatelets that were then codoped with nitrogen and boron by high-temperature annealing. This hybrid material combined the advantages of both components, such as abundant edges and doping sites, high electrical conductivity, and high surface area, which makes the resulting materials excellent oxygen reduction electrocatalysts with activity even higher than that of commercial Pt/C in alkaline media.

  17. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  18. Mechanochemical synthesis of Co and Ni decorated with chemically deposited Pt as electrocatalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Flores-Rojas, E.; Cabañas-Moreno, J.G.; Pérez-Robles, J.F.; Solorza-Feria, O.

    2016-01-01

    High energy milling in combination with galvanic displacement were used for the preparation of bimetallic nanocatalysts. Co and Ni monometallic powders milled for 30 and 20 h, respectively were both produced in air atmosphere and used as precursors for the preparation of M-Pt (M = Co,Ni) compounds. Nanosized monometallic powders were physically supported on Vulcan carbon, and covered with 20 wt%Pt through a Galvanic Displacement Reaction (GDR) to produce Co-20Pt/C and Ni-20Pt/C electrocatalysts. XRD was used for phase identification on milled powders and for demonstrating structural transformations of Co powders during milling. Results on unmilled metallic Co powder show a predominant HCP structure modifying to a FCC structure after milling. Ni powders maintain their same FCC structure. Energy Dispersive X-Ray Spectometry (EDX) was used for chemical composition analysis on milled powders at several milling times. Scanning Transmission Electron Microscopy (STEM) show the formation of heterogeneous particle with ∼10 nm in size for both electrocatalysts. The electrocatalytic activity was evaluated by Cyclic Voltammetry (CV) and steady state Rotating Disk Electrode (RDE) for the Oxygen Reduction Reaction (ORR) in 0.1 M HClO 4 . The kinetic parameters on Co-20Pt/C conducted to the highest mass activity for the cathodic reaction. - Highlights: • Monometallic powders of Co, and Ni were used as precursors for the preparation of M-Pt (M = Co,Ni) electrocatalysts. • Nanosized monometallic powders were decorated with Pt by a Galvanic Displacement Reaction. • The kinetic parameters on Co-20Pt/C conducted to the highest mass activity for the ORR reaction.

  19. Mechanochemical synthesis of Co and Ni decorated with chemically deposited Pt as electrocatalysts for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Rojas, E.; Cabañas-Moreno, J.G. [Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. Zacatenco, 07360 Mexico City (Mexico); Pérez-Robles, J.F. [Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. Zacatenco, 07360 Mexico City (Mexico); Dpto. Ciencia de los Materiales, CINVESTAV-IPN Unidad Queretaro, Libramiento Norponiente No. 2000 Fracc. Real de Juriquilla, 76230, Queretaro (Mexico); Solorza-Feria, O., E-mail: osolorza@cinvestav.mx [Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. Zacatenco, 07360 Mexico City (Mexico); Depto. Química, CINVESTAV-IPN, 07360, México City (Mexico)

    2016-11-01

    High energy milling in combination with galvanic displacement were used for the preparation of bimetallic nanocatalysts. Co and Ni monometallic powders milled for 30 and 20 h, respectively were both produced in air atmosphere and used as precursors for the preparation of M-Pt (M = Co,Ni) compounds. Nanosized monometallic powders were physically supported on Vulcan carbon, and covered with 20 wt%Pt through a Galvanic Displacement Reaction (GDR) to produce Co-20Pt/C and Ni-20Pt/C electrocatalysts. XRD was used for phase identification on milled powders and for demonstrating structural transformations of Co powders during milling. Results on unmilled metallic Co powder show a predominant HCP structure modifying to a FCC structure after milling. Ni powders maintain their same FCC structure. Energy Dispersive X-Ray Spectometry (EDX) was used for chemical composition analysis on milled powders at several milling times. Scanning Transmission Electron Microscopy (STEM) show the formation of heterogeneous particle with ∼10 nm in size for both electrocatalysts. The electrocatalytic activity was evaluated by Cyclic Voltammetry (CV) and steady state Rotating Disk Electrode (RDE) for the Oxygen Reduction Reaction (ORR) in 0.1 M HClO{sub 4}. The kinetic parameters on Co-20Pt/C conducted to the highest mass activity for the cathodic reaction. - Highlights: • Monometallic powders of Co, and Ni were used as precursors for the preparation of M-Pt (M = Co,Ni) electrocatalysts. • Nanosized monometallic powders were decorated with Pt by a Galvanic Displacement Reaction. • The kinetic parameters on Co-20Pt/C conducted to the highest mass activity for the ORR reaction.

  20. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    Science.gov (United States)

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

    Science.gov (United States)

    Antolini, Ermete

    2017-02-13

    Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

  2. Microwave Assisted Synthesis of Osmium Electrocatalysts for the Oxygen Reduction Reaction in the Absence and Presence of Aqueous Methanol

    Directory of Open Access Journals (Sweden)

    Edgar Borja-Arco

    2011-01-01

    Full Text Available Osmium electrocatalysts for the oxygen reduction reaction (ORR were prepared by microwave irradiation of Os3(CO12 at different experimental conditions. The materials obtained were structurally characterized by FT-IR, micro-Raman spectroscopy and X-ray diffraction. Their chemical compositions were obtained by EDS. The electrocatalytic properties for the oxygen reduction reaction were evaluated by rotating disk electrode measurements in 0.5 mol L-1 H2SO4, in the absence and presence of aqueous methanol. The kinetic parameters, such as Tafel slope, exchange current density, and charge transfer coefficient are reported.

  3. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide.

    Science.gov (United States)

    Zhu, Dong Dong; Liu, Jin Long; Qiao, Shi Zhang

    2016-05-01

    In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D Graphene Aerogels Decorated with Cobalt Phosphide Nanoparticles as Electrocatalysts for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Xueping; Han, Yujie; Huang, Liang; Dong, Shaojun

    2016-11-09

    The development of non-precious-metal hydrogen evolution reaction (HER) electrocatalysts with high activity and excellent durability in acidic media is of significant importance for renewable energy research. We report a novel electrocatalyst based on a three-dimensional (3D) graphene aerogel decorated with cobalt phosphide nanoparticles (CoP/GA). The material has a unique hierarchical porous structure with CoP nanoparticles encapsulated uniformly within the graphene sheets. The optimized catalyst shows superior activity, with an overpotential of only 121 mV at 10 mA cm -2 , a Tafel slope of 50 mV dec -1 , and an exchange current density of 0.105 mA cm -2 , and it maintains its catalytic activity for at least 13 h. More importantly, this work provides a versatile way for the rational design and fabrication of 3D graphene-based multifunctional composite materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  6. Investigations of Pd-Cu electrocatalyst for oxygen reduction reaction in acidic media with RDE method

    Energy Technology Data Exchange (ETDEWEB)

    Fouda-Onana, F.; Bah, S.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    The kinetics of the oxygen reduction reaction (ORR) has been studied extensively with different platinum bi-metallic alloys such as Pt-Fe, Pt-Ni, Pt-Co. However, palladium-based bi-metallic alloys are being considered as a substitute for platinum in electrocatalysts. This paper reported on a study that investigated the ORR on bi-metallic Pd-Cu electrocatalyst. Different contents in Cu were analyzed and an optimal Cu composition leading to the highest ORR activity was found. A mechanism of the ORR kinetics for this catalyst was introduced based on the value of the Tafel slope. A smooth increase in surface area up to 50 per cent Cu was observed to a constant value of 23 cm{sup 2}. Such behaviour was due to the high dispersion of Pd as Cu increased and segregated. A volcano-shape was found between the kinetic current, activation energy and the Cu composition. The maximum exchange current density and the lowest activation energy were found for Pd50Cu50, which corresponded to the highest surface area. All Pd-Cu alloys presented a higher kinetic current than Pd alone. 3 refs., 1 tab., 3 figs.

  7. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  8. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2015-01-01

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices

  9. Pd-Au Electrocatalysts for Hydrogen Evolution Reaction at Neutral pH

    Directory of Open Access Journals (Sweden)

    Elitsa Chorbadzhiyska

    2014-01-01

    Full Text Available Pd-Au codeposits with different ratio of both metals were electrodeposited on carbon felt, characterized by scanning electron microscopy, and investigated as electrocatalysts towards hydrogen evolution reaction in neutral phosphate buffer solution. The quantities of the produced hydrogen gas with different electrocatalysts, estimated from data obtained by chronoamperometry, were confirmed by mass spectrometry analysis. The highest hydrogen evolution rate was achieved with the electrocatalysts, produced from electrolyte with equal Pd and Au content.

  10. Pd-Au Electrocatalysts for Hydrogen Evolution Reaction at Neutral pH

    OpenAIRE

    Elitsa Chorbadzhiyska; Mario Mitov; Georgi Hristov; Nina Dimcheva; Lori Nalbandian; Antigoni Evdou; Yolina Hubenova

    2014-01-01

    Pd-Au codeposits with different ratio of both metals were electrodeposited on carbon felt, characterized by scanning electron microscopy, and investigated as electrocatalysts towards hydrogen evolution reaction in neutral phosphate buffer solution. The quantities of the produced hydrogen gas with different electrocatalysts, estimated from data obtained by chronoamperometry, were confirmed by mass spectrometry analysis. The highest hydrogen evolution rate was achieved with the electrocatalysts...

  11. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  12. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  13. Polyoxometalate based soft chemical route for preparation of Pt ...

    Indian Academy of Sciences (India)

    Unknown

    2005-01-17

    Jan 17, 2005 ... A soft chemical route is described for the preparation of platinum nanorods and self-assemblies over photochemically reduced polyoxometalate (silicotungstate) containing .... Beck et al (2000) reported a controlled growth of palladium particles at the solid/liquid interface on silica. The formation of aniso-.

  14. Preparation and Characterization of Water Based UV Curable ...

    African Journals Online (AJOL)

    The formulations prepared were characterized for viscosity and FT-IR before being printed on different substrates. The ink films formed were assessed by optical microscopy, the print quality was found to meet most requirements in colour printing chemistry and technology applications. Keywords: Flexographic printing inks, ...

  15. Preparation and properties of starch-based colloidal microgels

    NARCIS (Netherlands)

    Dziechciarek, Y.; Soest, van J.J.G.; Philipse, A.P.

    2002-01-01

    Novel starch microgels were prepared by emulsion cross-linking and characterized with respect to shape, volume, and mass density. Starch microgels appear to be negatively charged (similar to-50 mV), with a particle size varying as a function of the type of cross-linker (ca. 0.25-10 mum).

  16. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    In addition, the heating ability of the LSMTO nanoparticles was evaluated under a safe alternating magnetic field used in magnetic hyperthermia therapy. The results showed the fast magneto-temperature response of the prepared samplewith sufficient heat loss at the therapeutic temperature range, indicating the LSMTO ...

  17. Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Guo, Bangjun; Yu, Ke; Li, Honglin; Qi, Ruijuan; Zhang, Yuanyuan; Song, Haili; Tang, Zheng; Zhu, Ziqiang; Chen, Mingwei

    2017-02-01

    We report a new CVD method to prepare coral-shaped monolayer MoS 2 with a large amount of exposed edge sites for catalyzing hydrogen evolution reaction. The electrocatalytic activities of the coral-shaped MoS 2 can be further enhanced by electronic band engineering via decorated with graphene quantum dot (GQD) decoration. Generally, GQDs improve the electrical conductivity of the MoS 2 electrocatalyst. First-principles calculations suggest that the coral MoS 2 @GQD is a zero-gap material. The high electric conductivity and pronounced catalytically active sites give the hybrid catalyst outstanding electrocatalytic performance with a small onset overpotential of 95 mV and a low Tafel slope of 40 mV/dec as well as excellent long-term electrocatalytic stability. The present work provides a potential way to design two-dimensional hydrogen evolution reaction (HER) electrocatalysts through controlling the shape and modulating the electric conductivity.

  18. A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Xu, Xiaomin; Chen, Yubo; Zhou, Wei; Zhu, Zhonghua; Su, Chao; Liu, Meilin; Shao, Zongping

    2016-08-01

    Perovskite oxides are demonstrated for the first time as efficient electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solutions. A-site praseodymium-doped Pr0.5 (Ba0.5 Sr0.5 )0.5 Co0.8 Fe0.2 O3- δ (Pr0.5BSCF) exhibits dramatically enhanced HER activity and stability compared to Ba0.5 Sr0.5 Co0.8 Fe0.2 O3- δ (BSCF), superior to many well-developed bulk/nanosized nonprecious electrocatalysts. The improved HER performance originates from the modified surface electronic structures and properties of Pr0.5BSCF induced by the Pr-doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparative isoelectric focusing in a cellulose-based separation medium

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Horká, Marie; Šlais, Karel

    2017-01-01

    Roč. 40, č. 11 (2017), s. 2498-2505 ISSN 1615-9306 R&D Projects: GA MZd(CZ) NV16-29916A; GA ČR(CZ) GA16-03749S; GA MV(CZ) VI20172020069 Institutional support: RVO:68081715 Keywords : isoelectric focusing * preparative * proteins * separation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.557, year: 2016

  20. Nano-electrochemical deposition of fuel cells electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, MK

    2008-11-01

    Full Text Available crucial components in fuel cells are the electrodes (anodes and cathodes) at which electrochemical reactions (reactions which liberate or consume electrons from breakdown of molecules) take place. The flow of such electrons is one of the fundamental... aspects in generating electricity from fuel cells. For these reactions to occur at useful rates either the operating temperature has to be high or electrocatalysts have to be used, a scenario particularly crucial at low operating temperatures desired...

  1. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction

    Science.gov (United States)

    Guo, Dakai; Han, Sancan; Wang, Jiacheng; Zhu, Yufang

    2018-03-01

    N-doped porous Fe/Fe3C@C electrocatalysts were prepared by the pyrolysis of the hexamethylenetetramine (HMT)-incorporated MIL-100-Fe at different temperatures (700-1000 °C) under N2 atmosphere. Rotary evaporation of MIL-100-Fe and HMT solution could make more N-enriched HMT molecules enter into the pores of MIL-100-Fe, thus improving nitrogen contents of the final pyrolyzed samples. All pyrolyzed samples show porous textures with middle specific surface areas. The X-ray photoelectron spectroscopy (XPS) results demonstrate the successful introduction of N atoms into carbon framework. Sample Fe-N2-800 prepared by annealing the precursors with the HMT/MIL-100-Fe weight ratio of 2 at 800 °C exhibits the best electrocatalytic activity towards the oxygen reduction reaction (ORR) in terms of onset potential and current density because of high graphitic N and pyridinic N content. The enwrapped Fe/Fe3C nanoparticles and Fe-Nx active sites in these samples could also boost the ORR activity synergistically. Moreover, sample Fe-N2-800 demonstrates a dominant four electron reduction process, as well as excellent long-term operation stability and methanol crossover resistance. Thus, the N-doped Fe/Fe3C@C composites derived from the HMT-incorporated MIL-100-Fe are promising electrocatalysts to replace Pt/C for ORR in practical applications.

  2. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    International Nuclear Information System (INIS)

    Lee, K.-Pill; Gopalan, A.I.

    2009-01-01

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  3. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  4. Toward highly stable electrocatalysts via nanoparticle pore confinement.

    Science.gov (United States)

    Galeano, Carolina; Meier, Josef C; Peinecke, Volker; Bongard, Hans; Katsounaros, Ioannis; Topalov, Angel A; Lu, Anhui; Mayrhofer, Karl J J; Schüth, Ferdi

    2012-12-19

    The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 °C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.

  5. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  6. Preparing for budget-based payment methodologies: global payment and episode-based payment.

    Science.gov (United States)

    Hudson, Mark E

    2015-10-01

    Use of budget-based payment methodologies (capitation and episode-based bundled payment) has been demonstrated to drive value in healthcare delivery. With a focus on high-volume, high-cost surgical procedures, inclusion of anaesthesiology services in these methodologies is likely. This review provides a summary of budget-based payment methodologies and practical information necessary for anaesthesiologists to prepare for participation in these programmes. Although few examples of anaesthesiologists' participation in these models exist, an understanding of the structure of these programmes and opportunities for participation are available. Prospective preparation in developing anaesthesiology-specific bundled payment profiles and early participation in pathway development associated with selected episodes of care are essential for successful participation as a gainsharing partner. With significant opportunity to contribute to care coordination and cost management, anaesthesiology can play an important role in budget-based payment programmes and should expect to participate as full gainsharing partners. Precise costing methodologies and accurate economic modelling, along with identification of quality management and cost control opportunities, will help identify participation opportunities and appropriate payment and gainsharing agreements. Anaesthesiology-specific examples with budget-based payment models are needed to help guide increased participation in these programmes.

  7. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction.

    Science.gov (United States)

    Lee, Eunjik; Park, Ah-Hyeon; Park, Hyun-Uk; Kwon, Young-Uk

    2018-01-01

    In this work, we present facile synthesis of amorphous Ni/Fe mixed (oxy)hydroxide (NiFe(H)) nanoparticles (NPs) and their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline media. a-NiFe(H) NPs have received lots of attention as OER electrocatalysts with many desirable properties. By using a simple sonochemical route, we prepared amorphous Ni and Fe-alkoxide (NiFe(A)) NPs whose composition can be controlled in the entire composition range (Ni 100-x Fe x , 0≤x≤1). These samples are composed of extremely small NiFe(A) NPs with Ni and Fe atoms homogeneously distributed. NiFe(A) NPs are readily converted into corresponding electrocatalytically active NiFe(H) NP by a simple electrochemical treatment. Electrochemical analysis data show that the OER activity of amorphous NiFe(H) samples follows the volcano-type trend when plotted against the Fe content. Ni 70 Fe 30 (H) sample showed the lowest overpotential of 292mV at 10mAcm -2 geo and the lowest Tafel slope of 30.4mVdec -1 , outperforming IrO x /C (326mV, 41.7mVdec -1 ). Our samples are highly durable based on the chronopotentiometry data at the current density of 10mAcm -2 geo for 2h which show that Ni 70 Fe 30 sample maintains the steady-state potential, contrary to the time-varying IrO x /C. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts.

    Science.gov (United States)

    Rahaman, Ahibur; Gimbert-Suriñach, Carolina; Ficks, Arne; Ball, Graham E; Bhadbhade, Mohan; Haukka, Matti; Higham, Lee; Nordlander, Ebbe; Colbran, Stephen B

    2017-03-07

    The influence of the substitution, orientation and structure of the phosphido bridges in [Fe 2 (CO) 6 (μ-PR 2 ) 2 ] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe 2 (CO) 6 {μ-P(Ar)H} 2 ] (1a(Ar): Ar = Ph, 2'-methoxy-1,1'-binaphthyl (bn')), e,e-[Fe 2 (CO) 6 {μ-P(Ar)H} 2 ] (1b(Ar): Ar = Ph, bn') were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe 3 (CO) 9 (μ-CO)(μ 3 -Pbn')] (2) and [Fe 3 (CO) 9 (μ 3 -PAr) 2 ] (3(Ar), Ar = Ph, bn'). A ferrocenyl (Fc)-substituted dimer [Fe 2 (CO) 6 {μ:μ'-1,2-(P(CH 2 Fc)CH 2 ) 2 C 6 H 4 }] (4), in which the two phosphido bridges are linked by an o-xylyl group, was also prepared. The molecular structures of complexes 1a(Ph), 1b(Ph), 1b(bn'), 2 and 4 were established by X-ray crystallography. All complexes have been examined as electrocatalysts for proton reduction using p-toluene sulfonic acid in tetrahydrofuran. Cyclic voltammograms of the dimers with acid exhibit two catalysis waves for proton reduction. The first wave, which appears at the potential of the primary reduction, reaches maximum current (turnover) at moderate acid concentrations and is rapidly overtaken by the second wave, which appears at more negative potential. Both of these reductive waves show an initial first order dependence on acid. The electrochemistry and electrocatalyses of the [Fe 2 (CO) 6 (μ-PR 2 ) 2 ] dimers show subtle variations with the nature of the bridging phosphido group(s), including the orientation of bridgehead hydrogen atoms.

  9. Using team-based learning to prepare medical students for future problem-based learning.

    Science.gov (United States)

    Abdelkhalek, Nahed; Hussein, Amal; Gibbs, Trevor; Hamdy, Hossam

    2010-01-01

    The original concept of problem-based learning (PBL) was built upon an acceptance that its participants would be of a more mature age, and with personal and potential qualities that would equip them for problem solving as part of their learning process. However, despite global acceptance for the use of PBL in medical and health sciences education, and knowledge of the diverse background of students about to embark upon PBL, structured programs preparing medical students for such an educational activity are not common. The primary aim of this study is to describe the experience in adopting and adapting an educational approach analogous to PBL, team-based learning (TBL), in preparing medical students to later study in a PBL environment and secondarily, to measure the students' reaction to this experience. At the University of Sharjah, 363 students were enrolled over four semesters in the 'Introduction to Medical Sciences Education (IMSE)' course. They were divided into groups of 25-27 students per class, where their learning was facilitated through a TBL approach. The course was evaluated both quantitatively and qualitatively and appropriate statistical analysis was applied to their responses. Out of 363 students, 304 (84%) responded to a 28-item closed-ended questionnaire. Their mean scores and consensus measurements indicated a high degree of students' satisfaction. Eighty-two students (65%) responded to the open-ended questions providing 139 comments. Content analysis of the responses supported the quantitative results. This study demonstrated a high degree of students' satisfaction from the course in acquiring skills preparing them for future PBL. Although this represents an evaluation of the TBL effects upon the early exposures to PBL, TBL was considered to be a feasible, efficient and cost-effective educational approach in preparing the students for their new educational experience.

  10. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  11. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  12. Preparation and properties of Cobalt-based soft magnetic material prepared by novel powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in; Srivastava, Sanjay

    2017-02-01

    The present work deals with the development of nanocrystalline 60Co–26Fe–14Al (wt%) soft magnetic materials via mechanical milling of elemental powders. The evolution of solid solution during milling proceeded with continuous decrease in atomic order and the crystallite size, and an introduction of internal strain and dislocations. The milling-induced lattice defects, crystallite size reduction, and atomic disorder exhibited a decrease in saturation magnetization, remanence magnetization, squareness ratio, and blocking temperature with increasing milling time. It has been demonstrated that, at subzero temperatures, the magnetization decreases with increasing temperature due to the development of an effective anisotropy caused by an evolution of canted spin structure owing to the introduction of lattice defects during milling. - Highlights: • Co-based HA have been fabricated by mechanical alloying. • The effect of milling time was investigated. • The saturation magnetization can be reached up to 140.79 emu/g.

  13. Method for preparing dioxyheterocycle-based electrochromic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, John R.; Estrada, Leandro; Deininger, James; Arroyave-Mondragon, Frank Antonio

    2017-10-17

    A method for preparing a conjugated polymer involves a DHAP polymerization of a 3,4-dioxythiophene, 3,4-dioxyfuran, or 3,4-dioxypyrrole and, optionally, at least one second conjugated monomer in the presence of a Pd or Ni comprising catalyst, an aprotic solvent, a carboxylic acid at a temperature in excess of 120.degree. C. At least one of the monomers is substituted with hydrogen reactive functionalities and at least one of the monomers is substituted with a Cl, Br, and/or I. The polymerization can be carried out at temperature of 140.degree. C. or more, and the DHAP polymerization can be carried out without a phosphine ligand or a phase transfer agent. The resulting polymer can display dispersity less than 2 and have a degree of polymerization in excess of 10.

  14. Electrodeposited ultrafine NbOx, ZrOx, and TaO x nanoparticles on carbon black supports for oxygen reduction electrocatalysts in acidic media

    KAUST Repository

    Seo, Jeongsuk

    2013-09-06

    A remarkable electrocatalytic activity was obtained for the oxygen reduction reaction (ORR) in acidic solutions on ultrafine nano-oxide catalysts based on group IV or V elements. By potentiostatic electrodepostion in nonaqueous solutions at 298 K followed by heat treatment in H2 gas, highly dispersed fine nanoparticles of NbOx, ZrOx, and TaOx with sizes of less than 5 nm were prepared and deposited on carbon black (CB) loaded electrodes. These oxide nanoparticles showed high catalytic activities with high onset potentials of 0.96 VRHE (NbOx), 1.02 VRHE (ZrOx), and 0.93 V RHE (TaOx) for the ORR. Owing to the high chemical stability of group IV and V oxides, the catalysts were very stable during the ORR in acidic solutions. Surface characterization and chemical identification were performed using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). All results clearly indicate the formation of nano-oxide electrocatalysts that show an outstanding ORR performance, whereas the bulk oxides are not active because of the absence of electronic conductivity. The present work demonstrates potential candidates for highly stable, non-noble-metal cathode catalysts for polymer electrolyte fuel cells (PEFCs), where the catalysts are exposed to highly acidic and oxidizing conditions. © 2013 American Chemical Society.

  15. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells.

    Science.gov (United States)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-15

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  16. Synthesis of Porous δ-MnO2 Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li-O2 Batteries.

    Science.gov (United States)

    Zhang, Peng; Sun, Dongfei; He, Mu; Lang, Junwei; Xu, Shan; Yan, Xingbin

    2015-06-08

    Lithium-oxygen (Li-O2 ) batteries are receiving intense interest because of their high energy density. A new tubular δ-MnO2 material prepared by a simple hydrothermal synthesis is an efficient electrocatalyst for Li-O2 batteries. The synthesized δ-MnO2 exhibits a unique tubular structure, in which the porous walls are composed of highly dispersed ultrathin δ-MnO2 nanosheets. Such a unique structure and its intrinsic catalytic activity provide the right electrocatalyst characteristics for high-performance Li-O2 batteries. As a consequence, suppressed overpotentials-especially the oxygen evolution reaction overpotential-superior rate capability, and desirable cycle life are achieved with these submicron δ-MnO2 tubes as the electrocatalyst. Remarkably, the discharge product Li2 O2 of the Li-O2 battery exhibits a uniform nanosheet-like morphology, which indicates the critical role of the δ-MnO2 in the electrochemical process, and a mechanism is proposed to analyze the catalysis of δ-MnO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Functional separation of oxidation–reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Wang, Yanhui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Bian, Linyan [College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000 (China); Lu, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zang, Jianbing, E-mail: jbzang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Functional separation of reactions and electron transport in PtRu/ND + AB (or CNT). • A conductive network was formed after the addition of AB or CNT. • PtRu/ND + AB (or CNT) exhibited enhanced activity and stability than PtRu/ND. - Abstract: Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp{sup 3}-bonded ND possesses high electrochemical stability but low conductivity, while sp{sup 2}-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp{sup 3}), as a support, and AB or CNTs (sp{sup 2}), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  18. Functional separation of oxidation-reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    Science.gov (United States)

    Zhang, Yan; Wang, Yanhui; Bian, Linyan; Lu, Rui; Zang, Jianbing

    2016-02-01

    Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp3-bonded ND possesses high electrochemical stability but low conductivity, while sp2-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp3), as a support, and AB or CNTs (sp2), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  19. Preparation of dual-sensitive graft copolymer hydrogel based on N ...

    Indian Academy of Sciences (India)

    Administrator

    acrylamide) (NMCS-g-PNIPAAm) copolymer hydrogel was prepared via free radical polymerization by elec- tron beam (EB) irradiation. ... terized N-maleamic acid-chitosan-g-poly(butyl acrylate) polymers. Don and Chen (2005) prepared MA-CS-g-. PNIPAAm copolymers based on water-soluble maleoyl chitosan and ...

  20. A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation.

    Science.gov (United States)

    Li, Song; Cao, Xupeng; Wang, Yan; Zhu, Zhen; Zhang, Haowei; Xue, Song; Tian, Jing

    2017-11-01

    With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

  1. Preparation of JEREMI Experiment: Development of the Ground Based Prototype

    Science.gov (United States)

    Yasnou, V.; Mialdun, A.; Shevtsova, V.

    2012-12-01

    This study has been performed in the frame of preparing the space experiment JEREMI (Japanese and European Research Experiment on Marangoni Instabilities). The use of forced coaxial gas flow is proposed as a way to stabilize the Marangoni convection in liquid bridges, which might have important technological applications in the floating zone technique. A new set-up is under development and all sub-systems have passed severe tests. Here we present the design of this set-up and preliminary results of experiments for shear-driven two-phase flows in a confined volume of liquid under conditions of normal gravity. The geometry corresponds to a cylindrical liquid bridge concentrically surrounded by an annular gas channel with external solid walls. Gas enters into the annular duct, flows between solid walls and upon reaching the liquid zone entrains initially quiescent liquid. The test liquids are ethanol, n-decane and 5 cSt silicone oil, which have different degrees of viscosity and of volatility. The gas flow along the interface strongly enhances the evaporation and, correspondingly, affects the interface shape. Silhouette measurements are used for optical determination of the interface shape. From the digital images the variation of the liquid volume as a function of flow rate is calculated.

  2. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Becknell, Nigel [Department; Materials; Son, Yoonkook [Department; Kim, Dohyung [Department; Li, Dongguo [Materials; Yu, Yi [Department; Niu, Zhiqiang [Department; Lei, Teng [Department; Sneed, Brian T. [Center; More, Karren L. [Center; Markovic, Nenad M. [Materials; Stamenkovic, Vojislav R. [Materials; Yang, Peidong [Department; Materials; Department; Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States

    2017-08-08

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar to 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.

  4. Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Qiao, Shizhang; Vasileff, Anthony

    2017-12-01

    The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen-based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high-purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. Herein, we present a critical appraisal of alkaline HER electrocatalysis, with a special emphasis on the connection between fundamental surface electrochemistry on single crystal models and the derived molecular design principle for real-world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.

    Science.gov (United States)

    Kiziltas, Esra Erbas; Kiziltas, Alper; Bollin, Shannon C; Gardner, Douglas J

    2015-01-01

    Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    Science.gov (United States)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  7. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  8. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications

    Science.gov (United States)

    Sakthivel, M.; Schlange, A.; Kunz, U.; Turek, T.

    Platinum electrocatalysts deposited on multi-walled carbon nanotubes (CNT) with high loading were prepared using a microwave-assisted polyol reduction method and employed for direct methanol fuel cells (DMFC). A zwitterionic surfactant was used as a stabilizing agent for the formation of Pt nanoparticles. A uniform and narrow size distribution of highly dispersed Pt nanoparticles could be achieved by adjusting the weight ratio of surfactant to Pt precursor allowing for Pt loadings of up to 60 wt%. The heating time and the temperature for the ethylene glycol (EG) oxidation were found to be the key factors for depositing Pt nanoparticles homogeneously on carbon nanotubes. The smallest average particle diameter of 1.8 nm was obtained through microwave heating to 140 °C in 50 s. The structure, amount and morphology of the electrocatalysts were characterized with XRD, TGA, and TEM, respectively. Single cell DMFC measurements were performed in a membrane-electrode assembly (MEA) with 5 cm 2 active area and very low catalyst loading (0.25 mg cm -2 of noble metal on both anode and cathode). The DMFC performance of the surfactant stabilized cathode catalyst obtained by the new method described here revealed that the power density was three times higher than for a commercial catalyst used for comparison and two times higher than for an unstabilized CNT supported catalyst.

  9. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level

    Directory of Open Access Journals (Sweden)

    J. X. WANG

    2001-12-01

    Full Text Available Two new methods for monolayer-to-multileyer Pt deposition are presented. One involves Pt deposition by the replacement of an UPD metal monolayer on an electrode surface and the other the spontaneous deposition of Pt on Ru. The first method, exemplified by the replacement of a Cu monolayer on a Au(111 surface, occurs as a spontaneous irreversible redox reaction in which the Cu monolayer is oxidized by Pt cations, which are reduced and simultaneously deposited. The second method is illustrated by the deposition of Pt on a Ru(0001 surface and on carbon-supported Ru nanoparticles. This deposition takes place upon immersion of a UHV-prepared Ru(0001 crystal or Ru nanoparticles, reduced in H2, in a solution containing PtCl62- ions. The oxidation of Ru to RuOH by a local cell mechanism appears to be coupled with Pt deposition. This method facilitates the design of active Pt-Ru catalysts with ultimately low Pt loadings. Only a quarter of a monolayer of Pt on Ru nanoparticles yields an electrocatalyst with higher activity and CO tolerance for H2/CO oxidation than commercial Pt-Ru alloy electrocatalysts with considerably higher Pt loadings.

  10. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting

    Science.gov (United States)

    Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng

    2018-05-01

    Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.

  11. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  12. Preparing Students for Flipped or Team-Based Learning Methods

    Science.gov (United States)

    Balan, Peter; Clark, Michele; Restall, Gregory

    2015-01-01

    Purpose: Teaching methods such as Flipped Learning and Team-Based Learning require students to pre-learn course materials before a teaching session, because classroom exercises rely on students using self-gained knowledge. This is the reverse to "traditional" teaching when course materials are presented during a lecture, and students are…

  13. Preparing Instructional Designers for Game-Based Learning: Part 1

    Science.gov (United States)

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    Like many rapidly growing industries, advances in video game technology are far outpacing research on its design and effectiveness. Relatively little is understood about how to apply what we know about teaching and learning to optimize game-based learning. For the most part, instructional designers know little about game development and video game…

  14. Preparation of microemulsions with soybean oil-based surfactants

    Science.gov (United States)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  15. Ultrathin graphitic C3 N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Asiri, Abdullah M; Alamry, Khalid A; Sun, Xuping

    2014-08-01

    Graphitic C3 N4 (g-C3 N4 ) is used as a low-cost organic oxygen evolution reaction (OER) electrocatalyst. The integration of ultrathin g-C3 N4 nanosheets with graphene leads to g-C3 N4 /graphene composites with high OER activity and good durability. X-ray photoelectron spectroscopy (XPS) studies suggest that the OER activity results from pyridinic-N-related active sites. This catalyst provides an alternative to OER catalysts based on transition metals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparing facilitators from community-based organizations for evidence-based intervention training in Second Life.

    Science.gov (United States)

    Valladares, Angel Felix; Aebersold, Michelle; Tschannen, Dana; Villarruel, Antonia Maria

    2014-09-30

    A major barrier to the use and scale-up of evidence-based interventions are challenges related to training and capacity building. A cost-effective and highly interactive multi-user virtual environment, Second Life (SL) is a promising alternative for comprehensive face-to-face facilitator training. The purpose of this study was to examine the feasibility of using SL to train facilitators from community-based organizations to use ¡Cuídate! (Take Care of Yourself), one of the few evidence-based interventions developed and tested with Latino youth to reduce sexual risk behaviors. We recruited 35 participants from community-based organizations throughout the United States to participate in the SL ¡Cuídate! Training of Facilitators. Preparation to use SL consisted of four phases: (1) recruitment and computer capacity screening, (2) enrollment, (3) orientation to the SL program, and (4) technical support throughout the synchronous training sessions. Technical difficulties, the associated cause, and the mitigation strategy implemented were recorded during each session. Participants completed evaluations including perceptions of self-efficacy and confidence to complete the necessary skills to participate in SL training. Overall, participants reported high levels of self-efficacy for all skills necessary to participate in SL training. Based on an 11-point scale (0-10), self-efficacy to download and access the software was rated the highest: mean 8.29 (SD 2.19). Interacting with items in SL had the lowest mean score: mean 7.49 (SD 2.89). The majority of technical difficulties experienced by participants were related to inadequate Internet connections or computer malfunctions. Our findings support the feasibility of using SL for the ¡Cuídate! Training of Facilitators. The process used in this study to prepare participants to use SL can be used as a basis for other evidence-based intervention training in SL. This study is an important contribution to developing cost

  17. Determination of internal resistance and electrocatalyst utilization of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.A. [Thermodynamics and Kinetics Lab., Dept. of Mechanical Engineering, Toronto Univ., ON (Canada); Ward, C.A. [Thermodynamics and Kinetics Lab., Dept. of Mechanical Engineering, Toronto Univ., ON (Canada); Venter, R.D. [Thermodynamics and Kinetics Lab., Dept. of Mechanical Engineering, Toronto Univ., ON (Canada); Ho, S. [Thermodynamics and Kinetics Lab., Dept. of Mechanical Engineering, Toronto Univ., ON (Canada)

    1997-05-01

    Analytical methods have been proposed recently for determining both the internal resistance of fuel cell electrodes and the fraction of the electrocatalyst that is completely utilized. To apply these methods requires that the Tafel slope and the equilibrium exchange current for the electrolyte-electrocatalyst combination to be known when this combination is exposed to O{sub 2} and when it is exposed to H{sub 2}. The Tafel parameters have been previously reported for O{sub 2} and their measurement for H{sub 2} is reported herein. Also, to apply one of these analytical methods - maximum power method - requires that the current and potential to be measured when a fuel cell is operating at steady state and at maximum power. To apply the second method - approximate maximum power method - requires that the cell potential and slope of the potential versus current curve be measured at a current that is less than that corresponding to maximum power. To evaluate these methods, a series of porous carbon electrodes were constructed, and to give them different resistances nickel was electro-deposited on the one side of each. These electrodes were then assembled into fuel cells and tested. Their internal resistance was determined by the current-interrupt technique, and by using the analytical methods. These results agree to within the experimental error, 12%. Electro-depositing nickel on the gas side of the electrodes was found to decrease their internal resistance by an order of magnitude and increase the electrocatalyst utilization by a factor of three. (orig.)

  18. Preparation of a Novel Water-based Acrylic Multi-Thermal Insulation Coating

    OpenAIRE

    Xiufang YE; Dongchu CHEN; Menglei CHANG; Youtian MO; Qingxiang WANG

    2017-01-01

    To efficiently improve the thermal insulation effect of coatings, a novel water-based acrylic multi-thermal insulation coating (multi-WATIC) combined with thermal obstruction, echo, and radiation was prepared. The category and ratio of thermal insulation functional fillers are crucial. First, water-based acrylic thermal insulation coating (WATIC) with single thermal insulation functional fillers was prepared, and the thermal insulation property tests were done. Thereafter, a novel multi-WATIC...

  19. Cellulose-Based WO3 Nanocomposites Prepared by a Sol–Gel Method at Low Temperature

    Science.gov (United States)

    Zhang, Bin; Liu, Rongzhan; Pan, Ying; Wang, Quanquan; Liu, Baojiang

    2018-01-01

    A facile method was developed to prepare cellulose-based WO3 nanocomposites. The preparation was carried out by a sol-gel method by involving treatment of tungsten hexachloride and tri-block nonionic polymer at the temperature as low as 100 °C. The morphology, surface chemical composition, functional groups, and crystal phase of the as- prepared cellulose-based WO3 nanocomposites were investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction, respectively.

  20. Thiophene-based monolayer OFETs prepared by Langmuir techniques

    Science.gov (United States)

    Agina, Elena V.; Sizov, Alexey S.; Anisimov, Daniil S.; Trul, Askold A.; Borshchev, Oleg V.; Paraschuk, Dmitry Y.; Shcherbina, Maxim A.; Chvalun, Sergey N.; Ponomarenko, Sergey A.

    2015-08-01

    A novel fast, easily processible and highly reproducible approach to thiophene-based monolayer OFETs fabrication by Langmuir-Blodgett or Langmuir-Schaefer techniques was developed and successfully applied. It is based on selfassembly of organosilicon derivatives of oligothiophenes or benzothienobenzothiophene on the water-air interface. Influence of the conjugation length and the anchor group chemistry of the self-assembling molecules on the monolayer structure and electric performance of monolayer OFETs was systematically investigated. The efficient monolayer OFETs with the charge carrier mobilities up to 0.01 cm2/Vs and on/off ratio up to 106 were fabricated, and their functionality in integrated circuits under normal air conditions was demonstrated.

  1. ETEM Studies of Electrodes and Electro-catalysts

    DEFF Research Database (Denmark)

    Jooss, Christian; Mildner, Stephanie; Beleggia, Marco

    2016-01-01

    Environmental TEM is an excellent tool for gaining insight into the atomic and electronic structure of electro-catalysts under operating conditions. Several electrochemical reactions such as oxidation/reduction processes of electrodes, heterogeneous gas phase catalysis of water splitting/oxygen...... evolution and electrochemical corrosion processes of materials have been studied in some pioneering experiments which will be summarized in this chapter. These experiments often reveal a strong change of the electrode due to the adsorption of gas species from the environment as well as due to the impact...

  2. Impact of bowel preparation type on the quality of colonoscopy: a multicenter community-based study.

    Science.gov (United States)

    Martin, Daniel; Walayat, Saqib; Ahmed, Zohair; Dhillon, Sonu; Asche, Carl V; Puli, Srinivas; Ren, Jinma

    2016-01-01

    High-quality bowel preparation is crucial for achieving the goals of colonoscopy. However, choosing a bowel preparation in clinical practice can be challenging because of the many formulations. This study aims to assess the impact the type of bowel preparation on the quality of colonoscopy in a community hospital setting. A retrospective, observational study was conducted utilizing a colonoscopy screening/surveillance database in central Illinois during the period of January 1, 2010, to March 31, 2014. Patients without bowel preparation assessment were excluded from this study. Controlling for the confounders, generalized linear models were used to estimate the adjusted impact [odds ratio (OR)] of bowel preparation type on the quality of preparation (excellent, good, fair, and poor), and on the detection of advanced adenoma. The association between the time of withdrawal after insertion and the quality of preparation was also examined using a linear model. A total of 28,368 colonoscopies; half the patients were male, and the average age was 61±9 years. Polyethylene glycol (PEG) was used in the majority (70.2%) of bowel preparations, followed by sodium sulfate (21.4%), sodium phosphate (2.5%), magnesium sulfate (0.4%), and others. Compared with PEG, magnesium sulfate had a poorer quality of bowel preparations (OR=0.6, 95% CI 0.4-0.9; ppreparation was significantly improved by using sodium sulfate (OR=5.7, 95% CI 5.4-6.1; p2.1, 95% CI 1.8-2.5; ppreparation, the better quality of preparation significantly increased the detection rate of advanced adenoma (5.0, 3.6, and 2.9% for excellent, good, and fair, respectively). When possible, sodium sulfate-based preparations should be recommended in the community setting for colonoscopy because of their high quality of bowel preparation.

  3. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  4. Ultrasonic-based membrane aided sample preparation of urine proteomes.

    Science.gov (United States)

    Jesus, Jemmyson Romário; Santos, Hugo M; López-Fernández, H; Lodeiro, Carlos; Arruda, Marco Aurélio Zezzi; Capelo, J L

    2018-02-01

    A new ultrafast ultrasonic-based method for shotgun proteomics as well as label-free protein quantification in urine samples is developed. The method first separates the urine proteins using nitrocellulose-based membranes and then proteins are in-membrane digested using trypsin. The enzymatic digestion process is accelerated from overnight to four minutes using a sonoreactor ultrasonic device. Overall, the sample treatment pipeline comprising protein separation, digestion and identification is done in just 3h. The process is assessed using urine of healthy volunteers. The method shows that male can be differentiated from female using the protein content of urine in a fast, easy and straightforward way. 232 and 226 proteins are identified in urine of male and female, respectively. From this, 162 are common to both genders, whilst 70 are unique to male and 64 to female. From the 162 common proteins, 13 are present at levels statistically different (p minimalism concept as outlined by Halls, as each stage of this analysis is evaluated to minimize the time, cost, sample requirement, reagent consumption, energy requirements and production of waste products. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  6. Preparation of a basic data base for shielding design. 3

    International Nuclear Information System (INIS)

    Takemura, Morio

    1998-03-01

    With use of a standard groupwise shielding design library JSSTDL produced from the latest evaluated nuclear data library JENDL-3.2, experimental analyses for the In-Vessel Fuel Storage (IVS) Experiment and the Intermediate Heat Exchanger (IHX) Experiment were performed. The results were compared with those obtained by the same analysis method and input data using the JSDJ2 library that had been applied consistently to the JASPER experiment analyses. In general, the results obtained with JSSTDL are higher than those with JSDJ2 as were found in analyses in last two years for the Radial Shield Attenuation Experiment and the Special Materials Experiment and also the Axial Shield Experiment. The calculation-to-experiment ratios of the fast neutron flux just behind deep penetration in sodium were obtained first by these IVS and IHX experimental analyses with the JSSTDL library. However, it was confirmed not to be easy to evaluate the accuracy of sodium cross section because of its dependency on how to model the swelled sodium slabs and tanks. The analyses with JSSTDL library were verified by comparison with other analyses with another library based on JENDL-3.2. Compilation of the input data necessary for future reanalyses of important configurations in JASPER experiments, that were selected at the first stage of this study, were continued and new data were added into the computer disk holding previously accumulated data. (author)

  7. From Food Waste to Efficient Bifunctional Nonprecious Electrocatalyst.

    Science.gov (United States)

    Hof, Ferdinand; Boni, Alessandro; Valenti, Giovanni; Huang, Kai; Paolucci, Francesco; Pénicaud, Alain

    2017-11-02

    Synergy between graphitic nanocarbon, obtainable from food waste through cracking of biomethane, and iron oxide nanoparticles provides access to efficient bifunctional electro catalysts. Dissolution of potassium-intercalated graphitic nanocarbons yields graphenide solutions with calibrated, small lateral size-reduced graphenes that are used subsequently as reducing agents of iron metal salts. This results in the strong binding of small size (2-5 nm) nanoparticles on the carbon framework homogeneously within the composite material, accessibility of the catalytic centers, and good conductivity provided by the underlying carbon framework. The iron oxide nanocarbon electrocatalyst performances are highlighted by the overall overpotential of approximately 1 V needed to reach the benchmark threshold of 10 mA cm -2 for the oxygen reduction reaction and the particular activity towards oxygen evolution reaction (η≈0.4 V at 10 mA cm -2 ), comparable to that of the precious RuO 2 and IrO 2 catalysts. This iron oxide/nanocarbon electrocatalyst is versatile, remarkably active, stable, and truly sustainable. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Oxygen reduction reaction of (C-PCTNB@CNTs): A nitrogen and phosphorus dual-doped carbon electro-catalyst derived from polyphosphazenes

    Science.gov (United States)

    Dar, Sami Ullah; Ud Din, Muhammad Aizaz; Hameed, Muhammad Usman; Ali, Shafqat; Akram, Raheel; Wu, Zhanpeng; Wu, Dezhen

    2018-01-01

    This research describes the synthesis of a novel type of poly [cyclotriphosphazene-co-1,3,5-triol nitrobenzene] (PCTNB) microspheres with uniform size and diameter of more than 2 μm having well characterization. These microspheres are further used to wrap the CNTs by a facile route using template based non-covalent method to form PCTNB@CNTs composite. This composite is further well analyzed before it is subjected to pyrolysis. The direct carbonization of the PCTNB@CNTs is performed at 600 °C at a rate of 5 °C/min under N2 atmosphere to render the N, P, O doped carbonized PCTNB@CNTs having enhanced electronic features to be applied as an ORR electrocatalysts in fuel cells accompanied by TEM, XPS, Raman, FT-IR, TGA and BET analyses. Here, we have designed a metal-free, N, P, O doped (C-PCTNB@CNTs) electro-catalyst which exhibit significantly high ORR performance in acidic PEM cells showing much higher onset potential of (0.94 V) and half-wave potential of (0.85 V) with electron transfer number (n) 3.9 at 0.4-0.7 V as compared to other non-metallic electro-catalysts. Thus, (C-PCTNB@CNTs) is a metal-free, methanol tolerant carbon-based ORR catalyst, and it opens up new avenues for clean energy generation for affordable and durable fuel cells.

  9. Impact of bowel preparation type on the quality of colonoscopy: a multicenter community-based study

    Directory of Open Access Journals (Sweden)

    Daniel Martin

    2016-04-01

    Full Text Available Background: High-quality bowel preparation is crucial for achieving the goals of colonoscopy. However, choosing a bowel preparation in clinical practice can be challenging because of the many formulations. This study aims to assess the impact the type of bowel preparation on the quality of colonoscopy in a community hospital setting. Methods: A retrospective, observational study was conducted utilizing a colonoscopy screening/surveillance database in central Illinois during the period of January 1, 2010, to March 31, 2014. Patients without bowel preparation assessment were excluded from this study. Controlling for the confounders, generalized linear models were used to estimate the adjusted impact [odds ratio (OR] of bowel preparation type on the quality of preparation (excellent, good, fair, and poor, and on the detection of advanced adenoma. The association between the time of withdrawal after insertion and the quality of preparation was also examined using a linear model. Results: A total of 28,368 colonoscopies; half the patients were male, and the average age was 61±9 years. Polyethylene glycol (PEG was used in the majority (70.2% of bowel preparations, followed by sodium sulfate (21.4%, sodium phosphate (2.5%, magnesium sulfate (0.4%, and others. Compared with PEG, magnesium sulfate had a poorer quality of bowel preparations (OR=0.6, 95% CI 0.4–0.9; p<0.05, whereas the quality of bowel preparation was significantly improved by using sodium sulfate (OR=5.7, 95% CI 5.4–6.1; p<0.001 and sodium phosphate (OR=2.1, 95% CI 1.8–2.5; p<0.001. For those who had adequate bowel preparation, the better quality of preparation significantly increased the detection rate of advanced adenoma (5.0, 3.6, and 2.9% for excellent, good, and fair, respectively. Conclusion: When possible, sodium sulfate–based preparations should be recommended in the community setting for colonoscopy because of their high quality of bowel preparation.

  10. Preparing Teachers for Diversity: A Literature Review and Implications from Community-Based Teacher Education

    Science.gov (United States)

    Yuan, Huanshu

    2018-01-01

    This study reviewed current issues in preparing qualified teachers for increasing diverse student populations in the U.S. and in other multicultural and multiethnic countries. Based on the framework of community-based and multicultural teacher education, this literature review paper analyzed issues and problems existed in the current curriculum,…

  11. Transitioning to the Real World through Problem-Based Learning: A Collaborative Approach to Teacher Preparation

    Science.gov (United States)

    Barron, Lisa; Wells, Lauren

    2013-01-01

    Problem-based learning (PBL) creates opportunities for authentic learning in teacher preparation programs. In addition to developing content knowledge and pedagogy, problem-based learning affords students the framework for a holistic, collaborative approach to solving several interconnected problems. As students move through the process of…

  12. Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst.

    Science.gov (United States)

    Lu, Xunyu; Tan, Tze Hao; Ng, Yun Hau; Amal, Rose

    2016-08-16

    A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g-C3 N4 /MWCNTs). The as-prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon-nitrogen bonds, high specific surface area, and improved material conductivity of the g-C3 N4 /MWCNT composite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modified Carbon Nanomaterials as Active Electrocatalysts

    OpenAIRE

    Tavakkoli, Mohammad

    2017-01-01

    Water splitting (WS) has attracted increasing attention for producing highly pure hydrogen and oxygen. WS is also a promising technique to store intermittent electrical energy from renewable resources such as solar and wind energy in the form of H2 fuel. WS consists of two half-reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). For HER, efficient non-precious catalysts are required to replace the rare and expensive Pt-based catalysts. For OER, more efficient low...

  14. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  15. Preparation of tamarind gum based soft ion gels having thixotropic properties.

    Science.gov (United States)

    Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh

    2014-02-15

    Tamarind gum was used to prepare ion gels using both synthetic ionic liquids (ILs) namely 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium bromide and bio-based ionic liquids (Bio-ILs) namely choline acrylate, choline caproate and choline caprylate by heating cooling process. The gels were found to have good thermal stability and exhibited thixotropic behaviour. Upon relaxation after applied breaking strain, the recovery of gel structures after ten consecutive cycles was observed. The hydrogel of the gum prepared using ethanol aqueous solution had much inferior quality in terms of viscosity, viscoelasticity, thermal stability and thixotropicity when compared with the ion gels. The ion gels also showed very good adherence to human finger muscles and skin. The ion gels thus prepared may find application in electrochemistry, sensors, actuators and the gels prepared with Bio-ILs could even be useful in biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Patient preparation for intravenous urography: are we practising evidence-based medicine?

    International Nuclear Information System (INIS)

    Singh, S.; Reddicliffe, N.; Parker, D.A.

    2008-01-01

    Aim: To identify the current practice of patient preparation prior to intravenous urography (IVU) in England and Wales. Methods: Seventy-two hospitals were contacted to request details regarding the duration of fluid restriction, adherence to a low-residue diet, or use of laxatives for patient preparation before IVU examinations. Results: Results showed that out of 45 hospitals that still use IVU, only six (13.3%) did not follow a patient-preparation regime. The vast majority of the hospitals contacted (87.6%), implemented either fluid and/or food restriction, or prescribed laxatives. The duration of fluid and food restriction varied from 2-12 h duration, and some departments advocated 48 h of laxatives. Conclusion: A large proportion of hospitals are not practising evidence-based medicine in relation to IVU, and we suggest that the practice of patient preparation should be abandoned

  17. Patient preparation for intravenous urography: are we practising evidence-based medicine?

    Science.gov (United States)

    Singh, S; Reddicliffe, N; Parker, D A

    2008-02-01

    To identify the current practice of patient preparation prior to intravenous urography (IVU) in England and Wales. Seventy-two hospitals were contacted to request details regarding the duration of fluid restriction, adherence to a low-residue diet, or use of laxatives for patient preparation before IVU examinations. Results showed that out of 45 hospitals that still use IVU, only six (13.3%) did not follow a patient-preparation regime. The vast majority of the hospitals contacted (87.6%), implemented either fluid and/or food restriction, or prescribed laxatives. The duration of fluid and food restriction varied from 2-12 h duration, and some departments advocated 48 h of laxatives. A large proportion of hospitals are not practising evidence-based medicine in relation to IVU, and we suggest that the practice of patient preparation should be abandoned.

  18. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    KAUST Repository

    Yang, Xiulin

    2016-04-21

    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments.

  19. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  20. Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Duan, Huimei; Hao, Qin; Xu, Caixia

    2014-12-01

    Nanoporous PtFe alloys with two different bimetallic ratios are fabricated by selectively dealloying PtFeAl ternary alloys, characterized by nanoscaled bicontinuous network skeleton with interconnected hollow channels extending in all three dimensions. The reactive components in PtFeAl ternary alloy were sequentially leached out in a highly controllable manner, generating nanoporous architecture with different bimetallic ratios and the typical ligament size as small as 5 nm. These nanoporous PtFe alloys exhibit much enhanced electrocatalytic activity for oxygen reduction reaction compared with the PtFe/C and Pt/C catalysts. The specific and mass activities for oxygen reduction follow the order of nanoporous Pt75Fe25 > nanoporous Pt55Fe45 > PtFe/C > Pt/C. In the absence of any catalyst support, the structure stability of nanoporous PtFe alloys is greatly enhanced with less loss of the electrochemical surface area and the oxygen reduction activity upon long-term potential scan tests compared with PtFe/C and Pt/C catalysts. The as-made nanoporous PtFe alloys thus hold great application potential as promising cathode electrocatalyst in proton exchange membrane fuel cells with the advantages of easy preparation along with superior oxygen reduction activity and durability.

  1. Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu, Zexing; Wang, Jie; Zhu, Jing; Guo, Junpo; Xiao, Weiping; Xuan, Cuijuan; Lei, Wen; Wang, Deli

    2017-01-01

    Graphical abstract: Graphene supported MoP (MoP-RGO) was synthesized through a facile solvothermal reaction followed by high-temperature phosphating treatment method. The material exhibits an outstanding HER performance in both acid and alkaline media. RGO act as a substrate which can not only avoid the nanoparticles aggregation, but also facilitate the electron transfer during the electrocatalytic process. - Abstract: Electrochemical splitting of water to obtain hydrogen plays a vital role in high energy density devices, especially for fuel cells. In this work, reduced graphene oxide supported molybdenum phosphide nanoparticles (MoP-RGO) were prepared via a facile solvothermal reaction followed by high-temperature phosphating treatment. The electrochemical measurement results indicate that the MoP-RGO nanocomposite obtained at 900 °C exhibits excellent electrocatalytic activity for hydrogen evolution reaction (HER) with overpotentials of 117 mV and 150 mV at a current density of 10 mA cm −2 in acid and alkaline media, respectively. Furthermore, the instability of the catalyst in basic medium was systemically investigated. This work provides a facile strategy for the synthesis of cost-effective carbon supported metal phosphide as HER electrocatalyst.

  2. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    Science.gov (United States)

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  3. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts

    Science.gov (United States)

    Cheng, Fangyi; Shen, Jian; Peng, Bo; Pan, Yuede; Tao, Zhanliang; Chen, Jun

    2011-01-01

    Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline MxMn3-xO4 (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic MxMn3-xO4 from the reduction of amorphous MnO2 in aqueous M2+ solution. The prepared CoxMn3-xO4 nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.

  4. Synthesis and Development of Modified OMC-Supported Platinum Electrocatalyst for PEMFC

    Science.gov (United States)

    Muonagolu, Emeka Paul

    Ordered mesoporous carbon (OMC) has been considered as a promising Platinum catalyst support because of its large surface area, uniform ordered hexagonal mesopores, porous structure and high electrical conductivity. Graphitization of the walls of OMC is vital when the electrical conductivity of the catalyst is the main concern. The objective of this work was to improve the electrical conductivity of the ordered mesoporous carbon (OMC) support by utilizing transition metals such as Ni, Co and Fe to graphitize the pore walls of OMC via catalytic graphitization. Metal modified OMCs have been synthesized following two steps. First step is synthesizing metal modified SBA-15 as a template containing 10wt% transition metals (Ni, Co, Fe) and TEOS as a source of silica followed by calcination. The second step is introducing sucrose as the carbon source into the pores of the silica template followed by carbonization at 900°C and removal of the silica template using hydrofluoric acid. The synthesized Metal modified OMCs were characterized using Brunaeur Emmit Teller (BET) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy. Surface area for the metal modified --OMC was found around 1300--1500m 2/g and pore sizes in the range of 3--4nm. The membrane electrode assembly (MEA) was prepared using the synthesized electrocatalyst and was used to evaluate the performance of the catalyst by testing it on the fuel cell test station. The results were compared to that of commercial catalyst.

  5. Reactive Electrophilic OI-Species Evidenced in High-Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts.

    Science.gov (United States)

    Massué, Cyriac; Pfeifer, Verena; van Gastel, Maurice; Noack, Johannes; Algara-Siller, Gerardo; Cap, Sébastien; Schlögl, Robert

    2017-12-08

    Although quasi-amorphous iridium oxohydroxides have been identified repeatedly as superior electrocatalysts for the oxygen evolution reaction (OER), an exact description of the performance-relevant species has remained a challenge. In this context, we report the characterization of hydrothermally prepared iridium(III/IV) oxohydroxides that exhibit exceptional OER performances. Holes in the O 2p states of the iridium(III/IV) oxohydroxides result in reactive O I- species, which are identified by characteristic near-edge X-ray absorption fine structure (NEXAFS) features. A prototypical titration reaction with CO as a probe molecule shows that these O I- species are highly susceptible to nucleophilic attack at room temperature. Similarly to the preactivated oxygen involved in the biological OER in photosystem II, the electrophilic O I- species evidenced in the iridium(III/IV) oxohydroxides are suggested to be precursors to species involved in the O-O bond formation during the electrocatalytic OER. The CO titration also highlights a link between the OER performance and the surface/subsurface mobility of the O I- species. Thus, the superior electrocatalytic properties of the iridium (III/IV) oxohydroxides are explained by their ability to accommodate preactivated electrophilic O I- species that can migrate within the lattice. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reactive Electrophilic OI− Species Evidenced in High‐Performance Iridium Oxohydroxide Water Oxidation Electrocatalysts

    Science.gov (United States)

    Massué, Cyriac; Pfeifer, Verena; van Gastel, Maurice; Noack, Johannes; Algara‐Siller, Gerardo; Schlögl, Robert

    2017-01-01

    Abstract Although quasi‐amorphous iridium oxohydroxides have been identified repeatedly as superior electrocatalysts for the oxygen evolution reaction (OER), an exact description of the performance‐relevant species has remained a challenge. In this context, we report the characterization of hydrothermally prepared iridium(III/IV) oxohydroxides that exhibit exceptional OER performances. Holes in the O 2p states of the iridium(III/IV) oxohydroxides result in reactive OI− species, which are identified by characteristic near‐edge X‐ray absorption fine structure (NEXAFS) features. A prototypical titration reaction with CO as a probe molecule shows that these OI− species are highly susceptible to nucleophilic attack at room temperature. Similarly to the preactivated oxygen involved in the biological OER in photosystem II, the electrophilic OI− species evidenced in the iridium(III/IV) oxohydroxides are suggested to be precursors to species involved in the O−O bond formation during the electrocatalytic OER. The CO titration also highlights a link between the OER performance and the surface/subsurface mobility of the OI− species. Thus, the superior electrocatalytic properties of the iridium (III/IV) oxohydroxides are explained by their ability to accommodate preactivated electrophilic OI− species that can migrate within the lattice. PMID:28941180

  7. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  8. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets

    Directory of Open Access Journals (Sweden)

    Imjak Jeon

    2011-01-01

    Full Text Available Roll compaction was applied for the preparation of hydroxypropyl cellulose (HPC-based sustained-release matrix tablets. Matrix tablets made via roll compaction exhibited higher dosage uniformity and faster drug release than direct-compacted tablets. HPC viscosity grade, roll pressure, and milling speed affected tablet properties significantly. Roll compaction seems to be an adequate granulation method for the preparation of HPC-based matrix tablets due to the simplicity of the process, less handling difficulty from HPC tackiness as well as easier particle size targeting. Selecting the optimum ratio of plastic excipients and the particle size of starting materials can however be critical issues in this method.

  9. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Jingfang; Liu, Jieyu; Xi, Lifei; Yu, Yifu; Chen, Ning; Sun, Shuhui; Wang, Weichao; Lange, Kathrin M; Zhang, Bin

    2018-03-21

    A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH ( s Au/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % s Au decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of s Au, s Au/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of s Au/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring s Au on NiFe oxyhydroxide stabilized by interfacial CO 3 2- and H 2 O interfacing with LDH.

  10. Preparation of an ultra fast binding cement from calcium silicate-based mixed oxide nanoparticles.

    Science.gov (United States)

    Halim, S C; Brunner, T J; Grass, R N; Bohner, M; Stark, W J

    2007-10-03

    Building construction takes time, in part because the binding process of cement is based on the slow re-crystallization and precipitation of calcium silicate species. Since the material's reactivity is surface area limited, a reduction in particle size of Portland cements has been used to prepare faster binding formulations. The present work investigates a new and direct, one-step preparation of calcium silicate-based nanoparticles of a typical Portland cement composition by flame spray synthesis. Isothermal calorimetry revealed that the hardening of this new nano-cement corroborated a more than tenfold increase of initial reactivity with different reaction kinetics if compared to conventionally prepared cements. At present, the unfavourably high porosity of nano-cements, however, underlines the need for additional improvements of chemical composition and formulation to make these highly reactive materials applicable to modern construction work, where load-bearing strength is of importance.

  11. Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2017-10-01

    Full Text Available In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.

  12. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  13. Preparation and characterization of zirconium based colloidal suspensions; Preparacao e caracterizacao de suspensoes coloidais a base de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Chiavacci, Leila Aparecida; Pulcinelli, Sandra Helena; Santilli, Celso Valentim [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1995-12-31

    Attention has been paid to zirconia based ceramic materials due to its technological applications, like catalysts, ionic changers, sensors, etc. Colloidal suspensions based on zirconium, containing different cation/anion molar ratio, have been prepared aiming the improvement of its extrinsical properties. The systems have been characterized by turbidimetry and the xerogels have been analysed by scanning electronic microscopy, infrared spectroscopy and x-ray diffraction. Results make evident the viability of preparation of transparent colloidal suspensions, gel and powders, in which the particles size and morphology could be controlled. (author) 3 figs.

  14. EIS-assisted performance analysis of non-noble metal electrocatalyst (Fe-N/C)-based PEM fuel cells in the temperature range of 23-80 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianlu; Zhang Lei [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada); Bezerra, Cicero W.B. [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada); Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil); Li Hui; Xia Zetao [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada); Zhang Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada)], E-mail: jiujun.zhang@nrc.gc.ca; Marques, Aldalea L.B.; Marques, Edmar P. [Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil)

    2009-02-15

    A carbon-supported non-noble metal catalyst, Fe-N/C, was used as the cathode catalyst to construct membrane electrolyte assemblies (MEAs) for a proton exchange membrane (PEM) fuel cell. The performance of such a fuel cell was then tested and diagnosed using electrochemical impedance spectroscopy (EIS) in the temperature range of 23-80 deg. C. Based on the EIS measurements, individual resistances, such as charger transfer resistance and membrane resistance, were obtained and used to simulate polarization curves (current-voltage (I-V) curves). A close agreement between the simulated I-V curves and the measured curves demonstrates consistency between the polarization and EIS data. The temperature-dependent parameters obtained via EIS, such as apparent exchange current densities and electrolyte membrane conductivities, were also used to acquire activation energies for both the oxygen reduction reaction (ORR) catalyzed by an Fe-N/C catalyst and the proton transport process across the electrolyte membrane. In addition, the maximum power densities for such a fuel cell were also analyzed.

  15. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    Science.gov (United States)

    Moore, James Christopher

    2018-01-01

    We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving…

  16. Preparing Instructional Designers for Game-Based Learning: Part III. Game Design as a Collaborative Process

    Science.gov (United States)

    Hirumi, Atsusi; Appelman, Bob; Rieber, Lloyd; Van Eck, Richard

    2010-01-01

    In this three part series, four professors who teach graduate level courses on the design of instructional video games discuss their perspectives on preparing instructional designers to optimize game-based learning. Part I set the context for the series and one of four panelists discussed what he believes instructional designers should know about…

  17. Succinate-based preparation alleviates manifestations of the climacteric syndrome in women.

    Science.gov (United States)

    Peskov, A B; Maevskii, E I; Uchitel', M L; Sakharova, N Yu; Vize-Khripunova, M A

    2005-09-01

    Clinical placebo-controlled study of Enerlit-Clima (bioactive succinate-based food additive) a showed positive effect of the preparation on general clinical and psychoemotional manifestations of the climacteric syndrome. A trend to an increase in estradiol level in early pathological climacteric and normalization of the endometrial status were observed.

  18. Preparation of nanometer sized Mn doped Zn based oxides powder for DMS applications

    CSIR Research Space (South Africa)

    Das, J

    2009-01-01

    Full Text Available In order to study the size dependent DMS (Diluted Magnetic Semiconductor) behavior of Mn doped ZnO, the authors have systematically prepared a series of nanosized green powder based on Mn doped ZnO (Zn 1-x Mn x O, where x=0.02 - 0.1) materials using...

  19. Carbon-based Composite Electrodes : Preparation, Characterization and Application in Electroanalysis

    NARCIS (Netherlands)

    Corb, I.; Manea, F.; Radovan, C.; Pop, A.; Burtica, G.; Malchev, P.G.; Picken, S.J.; Schoonman, J.

    2007-01-01

    Electrodes based on carbon, i.e., expanded graphite (20%, wt.)-epoxy composite (20EG-Epoxy) and expanded graphite (20%, wt.)-polystyrene composite (20EG-PS) have been prepared, characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV), and tested as anodic sensors. The

  20. Flexible Pedagogies: Employer Engagement and Work-Based Learning. Flexible Pedagogies: Preparing for the Future Series

    Science.gov (United States)

    Kettle, Jane

    2013-01-01

    This publication focuses on national and international policy initiatives to develop a better understanding of work-based learners and the types of flexibility that may well enhance their study especially pedagogically. As part of our five-strand research project "Flexible Pedagogies: preparing for the future" it: (1) highlights the…

  1. Preparation and Evaluation of Gelatin-Based Disc Matrices for the ...

    African Journals Online (AJOL)

    The objective of the present study was to formulate disc matrices based on type B gelatin and to evaluate their potential for use as a vehicle for the delivery of isoniazid. Gelatin hydrogel was prepared in an aqueous solution and subsequently cross-linked with glutaraldehyde. The crosslinked hydrogel was cut into discs and ...

  2. Preparing Biology Teachers to Teach Evolution in a Project-Based Approach

    Science.gov (United States)

    Cook, Kristin; Buck, Gayle; Park Rogers, Meredith

    2012-01-01

    This study investigates a project-based learning (PBL) approach to teaching evolution to inform efforts in teacher preparation. Data analysis of a secondary biology educator teaching evolution through a PBL approach illuminated: (1) active student voice, which allowed students to reflect on their positioning on evolution and consider multiple…

  3. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun

    2016-01-01

    Highlights: • Sepiolite-based phase change material nanocomposites were prepared. • An easy direct impregnation process was used. • This paper is one of the first study about sepiolite-based phase change material nanocomposites. • Influence of PCM type on thermal properties of nanocomposites was reported. - Abstract: This paper is one of the first study about the preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage applications. Sepiolite is an important natural fibrous raw material. Nanoscale fibrous tubular structure of sepiolite becomes important in nanocomposite preparation. In this study, sepiolite/paraffin and sepiolite/decanoic acid nanocomposites were manufactured by the direct impregnation method. By the preparation of nanocomposites, PCM move in tubular channels of sepiolite, phase changing occurs in these tubes and surface area increases like as in microencapsulation. The structure and properties of nanocomposites PCMs (CPCM) have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The SEM results prove the successful preparation of phase change material/sepiolite nanocomposites and point out that the fibers of sepiolite is modified with phase change materials in the nanocomposite. The phase change enthalpies of melting and freezing were about 62.08 J/g and −62.05 J/g for sepiolite/paraffin nanocomposites and 35.69 J/g and −34.55 J/g for sepiolite/decanoic acid nanocomposites, respectively. The results show that PCM/sepiolite nanocomposites were prepared successfully and their properties are very suitable for thermal energy storage applications.

  4. Preparation of 3D graphene-based architectures and their applications in supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhuxian Yang

    2015-12-01

    Full Text Available Three dimensional (3D graphene-based architectures such as 3D graphene-based hydrogels, aerogels, foams, and sponges have attracted huge attention owing to the combination of the structural interconnectivities and the outstanding properties of graphene which offer these interesting structures with low density, high porosity, large surface area, stable mechanical properties, fast mass and electron transport. They have been extensively studied for a wide range of applications including capacitors, batteries, sensors, catalyst, etc. There are several reviews focusing on the 3D graphene-based architectures and their applications. In this work, we only summarise the latest development on the preparation of 3D graphene-based architectures and their applications in supercapacitors, with emphasis on the preparation strategies.

  5. TiOx-based thin-film transistors prepared by femtosecond laser pre-annealing

    Science.gov (United States)

    Shan, Fei; Kim, Sung-Jin

    2018-02-01

    We report on thin-film transistors (TFTs) based on titanium oxide (TiOx) prepared using femtosecond laser pre-annealing for electrical application of n-type channel oxide transparent TFTs. Amorphous TFTs using TiOx semiconductors as an active layer have a low-temperature process and show remarkable electrical performance. And the femtosecond laser pre-annealing process has greater flexibility and development space for semiconductor production activity, with a fast preparation method. TFTs with a TiOx semiconductor pre-annealed via femtosecond laser at 3 W have a pinhole-free and smooth surface without crystal grains.

  6. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Ruohao Xing

    2018-02-01

    Full Text Available Transition metal (Fe, Co, Ni complexes on carbon nanomaterials are promising candidates as electrocatalysts towards the oxygen reduction reaction (ORR. In this paper, nitrogen-doped hollow carbon spheres with embedded Co nanoparticles were successfully prepared via a controllable synthesis strategy. The morphology characterization shows that the hollow carbon spheres possess an average diameter of ~150 nm with a narrow size distribution and a shell thickness of ~14.5 nm. The content of N doping ranges from 2.1 to 6.6 at.% depending on the calcination temperature from 900 to 1050 °C. Compared with commercial Pt/C, the Co-containing nitrogen-doped hollow carbon spheres prepared at 900 °C (CoNHCS-900 as an ORR electrocatalyst shows a half-wave potential shift of only ∆E1/2 = 55 mV, but a superior stability of about 90.2% maintenance after 20,000 s in the O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm. This could be ascribed to the synergistic effects of N-containing moieties, Co-Nx species, and Co nanoparticles, which significantly increase the density of active sites and promote the charge transfer during the ORR process.

  7. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes.

    Science.gov (United States)

    García-Manrique, Pablo; Matos, María; Gutiérrez, Gemma; Pazos, Carmen; Blanco-López, María Carmen

    2018-01-01

    Extracellular vesicles (EVs) are emerging as novel theranostic tools. Limitations related to clinical uses are leading to a new research area on design and manufacture of artificial EVs. Several strategies have been reported in order to produce artificial EVs, but there has not yet been a clear criterion by which to differentiate these novel biomaterials. In this paper, we suggest for the first time a systematic classification of the terms used to build up the artificial EV landscape, based on the preparation method. This could be useful to guide the derivation to clinical trial routes and to clarify the literature. According to our classification, we have reviewed the main strategies reported to date for their preparation, including key points such as: cargo loading, surface targeting strategies, purification steps, generation of membrane fragments for the construction of biomimetic materials, preparation of synthetic membranes inspired in EV composition and subsequent surface decoration.

  8. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F., E-mail: Zaiou_21@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: semouni84@gmail.com, E-mail: guechia@yahoo.fr, E-mail: kanour17@yahoo.fr, E-mail: mtb25dz@gmail.com, E-mail: zouaisouheila@yahoo.fr, E-mail: guerfatiha@gmail.com [Ceramics Lab., Faculty of Exact Science, Physics Department, Mentouri University of Constantine (Algeria)

    2016-10-15

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO{sub 3} is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm{sup 3} ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  9. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  10. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  11. [Quality process control system of Chinese medicine preparation based on "holistic view"].

    Science.gov (United States)

    Wang, Ya-Qi; Jiao, Jiao-Jiao; Wu, Zhen-Feng; Zheng, Qin; Yang, Ming

    2018-01-01

    "High quality, safety and effectiveness" are the primary principles for the pharmaceutical research and development process in China. The quality of products relies not only on the inspection method, but also on the design and development, process control and standardized management. The quality depends on the process control level. In this paper, the history and current development of quality control of traditional Chinese medicine (TCM) preparations are reviewed systematically. Based on the development model of international drug quality control and the misunderstanding of quality control of TCM preparations, the reasons for impacting the homogeneity of TCM preparations are analyzed and summarized. According to TCM characteristics, efforts were made to control the diversity of TCM, make "unstable" TCM into "stable" Chinese patent medicines, put forward the concepts of "holistic view" and "QbD (quality by design)", so as to create the "holistic, modular, data, standardized" model as the core of TCM preparation quality process control model. Scientific studies shall conform to the actual production of TCM preparations, and be conducive to supporting advanced equipment and technology upgrade, thoroughly applying the scientific research achievements in Chinese patent medicines, and promoting the cluster application and transformation application of TCM pharmaceutical technology, so as to improve the quality and effectiveness of the TCM industry and realize the green development. Copyright© by the Chinese Pharmaceutical Association.

  12. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Mertig, Michael [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden (Germany)

    2017-09-15

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Tooth preparations for complete crowns: an art form based on scientific principles.

    Science.gov (United States)

    Goodacre, C J; Campagni, W V; Aquilino, S A

    2001-04-01

    No recent literature has reviewed the current scientific knowledge on complete coverage tooth preparations. This article traces the historic evolution of complete coverage tooth preparations and identifies guidelines for scientific tooth preparations. Literature covering 250 years of clinical practice was reviewed with emphasis on scientific data acquired during the last 50 years. Both a MEDLINE search and an extensive manual search were used to locate relevant articles written in English in the last 50 years. Teeth should be prepared so that they exhibit the following characteristics: 10 to 20 degrees of total occlusal convergence, a minimal occlusocervical dimension of 4 mm for molars and 3 mm for other teeth, and an occlusocervical-to-faciolingual dimension ratio of 0.4 or greater. Facioproximal and linguoproximal line angles should be preserved whenever possible. When the above features are missing, the teeth should be modified with auxiliary resistance features such as axial grooves or boxes, preferably on proximal surfaces. Finish line selection should be based on the type of crown/retainer, esthetic requirements, ease of formation, and personal experience. Expectations of enhanced marginal fit with certain finish lines could not be validated by recent research. Esthetic requirements and tooth conditions determine finish line locations relative to the gingiva, with a supragingival location being more acceptable. Line angles should be rounded, and a reasonable degree of surface smoothness is desired. Nine scientific principles have been developed that ensure mechanical, biologic, and esthetic success for tooth preparation of complete coverage restorations.

  14. Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Prag, Carsten Brorson

    2013-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is a prospective method of producing hydrogen. We focused on one of its issues – the lack of a suitable support material for the anode electrocatalyst. TaC and NbC were studied as possible electrocatalyst supports for the PEM water electrolysis...... to be tested as alternative electrocatalyst supports for the hydrogen evolution reaction...

  15. Preparing skilled labor in industry through production-based curriculum approach in vocational high school

    Science.gov (United States)

    Yoto

    2017-09-01

    Vocational high school (Sekolah Menengah Kejuruan / SMK) aims to prepare mid-level skilled labors to work in the industry and are able to create self-employment opportunities. For those reasons, the curriculum in SMK should be based on meeting the needs of the industries and is able to prepare learners to master the competence in accordance with the skills program of their choice. Production based curriculum is the curriculum which the learning process is designed together with the production process or using production process as a learning medium. This approach with the primary intention to introduce students with the real working environment and not merely simulations. In the production-based curriculum implementation model, students are directly involved in the industry through the implementation of industrial working practices, do work on production units in school, and do practical work in school by doing the job as done in the industry by using industry standards machines.

  16. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications.

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-02-28

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  17. Preparation of Drug-loaded Chitosan Microspheres and Its Application in Paper-based PVC Wallpaper

    Science.gov (United States)

    Lin, Hui; Chen, Lihui; Yan, Guiyang; Chen, Feng; Huang, Liulian

    2018-03-01

    By screening through test, it was found that the drug-loaded chitosan microspheres with the average particle size of 615 nm may be prepared with NaF as the mold-proof drug, chitosan as the drug carrier and sodium tripolyphosphate as the cross-linking agent; and they can improve the aspergillus niger-proof effect if loaded onto the base paper surface of the paper-based PVC wallpaper. The results show that NaF and chitosan have mold-proof synergistic effects; the mold-proof effect of the wallpaper may be improved by increasing the dose of chitosan; when the mass ratio of NaF, sodium tripolyphosphate and chitosan was 2:7:28, the paper-based PVC wallpaper with good mold-proof property can be prepared.

  18. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  19. Preparation of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo assisted by mechanical treatment

    Science.gov (United States)

    Silviana, S.; Hadiyanto, H.

    2017-06-01

    The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.

  20. Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Lancastre, J.J.H.; Fernandes, N.; Margaça, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcão, A.N.; Casimiro, M.H.

    2012-01-01

    Polydimethylsiloxane-silicate based hybrid materials have recognized properties (high flexibility, low elastic modulus or high mechanical strength) for which there are a large number of applications in development, such as for the bioapplications field. The hybrids addressed in the present study were prepared by gamma irradiation of a mixture of polydimethylsiloxane (PDMS) with tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr) without addition of any solvent or other product. The materials are homogeneous, transparent, monolithic and flexible. The structure dependence on the PrZr content is addressed. A combination of X-ray diffraction (XRD) and Infrared Spectroscopy (IR) was used. The results reveal that the polymer in the hybrids prepared with PrZr, in a content≤5 wt%, shows a structure similar to that in the irradiated pure polymer sample. In these samples the presence of ordered polymer regions is clearly found. For samples prepared with higher content of Zr almost no ordered polymer regions are observed. The addition of PrZr plays an important role on polymer conformation in these hybrid materials. - Highlights: ► PDMS-based hybrid materials were prepared by γ-irradiation. ► FTIR, ATR/FT-IR and XRD techniques were used to characterize the materials. ► Changes in FTIR bands reflect growth of crosslinking network. ► Above certain Zr concentration regions of Zr-silicate oxide are formed. ► Zr content determines conformation of the polymer chain network.

  1. Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene.

    Science.gov (United States)

    Zhao, Jian; Liu, Zhensheng; Li, Hongqi; Hu, Wenbin; Zhao, Changzhi; Zhao, Peng; Shi, Donglu

    2015-03-03

    A unique synthesis was developed to immobilize Pd nanoparticles on pristine graphene (PG) sheets via a facile supercritical carbon dioxide route. Pristine graphene was obtained by sonication-assisted exfoliation of graphite in an organic solvent. Finely dispersed worm-like Pd nanoparticles are homogeneously deposited on the hydrophobic graphene surfaces. The combination of pristine graphene sheets and well-dispersed Pd nanoparticles provided large electrochemically active surface areas (ECSA) for both direct formic acid fuel cell (DFAFC) and methanol fuel cell (DMFC). The ECSA values are more than twice as large as those of reduced graphene oxide and carbon nanotube based counterparts or six times those of conventional XC-72 carbon black. Significant enhancements were also observed in the electrocatalytic activity and stability measurements. The excellent electrochemical property of Pd/PG is attributable to the well-preserved graphene structure that ensures electrical conductivity and stability of the composite. Its large surface area also allows for the deposition of small size and high dispersion of the Pd nanoparticles. This straightforward synthesis offers a new pathway for developing highly active electrocatalysts based on pristine graphene with fully optimized properties.

  2. Manganese dioxide-supported silver bismuthate as an efficient electrocatalyst for oxygen reduction reaction in zinc-oxygen batteries

    International Nuclear Information System (INIS)

    Sun, Yanzhi; Yang, Meng; Pan, Junqing; Wang, Pingyuan; Li, Wei; Wan, Pingyu

    2016-01-01

    In this paper, we present a new efficient composite electrocatalyst, manganese dioxide-supported silver bismuthate (Ag 4 Bi 2 O 5 /MnO 2 ), for oxygen reduction reaction (ORR) in alkaline media. The new electrocatalyst was characterized with scanning electron microscope (SEM), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements indicate that the Ag 4 Bi 2 O 5 /MnO 2 composite is a very efficient electrocatalyst for ORR in alkaline media. The physical and electrochemical characterization results suggest that the high activity is ascribed to the support effects from MnO 2 and the synergetic effects among Ag 4 Bi 2 O 5 and MnO 2 . The analysis of rotating disk electrode (RDE) results shows that the ORR occurs via a four-electron pathway on the surface of the Ag 4 Bi 2 O 5 /MnO 2 electrocatalyst. This electrocatalyst was further tested in a designed zinc–oxygen (Zn–O 2 ) battery. This battery can offer a discharge time of 225 h at 120 mA cm −2 , increasing by more than 492% as compared with pure MnO 2 electrocatalyst. It demonstrates that this inexpensive Ag 4 Bi 2 O 5 /MnO 2 electrocatalyst is a viable alternative to platinum electrocatalyst for energy conversion devices.

  3. Preparation and evaluation of HPMC-based pirfenidone solution in vivo.

    Science.gov (United States)

    Yang, Mei; Yang, Yang-Fan; Lei, Ming; Ye, Cheng-Tian; Zhao, Chun-Shun; Xu, Jian-Gang; Wu, Kai-Li; Yu, Min-Bin

    2017-01-01

    Pirfenidone (PFD) has exhibited therapeutic potential in the treatment of cell proliferative disorders. The previously developed 0.5% water-based PFD eye drops by our team exhibited antiscarring effectiveness and ocular safety but with a limit of short half-life and poor bioavailability. To increase bioavailability of the water-based PFD eye drops, we prepared a viscous solution by adding hydroxypropyl methylcellulose (HPMC, F4M), which acted as a viscosity-enhancer. Subsequently, we compared the HPMC-based PFD solution with the water-based PFD eye drops. PFD solution with 1% HPMC (w/v) was prepared, and the viscosities at different shear rates were measured to investigate its rheology. PFD concentrations in the tear, aqueous humor, conjunctiva, cornea, and sclerae of New Zealand rabbits were detected at different time points with high-performance liquid chromatography (HPLC) following single instillation of the 0.5% PFD (w/v) water-based eye drops or HPMC-based solution. Compared with the 0.5% water-based PFD eye drops, the HPMC-based solution increased the PFD levels in tears and prolonged the residence time from 10 to more than 20 min (p solution exhibited the higher bioavailability.

  4. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  5. Preparation of an emission data base for EUMAC. Final report; Erstellung einer Emissionsdatengrundlage fuer EUMAC. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R.; Heymann, M.; Kasas, Y.; Lenhart, L.

    1995-03-01

    Detailed models for the calculation of emission data with high temporal resolution have been developed. Hourly emission data for EUMAC-episodes in 1986 and 1990 have been calculated on the basis of annual emission data from LOTOS 1986, LOTOS 1990, and CORINAIR 1985. The calculation included the preparation of an update of CORINAIR 1985 for 1986. For the calculation of the update and the temporal resolution of emission data a comprehensive data base of socio-economic, technical, and meteorological data has been prepared. For the organization, evaluation, and processing of the data a comprehensive software package has been developed. The software package includes a data base and numerous calculation procedures for the automatic calculation of emission data with high temporal resolution. (orig.)

  6. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  7. Probabilistic Broadcast-Based Multiparty Remote State Preparation scheme via Four-Qubit Cluster State

    Science.gov (United States)

    Zhou, Yun-Jing; Tao, Yuan-Hong

    2018-02-01

    In this letter,we propose a broadcast-based multiparty remote state preparation scheme which realizes the process among three participants. It allows two distant receivers to obtain the arbitrary single-qubit states separately and simultaneously, and the success probability is {d2}/{1+d2}, thus generalize the results in Yu et al. (Quantum. Inf. Process 16(2), 41, 2017).

  8. Bio-based polyurethane prepared from Kraft lignin and modified castor oil

    OpenAIRE

    L. B. Tavares; C. V. Boas; G. R. Schleder; A. M. Nacas; D. S. Rosa; D. J. Santos

    2016-01-01

    Current challenges highlight the need for polymer research using renewable natural sources as a substitute for petroleum-based polymers. The use of polyols obtained from renewable sources combined with the reuse of industrial residues such as lignin is an important agent in this process. Different compositions of polyurethane-type materials were prepared by combining technical Kraft lignin (TKL) with castor oil (CO) or modified castor oil (MCO1 and MCO2) to increase their reactivity towards d...

  9. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation

    OpenAIRE

    Helms, Eric R; Aragon, Alan A; Fitschen, Peter J

    2014-01-01

    The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming ...

  10. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.

    Science.gov (United States)

    Zhang, Chaoqun; Ding, Rui; Kessler, Michael R

    2014-06-01

    A novel method, epoxidation/reduction of vegetable oils, is developed to prepare bio-based polyols for the manufacture of polyurethanes (PUs). These polyols are synthesized from castor oil (CO), epoxidized soybean oil, and epoxidized linseed oil and their molecular structures are characterized. They are used to prepare a variety of PUs, and their thermomechanical properties are compared to those of PU made with petroleum-based polyol (P-450). It is shown that PUs made with polyols from soybean and linseed oil exhibit higher glass transition temperatures, tensile strength, and Young's modulus and PU made with polyol from CO exhibits higher elongation at break and toughness than PU made with P-450. However, PU made with P-450 displays better thermal resistance because of tri-ester structure and terminal functional groups. The method provides a versatile way to prepare bio-polyols from vegetable oils, and it is expected to partially or completely replace petroleum-based polyols in PUs manufacture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The role of graphene-based sorbents in modern sample preparation techniques.

    Science.gov (United States)

    de Toffoli, Ana Lúcia; Maciel, Edvaldo Vasconcelos Soares; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2018-01-01

    The application of graphene-based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene-based material, their properties, synthesis routes, and the most important applications in both off-line and on-line sample preparation techniques. The discussion of the off-line approaches includes methods derived from conventional solid-phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on-line approaches focus on the use of graphene-based material mainly in on-line solid phase extraction, its variation called in-tube solid-phase microextraction, and on-line microdialysis systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  13. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  14. Modeling of Activated Carbon Preparation from Spanish Anthracite Based on ANFIS Structure

    Directory of Open Access Journals (Sweden)

    S. Rashidi

    2013-01-01

    Full Text Available Carbon nanostructures are famous structures which are used in several industries such as separation, treatment, energy storage (i.e. methane and hydrogen storage, etc. A successful modeling of activated carbon preparation is very important in saving time and money. There are some attempts to achieve the appropriate theoretical modeling of activated carbon preparation but most of them were almost unsuccessful due to the complexity between the input and output variables. In this paper the empirical modeling of activated carbon preparation from Spanish anthracite based on adaptive neuro-fuzzy inference system (ANFIS is investigated. ANFIS model is established to delineate the relationship between the BET surface area of the prepared activated carbon with initial and operational conditions; agent type, agent ratio, activation temperature, activation time and nitrogen flow. The results show that the selected model have a good accuracy with a coefficient of determination values (R2 of 0.9885 and average relative error (ARE of 0.00268.

  15. The PZC-based Tc-99m generator preparation and its performance test

    International Nuclear Information System (INIS)

    Liu Yishu

    2007-01-01

    This paper described the preparation of Tc-99m generator prepared with Japan distributing Mo adsorbent PZC and irradiated nature MoO 3 and its performance test. Four Tc-99m generators were prepared with different batches of PZC and reactor irradiated nature MoO 3 . The adsorption capacity of PZC to Mo is approximately 200mgMo/gPZC. The adsorption efficiency of three batches PZC is good (>90%) and that of one batch of PZC is not good enough (∼83%). The loss of fine powder (The PZC is fragile) is quite different with the different preparation process of PZC. The elution efficiency is 80-90% and has the up trend with the elution date. The Mo breakthrough can be controlled to acceptable level by connecting HZO safe column containing 1.0g HZO. All the specifications of eluted from PZC-based Tc-99m generator can meet the requirements under Sodium Pertechnetate injection in China Pharmacopoeia. (author)

  16. 75 FR 5784 - Guidance on Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public...

    Science.gov (United States)

    2010-02-04

    ... Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public Utilities; Notice of... mechanics of how to prepare an initial electric public utility market-based rate application and subsequent filings (including triennial market power reviews and change in status filings), as well as the...

  17. A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media? ?Electronic supplementary information (ESI) available: Including full experimental details, surface coverage measurements and supporting electrochemical measurements. See DOI: 10.1039/c5sc03225c Click here for additional data file.

    OpenAIRE

    Neri, Gaia; Aldous, Iain M.; Walsh, James J.; Hardwick, Laurence J.; Cowan, Alexander J.

    2015-01-01

    The development of selective electrocatalysts for CO2 reduction in water offers a sustainable route to carbon based fuels and feedstocks. However, molecular catalysts are typically studied in non-aqueous solvents, in part to avoid competitive H2 evolution. [Ni(cyclam)]2+ (1) is one of the few known electrocatalysts that operate in water and 30 years after its report its activity remains a rarely surpassed benchmark. Here we report that [Ni(cyclam-CO2H)]2+ (cyclam-CO2H = 1,4,8,11-tetraazacyclo...

  18. Improved performance of Li/SOCl2 batteries using binuclear metal azaphthalocyanines as electrocatalysts

    International Nuclear Information System (INIS)

    Li, Xiang; Huang, Xinyue; Gao, Ruimin; Zhang, Ronglan; Zhao, Jianshe

    2016-01-01

    A total of twenty four binuclear metal azaphthalocyanine compounds in four series of M 2 (azaPc) 2 Me, M 2 (azaPc) 2 SO 2 , M 2 (azaPc) 2 , M 2 (azaPc) 2 CO (M = Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ ) were synthesized by solid phase method, which were applied for Li/SOCl 2 battery as electrocatalysts to enhance its capacity and discharge voltage. In all cases, the electrochemical performances of Li/SOCl 2 batteries were improved compared with controls. It is worth mentioning that Mn 2 (azaPc) 2 SO 2 increased the discharge voltage to 3.3485 V, rising by 0.1570 V compared with that of the blank. Co 2 (azaPc) 2 CO lengthened the discharge time to 1821 s, rising by 75.80%. And Co 2 (azaPc) 2 raised battery capacity to 35.24 mA h, increasing by 79.56%. Based on cyclic voltammetry measurements, the reaction mechanism was found to involve an irreversible two-step electron transfer process and a hypothesis was conjectured. All the azaphthalocyanine compounds were characterized by element analysis, IR analysis, and UV-Vis absorption.

  19. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions.

    Science.gov (United States)

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing-Wen; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun

    2018-02-01

    Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state-of-the-art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active-sites with improved electrochemical efficiencies in future.

  20. Transition Metal-Modified Zirconium Phosphate Electrocatalysts for the Oxygen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    Joel Sanchez

    2017-05-01

    Full Text Available Zirconium phosphate (ZrP, an inorganic layered nanomaterial, is currently being investigated as a catalyst support for transition metal-based electrocatalysts for the oxygen evolution reaction (OER. Two metal-modified ZrP catalyst systems were synthesized: metal-intercalated ZrP and metal-adsorbed ZrP, each involving Fe(II, Fe(III, Co(II, and Ni(II cations. Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the composite materials and confirm the incorporation of the metal cations either between the layers or on the surface of ZrP. Both types of metal-modified systems were examined for their catalytic activity for the OER in 0.1 M KOH solution. All metal-modified ZrP systems were active for the OER. Trends in activity are discussed as a function of the molar ratio in relation to the two types of catalyst systems, resulting in overpotentials for metal-adsorbed ZrP catalysts that were less than, or equal to, their metal-intercalated counterparts.

  1. 3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Xu, Yan; Zheng, Chong; Wang, Sibo; Hou, Yidong

    2015-01-01

    3D arrays of molybdenum sulphide nanosheets on Mo mesh exhibited enhanced electro-catalytic activity for hydrogen evolution reaction. - Highlights: • 3D arrays of molybdenum sulphide nanosheets were obtained by a facile hydrothermal method. • The mesh structure could be beneficial to promote the electrolyte diffusion onto the electrode surface and thus promote the electron transfer. • 3D arrays of molybdenum sulphide nanosheets demonstrate an enhanced HER activity with a low onset overpotential of 120 mV and a Tafel slope of 46 mV/dec. - Abstract: Molybdenum sulphide has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER). Toward further improving its activity, tremendous efforts have been made to preferentially expose active edge sites of molybdenum sulphide-based catalysts by engineering their surface structure. In this work, 3D arrays of molybdenum sulphide nanosheets were synthesized by hydrothermal treatment of Mo mesh in aqueous thiourea solution. Their compositional, morphological and structural properties as well as electrocatalytic activities were investigated in details. The results reveal that 3D arrays of molybdenum sulphide nanosheets demonstrate an enhanced HER activity with a low onset overpotential of 120 mV and a Tafel slope of 46 mV/dec, which is superior to that of 2D arrays molybdenum sulphide nanosheets grown on Mo foil. The high activity for HER can be ascribed to the superstructure of the catalysts with a large fraction of edge sites and a high surface area

  2. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Xu, Zhe; Wang, Haoyu; Wen, Yunzhou; Li, Wenchao; Sun, Chuyu; He, Yuting; Shi, Zhan; Pei, Lang; Chen, Yongda; Yan, Shicheng; Zou, Zhigang

    2018-01-31

    For photoelectrochemical (PEC) water splitting, the interface interactions among semiconductors, electrocatalysts, and electrolytes affect the charge separation and catalysis in turn. Here, through the changing of the bath temperature, Co-based oxygen evolution catalysts (OEC) with different crystallinities were electrochemically deposited on Ti-doped Fe 2 O 3 (Ti-Fe 2 O 3 ) photoanodes. We found: (1) the OEC with low crystallinity is highly ion-permeable, decreasing the interactions between OEC and photoanode due to the intimate interaction between semiconductor and electrolyte; (2) the OEC with high crystallinity is nearly ion-impermeable, is beneficial to form a constant buried junction with semiconductor, and exhibits the low OEC catalytic activity; and (3) the OEC with moderate crystallinity is partially electrolyte-screened, thus contributing to the formation of ideal band bending underneath surface of semiconductor for charge separation and the highly electrocatalytic activity of OEC for lowering over-potentials of water oxidation. Our results demonstrate that to balance the water oxidation activity of OEC and OEC-semiconductor interface energetics is crucial for highly efficient solar energy conversion; in particular, the energy transducer is a semiconductor with a shallow or moderate valence-band level.

  3. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  5. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries

    Science.gov (United States)

    Lei, Xiaoke; Wang, Mengran; Lai, Yanqing; Hu, Langtao; Wang, Hao; Fang, Zhao; Li, Jie; Fang, Jing

    2017-10-01

    The exploitation for highly effective and low-cost metal-free catalysts with facile and environmental friendly method for oxygen reduction reaction is still a great challenge. To find an effective method for catalyst synthesis, in this manuscript, waste biomass pine cone is employed as raw material and nitrogen-doped micropore-dominant carbon material with excellent ORR catalytic activity is successfully synthesized. The as-prepared N-doped micropore-dominant carbon possesses a high surface area of 1556 m2 g-1. In addition, this carbon electrocatalyst loaded electrode exhibits a high discharge voltage 1.07 V at the current density of 50 mA cm-2, which can be ascribed to the rich micropores and high content of pyridinic N of the prepared carbon, indicative of great potential in the application of zinc/air batteries.

  6. Significant photoelectrochemical enhancement of TiO2 photoanodes from Ni(OH)2 electrocatalyst overcoating

    Science.gov (United States)

    Li, Hongxia; Jiang, Liyun; Xi, Junhua; Mu, Jinxia; Wu, Xin

    2017-12-01

    Introducing electrocatalysts onto the surface of photoanodes is a common way to improve photoelectrochemical (PEC) activity of photoanodes. In this paper, we report a simple and effective approach to load Ni(OH)2 electrocatalyst nanosheets on TiO2 surface via electrochemical deposition. The results indicated that deposition of Ni(OH)2 on TiO2 photoelectrode could remarkably promote the PEC activity by suppressing electron-hole recombination under AM1.5G illumination. The effects of OH- concentration in the electrolyte and coating thickness of Ni(OH)2 layer were investigated. As a result, we find that electrocatalytic effect of Ni(OH)2 with appropriate amount increased monotonically in alkaline solution, while excessive Ni(OH)2 electrocatalyst could reduce the photocatalytic effect by limiting the light absorption. The result demonstrates a new route for improving the performance of photoanode for oxygen evolution reaction.

  7. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  8. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    Science.gov (United States)

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  9. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    International Nuclear Information System (INIS)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  10. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  11. Investigating the nature of graphene-based films prepared by vacuum filtration of graphene dispersions.

    Science.gov (United States)

    Yi, Min; Liang, Shuaishuai; Liu, Lei; Shen, Zhigang; Zheng, Yiting; Zhang, Xiaojing; Ma, Shulin

    2014-07-01

    Though the graphene-based films prepared by vacuum filtration of graphene dispersions can be well and easily prepared so far and show great prospects in conductive, transparent, and flexible devices and coatings, the nature of these films has been rarely investigated. In order to reveal how graphene flakes constitute these films, herein we prepared a thin graphene-based film by vacuum filtering graphene dispersions and characterized the film by diverse techniques. Microscopic analyses evidenced the layer structure nature of the film. Raman spectra, transmission electron microscopy, and X-ray diffraction results indicate that the film is neither graphene nor graphite, but intrinsically a graphene block constituted by numerous graphene flakes which are randomly stacked. Though aggregation of graphene flakes happens in the filtration process, the aggregation is not a process to drive graphene flakes stacked in Bernal AB style to form bulk graphite. The adjoining graphene flakes are poorly coupled, likely due to the interlayer adventitious impurities introduced from liquid-phase processing.

  12. Simultaneous Reduction of CO 2 and Splitting of H 2 O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst

    KAUST Repository

    Morlanés, Natalia

    2016-04-12

    Perfluorinated cobalt phthalocyanine (CoFPc) immobilized on carbon electrodes was found to electrocatalyze the reduction of CO2 selectively to CO in an aqueous solution. The conversion of CO2 became apparent at -0.5 V vs RHE, and the Faradaic efficiency for the CO production reached as high as 93% at -0.8 V vs RHE. Highly stable electrolysis of CO2/H2O into CO/O2 was achieved for 12 h by applying the same catalyst as the cathode for CO2 reduction and the anode for water oxidation. This result indicates the highly robust nature of the CoFPc at wide range of potentials from -0.9 V to +2.2 V vs RHE, demonstrating the potential bipolar electrolytic system for CO2/H2O electrolysis, using the single-site molecular CoFPc-based electrocatalyst, which is simple, inexpensive, robust, and efficient. © 2016 American Chemical Society.

  13. Are Research Ethics Committees Prepared for Community-Based Participatory Research?

    Science.gov (United States)

    Tamariz, Leonardo; Medina, Heidy; Taylor, Janielle; Carrasquillo, Olveen; Kobetz, Erin; Palacio, Ana

    2015-12-01

    Community-based participatory research (CBPR) is challenging to research ethics committees (RECs). We reviewed the REC preparedness when reviewing CBPR projects. We searched the MEDLINE database and included qualitative studies of CBPR researchers or REC members about their experiences with RECs. The search yielded 107 studies, of which 10 met our criteria. Barriers were that the community is not prepared to conduct research, the reluctance of RECs to work outside the university, the difficulty RECs have understanding CBPR, and that REC forms evaluate individual rather than community risk. Facilitators were having a CBPR expert as an REC member and educating RECs. Therefore, RECs are not prepared to evaluate CBPR projects leading to unnecessary delays in the approval process. © The Author(s) 2015.

  14. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  15. Computer-based logging - simplifying station log preparation, access and use

    International Nuclear Information System (INIS)

    Davey, E.; Thompson, M.; Basso, R.; Herzog, K.; Lane, L.; Chatterton, R.

    1998-01-01

    A computer-based application for preparing and reviewing records of shift activities (i.e., logs) has been developed for CANDU station use. This application was developed with extensive participation of Operations staff at Darlington and several other CANDU stations, incorporates the lessons learned from previous station electronic logging experience, and was guided in development by the application of human engineering principles. Use of the application is expected to simplify and improve log preparation, search of log records, and more timely dissemination of log information to plant staff. This paper outlines the project rationale, reviews key development objectives for the application, discusses the development approach applied, describes key features of the application, and outlines the status of current work leading to station deployment. (author)

  16. Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites

    Science.gov (United States)

    Yan, Zhengquan; Yao, Wenli; Hu, Lei; Liu, Dandan; Wang, Chundong; Lee, Chun-Sing

    2015-03-01

    Due to high specific surface area, excellent conductivity, low mass density, good compatibility and elegant flexibility, three-dimensional graphene composites with interconnected porous structures possess unusual and novel physical and electronic properties, unsurpassed chemical functionalities and other attractive features. Therefore, different three-dimensional graphene-based nanoporous scaffolds have been extensively designed, prepared and investigated for practical applications in lithium-ion batteries, super-capacitors, solar cells, catalysis, thermal management, environment pollution enrichment and separation, and chemical sensors with high performance from both fundamental and technological viewpoints. To present readers with a better understanding of this kind of important porous material, in this feature article, we will highlight the main achievements made in the preparation of 3D graphene micro- and/or nano-architectures and their potential applications in the aforementioned fields.

  17. Sample preparation for large-scale bioanalytical studies based on liquid chromatographic techniques.

    Science.gov (United States)

    Medvedovici, Andrei; Bacalum, Elena; David, Victor

    2018-01-01

    Quality of the analytical data obtained for large-scale and long term bioanalytical studies based on liquid chromatography depends on a number of experimental factors including the choice of sample preparation method. This review discusses this tedious part of bioanalytical studies, applied to large-scale samples and using liquid chromatography coupled with different detector types as core analytical technique. The main sample preparation methods included in this paper are protein precipitation, liquid-liquid extraction, solid-phase extraction, derivatization and their versions. They are discussed by analytical performances, fields of applications, advantages and disadvantages. The cited literature covers mainly the analytical achievements during the last decade, although several previous papers became more valuable in time and they are included in this review. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Duc Nghia; Ngo Trinh Tung [Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: ducnghia264@fpt.vn

    2009-09-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  19. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    International Nuclear Information System (INIS)

    Nguyen Duc Nghia; Ngo Trinh Tung

    2009-01-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  20. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  1. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  2. Preparation and characterization of novel super-artificial hair fiber based on biomass materials.

    Science.gov (United States)

    Yang, Lijun; Guo, Jing; Zhang, Sen; Gong, Yumei

    2017-06-01

    A novel super-artificial hair fiber basing on sodium alginate (SA) and Antarctic Krill protein (AKP) was prepared by wet spinning successfully. Such SA/AKP fiber did not only have similar crystalline structure with human hair, but also had super flame resistance and mechanical performance. It should be noted that the whole preparation process was green without any incorporation of non-toxic solution. Moreover, comparing with human hair, the SA/AKP fiber had a lot of unique groove upon the fiber surface, which contributed a lot to excellent hygroscopicity. Meanwhile, the dyeing performance could be improved notably due to incorporation of protein into the matrix. Herein, the SA/AKP fiber with superior mechanical and functional performance had practical value for application in the field of synthetic wig. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation and characterization of novel molecularly imprinted polymers based on thiourea receptors for nitrocompounds recognition.

    Science.gov (United States)

    Athikomrattanakul, Umporn; Katterle, Martin; Gajovic-Eichelmann, Nenad; Scheller, Frieder W

    2011-04-15

    Molecularly imprinted polymers (MIPs) for the recognition of nitro derivatives are prepared from three different (thio)urea-bearing functional monomers. The binding capability of the polymers is characterized by a batch binding experiment. The imprinting factors and affinity constants (K) of the imprinted polymers exhibit the same tendency as the binding constants (K(a)) of the functional monomers to the target substance in solution. Not only nitrofurantoin is efficiently bound by these MIPs but also a broad spectrum of other nitro compounds is bound with at the intermediate level, addressing that these (thio)urea-based monomers can be utilized to prepare a family of MIPs for various nitro compounds, which can be applied as recognition elements in separation and analytical application. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Preparation and Evaluation of a Profile Control Agent Base on Waste Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Xiaoping Qin

    2017-01-01

    Full Text Available The waste drilling fluid was treated by a flocculant and a pH regulator. And a novel profile control agent base on waste drilling fluid (PCAWDF was prepared using polymer, formaldehyde, resorcinol, and thiourea as raw materials under mild conditions. PCAWDF was characterized by infrared (IR spectroscopy and scanning electron microscope (SEM. Compared with the profile control agent prepared by the recirculated water (PCARW, PCAWDF exhibited comparable or better stability, salt resistance, and viscoelasticity. The results of parallel core plugging experiments showed that the profile improvement capability of PCAWDF was stronger than that of PCARW (for 3000 mg/L: 84.6% versus 83.1%; for 5000 mg/L: 91.8% versus 90.2%. The main performance indexes of PCAWDF could meet the need of profile control for the water injection wells. The method could solve the problem of waste drilling fluid treatment in an economic and environmental way.

  5. Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites.

    Science.gov (United States)

    Yan, Zhengquan; Yao, Wenli; Hu, Lei; Liu, Dandan; Wang, Chundong; Lee, Chun-Sing

    2015-03-19

    Due to high specific surface area, excellent conductivity, low mass density, good compatibility and elegant flexibility, three-dimensional graphene composites with interconnected porous structures possess unusual and novel physical and electronic properties, unsurpassed chemical functionalities and other attractive features. Therefore, different three-dimensional graphene-based nanoporous scaffolds have been extensively designed, prepared and investigated for practical applications in lithium-ion batteries, super-capacitors, solar cells, catalysis, thermal management, environment pollution enrichment and separation, and chemical sensors with high performance from both fundamental and technological viewpoints. To present readers with a better understanding of this kind of important porous material, in this feature article, we will highlight the main achievements made in the preparation of 3D graphene micro- and/or nano-architectures and their potential applications in the aforementioned fields.

  6. Synthesis of a Terpene-Based New Chiral Inducer and Preparation of an Asymmetric Polymer

    Directory of Open Access Journals (Sweden)

    Atsushi Matsumura

    2015-01-01

    Full Text Available A new chiral compound was synthesized based on L-borneol. A cholesteric liquid crystal (LC electrolyte solution was prepared by adding it as a chiral inducer to a nematic LC. A chiral poly(3,4-ethylenedioxythiophene (PEDOT*, * = asymmetry film was prepared by electrochemical polymerization in the induced cholesteric LC. The PEDOT* film showed a maximum absorption band due to a π–π* transition in the UV-vis absorption and bisignate Cotton effect in the reduced state in circular dichroism (CD. The CD spectrum indicates that PEDOT* backbones form right-handed helical aggregation. However, the maximum optical absorption band due to π–π* transition of the PEDOT* decreases and a new absorption band appears at long wavelengths upon oxidation due to generation of polarons as charge carriers. Bisignate Cotton effect disappears and broadly negative CD signal appears at long wavelengths in the oxidized state.

  7. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  8. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  9. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  10. Silver Fiber Fabric as the Current Collector for Preparation of Graphene- Based Supercapacitors

    International Nuclear Information System (INIS)

    Mehrabi-Matin, Bahareh; Shahrokhian, Saeed; Iraji-zad, Azam

    2017-01-01

    Highlights: • For the first time, silver fiber fabric (SFF) is employed as a current collector.. • rGO is electrophoretically deposited on the surface of SFF. • The electrodes are prepared in various EP deposition times. • The rGO/SFF-10 shows a higher capacitive performance of 172 mF/cm 2 at 4 mA/cm 2 . • The rGO/SFF-10 exhibits of 97% capacitance retention after 5000 cycles. - Abstract: During the past few years, a considerable attention has been devoted to the development of textile- based energy storage devices and wearable electronics applications. In this paper, for the first time, we report a flexible high performance graphene-based supercapacitor using silver fiber fabric as the current collector. The silver fiber fabric offers remarkable advantages such as light weight, mechanical flexibility and ease of integration with electronic textiles, which well-suited for wearable energy storage devices. A new hybrid material of graphene-silver fiber fabric (rGO/SFF) was prepared through a facile electrophoretic deposition of graphene and being used as a binder-free flexible supercapacitor electrode. In order to obtain the optimum condition, the effect of deposition time was investigated and a duration time of 10 minute was selected as an optimum condition. The as-prepared binder-free electrode based on rGO/SFF-10 showed excellent electrochemical performance in the three-electrode configuration using KOH (3 M) as the supporting electrolyte, with the highest capacity of 172 mF/cm 2 at 4 mA/cm 2 and a capacitance retention of 97% after 5000 charge−discharge cycles. The high performance of rGO/SFF electrode is associated to the superior conductivity, high mechanical flexibility as well as good electrochemical stability of the silver fiber fabrics. The results suggest that the prepared electrode is a promising candidate for wearable energy storage applications due to its advantageous properties and the ease of preparation.

  11. Video-Based Surgical Learning: Improving Trainee Education and Preparation for Surgery.

    Science.gov (United States)

    Mota, Paulo; Carvalho, Nuno; Carvalho-Dias, Emanuel; João Costa, Manuel; Correia-Pinto, Jorge; Lima, Estevão

    2017-10-11

    Since the end of the XIX century, teaching of surgery has remained practically unaltered until now. With the dawn of video-assisted laparoscopy, surgery has faced new technical and learning challenges. Due to technological advances, from Internet access to portable electronic devices, the use of online resources is part of the educational armamentarium. In this respect, videos have already proven to be effective and useful, however the best way to benefit from these tools is still not clearly defined. To assess the importance of video-based learning, using an electronic questionnaire applied to residents and specialists of different surgical fields. Importance of video-based learning was assessed in a sample of 141 subjects, using a questionnaire distributed by a GoogleDoc online form. We found that 98.6% of the respondents have already used videos to prepare for surgery. When comparing video sources by formation status, residents were found to use Youtube significantly more often than specialists (p learning is currently a hallmark of surgical preparation among residents and specialists working in Portugal. Based on these findings we believe that the creation of quality and scientifically accurate videos, and subsequent compilation in available video-libraries appears to be the future landscape for video-based learning. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization.

    Science.gov (United States)

    Xu, Ying; Liu, Xiaoyi; Lian, Ruyue; Zheng, Siji; Yin, Zongning; Lu, Yi; Wu, Wei

    2012-11-15

    In this study, aripiprazole (APZ), a weak alkaline drug with pH-dependent solubility, was selected as model drug to examine the feasibility of preparing nanosuspensions using nanoprecipitation/homogenization technique based on acid-base neutralization. The related substances in nanosuspensions prepared under optimal conditions were slightly increased as compared with APZ raw material. The resultant APZ nanosuspensions showed a mean particle size of 350 nm with polydispersion index (PI) value of 0.20. Good physical stability was kept for over 40 days. SEM observation showed the morphology of oval crystals with rough surface. Nanosuspensions significantly increased the solubility as well as the dissolution of APZ due to the decreased particle size. Differential scanning calorimetry and powder X-ray diffractometry confirmed the crystallinity of APZ in nanosuspensions. APZ nanosuspensions got maximum absorption rate and extent comparing with APZ commercial tablet and suspensions with relative bioavailability of 123.43 ± 12.98% and 171.41 ± 14.62%, respectively. This technique has the potential to prepare nanosuspensions of insoluble drugs with pH-dependent solubility. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sivasakthi, P.; Ramesh Bapu, G.N.K., E-mail: rameshbapugnk@cecri.res.in; Chandrasekaran, Maruthai

    2016-01-01

    Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications. - Highlights: • Ni-ITO nanocomposites are prepared by pulse electrocodeposition method from nickel sulphamate solutions. • Ni-ITO nanocomposites are characterized using SEM, EDAX, XRD and XPS. • Electrochemical characteristics of the Ni and Ni-ITO nanocomposite deposits are studied by CV and amperometry techniques. • Ni-ITO nanocomposite electrode could be used as sensing material for detection of glucose in practical condition.

  14. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-04-01

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  15. Optimization of microwave-assisted rubberwood sawdust based activated carbon preparation conditions for methylene blue removal

    Science.gov (United States)

    Khasri, Azduwin; Ahmad, Mohd Azmier

    2017-10-01

    Optimum preparation conditions of rubberwood sawdust based activated carbon (RSAC) for methylene blue (MB) dye removal was studied. RSAC was produced by applying physiochemical activation method by using potassium hydroxide as a chemical agent which accompanied by carbon dioxide gasification under microwave heating. The effects of microwave power, irradiation time and impregnation ratio on two types of responses namely MB removal and RSAC yield using the center composite design (CCD) were also included in this study. The preparation variables correlation for responses was developed by two quadratic models. Optimum preparation conditions of RSAC were obtained at microwave power, irradiation time and IR of 354 W, 4.5 minutes and 0.98, respectively, which resulted MB removal and yield of 83.79% and 28%, respectively. The average pore diameter, surface area and total pore volume of optimized RSAC were 4.12 nm, 796.33 m2/g and 0.4219 cm3/g, respectively. This sample was found to has well-developed pores on its surface and can be a promising adsorbent for MB removal from aqueous solution.

  16. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  17. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis.

    Science.gov (United States)

    Maciel, Edvaldo V Soares; de Toffoli, Ana Lúcia; Lanças, Fernando Mauro

    2018-04-20

    The accelerated rising of the world's population increased the consumption of food, thus demanding more rigors in the control of residue and contaminants in food-based products marketed for human consumption. In view of the complexity of most food matrices, including fruits, vegetables, different types of meat, beverages, among others, a sample preparation step is important to provide more reliable results when combined with high performance liquid chromatography separations. An adequate sample preparation step before the chromatographic analysis is mandatory in obtaining higher precision and accuracy in order to improve the extraction of the target analytes, one of the priorities in analytical chemistry. The recent discovery of new materials such as ionic liquids, graphene-derived materials, molecularly imprinted polymers, restricted access media, magnetic nanoparticles, and carbonaceous nanomaterials, provided high sensitivity and selectivity results in an extensive variety of applications. These materials, as well as their several possible combinations, have been demonstrated to be highly appropriate for the extraction of different analytes in complex samples such as food products. The main characteristics and application of these new materials in food analysis will be presented and discussed in this paper. Another topic discussed in this review covers the main advantages and limitations of sample preparation microtechniques, as well as their off-line and on-line combination with high performance liquid chromatography for food analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Directory of Open Access Journals (Sweden)

    Xiangfei Kong

    2016-01-01

    Full Text Available This study is focused on the preparation and performance of a building energy storage panel (BESP. The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP, which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM was incorporated into expanded perlite (EP through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC, scanning electron microscope (SEM, best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1 the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2 the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3 in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  19. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  20. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    International Nuclear Information System (INIS)

    Sparnacci, K.; Antonioli, D.; Deregibus, S.; Laus, M.; Zuccheri, G.; Boarino, L.; De Leo, N.; Comoretto, D.

    2012-01-01

    Nano sized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  1. Preparation and in vivo evaluation of two bovine hemoglobin-based plasma expanders

    International Nuclear Information System (INIS)

    Sheffield, C.L.; DeLoach, J.R.

    1990-01-01

    A hemoglobin (Hb)-based oxygen carrier was successfully transfused into rats. An ultrapure lipid-free bovine Hb was prepared by hypotonic dialysis and ultrafiltration. The Hb was polymerized with glutaraldehyde and the P50 was 24.3 mm Hg. On the basis of immunological analysis, immuno blot, the Hb preparations were not antigenic. A second transfusion produced no adverse immunological side effects. A right shift in P50 was obtained by further treatment of polymerized Hb with inositol hexaphosphate; however, this Hb preparation was unsuitable for transfusion as all animals died within a few minutes. A 30% exchange transfusion in rats with the polymerized bovine Hb resulted in a 100% survival of all animals. P50 values of treated animals were reduced by about 2 mm Hg for 14 days. The Hb product circulated for 14 days as determined by 51 Cr labeling. Ultrapure bovine Hb has the potential to circulate and carry oxygen in rats and causes no immunological side effects

  2. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    Science.gov (United States)

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  3. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.

    Science.gov (United States)

    Yari, Abbas; Yeganeh, Hamid; Bakhshi, Hadi; Gharibi, Reza

    2014-01-01

    Preparation of novel antibacterial and cytocompatible polyurethane membranes as occlusive dressing, which can provide moist and sterile environment over mild exudative wounds is considered in this work. In this regard, an epoxy-terminated polyurethane (EPU) prepolymer based on castor oil and glycidyltriethylammonium chloride (GTEAC) as a reactive bactericidal agent were synthesized. Polyurethane membranes were prepared through cocuring of EPU and different content of GTEAC with 1,4-butane diamine. The physical and mechanical properties, as well as cytocompatibility and antibacterial performance of prepared membranes were studied. Depending on their chemical formulations, the equilibrium water absorption and water vapor transmission rate values of the membranes were in ranges of 3-85% and 53-154g m(-2) day(-1), respectively. Therefore, these transparent membranes can maintain for a long period the moist environment over the wounds with low exudates. Detailed cytotoxicity analysis of samples against mouse L929 fibroblast and MCA-3D keratinocyte cells showed good level of cytocompatibility of membranes after purification via extraction of residual unreacted GTEAC moieties. The antibacterial activity of the membranes against Escherichia coli and Staphylococcus aureus bacteria was also studied. The membrane containing 50% GTEAC exhibited an effective antibacterial activity, while showed acceptable cytocompatibility and therefore, can be applied as an antibacterial occlusive wound dressing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  4. Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Petrovski, Aleksandar; Paunović, Perica [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avolio, Roberto; Errico, Maria E.; Cocca, Mariacristina; Gentile, Gennaro [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Grozdanov, Anita, E-mail: anita.grozdanov@yahoo.com [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avella, Maurizio [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Barton, John [Tyndall National Institute, University College Cork, Dyke Parade, T12 R5CP, Cork (Ireland); Dimitrov, Aleksandar [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-01-01

    Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro-polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 min. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene. - Highlights: • Nanocomposites of PANI with carbon nanostructures were prepared for sensing application. • By cyclic voltammetry, conductive form of PANI (green colored emeraldine phase) is obtained 0.75 V • Using 4 Probe method, nanocomposite PANI/CNS tablet was tested for sensing application. • Micro-structural properties of nanocomposites were studied by SEM, TGA and Raman analysis.

  5. Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath

    OpenAIRE

    Yanai, Takeshi; Uto, H.; Shimokawa, Takaya; Nakano, Masaki; Fukunaga, Hirotoshi; Suzuki, K.

    2013-01-01

    Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing ...

  6. Prepare and characterization of nanocomposite - mixed matrix membranes based on polycarbonate

    International Nuclear Information System (INIS)

    Paranhos, Caio M.; Pessan, Luiz A.; Gomes, Ana C. de O.

    2009-01-01

    Mixed matrix membranes based on polycarbonate with different content of sepiolite were prepared by casting. The obtained membranes were characterized by wide-angle X-ray diffraction, thermal analysis, optical transparency and permeation to oxygen. The presence of sepiolite leads to the formation of a polymer-clay interface. The presence of the interface causes the increase in O 2 permeation. Increasing content of sepiolite results in aggregates of sepiolite, which forms preferential channels to the O 2 molecules. This fact is directly related to the strong increasing observed in O 2 permeability. (author)

  7. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Pantone

    2017-07-01

    Full Text Available Polyurethane-resin doming is currently one of the fastest growing markets in the field of industrial graphics and product identification. Semi-rigid bio-based polyurethanes were prepared deriving from soybean oil as a valuable alternative to fossil materials for digital doming and applied to digital mosaic technology. Bio-resins produced can favorably compete with the analogous fossil polymers, giving high-quality surface coatings (ascertained by SEM analyses. In addition, polyurethane synthesis was accomplished by using a mercury- and tin-free catalyst (the commercially available zinc derivative K22 bringing significant benefits in terms of cost efficiency and eco-sustainability.

  8. Measurement of Adhesion Strength of DLC Film Prepared by Utilizing Plasma-Based Ion Implantation

    Science.gov (United States)

    Oka, Yoshihiro; Yatsuzuka, Mitsuyasu

    High-adhesion diamond-like carbon (DLC) film was prepared by a hybrid process of plasma-based ion implantation and deposition using superimposed RF and high-voltage pulses. The adhesion strength of DLC film on a stainless steel (SUS304) was enhanced by the carbon ion implantation to the substrate. Furthermore, ion implantation of mixed carbon and silicon led to considerable enhancement of adhesion strength above the resin glue strength. The adhesion strength of DLC film on the aluminum alloy (A-5052) was improved above the resin glue strength only by the carbon ion implantation to the substrate.

  9. Preparation and Properties of Biocomposite Based on Natural Rubber and Bagasse Nanocellulose

    Directory of Open Access Journals (Sweden)

    Jarnthong Methakarn

    2015-01-01

    Full Text Available Biocomposite based on natural rubber (NR and bagasse nanocellulose (BNC was prepared in latex state. The mechanical, morphological and thermal properties of NR/BNC biocomposite were investigated. It was found that the addition of 3 wt% of BNC in NR film caused significant increase in modulus at 100% and 300% elongations and improved thermal stability of NR/BNC biocomposite. However, the strength at break and elongation at break of the biocomposite were not enhanced correlating to the morphological result obtained from scanning electron microscope (SEM.

  10. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.

    Science.gov (United States)

    Wang, Fei-Fei; Wei, Ping-Jie; Yu, Guo-Qiang; Liu, Jin-Gang

    2016-01-04

    The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high-performance, non-precious-metal catalysts as alternatives to noble metal Pt-based ORR electrocatalysts is highly desirable for the large-scale commercialization of fuel cells. TiO2 -grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2 -ZA-[Cu(phen${{^{{\\rm NO}{_{2}}}}}$)(BTC)] shows surprisingly high selectivity for the 4 e(-) reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole-containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis-phosphoric acid anchoring group. Rational optimization of the copper catalyst's ORR performance was achieved by using an electron-deficient ligand, 5-nitro-1,10-phenanthroline (phen${{^{{\\rm NO}{_{2}}}}}$), and bridging benzene-1,3,5-tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high-performance, non-precious-metal ORR catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  12. 75 FR 9203 - Guidance on Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public...

    Science.gov (United States)

    2010-03-01

    ... Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public Utilities; Supplemental...., Washington, DC 20426. The conference will be open for the public to attend and advance registration is not required. The technical conference will focus on the mechanics of how to prepare an initial electric public...

  13. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Rita Maria de Sousa

    2011-01-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H 2 PtCl 6 .6H 2 O Ru Cl xH 2 O, SnCl 2 .2H 2 O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25 o , which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40 o , 47 o , 67 o e 82 o , which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H 2 SO 4 , + 1,0 mol.L-1 de C 2 H 5 OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  14. A Pt-Co3O4-CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co3O4for direct methanol fuel cells.

    Science.gov (United States)

    Sun, Yue; Zhou, Yunjie; Zhu, Cheng; Hu, Lulu; Han, Mumei; Wang, Aoqi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2017-05-04

    Highly efficient electrocatalysts remain huge challenges in direct methanol fuel cells (DMFCs). Here, a Pt-Co 3 O 4 -CDs/C composite was fabricated as an anode electrocatalyst with low Pt content (12 wt%) by using carbon dots (CDs) and Co 3 O 4 nanoparticles as building blocks. The Pt-Co 3 O 4 -CDs/C composite catalyst shows a significantly enhanced electrocatalytic activity (1393.3 mA mg -1 Pt), durability (over 4000 s) and CO-poisoning tolerance. The superior catalytic activity should be attributed to the synergistic effect of CDs, Pt and Co 3 O 4 . Furthermore, the Pt-Co 3 O 4 -CDs/C catalyst was integrated into a single cell, which exhibits a maximum power density of 45.6 mW cm -2 , 1.7 times the cell based on the commercial 20 wt% Pt/C catalyst.

  15. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-15

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5 nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0 nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials. - Highlights: • The damage by Ar-ion milling during TEM sample preparation is investigated directly. • After FIB sectioning damage and deep disorder of c-GaAs is seen in cross-section. • The influence of such disorder on conventional ADF measurements is estimated. • A correction for HAADF measurements is proposed with focus on thickness estimations.

  16. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    PERSON 19b. TELEPHONE NUMBER Ryan O’Hayre Svitlana Pylypenko, Albina Borisevich, Karren L. More, April R. Corpuz, Timothy Holme, Tim S. Olson, Huyen...electrocatalysts Svitlana Pylypenko,a Albina Borisevich,b Karren L. More,b April R. Corpuz,c Timothy Holme,d Arrelaine A. Dameron,e Tim S. Olson,e

  17. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram

    2015-07-15

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  18. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2

    Science.gov (United States)

    Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R.

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO2/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO2, which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  19. Efficient ceramic anodes infiltrated with binary and ternary electrocatalysts for SOFCs operating at low temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    the binary Pd–CGO and Pt–CGO due to the particle coarsening of Ni nanoparticles. High resolution transmission electron microscopic analysis on the best performing Ni–Pt–CGO electrocatalyst infiltrated anode reveals the formation of Ni–Pt nanocrystalline alloy and a homogenous distribution of nanoparticles...

  20. Tetraphenylpyrimidine-Based AIEgens: Facile Preparation, Theoretical Investigation and Practical Application

    Directory of Open Access Journals (Sweden)

    Junkai Liu

    2017-10-01

    Full Text Available Aggregation-induced emission (AIE has become a hot research area and tremendous amounts of AIE-active luminogens (AIEgens have been generated. To further promote the development of AIE, new AIEgens are highly desirable. Herein, new AIEgens based on tetraphenylpyrimidine (TPPM are rationally designed according to the AIE mechanism of restriction of intramolecular motion, and facilely prepared under mild reaction conditions. The photophysical property of the generated TPPM, TPPM-4M and TPPM-4P are systematically investigated and the results show that they feature the aggregation-enhanced emission (AEE characteristics. Theoretical study shows the high-frequency bending vibrations in the central pyrimidine ring of TPPM derivatives dominate the nonradiative decay channels. Thanks to the AEE feature, their aggregates can be used to detect explosives with super-amplification quenching effects, and the sensing ability is higher than typical AIE-active tetraphenylethene. It is anticipated that TPPM derivatives could serve as a new type of widely used AIEgen based on their facile preparation and good thermo-, photo- and chemostabilities.

  1. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  2. Preparation, validation and user-testing of pictogram-based patient information leaflets for hemodialysis patients.

    Science.gov (United States)

    Mateti, Uday Venkat; Nagappa, Anantha Naik; Attur, Ravindra Prabhu; Bairy, Manohar; Nagaraju, Shankar Prasad; Mallayasamy, Surulivelrajan; Vilakkathala, Rajesh; Guddattu, Vasudev; Balkrishnan, Rajesh

    2015-11-01

    Patient information leaflets are universally-accepted resources to educate the patients/users about their medications, disease and lifestyle modification. The objective of the study was to prepare, validate and perform user-testing of pictogram-based patient information leaflets (P-PILs) among hemodialysis (HD) patients. The P-PILs are prepared by referring to the primary, secondary and tertiary resources. The content and pictograms of the leaflet have been validated by an expert committee consisting of three nephrologists and two academic pharmacists. The Baker Able Leaflet Design has been applied to develop the layout and design of the P-PILs. Quasi-experimental pre- and post-test design without control group was conducted on 81 HD patients for user-testing of P-PILs. The mean Baker Able Leaflet Design assessment score for English version of the leaflet was 28, and 26 for Kannada version. The overall user-testing knowledge assessment mean scores were observed to have significantly improved from 44.25 to 69.62 with p value <0.001. The overall user opinion of content and legibility of the leaflets was good. Pictogram-based patient information leaflets can be considered an effective educational tool for HD patients.

  3. Preparation and Characterization of Manganese Slag and Fly Ash-based Geopolymer

    Directory of Open Access Journals (Sweden)

    Wang Ya-guang

    2017-01-01

    Full Text Available In this study, a series of manganese slag and fly ash-based geopolymers were prepared though alkali activation by varing the amount of manganese slag. The 3-day, 7-day and 14-day compressive strengths of these samples were tested. The maximum strength of 42.78 MPa was obtained at 14th days of testing when 455 g of fly ash, 195g of manganese slag, 20% of the alkali content , the curing temperature of 100°C, the curing time of 12h were used. XRD and FTIR characterization results shown that the polymerization reaction occurs between the glassiness in the manganese slag and the fly ash while adding alkali activator, and the main structure formed was Ca-A-S-H, which contributed the major strength in manganese slag and fly ash-based geopolymer.

  4. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  5. Cellulose-based graft copolymers prepared by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2017-02-01

    Full Text Available Brush-shaped block copolymer with a dual hydrophilic poly(acrylic acid-block-poly(oligo(ethylene glycol acrylate (PAA-b-POEGA arms was synthesized for the first time via a simplified electrochemically mediated ATRP (seATRP under both constant potential electrolysis and constant current electrolysis conditions, utilizing only 30 ppm of catalyst complex. The polymerization conditions were optimized to provide fast reactions while employing low catalyst concentrations and preparation of cellulose-based brush-like copolymers with narrow molecular weight distributions. The results from proton nuclear magnetic resonance (1H NMR spectral studies support the formation of cellulose-based graft (copolymers. It is expected that these new polymer brushes may find application as pH- and thermo-sensitive drug delivery systems.

  6. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Pallab [School of Biosciences and Bioengineering, Mumbai (India); Giri, Jyotsnendu [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India); Banerjee, Rinti [School of Biosciences and Bioengineering, Mumbai (India); Bellare, Jayesh [School of Biosciences and Bioengineering, Mumbai (India); Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India)]. E-mail: dhirenb@iitb.ac.in

    2007-04-15

    Comparative evaluation of two different methods of magnetic liposomes preparation, namely thin film hydration (TFH) and double emulsion (DE) with different molar ratios of egg-phosphatidyl choline (egg-PC) and cholesterol using lauric acid coated manganese ferrite-based aqueous magnetic fluid, is reported. TFH was found to be a better method of encapsulation and TFH 2:1 (egg-PC: cholesterol) magnetic liposomes showed the highest encapsulation efficiency and comparable heating ability to that of magnetic fluids. Stealth TFH 2:1 magnetic liposomes containing DSPE-PEG{sub 2000} were three-fold more cytocompatible as compared to the magnetic fluid. Stealth TFH 2:1 manganese ferrite-based magnetic liposomes might be useful for hyperthermia treatment of cancer.

  7. Evaluation of the performance of Ru/C electrocatalysts for the ORR in the absence and presence of C{sub 2}H{sub 5}OH : application in direct fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Varela, F.J.R. [Cinvestav Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico). Grupo de Recursos Naturales y Energeticos; Ramirez, S.E.G.; Klapco, R.D. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico). Facultad de Ciencias Quimicas

    2009-01-15

    The high price and low abundance of platinum (Pt) has prompted scientists to find alternative electrocatalysts for the oxygen reduction reaction. In addition, low temperature DAFCs have intrinsic characteristics such as the use of liquid fuels, which leads to a high crossover rate from the anode to the cathode due to the high permeability of polymer membranes to those fuels. Ru-based electrocatalysts have been synthesized with excellent results as Pt-free oxygen reduction reaction (orr) cathodes. This paper presented an investigation that evaluated the performance of Ru/C cathode electrocatalysts for the orr. Tests were performed in the absence and presence of ethanol (C{sub 2}H{sub 5}OH) in acid solution in a rotating disc electrode and in a DAFC. The orr kinetics on the Ru-based cathodes was characterized in the absence and presence of ethanol in a rotating disc electrode with the aid of electrochemical techniques such as cyclic and linear scan voltammetry. This paper presented the electrocatalytic activity and selectivity for the orr of these catalysts, both without and with organic molecules. The catalytic capacity of the Ru electrocatalysts as cathodes was also evaluated in a DAFC fueled with ethanol and operating at 80 degrees Celsius. Analogous results were presented for a standard Pt/C cathode for the sake of comparison. It was concluded that in ethanol-free solutions, the performance of Ru/C cathodes for the orr was lower compared to that of a Pt/C cathode. 33 refs., 2 tabs., 8 figs.

  8. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2016-12-15

    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  9. Low content of Pt supported on Ni-MoC{sub x}/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui, E-mail: diamond_wangyanhui@163.com

    2017-08-01

    Highlights: • Ni-MoC{sub x}/C catalyst support was synthesized by a two-step method. • 10Pt/Ni-MoC{sub x}/C was an active and durable low Pt catalyst for MOR, ORR and HER. • The high stability of 10Pt/Ni-MoC{sub x}/C was ascribed to the anchoring effect of MoC{sub x}. • High activity of 10Pt/Ni-MoC{sub x}/C was due to a synergistic of Pt, Ni, MoO{sub x} and MoC{sub x}. - Abstract: Nickel and molybdenum carbide modified carbon black (Ni-MoC{sub x}/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoC{sub x}/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoC{sub x}/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoC{sub x}/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoC{sub x}/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoC{sub x}/C reached 68.4 m{sup 2} g{sup −1}, which was higher than that of 20Pt/C (63.2 m{sup 2} g{sup −1}). The enhanced stability and activity of 10Pt/Ni-MoC{sub x}/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoC{sub x} formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoO{sub x} and MoC{sub x}. These findings indicated that 10Pt/Ni-MoC{sub x}/C was a promising electrocatalyst for direct methanol fuel cells.

  10. Are general surgery residents adequately prepared for hepatopancreatobiliary fellowships? A questionnaire-based study

    Science.gov (United States)

    Osman, Houssam; Parikh, Janak; Patel, Shirali; Jeyarajah, D Rohan

    2015-01-01

    Background The present study was conducted to assess the preparedness of hepatopancreatobiliary (HPB) fellows upon entering fellowship, identify challenges encountered by HPB fellows during the initial part of their HPB training, and identify potential solutions to these challenges that can be applied during residency training. Methods A questionnaire was distributed to all HPB fellows in accredited HPB fellowship programmes in two consecutive academic years (n = 42). Reponses were then analysed. Results A total of 19 (45%) fellows responded. Prior to their fellowship, 10 (53%) were in surgical residency and the rest were in other surgical fellowships or surgical practice. Thirteen (68%) were graduates of university-based residency programmes. All fellows felt comfortable in performing basic laparoscopic procedures independently at the completion of residency and less comfortable in performing advanced laparoscopy. Eight (42%) fellows cited a combination of inadequate case volume and lack of autonomy during residency as the reasons for this lack of comfort. Thirteen (68%) identified inadequate preoperative workup and management as their biggest fear upon entering practice after general surgery training. A total of 17 (89%) fellows felt they were adequately prepared to enter HPB fellowship. Extra rotations in transplant, vascular or minimally invasive surgery were believed to be most helpful in preparing general surgery residents pursing HPB fellowships. Conclusions Overall, HPB fellows felt themselves to be adequately prepared for fellowship. Advanced laparoscopic procedures and the perioperative management of complex patients are two of the challenges facing HPB fellows. General surgery residents who plan to pursue an HPB fellowship may benefit from spending extra rotations on certain subspecialties. Focus on perioperative workup and management should be an integral part of residency and fellowship training. PMID:25387852

  11. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation

    Science.gov (United States)

    2014-01-01

    The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals. PMID:24864135

  12. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J.A.

    2012-01-01

    Amorphous alloys with composition (at%) Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 (alloy A) and Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  13. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  14. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation.

    Science.gov (United States)

    Helms, Eric R; Aragon, Alan A; Fitschen, Peter J

    2014-01-01

    The popularity of natural bodybuilding is increasing; however, evidence-based recommendations for it are lacking. This paper reviewed the scientific literature relevant to competition preparation on nutrition and supplementation, resulting in the following recommendations. Caloric intake should be set at a level that results in bodyweight losses of approximately 0.5 to 1%/wk to maximize muscle retention. Within this caloric intake, most but not all bodybuilders will respond best to consuming 2.3-3.1 g/kg of lean body mass per day of protein, 15-30% of calories from fat, and the reminder of calories from carbohydrate. Eating three to six meals per day with a meal containing 0.4-0.5 g/kg bodyweight of protein prior and subsequent to resistance training likely maximizes any theoretical benefits of nutrient timing and frequency. However, alterations in nutrient timing and frequency appear to have little effect on fat loss or lean mass retention. Among popular supplements, creatine monohydrate, caffeine and beta-alanine appear to have beneficial effects relevant to contest preparation, however others do not or warrant further study. The practice of dehydration and electrolyte manipulation in the final days and hours prior to competition can be dangerous, and may not improve appearance. Increasing carbohydrate intake at the end of preparation has a theoretical rationale to improve appearance, however it is understudied. Thus, if carbohydrate loading is pursued it should be practiced prior to competition and its benefit assessed individually. Finally, competitors should be aware of the increased risk of developing eating and body image disorders in aesthetic sport and therefore should have access to the appropriate mental health professionals.

  15. Synthesis and Study of Guest-Rebinding of MIP Based on MAA Prepared using Theophylline Template

    Science.gov (United States)

    Nurhayati, T.; Yanti; Royani, I.; Widayani; Khairurrijal

    2016-08-01

    A molecularly imprinted polymer (MIP) based on methacrylic acid (MAA) monomer and theophylline template has been synthesized using a modified bulk polymerization method. Theophylline was employed as a template and it formed a complex with MAA through hydrogen bonding. Self-assembly of template-monomer was followed by cross-linking process using ethylene glycol dimethacrylate (EGDMA) cross-linker. The polymerization process was initiated by thermal decomposition of benzoyl peroxide (BPO) as the initiator at 60oC after cooling treatment at -5oC. After 7 hours, a rigid polymer was obtained and followed by grinding the polymer and removing the template. As a reference, a nonimprinted polymer (NIP) has also been synthesized using similar procedure by excluding the template. FTIR study was carried out to investigate the presence of theophylline in the as- prepared polymer, MIP, and NIP. The spectra indicated that theophylline was successfully incorporated in the as-prepared polymer. This result was also confirmed by EDS analysis showing that N atoms of the as-prepared polymer were derived from amino group of theophylline. Furthermore, the polymer particles of MIP were irregular in shape and size as shown by its SEM image. The capability of guest-rebinding of the MIP was analyzed through Batchwise guest-binding experiment. The results showed that for initial concentration of theophylline in methanol/chloroform (1/1, v/v) of 0.333 mM, the binding capacity of the MIP was 23.22 /mol/g. Compared to the MIP, the adsorption capacity of the NIP was only 3.73 /mol/g. This result shows that MIP has higher affinity than NIP.

  16. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, Shane D.; Srubar, Wil V., E-mail: wsrubar@colorado.edu

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm{sup 3}) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  17. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    Science.gov (United States)

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  18. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  19. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    Science.gov (United States)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  20. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access

    International Nuclear Information System (INIS)

    Hipp, James R.; Moore, Susan G.; Myers, Stephen C.; Schultz, Craig A.; Shepherd, Ellen; Young, Christopher J.

    1999-01-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation

  1. Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access

    Energy Technology Data Exchange (ETDEWEB)

    HIPP,JAMES R.; MOORE,SUSAN G.; MYERS,STEPHEN C.; SCHULTZ,CRAIG A.; SHEPHERD,ELLEN; YOUNG,CHRISTOPHER J.

    1999-10-01

    The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.

  2. Self-Supported Ni(P, Ox·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2017-12-01

    Full Text Available Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, Ox·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, Ox and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent cycling stability.

  3. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-02

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hydrogel Based on Crosslinked Methylcellulose Prepared by Electron Beam Irradiation for Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Ambyah Suliwarno

    2014-10-01

    Full Text Available The aim of this research is to explore the possibility of methylcellulose polymer to be used as wound dressing material prepared using electron beam technique. The methylcellulose paste solution with various of molecular weight (SM-4, SM-100, SM-400, SM-4000 and SM-8000 at different concentration (15-30% w/v were irradiated by using electron beam on the dose range of 10 kGy up to 40 kGy. Gel fraction and swelling ratio of hydrogels were determined gravimetrically. Tensile strength and elasticity of hydrogels were measured using a universal testing machine. It was found that with the increasing of irradiation dose from 10 up to 40 kGy, gel fraction and tensile strength were increased for all of hydrogels with various of molecular weight. On contrary, the swelling ratio of hydrogels decreased with increasing of irradiation dose. The optimum hydrogels elasticity were obtained from methylcellulose solution with the concentration range of 15-20% with irradiation dose of 20 kGy and showed excellent performance. The hydrogels based on methylcellulose prepared by electron beam irradiation can be considered for wound dressing material.

  5. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    Directory of Open Access Journals (Sweden)

    James Christopher Moore

    2018-02-01

    Full Text Available We have investigated the efficacy of on-line, multimedia learning modules (MLMs as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science. Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving different treatments with respect to activities preceding participation in Tutorials in Introductory Physics. The different pre-tutorial activities were as follows: (1 students were assigned reading from a traditional textbook, followed by a traditional lecture; and (2 students completed on-line MLMs developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC, and commercially known as FlipItPhysics. The MLM treatment group earned significantly higher mid-term examination scores and larger gains in content knowledge as measured by the Conceptual Survey of Electricity and Magnetism (CSEM. Student attitudes towards “reformed” instruction in the form of active-engagement tutorials were also improved. Specifically, post-course surveys showed that MLM-group students believed class time was more effective and the instructor was more clear than reported by non-MLM students, even though there was no significant difference between groups with respect to in-class activities and the same instructor taught both groups. MLM activities can be a highly effective tool for some student populations, especially when student preparation and buy-in are important for realizing significant gains.

  6. Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application.

    Science.gov (United States)

    Périgo, E A; Silva, S C; de Sousa, E M B; Freitas, A A; Cohen, R; Nagamine, L C C M; Takiishi, H; Landgraf, F J G

    2012-05-04

    Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd(2)Fe(14)BH(x) during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H(max) ~ 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K ≤ ΔT(max) ≤ 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as ~2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 µg ml(-1)) due to the coating applied during milling.

  7. Bio-based polyurethane prepared from Kraft lignin and modified castor oil

    Directory of Open Access Journals (Sweden)

    L. B. Tavares

    2016-11-01

    Full Text Available Current challenges highlight the need for polymer research using renewable natural sources as a substitute for petroleum-based polymers. The use of polyols obtained from renewable sources combined with the reuse of industrial residues such as lignin is an important agent in this process. Different compositions of polyurethane-type materials were prepared by combining technical Kraft lignin (TKL with castor oil (CO or modified castor oil (MCO1 and MCO2 to increase their reactivity towards diphenylmethane diisocyanate (MDI. The results indicate that lignin increases the glass transition temperature, the crosslinking density and improves the ultimate stress especially for those prepared from MCO2 and 30% lignin content from 8.2 MPa (lignin free to 23.5 MPa. Scanning electron microscopy (SEM micrographs of rupture surface after uniaxial tensile tests show ductile-to-brittle transition. The results show the possibility to develop polyurethane-type materials, varying technical grade Kraft lignin content, which cover a wide range of mechanical properties (from large elastic/low Young modulus to brittle/high Young modulus polyurethanes.

  8. Carbon-based acid catalyst from waste seed shells: preparation and characterization

    Directory of Open Access Journals (Sweden)

    Wang Li H.

    2015-12-01

    Full Text Available A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized seed shells of Jatropha curcas (J. curcas L.. The structure of amorphous carbon consisting of polycyclic aromatic carbon sheets attached a high density of acidic SO3H groups (2.0 mmol · g−1 was identified with scanning electron microscopy (SEM, fourier transform infrared (FTIR spectroscopy, powder X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. The performance of the solid acid catalyst was evaluated for biodiesel production in the esterification of oleic acid with methanol. 95.7% yield of biodiesel was obtained after 2 h reaction and the conversions with reused catalyst varied in the range of 95.7% to 95.1%, showing better activity and stability than commercial catalyst amberlyst-46. It was also observed that the prepared catalyst showed enhanced activity in the transesterification of triolein with methanol when compared with other solid acid catalysts. A synergistic effect results from the high density of SO3H groups and the good access of reactants to the acidic sites can be used to explain the excellent catalytic activity, as well as the strong affinity between the hydrophilic reactants and the neutral OH groups bonded to the polycyclic aromatic carbon rings.

  9. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  10. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yi, E-mail: tanyi@dlut.edu.cn; You, Xiaogang; You, Qifan; Li, Jiayan; Shi, Shuang; Li, Pengting

    2016-04-15

    activation energy Q. The EBS technology shows encouraging potential in preparation of nickel-based superalloys. Morphologies of γ′ precipitates and Vickers hardness as well as hot compression curves for electron beam smelting 740 superalloy. - Highlights: • Electron beam smelting, a novel method, was used to prepare the Inconel 740 superalloy. • The average size of the γ′ precipitates after aging treatment is < 30 nm. • The shearing mode generates a stronger strengthening effect than the traditional 740. • At low Zener-Hollomon parameter, the EBS 740 shows higher flow stress than 740H.

  11. Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2016-01-01

    Full Text Available Biogenic minerals play an important role in the whole human nutrition, but they are included in the grain of the phytates that reduces their bioavailability. Whole wheat bread is generally considered a healthy food, but the presence of mineral elements in it is insignificant, because of weak phytate degradation. From all sources of exogenous phytase the most productive are microscopic fungi. To accelerate the process of transition hard mineral elements are mobilized to implement integrated cellulolytic enzyme preparation based on the actions of phytase (producer is Penicillium canescens. Phytase activity was assessed indirectly by the rate of release of phosphate from the substrate. It has been established that the release rate of the phosphoric acid substrate is dependent on the composition of the drug and the enzyme complex is determined by the presence of xylanase. The presented experimental data shows that a cellulase treatment of the grain in conjunction with the β-glucanase or xylanase leading to an increase in phytase activity could be 1.4 - 2.3 times as compared with the individual enzymes. As a result of concerted action of enzymes complex preparation varies topography grain, increase the pore sizes in seed and fruit shells that facilitate the penetration of the enzyme phytase in the aleurone layer to the site of phytin hydrolysis and leads to an increase in phytase activity. In terms of rational parameters of enzymatic hydrolysis, the distribution of mineral elements in the anatomical parts of the grain after processing complex enzyme preparation with the help of X-ray detector EMF miniCup system in a scanning electron microscope JEOL JSM 6390 were investigated. When processing enzyme preparation wheat trend in the distribution of mineral elements, characteristic of grain - the proportion of these elements in the aleurone layer decreases, and in the endosperm increases. Because dietary fiber and phytate found together in the

  12. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting.

    Science.gov (United States)

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei; Peng, Zongkai; Wu, Zexing; Lei, Wen; Xia, Kedong; Xin, Huolin L; Wang, Deli

    2017-08-09

    Exploring nonprecious metal electrocatalysts to replace the noble metal-based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel-iron-phosphide (Ni-Fe-P) nanocubes were synthesized through one-step phosphidation of a Ni-Fe-based Prussian blue analogue. The Ni-Fe-P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni-Fe-P obtained at 350 °C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improved the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni-Fe-P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm -2 , respectively. Moreover, the Ni-Fe-P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. This work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal-organic frameworks in overall water splitting.

  13. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  14. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Lee, Jang Yeol; Kim, Na Young; Shin, Dong Yun; Park, Hee-Young; Lee, Sang-Soo; Joon Kwon, S.; Lim, Dong-Hee; Bong, Ki Wan; Son, Jeong Gon; Kim, Jin Young

    2017-03-01

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe2O3) microparticles with melamine. The heat treatment leads to transformation of Fe2O3 microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E1/2 of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm-2 indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  15. Nano/micro-patterning the membrane-electrocatalyst layer for fuel cell applications

    Science.gov (United States)

    Omosebi, Ayokunle O.

    Polymer electrolyte membrane fuel cells (PEMFCs) are high energy density electrochemical devices capable of directly converting stored chemical potential into electricity. Their many attributes, including low emissions, quiet operation, scalability, modularity and efficiency make them attractive alternatives to conventional portable and stationary power sources. The emergence of the PEMFC as a dominant technology for electrical power generation is however currently limited by performance losses and the cost of the membrane electrode assembly (MEA). The basic architecture of the MEA, which has remained largely unchanged for over four decades, consists of ink-based platinum supported on carbon catalyst layers dispersed on either side of a Nafion membrane. In order to generate power from the electrochemical reaction, protons, electrons, and oxidant must be available at the catalyst layer-Nafion ionomer interface. As such, to improve performance, the availability of this interface should be maximized without increasing the transport resistance for reactants accessing the reaction plane. To achieve this objective, the membrane-electrode interface could be restructured to possess a larger interfacial area by creating nano/microfeatures on the Nafion membrane. This work introduces electron beam lithography coupled with dry etching and sputtering strategies for creating membrane-electrode structures with over-potential suppression characteristics in PEMFCs. Electron beam lithography provides the ability to fabricate nano/microfeatures in an electron beam sensitive material, while pattern transfer and aspect-ratio control is achieved with dry etching. Conventional and ultra-thin catalyst layers were fabricated by spraying and sputter deposition, and methanol and hydrogen were tested as fuels. Experiments involving the patterned MEA elucidate improved properties that lead to PEMFC performance enhancement. The ability to directly pattern a Nafion membrane-electrocatalyst

  16. [Handbook for the preparation of evidence-based documents. Tools derived from scientific knowledge].

    Science.gov (United States)

    Carrión-Camacho, M R; Martínez-Brocca, M A; Paneque-Sánchez-Toscano, I; Valencia-Martín, R; Palomino-García, A; Muñoz-Durán, C; Tamayo-López, M J; González-Eiris-Delgado, C; Otero-Candelera, R; Ortega-Ruiz, F; Sobrino-Márquez, J M; Jiménez-García-Bóveda, R; Fernández-Quero, M; Campos-Pareja, A M

    2013-01-01

    This handbook is intended to be an accessible, easy-to-consult guide to help professionals produce or adapt Evidence-Based Documents. Such documents will help standardize both clinical practice and decision-making, the quality always being monitored in such a way that established references are complied with. Evidence-Based Health Care Committee, a member of "Virgen del Rocío" University Hospital quality structure, proposed the preparation of a handbook to produce Evidence-Based Documents including: a description of products, characteristics, qualities, uses, methodology of production, and application scope of every one of them. The handbook consists of seven Evidence-Based tools, one chapter on critical analysis methodology of scientific literature, one chapter with internet resources, and some appendices with different assessment tools. This Handbook provides general practitioners with a great opportunity to improve quality and as a guideline to standardize clinical healthcare, and managers with a strategy to promote and encourage the development of documents in an effort to reduce clinical practice variability, as well as giving patients the opportunity of taking part in planning their own care. Copyright © 2011 SECA. Published by Elsevier Espana. All rights reserved.

  17. Wet-Chemical Preparation of TiO₂-Based Composites with Different Morphologies and Photocatalytic Properties.

    Science.gov (United States)

    Xiang, Liqin; Zhao, Xiaopeng

    2017-10-09

    TiO₂-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO₂ materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO₂-based materials have been widely investigated in past decades. Based on our group's research works on TiO₂ materials, this review introduces several methods for the fabrication of TiO₂, rare-earth-doped TiO₂ and noble-metal-decorated TiO₂ particles with different morphologies. We focused on the preparation and the formation mechanism of TiO₂-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO₂, noble metal nanoparticle-decorated 3D (three-dimensional) urchin-like TiO₂ and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO₂ are briefly discussed.

  18. Chitosan-based hydrogel for dye removal from aqueous solutions: Optimization of the preparation procedure

    Science.gov (United States)

    Gioiella, Lucia; Altobelli, Rosaria; de Luna, Martina Salzano; Filippone, Giovanni

    2016-05-01

    The efficacy of chitosan-based hydrogels in the removal of dyes from aqueous solutions has been investigated as a function of different parameters. Hydrogels were obtained by gelation of chitosan with a non-toxic gelling agent based on an aqueous basic solution. The preparation procedure has been optimized in terms of chitosan concentration in the starting solution, gelling agent concentration and chitosan-to-gelling agent ratio. The goal is to properly select the material- and process-related parameters in order to optimize the performances of the chitosan-based dye adsorbent. First, the influence of such factors on the gelling process has been studied from a kinetic point of view. Then, the effects on the adsorption capacity and kinetics of the chitosan hydrogels obtained in different conditions have been investigated. A common food dye (Indigo Carmine) has been used for this purpose. Noticeably, although the disk-shaped hydrogels are in the bulk form, their adsorption capacity is comparable to that reported in the literature for films and beads. In addition, the bulk samples can be easily separated from the liquid phase after the adsorption process, which is highly attractive from a practical point of view. Compression tests reveal that the samples do not breakup even after relatively large compressive strains. The obtained results suggest that the fine tuning of the process parameters allows the production of mechanical resistant and highly adsorbing chitosan-based hydrogels.

  19. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration.

    Science.gov (United States)

    Zhang, Jian; Qin, Ziyu; Zeng, Dawen; Xie, Changsheng

    2017-03-01

    Metal-oxide-semiconductor (MOS) based gas sensors have been considered a promising candidate for gas detection over the past few years. However, the sensing properties of MOS-based gas sensors also need to be further enhanced to satisfy the higher requirements for specific applications, such as medical diagnosis based on human breath, gas detection in harsh environments, etc. In these fields, excellent selectivity, low power consumption, a fast response/recovery rate, low humidity dependence and a low limit of detection concentration should be fulfilled simultaneously, which pose great challenges to the MOS-based gas sensors. Recently, in order to improve the sensing performances of MOS-based gas sensors, more and more researchers have carried out extensive research from theory to practice. For a similar purpose, on the basis of the whole fabrication process of gas sensors, this review gives a presentation of the important role of screening and the recent developments in high throughput screening. Subsequently, together with the sensing mechanism, the factors influencing the sensing properties of MOSs involved in material preparation processes were also discussed in detail. It was concluded that the sensing properties of MOSs not only depend on the morphological structure (particle size, morphology, pore size, etc.), but also rely on the defect structure and heterointerface structure (grain boundaries, heterointerfaces, defect concentrations, etc.). Therefore, the material-sensor integration was also introduced to maintain the structural stability in the sensor fabrication process, ensuring the sensing stability of MOS-based gas sensors. Finally, the perspectives of the MOS-based gas sensors in the aspects of fundamental research and the improvements in the sensing properties are pointed out.

  20. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Feng, Jin-Xian; Ye, Sheng-Hua; Xu, Han; Tong, Ye-Xiang; Li, Gao-Ren

    2016-06-01

    FeOOH/CeO2 heterolayered nanotubes supported on Ni foam as efficient oxygen evolution electrocatalysts are reported. The hybrid structure can obviously promote the catalytic performance for the oxygen evolution reaction, such as low onset potential, high electroactivity, and excellent long-term durability. This study provides a new route to the design and fabrication of electrocatalysts with high electroactivity and durability for oxygen evolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  2. Few-Layered Mo(1-x)WxS2Hollow Nanospheres on Ni3S2Nanorod Heterostructure as Robust Electrocatalysts for Overall Water Splitting.

    Science.gov (United States)

    Zheng, Meiyong; Du, Jing; Hou, Baopu; Xu, Cai-Ling

    2017-08-09

    Owing to unique optical, electronic, and catalytic properties, MoS 2 have received increasing interest in electrochemical water splitting. Herein, few-layered Mo (1-x) W x S 2 hollow nanospheres-modified Ni 3 S 2 heterostructures are prepared through a facile hydrothermal method to further enhance the electrocatalytic performance of MoS 2 . The doping of W element optimizes the electronic structure of MoS 2 @Ni 3 S 2 thus improving the conductivity and charge-transfer ability of MoS 2 @Ni 3 S 2 . In addition, benefitting from the few-layered hollow structure of Mo (1-x) W x S 2 , the strong electronic interactions between Mo (1-x) W x S 2 and Ni 3 S 2 and the hierarchical structure of one-dimensional nanorods and three-dimensional Ni foam, massive active sites and fast ion and charge transportation are obtained. As a result, the optimized Mo (1-x) W x S 2 @Ni 3 S 2 heterostructure (Mo-W-S-2@Ni 3 S 2 ) achieves an extremely low overpotential of 98 mV for hydrogen evolution reaction and 285 mV for oxygen evolution reaction at 10 mA cm -2 in alkaline electrolyte. Particularly, using Mo-W-S-2@Ni 3 S 2 heterostructure as a bifunctional electrocatalyst, a cell voltage of 1.62 V is required to deliver a 10 mA cm -2 water splitting current density. In addition, the electrode can be maintained at 10 mA cm -2 for at least 50 h, indicating the excellent stability of Mo-W-S-2@Ni 3 S 2 heterostructure. Therefore, this development demonstrates an effective and feasible strategy to prepare highly efficient bifunctional electrocatalysts for overall water splitting.

  3. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin, E-mail: p_chatwarin@yahoo.com

    2017-02-28

    Highlights: • This is the first report on electrooxidation of 2-propanol in acidic media on dealloyed Cu@Pt/CP core-shell electrocatalyst. • The dealloyed Cu@Pt/CP is prepared using cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD). • The structure of dealloyed Cu@Pt/CP is core-shell structure with Cu-rich core and Pt-rich surface. • The dealloyed Cu@Pt/CP shows high activity and great stability towards 2-propanol electrooxidation in acidic media. - Abstract: Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H{sub 2}SO{sub 4} in terms of peak current density (j{sub p}), peak potential (E{sub p}), onset potential (E{sub onset}), diffusion coefficient (D), and charge transfer resistance (R{sub ct}) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  4. PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells?

    Science.gov (United States)

    Martins, M.; Šljukić, B.; Sequeira, C. A. C.; Soylu, G. S. P.; Yurtcan, A. B.; Bozkurt, G.; Sener, T.; Santos, D. M. F.

    2018-01-01

    PtNi nanoparticles (NPs) were synthesised by microwave irradiation technique and supported onto Mn2O3 and two binary metal oxides, Mn2O3-TiO2 and Mn2O3-NiO, prepared by solid-state dispersion method. TEM analysis revealed formation of PtNi NPs of 2-3 nm diameter on the metal oxides. Their activity for oxygen reduction reaction (ORR) and borohydride oxidation reaction (BOR) in alkaline media was studied using voltammetric, amperometric and electrochemical impedance spectroscopy techniques. The effect of electrolyte composition and operation temperature on the catalysts performance was also examined. ORR and BOR kinetic parameters, namely Tafel slope, kinetic current density, order of reaction and activation energy were evaluated, enabling direct comparison of the three electrocatalysts performance. The results show that PtNi NPs anchored on binary metal oxide supports possess superior activity for BOR in alkaline media, suggesting their potential application as anodes in low-temperature fuel cells.

  5. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Hong Li

    2018-02-01

    Full Text Available The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER and oxygen evolution reaction (OER in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test.

  6. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts.

    Science.gov (United States)

    Li, Hong; Ke, Fei; Zhu, Junfa

    2018-02-07

    The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal-organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm² at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test.

  7. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte.

    Science.gov (United States)

    Wang, Nan; Li, Ligui; Zhao, Dengke; Kang, Xiongwu; Tang, Zhenghua; Chen, Shaowei

    2017-09-01

    Nitrogen and sulfur-codoped graphene composites with Co 9 S 8 (NS/rGO-Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO 2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only -0.193 V to reach 10 mA cm -2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half-wave potential in ORR and the potential to reach 10 mA cm -2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm -2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S-codoped rGO, and Co 9 S 8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    KAUST Repository

    Almuhammadi, Khaled

    2015-10-19

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  9. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  10. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    Science.gov (United States)

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of polystyrene based Nickel molybdate composite membrane electrical–electrochemical properties

    Directory of Open Access Journals (Sweden)

    Urfi Ishrat

    2016-09-01

    Full Text Available The functional properties of the polystyrene based Nickel Molybdate composite membrane prepared by applying 70 MPa pressure are described. The fabricated membrane was characterized by using Fourier Transform Infrared, X-ray diffraction, particle size analyzer and Scanning electron microscopy technique and has been investigated for its functional, diffusive, electrochemical and electrical properties. The impedance data of membrane having capacitive and resistive components are plotted, which show the sequence of semicircles representing an electrical phenomenon due to grain material, grain boundary and interfacial phenomenon. The diffusion of electrolytes was determined by the TMS method revealing dependence of membrane potential on the charge on the membrane matrix, charge and size of permeating ions. The membrane determined the activity of cations with good accuracy in the higher concentration range and shows a great selectivity for K+. Other electrochemical properties like transport number have been discussed its selectivity.

  12. Preparation and Electrochemical Properties of Mesoporous Manganese Dioxide-Based Composite Electrode for Supercapacitor.

    Science.gov (United States)

    Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiquin; Liu, Yanag; Xing, Guangjian

    2017-01-01

    The mesoporous manganese dioxide with high specific surface area was obtained through a one-pot prepare procedure at ambient temperature under acidic conditions. And the graphene/mesoporous manganese dioxide composite was synthesized by a simple hydrothermal approach. As a comparison, silver nanowires also as a conductor was added to the mesoporous manganese dioxide. Both of the graphene and silver nanowires can increase the capacitance of the mesoporous manganese dioxide-based composite electrode materials. Compared with the graphene/mesoporous manganese dioxide composite, the silver nanowires/mesoporous manganese dioxide mixture has a better electrochemical performance, the specific capacitance and energy density is almost 2.2 times larger than that of the composites. The morphology and detail structure were investigated by the Scanning electron microscopy, X-ray diffraction, Raman spectra, Fourier transform infrared spectrometry and Nitrogen adsorption–desorption isotherms. The electrochemical performance was assessed by the cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.

  13. Comprehensive Utilization of Filter Residue from the Preparation Process of Zeolite-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2016-05-01

    Full Text Available A novel utilization method of filter residue from the preparation process of zeolite-based catalysts was investigated. Y zeolite and a fluid catalytic cracking (FCC catalyst were synthesized from filter residue. Compared to the Y zeolite synthesized by the conventional method, the Y zeolite synthesized from filter residue exhibited better thermal stability. The catalyst possessed wide-pore distribution. In addition, the pore volume, specific surface area, attrition resistance were superior to those of the reference catalyst. The yields of gasoline and light oil increased by 1.93 and 1.48 %, respectively. At the same time, the coke yield decreased by 0.41 %. The catalyst exhibited better gasoline and coke selectivity. The quality of the cracked gasoline had been improved.

  14. Preparation of Bio-Based Polyamide Elastomer by Using Green Plasticizers

    Directory of Open Access Journals (Sweden)

    Miaomiao He

    2016-07-01

    Full Text Available The purpose of this work was to study the effects of three green plasticizers H2O, glycerol, and soybean oil, on the properties of bio-based BDIS polyamides. The BDIS polyamides synthesized from the following biomass monomers: 1,4-butanediamine (BD, 1,10-decanediamine (DD, itaconic acid (IA, and sebacic acid (SA. It is interesting to note that the amorphous BDIS (IA-80% polyamide was changed from the glassy state to the rubbery state after water soaking and induced crystallization at the same time. The H2O-plasticized non-crosslinked BDIS (IA-80% polyamides can be very useful for the preparation of physical water gel. The glycerol- and soybean oil-plasticized BDIS (IA-80% polyamides displayed excellent toughness. The plasticized BDIS (IA-80% polyamides were characterized by Fouriertransform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, mechanical testing, and X-ray diffraction (XRD.

  15. Preparation of Al-based metal matrix composites reinforced by Cu coated SiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hailong; Zhang Rui; Xu Hongliang; Lu Hongxia; Guan Shaokang [Coll. of Materials Engineering, Zhengzhou Univ., HEN (China)

    2005-07-01

    In order to improve the interfacial behavior between SiC and Al, a surface layer of Cu was coated on SiC particles. The influence of pH value on the coating process was analyzed. A powder metallurgy method was used to prepare the Al-based metal matrix composites (MMCs). SEM, XRD techniques were used to characterize the sintered compacts. It was found that the optimized pH value during the coating process was 1{proportional_to}2. The specimen showed the maximum density when sintered at 750 C. Inter-metallic compound of Al{sub 3.21}Si{sub 0.47} was detected which contributed to the enhancement at the interface between SiC and Al. The hardness of the composites is improved to 90 MPa. (orig.)

  16. Preparing foundation-year students for medical studies in a problem-based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun; Massoud, Walid; Al-Banna, Nadia Ali

    2016-01-01

    students with these skills. Methods: A 10-point scale online questionnaire consisting of 20 questions was used for data collection. 50 out of the 59 (19 males and 31 females) students responded and self-evaluated a list of learning skills according to the course objectives before and after the course......Purpose: To contribute to the field of preparing new students for their medical studies and to investigate how foundation-year medical students perceive the progression of appropriate learning skills for studying in a PBL medical curriculum via the support of a course aiming at facilitating......- and post-test was high (2.38). Paired t-tests showed significant improvements (po.001) for each of the 4 factors. The four factors together explained 60.7% percent of variance in the data. Discussion: Students reported large improvements among learning skills required in a problem-based medical curriculum...

  17. Preparation and Characterization of Chitosan-Based Core-Shell Microcapsules Containing Clove Oil.

    Science.gov (United States)

    Jiang, Ping; Li, Duxin; Xiao, Ya; Yang, Xingxing; Liu, Yuejun

    2015-01-01

    The biodegradable microcapsules based on chitosan for a controlled delivery of clove oil were prepared by the single coagulation process. The effect of chitosan concentration, core to shell ratio, types of emulsifier, flocculating agent and hardening agent on the microcapsule diameter and the particle size distribution of microcapsule were investigated. The optimized conditions for the preparation of microcapsules with well-defined structure and narrow dispersibility were under that (1) the concentration of chitosan was 1.0 wt%, (2) clove oil to chitosan ratio was 75:25, (3) OP-10 and 10 wt% sodium sulfate were used as emulsifier and flocculating agent respectively, and (4) the concentration hardening agent glyoxal was 1 wt% based on the weight of chitosan. The uniform spherical structures with smooth surfaces with a particle size distribution of 1-15 μm were evidenced by SEM images of microcapsules. Core-shell, hetero-structures were confirmed by optical micrograph. The chemical component of the microcapsules was determined by FTIR. Thermal analysis showed the microcapsules were thermally stable below 150 degrees C. It was found that the pH value and temperature play important roles on the release rate of clove oil from the microcapsules. The release volume of clove oil from microcapsules at pH = 7, and pH = 10 were smaller than that at pH = 2. And the release volume of Clove oil from microcapsules at 60 degrees C was smaller than that at 20 degrees C and 40 degrees C, which showed a sustained and prolonged release.

  18. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia.

    Science.gov (United States)

    Hernandez-Valladares, Maria; Aasebø, Elise; Selheim, Frode; Berven, Frode S; Bruserud, Øystein

    2016-08-22

    Global mass spectrometry (MS)-based proteomic and phosphoproteomic studies of acute myeloid leukemia (AML) biomarkers represent a powerful strategy to identify and confirm proteins and their phosphorylated modifications that could be applied in diagnosis and prognosis, as a support for individual treatment regimens and selection of patients for bone marrow transplant. MS-based studies require optimal and reproducible workflows that allow a satisfactory coverage of the proteome and its modifications. Preparation of samples for global MS analysis is a crucial step and it usually requires method testing, tuning and optimization. Different proteomic workflows that have been used to prepare AML patient samples for global MS analysis usually include a standard protein in-solution digestion procedure with a urea-based lysis buffer. The enrichment of phosphopeptides from AML patient samples has previously been carried out either with immobilized metal affinity chromatography (IMAC) or metal oxide affinity chromatography (MOAC). We have recently tested several methods of sample preparation for MS analysis of the AML proteome and phosphoproteome and introduced filter-aided sample preparation (FASP) as a superior methodology for the sensitive and reproducible generation of peptides from patient samples. FASP-prepared peptides can be further fractionated or IMAC-enriched for proteome or phosphoproteome analyses. Herein, we will review both in-solution and FASP-based sample preparation workflows and encourage the use of the latter for the highest protein and phosphorylation coverage and reproducibility.

  19. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Maria Hernandez-Valladares

    2016-08-01

    Full Text Available Global mass spectrometry (MS-based proteomic and phosphoproteomic studies of acute myeloid leukemia (AML biomarkers represent a powerful strategy to identify and confirm proteins and their phosphorylated modifications that could be applied in diagnosis and prognosis, as a support for individual treatment regimens and selection of patients for bone marrow transplant. MS-based studies require optimal and reproducible workflows that allow a satisfactory coverage of the proteome and its modifications. Preparation of samples for global MS analysis is a crucial step and it usually requires method testing, tuning and optimization. Different proteomic workflows that have been used to prepare AML patient samples for global MS analysis usually include a standard protein in-solution digestion procedure with a urea-based lysis buffer. The enrichment of phosphopeptides from AML patient samples has previously been carried out either with immobilized metal affinity chromatography (IMAC or metal oxide affinity chromatography (MOAC. We have recently tested several methods of sample preparation for MS analysis of the AML proteome and phosphoproteome and introduced filter-aided sample preparation (FASP as a superior methodology for the sensitive and reproducible generation of peptides from patient samples. FASP-prepared peptides can be further fractionated or IMAC-enriched for proteome or phosphoproteome analyses. Herein, we will review both in-solution and FASP-based sample preparation workflows and encourage the use of the latter for the highest protein and phosphorylation coverage and reproducibility.

  20. Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles

    International Nuclear Information System (INIS)

    Arana, Mercedes; Bercoff, Paula G.; Jacobo, Silvia E.

    2017-01-01

    Highlights: • Kerosene-based ferrofluids of Ni-ferrite NPs from high energy ball milling. • Thermomagnetic characterization of organic-based ferrofluids. • Measured thermal variables enhancements of ferrofluid vs. magnetic field. • Curves successfully fitted by a gas-compression model of nanoaggregates. - Abstract: In this work, a thermomagnetic characterization of kerosene-based ferrofluids (FFs) prepared with Ni-ferrite nanoparticles (NPs) is performed by measuring their thermal conductivity and diffusivity coefficient enhancements. The particles were synthesized by high-energy ball milling, as an alternative to the most commonly chosen NPs synthesis methods for FFs. The action of an applied magnetic field on the FF increases the thermal conductivity and diffusivity due to cooperation between the NPs, as it agglomerates them favoring chain-like and clusters formations. It was found that the heat capacity of the studied FFs decreases under the application of a magnetic field. The obtained results for thermal conductivity of FFs under magnetic fields were fitted by a gas-compression model that considers NPs agglomerates in the fluid.