WorldWideScience

Sample records for based detection assays

  1. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay.

    Science.gov (United States)

    Park, Jun Hee; Cho, Yea Seul; Kang, Sungmuk; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2014-10-01

    A colorimetric sandwich-type assay based on enzyme-linked aptamer assay has been developed for the fast and sensitive detection of as low as 25 fM of thrombin with high linearity. Aptamer-immobilized glass was used to capture the target analyte, whereas a second aptamer, functionalized with horseradish peroxidase (HRP), was employed for the conventional 3,5,3',5'-tetramethylbenzidine (TMB)-based colorimetric detection. Without the troublesome antibody requirement of the conventional enzyme-linked immunosorbent assay (ELISA), as low as 25 fM of thrombin could be rapidly and reproducibly detected. This assay has superior, or at least equal, recovery and accuracy to that of conventional antibody-based ELISA.

  2. Immunological-based assays for specific detection of shrimp viruses.

    Science.gov (United States)

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-02-12

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  3. Molecular-Based Assay for Simultaneous Detection of Four Plasmodium spp. and Wuchereria bancrofti Infections

    OpenAIRE

    MEHLOTRA, RAJEEV K.; Gray, Laurie R; Blood-Zikursh, Melinda J.; Kloos, Zachary; Henry-Halldin, Cara N.; Tisch, Daniel J.; Thomsen, Edward; Reimer, Lisa; Kastens, Will; Baea, Manasseh; Baea, Kaye; Baisor, Moses; Tarongka, Nandao; Kazura, James W; Zimmerman, Peter A

    2010-01-01

    Four major malaria-causing Plasmodium spp. and lymphatic filariasis-causing Wuchereria bancrofti are co-endemic in many tropical and sub-tropical regions. Among molecular diagnostic assays, multiplex polymerase chain reaction (PCR)–based assays for the simultaneous detection of DNAs from these parasite species are currently available only for P. falciparum and W. bancrofti or P. vivax and W. bancrofti. Using a post-PCR oligonucleotide ligation detection reaction–fluorescent microsphere assay ...

  4. Nanobeads-based assays. The case of gluten detection

    Science.gov (United States)

    Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bellucci, Stefano; Crescenzo, Roberta; Iozzino, Luisa; Staiano, Maria; Aurilia, Vincenzo; Varriale, Antonio; Rossi, Mosè; D'Auria, Sabato

    2008-11-01

    In order to verify if the use of nanobeads of poly[phenylacetylene-(co-acrylic acid)] (PPA/AA) in the ELISA test would affect the immune-activity of the antibodies (Ab) and/or the activity of the enzymes used to label the Ab anti-rabbit IGg, in this work we immobilized the horse liver peroxidase labelled Ab anti-rabbit IGg onto PPA/AA nanobeads. The gluten test was chosen as the model to demonstrate the usefulness of these nanobeads in immunoassays. The synthesis of PPA/AA nanobeads was performed by a modified emulsion polymerization. Self-assembly of nanospheres with mean diameter equal to 200 nm was achieved by casting aqueous suspensions. The materials were characterized by traditional spectroscopic techniques, while the size and dispersion of the particles were analysed by scanning electron microscopy (SEM) measurements. The obtained results show that the immobilization process of the Abs onto PPA/AA did not affect either the immune-response of the Abs or the functional activity of the peroxidase suggesting the usefulness of PPA/AA for the design of advanced nanobeads-based assays for the simultaneous screening of several analytes in complex media.

  5. Development of a lipase-based optical assay for detection of DNA

    DEFF Research Database (Denmark)

    Pinijsuwan, Suttiporn; Shipovskov, Stepan; Surareungchai, Werasak;

    2011-01-01

    A lipase-based assay for detection of specific DNA sequences has been developed. Lipase from Candida antarctica was conjugated to DNA and captured on magnetic beads in a sandwich assay, in which the binding was dependent on the presence of a specific target DNA. For amplification and to generate...... a detectable readout the captured lipase was applied to an optical assay that takes advantage of the enzymatic activity of lipase. The assay applies p-nitrophenol octanoate (NPO) as the substrate and in the presence of lipase the ester is hydrolyzed to p-nitrophenolate which has a strong absorbance at 405 nm...

  6. Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples

    DEFF Research Database (Denmark)

    Mezger, Anja; Fock, Jeppe; Antunes, Paula Soares Martins;

    2015-01-01

    We demonstrate a nanoparticle-based assay for the detection of bacteria causing urinary tract infections in patient samples with a total assay time of 4 h. This time is significantly shorter than the current gold standard, plate culture, which can take several days depending on the pathogen....... The assay is based on padlock probe recognition followed by two cycles of rolling circle amplification (RCA) to form DNA coils corresponding to the target bacterial DNA. The readout of the RCA products is based on optomagnetic measurements of the specific agglutination of DNA-bound magnetic nanoparticles...... (MNPs) using low-cost optoelectronic components from Blu-ray drives. We implement a detection approach, which relies on the monomerization of the RCA products, the use of the monomers to link and agglutinate two populations of MNPs functionalized with universal nontarget specific detection probes...

  7. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    Directory of Open Access Journals (Sweden)

    Piotr Wargocki

    2015-05-01

    Full Text Available Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.

  8. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    Science.gov (United States)

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection. PMID:27283884

  9. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    Science.gov (United States)

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.

  10. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    KAUST Repository

    Wu, Jinbo

    2013-12-20

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references.

  11. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    International Nuclear Information System (INIS)

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. (author)

  12. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1.

    Science.gov (United States)

    Shim, Won-Bo; Kim, Min Jin; Mun, Hyoyoung; Kim, Min-Gon

    2014-12-15

    A rapid and simple dipstick assay based on an aptamer has been developed for the determination of aflatoxin B1 (AFB1). The dipstick assay format was based on a competitive reaction of the biotin-modified aptamer specific to AFB1 between target and cy5-modified DNA probes. Streptavidin and anti-cy5 antibody as capture reagents were immobilized at test and control lines on a membrane of the dipstick assay. After optimization, the limit of detection for the dipstick assay was 0.1 ng/ml AFB1 in buffer. The method was confirmed to be specific to AFB1, and the entire process of the assay can be completed within 30 min. Aqueous methanol (20%) provided a good extraction efficiency, and the matrix influence from corn extracts was successfully reduced through 2-fold dilution. The results of AFB1 analysis for corn samples spiked with known concentration of AFB1 by the dipstick assay and ELISA showed good agreement. The cut-off value of the dipstick assay for corn samples was 0.3 ng/g AFB1. Therefore, the dipstick assay is first reported and considered as a rapid, simple, on-site and inexpensive screening tool for AFB1 determination in grains as well as a corn. PMID:25032679

  13. A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents.

    Science.gov (United States)

    Mechaly, Adva; Cohen, Hila; Cohen, Ofer; Mazor, Ohad

    2016-08-01

    Biolayer interferometry (BLI) is an optical technique that uses fiber-optic biosensors for label-free real-time monitoring of protein-protein interactions. In this study, we coupled the advantages of the Octet Red BLI system (automation, fluidics-free, and on-line monitoring) with a signal enhancement step and developed a rapid and sensitive immunological-based method for detection of biowarfare agents. As a proof of concept, we chose to demonstrate the efficacy of this novel assay for the detection of agents representing two classes of biothreats, proteinaceous toxins, and bacterial pathogens: ricin, a lethal plant toxin, and the gram-negative bacterium Francisella tularensis, the causative agent of tularemia. The assay setup consisted of biotinylated antibodies immobilized to the biosensor coupled with alkaline phosphatase-labeled antibodies as the detection moiety to create nonsoluble substrate crystals that precipitate on the sensor surface, thereby inducing a significant wavelength interference. It was found that this BLI-based assay enables sensitive detection of these pathogens (detection limits of 10 pg/ml and 1 × 10(4) pfu/ml ricin and F. tularensis, respectively) within a very short time frame (17 min). Owing to its simplicity, this assay can be easily adapted to detect other analytes in general, and biowarfare agents in particular, in a rapid and sensitive manner. PMID:27156814

  14. Detection of Hepatitis B Virus DNA by Duplex Scorpion Primer-based PCR Assay

    Institute of Scientific and Technical Information of China (English)

    KONG De-Ming孔德明; SHEN Han-Xi沈含熙; MI Huai-Feng宓怀风

    2004-01-01

    The application of a new fiuorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.

  15. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in seafood and thereby rep

  16. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays.

    Science.gov (United States)

    Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2015-03-01

    The aim of this study was to establish a DNA-based identification key to ascertain the cultivar origin of Turkish monovarietal olive oils. To reach this aim, we sequenced short fragments from five olive genes for SNP (single nucleotide polymorphism) identification and developed CAPS (cleaved amplified polymorphic DNA) assays for SNPs that alter restriction enzyme recognition motifs. When applied on the oils of 17 olive cultivars, a maximum of five CAPS assays were necessary to discriminate the varietal origin of the samples. We also tested the efficiency and limit of our approach for detecting olive oil admixtures. As a result of the analysis, we were able to detect admixing down to a limit of 20%. The SNP-based CAPS assays developed in this work can be used for testing and verification of the authenticity of Turkish monovarietal olive oils, for olive tree certification, and in germplasm characterization and preservation studies.

  17. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA.

    Science.gov (United States)

    Bartosik, Martin; Durikova, Helena; Vojtesek, Borivoj; Anton, Milan; Jandakova, Eva; Hrstka, Roman

    2016-09-15

    Cervical cancer, being the fourth leading cause of cancer death in women worldwide, predominantly originates from a persistent infection with a high-risk human papillomavirus (HPV). Detection of DNA sequences from these high-risk strains, mostly HPV-16 and HPV-18, represents promising strategy for early screening, which would help to identify women with higher risk of cervical cancer. In developing countries, inadequate screening options lead to disproportionately high mortality rates, making a fast and inexpensive detection schemes highly important. Electrochemical sensors and assays offer an alternative to current methods of detection. We developed an electrochemical-chip based assay, in which target HPV DNA is captured via magnetic bead-modified DNA probes, followed by an antidigoxigenin-peroxidase detection system at screen-printed carbon electrode chips, enabling parallel measurements of eight samples simultaneously. We show sensitive detection in attomoles of HPV DNA, selective discrimination between HPV-16 and HPV-18 and good reproducibility. Most importantly, we show application of the assay into both cancer cell lines and cervical smears from patients. The electrochemical results correlated well with standard methods, making this assay potentially applicable in clinical practice. PMID:27132004

  18. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA.

    Science.gov (United States)

    Bartosik, Martin; Durikova, Helena; Vojtesek, Borivoj; Anton, Milan; Jandakova, Eva; Hrstka, Roman

    2016-09-15

    Cervical cancer, being the fourth leading cause of cancer death in women worldwide, predominantly originates from a persistent infection with a high-risk human papillomavirus (HPV). Detection of DNA sequences from these high-risk strains, mostly HPV-16 and HPV-18, represents promising strategy for early screening, which would help to identify women with higher risk of cervical cancer. In developing countries, inadequate screening options lead to disproportionately high mortality rates, making a fast and inexpensive detection schemes highly important. Electrochemical sensors and assays offer an alternative to current methods of detection. We developed an electrochemical-chip based assay, in which target HPV DNA is captured via magnetic bead-modified DNA probes, followed by an antidigoxigenin-peroxidase detection system at screen-printed carbon electrode chips, enabling parallel measurements of eight samples simultaneously. We show sensitive detection in attomoles of HPV DNA, selective discrimination between HPV-16 and HPV-18 and good reproducibility. Most importantly, we show application of the assay into both cancer cell lines and cervical smears from patients. The electrochemical results correlated well with standard methods, making this assay potentially applicable in clinical practice.

  19. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac).

    Science.gov (United States)

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2013-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical 'signature' of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanillic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20 to 400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  20. A REAL-TIME PCR-BASED ASSAY FOR DETECTION OF WUCHERERIA BANCROFTI DNA IN BLOOD AND MOSQUITOES

    OpenAIRE

    Rao, Ramakrishna U.; ATKINSON, LAURA J.; Reda M R Ramzy; Helmy, Hanan; Farid, Hoda A.; Bockarie, Moses J.; Susapu, Melinda; LANEY, SANDRA J.; Williams, Steven A.; Weil, Gary J

    2006-01-01

    We developed and evaluated real-time polymerase chain reaction (PCR) assays for detecting Wuchereria bancrofti DNA in human blood and in mosquitoes. An assay based on detection of the W. bancrofti “LDR” repeat DNA sequence was more sensitive than an assay for Wolbachia 16S rDNA. The LDR-based assay was sensitive for detecting microfilarial DNA on dried membrane filters or on filter paper. We also compared real-time PCR with conventional PCR (C-PCR) for detecting W. bancrofti DNA in mosquito s...

  1. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement.

    Science.gov (United States)

    Lan, Meijing; Guo, Yirong; Zhao, Ying; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2016-09-28

    This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02-6.45 ng mL(-1), which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL(-1). Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds. PMID:27619097

  2. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    OpenAIRE

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in seafood and thereby represent a threat to consumers. Regulatory limits have been set for lipophilic marine biotoxins (diarrhetic shellfish poisons (DSPs) and azaspiracids (AZPs)) and for most marine neurotoxins (amnesic ...

  3. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  4. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    Science.gov (United States)

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis. PMID:26807518

  5. Rapid PCR-based assay for Sclerotinia sclerotiorum detection on soybean seeds

    Directory of Open Access Journals (Sweden)

    Edilaine Mauricia Gelinski Grabicoski

    2015-02-01

    Full Text Available Caused by Sclerotinia sclerotiorum, white mold is an important seed-transmitted disease of soybean (Glycine max. Incubation-based methods available for the detection and quantification of seed-borne inoculum such as the blotter test, paper roll and Neon-S assay are time-consuming, laborious, and not always sensitive. In this study, we developed and evaluated a molecular assay for the detection of S. sclerotiorum in soybean seeds using a species-specific PCR (polymerase chain reaction primer set and seed soaking (without DNA extraction for up to 72 h. The PCR products were amplified in all the samples infected with the pathogen, but not in the other samples of plant material or the other seed-borne fungi DNA. The minimum amount of DNA detected was 10 pg, or one artificially infested seed in a 400-seed sample (0.25 % fungal incidence and one naturally infected seed in a 300-seed sample (0.33 % incidence. The PCR-based assay was rapid (< 9 h, did not require DNA extraction and was very sensitive.

  6. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    International Nuclear Information System (INIS)

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with 125I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  7. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  8. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  9. Comparison of histopathology and PCR based assay for detection of experimentally induced toxoplasmosis in murine model

    Institute of Scientific and Technical Information of China (English)

    Vikrant Sudan; A K Tewari; R Singh; Harkirat Singh

    2015-01-01

    Objective:To compare histopathology and PCR based detection in diagnosis of experimentally induced toxoplasmosis of RH human strain of the parasite in murine models. Methods:A comparison of histopathology and PCR based detection was done to diagnose experimentally induced toxoplasmosis in ten inbred swiss albino mice after intraperitoneal inoculation of 100 tachyzoites of laboratory mantained human RH strain of the parasite. Tissue samples from lung, liver, spleen, brain, heart and kidney were taken and processed for histopathological examination while all the samples also were subjected to PCR, using primers directed to the multicopy of SAG 3 gene, in dublicates. Results: Histopathology revealed presence of tachyzoites only in liver while along with lung, liver, spleen and brain tissue yielded desired positive PCR amplicons. Conclusions:The SAG 3 based PCR is able to diagnose toxoplasmosis in those tissues which are declared negative by histopathological assay.

  10. Comparison of histopathology and PCR based assay for detection of experimentally induced toxoplasmosis in murine model

    Institute of Scientific and Technical Information of China (English)

    Vikrant; Sudan; A.K.Tewari; R; Singh; Harkirat; Singh

    2015-01-01

    Objective:To compare histopathology and PCR based detection in diagnosis of experimentally induced toxoplasmosis of RH human strain of the parasite in murine models.Methods:A comparison of histopathology and PCR based detection was done to diagnose experimentally induced toxoplasmosis in ten inbred swiss albino mice after intraperitoneal inoculation of 100 tachyzoites of laboratory mantained human RH strain of the parasite.Tissue samples from lung,liver,spleen,brain,heart and kidney were taken and processed for histopathological examination while all the samples also were subjected to PCR,using primers directed to the multicopy of SAG 3 gene,in dublicates.Results:Histopathology revealed presence of tachyzoites only in liver while along with lung,liver,spleen and brain tissue yielded desired positive PCR amplicons.Conclusions:The SAG 3 based PCR is able to diagnose toxoplasmosis in those tissues which are declared negative by histopathological assay.

  11. PathogenMip Assay: A Multiplex Pathogen Detection Assay

    OpenAIRE

    Akhras, Michael S.; Sreedevi Thiyagarajan; Villablanca, Andrea C.; Davis, Ronald W; Pål Nyrén; Nader Pourmand

    2007-01-01

    The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The ...

  12. Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone.

    Science.gov (United States)

    Duan, Hong; Chen, Xuelan; Xu, Wei; Fu, Jinhua; Xiong, Yonghua; Wang, Andrew

    2015-01-01

    Mycotoxin pollutants are commonly related to cereal products and cause fatal threats in food safety, and therefore require simple and sensitive detection. In this work, quantum-dot (QD) submicrobeads (QBs) were synthesized by encapsulating CdSe/ZnS QDs using the microemulsion technique. The resultant QBs, with approximately 2800 times brighter luminescence than the corresponding QDs, were explored as novel fluorescent probes in the immunochromatographic assay (ICA) for sensitive and quantitative detection of zearalenone (ZEN) in corns. Various parameters that influenced the sensitivity and stability of QB-based ICA (QB-ICA) were investigated and optimized. The optimal QB-ICA exhibits good dynamic linear detection for ZEN over the range of 0.125 ng/mL to 10 ng/mL with a median inhibitory concentration of 1.01±0.09 ng/mL (n=3). The detection limits for ZEN in a standard solution and real corn sample (dilution ratio of 1:30) are 0.0625 ng/mL and 3.6 µg/kg, respectively, which is much better than that of a previously reported gold nanoparticle-based ICA method. Forty-six natural corn samples are assayed using both QB-ICA and enzyme-linked immunosorbent assay. The two methods show a highly significant correlation (R(2)=0.92). Nine ZEN-contaminated samples were further confirmed with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the QB-ICA results also exhibited good agreement with LC-MS/MS method. In brief, this work demonstrates that QB-ICA is capable of rapid, sensitive screening of toxins in food analysis, and shows great promise for point-of-care testing of other analytes. PMID:25476288

  13. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    Directory of Open Access Journals (Sweden)

    Zhang PF

    2015-09-01

    Full Text Available Pengfei Zhang,1,* Yan Bao,1,* Mohamed Shehata Draz,2,3,* Huiqi Lu,1 Chang Liu,1 Huanxing Han11Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China; 2Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China; 3Faculty of Science, Tanta University, Tanta, Egypt*These authors contributed equally to this workAbstract: Convenient and rapid immunofiltration assays (IFAs enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP. CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.Keywords: C-reactive proteins, point-of-care test, Glutathione capped QDs, PEGylation

  14. Novel biosensor-based microarray assay for detecting rs8099917 and rs12979860 genotypes

    Institute of Scientific and Technical Information of China (English)

    Pei-Yuan Li; Xiao-Jun Zhou; Lan Yao; Xin-Hua Fang; Jiang-Nan Ren; Jia-Wu Song

    2012-01-01

    AIM:To evaluate a novel biosensor-based microarray (BBM) assay for detecting rs12979860 and rs8099917genotypes.METHODS:Four probes specific for rs8099917C/T or rs12979860G/T detection and three sets of quality control probes were designed,constructed and arrayed on an optical biosensor to develop a microarray assay.Two sets of primers were used in a one tube polymerase chain reaction (PCR) system to amplify two target fragments simultaneously.The biosensor microarray contained probes that had been sequenced to confirm that they included the rsS099917C/T or rs12979860G/T alleles of interest and could serve as the specific assay standards.In addition to rehybridization of four probes of known sequence,a total of 40 clinical samples collected from hepatitis C seropositive patients were also tested.The target fragments of all 40 samples were amplified in a 50 μL PCR system.Ten μL of each amplicon was tested by BBM assay,and another 40 μL was used for sequencing.The agreement of the results obtained by the two methods was tested statistically using the kappa coefficient.The sensitivity of the BBM assay was evaluated using serial dilutions of ten clinical blood samples containing 103-104 white cells/lμL.RESULTS:As shown by polyacrylamide gel electrophoresis,two target segments of the interleukin 28B-associated polymorphisms (SNPs) were successfully amplified in the one-tube PCR system.The lengths of the two amplified fragments were consistent with the known length of the target sequences,137 and 159bps.After hybridization of the PCR amplicons with the probes located on the BBM array,the signals of each allele of both the rs8099917 SNPs and rs12979860 SNPs were observed simultaneously and were clearly visible by the unaided eye.The signals were distinct from each other,could be interpreted visually,and accurately recorded using an ordinary digital camera.To evaluate the specificity of the assay,both the plasmids and clinical samples were applied to the microarray

  15. Gold nanoparticle aggregation-based colorimetric assay for β-casein detection in bovine milk samples.

    Science.gov (United States)

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Song, F; Lu, S Y; Ren, H L; Hu, P; Liu, Z S; Zhang, J H

    2014-11-01

    Traditional Kjeldahl method, used for quality evaluation of bovine milk, has intrinsic defects of time-consuming sample preparation and two analyses to determine the difference between non-protein nitrogen content and total protein nitrogen content. Herein, based upon antibody functionalized gold nanoparticles (AuNPs), we described a colorimetric method for β-casein (β-CN) detection in bovine milk samples. The linear dynamic range and the LOD were 0.08-250 μg mL(-1), and 0.03 μg mL(-1) respectively. In addition, the real content of β-CN in bovine milk was measured by using the developed assay. The results are closely correlated with those from Kjeldahl method. The advantages of β-CN triggered AuNP aggregation-based colorimetric assay are simple signal generation, the high sensitivity and specificity as well as no need of complicated sample preparation, which make it for on-site detection of β-CN in bovine milk samples.

  16. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  17. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  18. Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay

    Science.gov (United States)

    Shukla, Shruti; Lee, Gibaek; Song, Xinjie; Park, Jung Hyun; Cho, Hyunjeong; Lee, Eun Ju; Kim, Myunghee

    2016-01-01

    This study aimed to optimize the applicability of an immunoliposome-based immunomagnetic concentration and separation assay to facilitate rapid detection of Cronobacter sakazakii in powdered infant formula (PIF). To determine the detection limit, specificity, and pre-enrichment incubation time (0, 4, 6, and 8 h), assay tests were performed with different cell numbers of C. sakazakii (2 × 100 and 2 × 101 CFU/ml) inoculated in 10 g of PIF. The assay was able to detect as few as 2 cells of C. sakazakii/10 g of PIF sample after 6 h of pre-enrichment incubation with an assay time of 2 h 30 min. The assay was assessed for cross-reactivity with other bacterial strains and exhibited strong specificity to C. sakazakii. Moreover, the assay method was applied to the detection of C. sakazakii in PIF without pre-enrichment steps, and the results were compared with INC-ELISA and RT-PCR. The developed method was able to detect C. sakazakii in spiked PIF without pre-enrichment, whereas INC-ELISA failed to detect C. sakazakii. In addition, when compared with the results obtained with RT-PCR, our developed assay required lesser detection time. The developed assay was also not susceptible to any effect of the food matrix or background contaminant microflora. PMID:27721500

  19. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    NARCIS (Netherlands)

    Agren, J.; Hamidjaja, R.A.; Hansen, T.; Ruuls, R.C.; Thierry, S.; Vigre, H.; Janse, I.; Sundström, A.; Segerman, B.; Koene, M.G.J.; Löfström, Ch.; Rotterdam, van B.; Derzelle, S.

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely o

  20. A Cell-Based Fluorescent Assay to Detect the Activity of Shiga Toxin and Other Toxins That Inhibit Protein Synthesis

    Science.gov (United States)

    Escherichia coli O157:H7, a major cause of food-borne illness, produces Shiga toxins that block protein synthesis by inactivating the ribosome. In this chapter we describe a simple cell-based fluorescent assay to detect Shiga toxins and inhibitors of toxin activity. The assay can also be used to d...

  1. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    Science.gov (United States)

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R.; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S.; Williams, Steven A.

    2016-01-01

    Background The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world’s most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Methodology/Principal Findings Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. Conclusions/Significance The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other

  2. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    Science.gov (United States)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  3. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    Science.gov (United States)

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  4. Development of a Luminex-Based DIVA Assay for Serological Detection of African Horse Sickness Virus in Horses.

    Science.gov (United States)

    Sánchez-Matamoros, A; Nieto-Pelegrín, E; Beck, C; Rivera-Arroyo, B; Lecollinet, S; Sailleau, C; Zientara, S; Sánchez-Vizcaíno, J M

    2016-08-01

    African horse sickness (AHS) is considered a fatal re-emergent vector-borne disease of horses. In the absence of any effective treatment for AHS, vaccination remains the most effective form of disease control. The new generation of vaccines, such as one based on purified, inactivated AHS virus (AHSV, serotype 4), which does not induce antibodies against non-structural protein 3 (NS3), enables the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA assays). As detecting AHS in AHSV-free countries may lead to restrictions on international animal movements and thereby cause significant economic damage, these DIVA assays are crucial for reducing movement restrictions. In this article, we describe a Luminex-based multiplex assay for DIVA diagnosis of AHS, and we validate it in a duplex format to detect antibodies against structural protein 7 (VP7) and NS3 in serum samples from horses vaccinated with inactivated AHSV4 vaccine or infected with a live virus of the same serotype. Results of the Luminex-based assay for detecting anti-NS3 antibodies showed good positive correlation with results from an in-house enzyme-linked immunosorbent assay (ELISA). Thus, the Luminex-based technique described here may allow multiplex DIVA antibody detection in a single sample in less than 2 h, and it may prove adaptable for the development of robust, multiplex serological assays. PMID:27090377

  5. Development of a Cell-Based Functional Assay for the Detection of Clostridium botulinum Neurotoxin Types A and E

    Directory of Open Access Journals (Sweden)

    Uma Basavanna

    2013-01-01

    Full Text Available The standard procedure for definitive detection of BoNT-producing Clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (MBA. The mouse bioassay is highly sensitive and specific, but it is expensive and time-consuming, and there are ethical concerns due to use of laboratory animals. Cell-based assays provide an alternative to the MBA in screening for BoNT-producing Clostridia. Here, we describe a cell-based assay utilizing a fluorescence reporter construct expressed in a neuronal cell model to study toxin activity in situ. Our data indicates that the assay can detect as little as 100 pM BoNT/A activity within living cells, and the assay is currently being evaluated for the analysis of BoNT in food matrices. Among available in vitro assays, we believe that cell-based assays are widely applicable in high-throughput screenings and have the potential to at least reduce and refine animal assays if not replace it.

  6. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays.

    Science.gov (United States)

    Qureshi, Anjum; Roci, Irena; Gurbuz, Yasar; Niazi, Javed H

    2012-04-15

    An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.

  7. "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine.

    Science.gov (United States)

    Xu, Hui; Hepel, Maria

    2011-02-01

    We report on the development of a fluorescence turn-on "molecular beacon" probe for the detection of glutathione (GSH) and cysteine (Cys). The method is based on a competitive ligation of Hg(2+) ions by GSH/Cys and thymine-thymine (T-T) mismatches in a DNA strand of the self-hybridizing beacon strand. The assay relies on the distance-dependent optical properties of the fluorophore/quencher pair attached to the ends of the molecular beacon DNA strand. In a very selective coordination of Hg(2+) to GSH/Cys, the fluorophore/quencher distance increases concomitantly with the dehybridization and dissociation of the beacon stem T-Hg(2+)-T due to the extraction of Hg(2+) ions. This process results in switching the molecular beacon to the "on" state. The concentration range of the probe is 4-200 nM with the limit of detection (LOD) of 4.1 nM for GSH and 4.2 nM Cys. The probe tested satisfactorily against interference for a range of amino acids including sulfur-containing methionine.

  8. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples.

    Directory of Open Access Journals (Sweden)

    Jasmine I Daksis

    Full Text Available Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP, without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.

  9. An improved respiratory syncytial virus neutralization assay based on the detection of green fluorescent protein expression and automated plaque counting

    OpenAIRE

    van Remmerden Yvonne; Xu Fang; van Eldik Mandy; Heldens Jacco GM; Huisman Willem; Widjojoatmodjo Myra N

    2012-01-01

    Abstract Background Virus neutralizing antibodies against respiratory syncytial virus (RSV) are considered important correlates of protection for vaccine evaluation. The established plaque reduction assay is time consuming, labor intensive and highly variable. Methods Here, a neutralization assay based on a modified RSV strain expressing the green fluorescent protein in combination with automated detection and quantification of plaques is described. Results The fluorescence plaque reduction a...

  10. Development of a Filtration-Based Bioluminescence Assay for Detection of Microorganisms in Tea Beverages.

    Science.gov (United States)

    Shinozaki, Yohei; Igarashi, Toshinori; Harada, Yasuhiro

    2016-03-01

    The market for tea drinks as healthy beverages has been steadily expanding, and ready-to-drink beverages in polyethylene terephthalate bottles have been popular. To more rapidly and accurately test tea beverages bottled in polyethylene terephthalate for microbial contamination, a newly developed filtration device and a washing method with a commercial bioluminescence assay were combined to detect low numbers of bacterial spores, fungal conidia, and ascospores. Washing buffers were formulated with nonionic detergents from the Tween series. Commercially available tea beverages were used to evaluate the filtration capacity of the filtration device, the effect of washing buffers, and the performance of the assay. The assay was tested with serially diluted suspensions of colonies of two bacterial strains, spores of three Bacillus strains, conidia of five fungal strains, and ascospores of four fungal strains. The filtration device enabled filtration of a large sample volume (100 to 500 ml), and the washing buffer significantly decreased the background bioluminescence intensity of tea samples when compared with the no-washing method. Low numbers (1 to 10 CFU/100 ml) of the tested strains of bacteria were detected within 8 to 18 h of cultivation, and fungi were detected within 24 to 48 h. Furthermore, a whole bottle (500 ml) of mixed tea was filtered through the filtration device and microbes were detected. This method could be used for quality control of bottled beverages without preincubation. PMID:26939661

  11. Toward an international standard for PCR-based detection of food-borne thermotolerant Campylobacters: Assay development and analytical validation

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Wolffs, P.; On, Stephen L.W.;

    2003-01-01

    As part of a European research project (FOOD-PCR), we developed a standardized and robust PCR detection assay specific for the three most frequently reported food-borne pathogenic Campylobacter species, C. jejuni, C. coli, and C. lari. Fifteen published and unpublished PCR primers targeting the 16S...... carcass rinse, unlike both Taq DNA polymerase and DyNAzyme. Based on these results, Tth was selected as the most suitable enzyme for the assay. The standardized PCR test described shows potential for use in large-scale screening programs for food-borne Campylobacter species under the assay conditions...

  12. White blood cell-based detection of asymptomatic scrapie infection by ex vivo assays.

    Directory of Open Access Journals (Sweden)

    Sophie Halliez

    Full Text Available Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods--in vitro, ex vivo and in vivo assays--to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages. However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.

  13. Development and Evaluation of Real-Time PCR-Based Fluorescence Assays for Detection of Chlamydia pneumoniae

    OpenAIRE

    Tondella, Maria Lucia C.; Talkington, Deborah F.; Holloway, Brian P.; Scott F Dowell; Cowley, Karyn; Soriano-Gabarro, Montse; Elkind, Mitchell S.; Fields, Barry S.

    2002-01-01

    Chlamydia pneumoniae is an important respiratory pathogen recently associated with atherosclerosis and several other chronic diseases. Detection of C. pneumoniae is inconsistent, and standardized PCR assays are needed. Two real-time PCR assays specific for C. pneumoniae were developed by using the fluorescent dye-labeled TaqMan probe-based system. Oligonucleotide primers and probes were designed to target two variable domains of the ompA gene, VD2 and VD4. The limit of detection for each of t...

  14. Microbial based assay for specific detection of β-lactam group of antibiotics in milk

    OpenAIRE

    Das, Sougata; Kumar, Naresh; Vishweswaraiah, Raghu Hirikyathanahalli; Haldar, Lopamudra; Gaare, Manju; Singh, Vinai Kumar; Puniya, Anil Kumar

    2011-01-01

    The spore forming Bacillus cereus (66) was screened for the induction of β-lactamase in presence of an inducer using iodometric assay. A significant induction in marker enzyme was observed in B. cereus 66 at maximum residual limit (MRL) of penicillin, ampicillin, cloxacillin, amoxicillin, cefalexin, and cephazolin belonging to β-lactam group of antibiotics. A microbial based assay, where enzyme induction was optimized at pH 7.0, temperature 30°C, and whey powder (0.25%) after 4 h of incubatio...

  15. Time-resolved fluorescence-based assay for rapid detection of Escherichia coli.

    Science.gov (United States)

    Kulpakko, Janne; Kopra, Kari; Hänninen, Pekka

    2015-02-01

    Fast and simple detection of pathogens is of utmost importance in health care and the food industry. In this article, a novel technology for the detection of pathogenic bacteria is presented. The technology uses lytic-specific bacteriophages and a nonspecific interaction of cellular components with a luminescent lanthanide chelate. As a proof of principle, Escherichia coli-specific T4 bacteriophage was used to infect the bacteria, and the cell lysis was detected. In the absence of E. coli, luminescent Eu(3+)-chelate complex cannot be formed and low time-resolved luminescence signal is monitored. In the presence of E. coli, increased luminescence signal is observed as the cellular contents are leached to the surrounding medium. The luminescence signal is observed as a function of the number of bacteria in the sample. The homogeneous assay can detect living E. coli in bacterial cultures and simulated urine samples within 25 min with a detection limit of 1000 or 10,000 bacterial cells/ml in buffer or urine, respectively. The detection limit is at the clinically relevant level, which indicates that the method could also be applicable to clinical settings for fast detection of urine bacteria.

  16. Microcystin-LR detection based on indirect competitive enzyme-linked immunosorbent assay

    Institute of Scientific and Technical Information of China (English)

    SHENG Jianwu; HE Miao; YU Shaoqing; SHI Hanchang; QIAN Yi

    2007-01-01

    Microcystins (MCs) are a group of closely related toxic cyclic heptapeptides produced by common cyanobacteria,which cause lots of accidents and threatens human health.In this paper,an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established and used to detect microcystin-LR (MC-LR) in drinking and surface waters.The concentration of coating antigen was 5 μg/mL,the dilution of monoclonal antibody MC10E7 was 1:3 000,the dilution of enzyme tracer (goat anti-mouse IgG-peroxidase) was 1:3 000,the standard concentration of MC-LR ranged from 0.001 μg/L to 30 μg/L,and o-phenylenediamine was used as substrate.The assay showed high relativity with high performance liquid chromatography(HPLC) with a correlation coefficient of more than 99%.The relative standard deviation was less than 10%,the detection limit was achieved down to 0.01 μg/L and up to 5.1 μg/L.The quantitative detection range was from 0.03 μg/L to 3 μg/L,and the antibody had high specificity for [4-arginine]microcystins.It performed well in spite of the influence of the real samples.

  17. Detection of pathogens in food using a SERS-based assay in just a few hours

    Science.gov (United States)

    Shende, Chetan; Sengupta, Atanu; Huang, Hermes; Farquharson, Stuart

    2014-05-01

    In 2011 Escherichia, Listeria, and Salmonella species infected over 1.2 million people in the United States, resulting in over 23,000 hospitalizations and 650 deaths. In January 2013 President Obama signed into law the Food and Drug Administration (FDA) Food Safety Modernization Act (FSMA), which requires constant microbial testing of food processing equipment and food to minimize contamination and distribution of food tainted with pathogens. The challenge to preventing distribution and consumption of contaminated foods lies in the fact that just a few bacterial cells can rapidly multiply to millions, reaching infectious doses within a few days. Unfortunately, current methods used to detect these few cells rely on similar growth steps to multiply the cells to the point of detection, which also takes a few days. Consequently, there is a critical need for an analyzer that can rapidly extract and detect foodborne pathogens at 1000 colony forming units per gram of food in 1-2 hours (not days), and with a specificity that differentiates from indigenous microflora, so that false alarms are eliminated. In an effort to meet this need, we have been developing an assay that extracts such pathogens from food, selectively binds these pathogens, and produces surface-enhanced Raman spectra (SERS) when read by a Raman analyzer. Here we present SERS measurements of these pathogens in actual food samples using this assay.

  18. Metal enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection.

    Science.gov (United States)

    Ahmed, Syed Rahin; Hossain, Md Ashraf; Park, Jung Youn; Kim, Soo-Hyung; Lee, Dongyun; Suzuki, Tetsuro; Lee, Jaebeom; Park, Enoch Y

    2014-08-15

    In the present study, a rapid, sensitive and quantitative detection of influenza A virus targeting hemagglutinin (HA) was developed using hybrid structure of quantum dots (QDs) and nanoporous gold leaf (NPGL). NPGL film was prepared by dealloying bimetallic film where its surface morphology and roughness were fairly controlled. Anti-influenza A virus HA antibody (ab66189) was bound with NPGL and amine (-NH2) terminated QDs. These biofunctionalized NPGL and QDs formed a complex with the influenza virus A/Beijing/262/95 (H1N1) and the photoluminescence (PL) intensities of QDs were linearly correlated with the concentrations of the virus up to 1ng/mL while no PL was observed in the absence of the virus, or in bovine serum albumin (BSA, 1µg/mL) alone. In addition, it was demonstrated that this assay detected successfully influenza virus A/Yokohama/110/2009 (H3N2) that is isolated from a clinical sample, at a concentration of ca. 50 plaque forming units (PFU)/mL. This detection limit is 2-order more sensitive than a commercially available rapid influenza diagnostic test. From these results, the proposed assay may offer a new strategy to monitor influenza virus for public health. PMID:24607620

  19. An improved respiratory syncytial virus neutralization assay based on the detection of green fluorescent protein expression and automated plaque counting

    Directory of Open Access Journals (Sweden)

    van Remmerden Yvonne

    2012-10-01

    Full Text Available Abstract Background Virus neutralizing antibodies against respiratory syncytial virus (RSV are considered important correlates of protection for vaccine evaluation. The established plaque reduction assay is time consuming, labor intensive and highly variable. Methods Here, a neutralization assay based on a modified RSV strain expressing the green fluorescent protein in combination with automated detection and quantification of plaques is described. Results The fluorescence plaque reduction assay in microplate format requires only two days to complete and is simple and reproducible. A good correlation between visual and automated counting methods to determine RSV neutralizing serum antibody titers was observed. Conclusions The developed virus neutralization assay is suitable for high-throughput testing and can be used for both animal studies and (large scale vaccine clinical trials.

  20. A Color-Reaction-Based Biochip Detection Assay for RIF and INH Resistance of Clinical Mycobacterial Specimens.

    Science.gov (United States)

    Xue, Wenfei; Peng, Jingfu; Yu, Xiaoli; Zhang, Shulin; Zhou, Boping; Jiang, Danqing; Chen, Jianbo; Ding, Bingbing; Zhu, Bin; Li, Yao

    2016-01-01

    The widespread occurrence of drug-resistant Mycobacterium tuberculosis places importance on the detection of TB (tuberculosis) drug susceptibility. Conventional drug susceptibility testing (DST) is a lengthy process. We developed a rapid enzymatic color-reaction-based biochip assay. The process included asymmetric multiplex PCR/templex PCR, biochip hybridization, and an enzymatic color reaction, with specific software for data operating. Templex PCR (tem- PCR) was applied to avoid interference between different primers in conventional multiplex- PCR. We applied this assay to 276 clinical specimens (including 27 sputum, 4 alveolar lavage fluid, 2 pleural effusion, and 243 culture isolate specimens; 40 of the 276 were non-tuberculosis mycobacteria specimens and 236 were M. tuberculosis specimens). The testing process took 4.5 h. A sensitivity of 50 copies per PCR was achieved, while the sensitivity was 500 copies per PCR when tem-PCR was used. Allele sequences could be detected in mixed samples at a proportion of 10%. Detection results showed a concordance rate of 97.46% (230/236) in rifampicin resistance detection (sensitivity 95.40%, specificity 98.66%) and 96.19% (227/236) in isoniazid (sensitivity 93.59%, specificity 97.47%) detection with those of DST assay. Concordance rates of testing results for sputum, alveolar lavage fluid, and pleural effusion specimens were 100%. The assay provides a potential choice for TB diagnosis and treatment.

  1. Microtiterplate phosphate assay based on luminescence quenching of a terbium complex amenable to decay time detection

    International Nuclear Information System (INIS)

    We describe a terbium-ligand complex (TbL) for a microtiterplate assay for phosphate (P) in the 0.3-100 μmol L-1 range based on luminescence quenching. As the pH optimum is at neutral pH (7.4) the probe is quenched by both, primary (H2PO4-) and secondary phosphate (HPO42-). The LOD is 110 nmol L-1. A Stern-Volmer study revealed that quenching is mostly static. Due to the ms-decay time of TbL, the first luminescence lifetime assay for phosphate could also be developed. The lifetime-based calibration plot is linear between 0.5 and 5 μmol L-1 of P. The effect of various surfactants on assay performance and a study on interferents are presented. The probe was successfully applied to determination of P in commercial plant fertilizers and validated against the molybdenum blue test. The probe is the most sensitive lanthanide-based probe for phosphate.

  2. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine;

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely......-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal...... on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S...

  3. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Directory of Open Access Journals (Sweden)

    Daniela Höfler

    Full Text Available The Federation of European Laboratory Animal Science Association (FELASA recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  4. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Science.gov (United States)

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  5. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface.

    Science.gov (United States)

    Liang, Wenbin; Fan, Chenchen; Zhuo, Ying; Zheng, Yingning; Xiong, Chengyi; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    Electrochemiluminescent (ECL) assay with high sensitivity has been considered as one of the potential strategies to simultaneously detect multiple biomarker proteins. However, it was essential, but full of challenges, to overcome the limitation caused by cross reactions among different ECL indicators. Herein, the multiparameter analysis of ECL-potential signals demonstrated by multivariate linear algebraic equations was first employed in the simultaneous ECL assay to realize multiple detection of biomarker proteins on a single interface. Additionally, owing to the exponential amplification of self-synthesized nucleotide dendrimer by hybridization chain reaction (HCR) and rolling circle amplification (RCA), the developed simultaneous ECL assay showed improved sensitivity and satisfactory accuracy for the detection of N-terminal of the prohormone brain natriuretic peptide (BNPT) and cardiac troponin I (cTnI). Furthermore, a self-designed magnetic beads-based flow system was also employed to improve the feasibility and analysis speed of the simultaneous ECL assay. Importantly, the proposed strategy enabled simultaneous detection of multiple biomarker proteins simply, which could be readily expanded for the multiplexed estimation of various kinds of proteins and nucleotide sequence also, revealing a new avenue for early disease diagnosis with higher efficiency. PMID:27064937

  6. Development of molecular approach based on PCR assay for detection of histamine producing bacteria.

    Science.gov (United States)

    Wongsariya, Karn; Bunyapraphatsara, Nuntavan; Yasawong, Montri; Chomnawang, Mullika Traidej

    2016-01-01

    Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products.

  7. A Homogenous Fluorescence Quenching Based Assay for Specific and Sensitive Detection of Influenza Virus A Hemagglutinin Antigen

    Directory of Open Access Journals (Sweden)

    Longyan Chen

    2015-04-01

    Full Text Available Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs. The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs, and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs. When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human and H5 (avian. The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures.

  8. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  9. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen

    Directory of Open Access Journals (Sweden)

    Dong Huahuang

    2012-08-01

    Full Text Available Abstract Background HIV-1 p24 antigen is a major viral component of human immunodeficiency virus type 1 (HIV-1 which can be used to identify persons in the early stage of infection and transmission of HIV-1 from infected mothers to infants. The detection of p24 is usually accomplished by using an enzyme-linked immunosorbent assay (ELISA with low detection sensitivity. Here we report the use of two bio-barcode amplification (BCA assays combined with polymerase chain reaction (PCR and gel electrophoresis to quantify HIV-1 p24 antigen. Method A pair of anti-p24 monoclonal antibodies (mAbs were used in BCA assays to capture HIV-1 p24 antigen in a sandwich format and allowed for the quantitative measurement of captured p24 using PCR and gel electrophoresis. The first 1 G12 mAb was coated on microplate wells or magnetic microparticles (MMPs to capture free p24 antigens. Captured p24 in turn captured 1D4 mAb coated gold nanoparticle probes (GNPs containing double-stranded DNA oligonucleotides. One strand of the oligonucleotides was covalently immobilized whereas the unbound complimentary bio-barcode DNA strand could be released upon heating. The released bio-barcode DNA was amplified by PCR, electrophoresed in agarose gel and quantified. Results The in-house ELISA assay was found to quantify p24 antigen with a limit of detection (LOD of 1,000 pg/ml and a linear range between 3,000 and 100,000 pg/ml. In contrast, the BCA-based microplate method yielded an LOD of 1 pg/ml and a linear detection range from 1 to 10,000 pg/ml. The BCA-based MMP method yielded an LOD of 0.1 pg/ml and a linear detection range from 0.1 to 1,000 pg/ml. Conclusions When combined with PCR and simple gel electrophoresis, BCA-based microplate and MMPs assays can be used to quantify HIV-1 p24 antigen. These methods are 3–4 orders of magnitude more sensitive than our in-house ELISA-based assay and may provide a useful approach to detect p24 in patients newly infected

  10. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  11. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-01

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  12. Development of a Highly Sensitive Cell-Based Assay for Detecting Botulinum Neurotoxin Type A through Neural Culture Media Optimization.

    Science.gov (United States)

    Hong, Won S; Pezzi, Hannah M; Schuster, Andrea R; Berry, Scott M; Sung, Kyung E; Beebe, David J

    2016-01-01

    Botulinum neurotoxin (BoNT) is the most lethal naturally produced neurotoxin. Due to the extreme toxicity, BoNTs are implicated in bioterrorism, while the specific mechanism of action and long-lasting effect was found to be medically applicable in treating various neurological disorders. Therefore, for both public and patient safety, a highly sensitive, physiologic, and specific assay is needed. In this paper, we show a method for achieving a highly sensitive cell-based assay for BoNT/A detection using the motor neuron-like continuous cell line NG108-15. To achieve high sensitivity, we performed a media optimization study evaluating three commercially available neural supplements in combination with retinoic acid, purmorphamine, transforming growth factor β1 (TGFβ1), and ganglioside GT1b. We found nonlinear combinatorial effects on BoNT/A detection sensitivity, achieving an EC50 of 7.4 U ± 1.5 SD (or ~7.9 pM). The achieved detection sensitivity is comparable to that of assays that used primary and stem cell-derived neurons as well as the mouse lethality assay.

  13. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Javed, Muhammad A; Poshtiban, Somayyeh; Arutyunov, Denis; Evoy, Stephane; Szymanski, Christine M

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  14. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Directory of Open Access Journals (Sweden)

    Muhammad A Javed

    Full Text Available Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs, which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40 and 90% for C. coli (n = 19. CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP. Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  15. A qPCR-based Multiplex Assay for Detection of Wuchereria bancrofti, Plasmodium falciparum, and Plasmodium vivax DNA

    OpenAIRE

    Rao, Ramakrishna U.; Huang, Yuefang; Bockarie, Moses J.; Susapu, Melinda; LANEY, SANDRA J.; Weil, Gary J

    2008-01-01

    The purpose of this study was to develop multiplex qPCR assays for simultaneous detection of Wuchereria bancrofti (Wb), Plasmodium falciparum (Pf) and P. vivax (Pv) in mosquitoes. We optimized the assays with purified DNA samples and then used these assays to test DNA samples isolated from Anopheles punctulatus mosquitoes collected in villages in Papua New Guinea where these infections are co-endemic. Singleplex assays detected Wb, Pf, and Pv DNA in 32%, 19% and 15% of the mosquito pools, res...

  16. Electrochemical Enzyme-Linked Immunosorbent Assay (ELISA) for α-Fetoprotein Based on Glucose Detection with Multienzyme-Nanoparticle Amplification

    OpenAIRE

    Ning Gan; Bo Li; Li Lin; Bo Situ; Han-Kun Zhou; Xiao-Mao Yin; Xiao-Hui Yan; Qin-Lan Liu; Lei Zheng

    2013-01-01

    Since glucose biosensors are one of the most popular and widely used point-of-care testing devices, a novel electrochemical enzyme-linked immunosorbent assay (ELISA) for protein biomarkers has been developed based on a glucose detection strategy. In this study, α-fetoprotein (AFP) was used as the target protein. An electrochemical ELISA system was constructed using anti-AFP antibodies immobilized on microwell plates as the capture antibody (Ab1) and multi-label bioconjugates as signal tracer....

  17. Comparative Analysis of Cultural Isolation and Pcr Based Assay for Detection of Campylobacter Jejuni In Food and Faecal Samples

    OpenAIRE

    Singh, Harkanwaldeep; Rathore, R. S.; Singh, Satparkash; Cheema, Pawanjit Singh

    2011-01-01

    In the present study, the efficacy of polymerase chain reaction (PCR) based on mapA gene of C. jejuni was tested for detection of Campylobacter jejuni in naturally infected as well as spiked faecal and food samples of human and animal origin. Simultaneously, all the samples were subjected to the cultural isolation of organism and biochemical characterization. The positive samples resulted in the amplification of a DNA fragment of size ~589 bp in PCR assay whereas the absence of such amplicon ...

  18. Comparative analysis of cultural isolation and PCR based assay for detection of Campylobacter jejuni in food and faecal samples

    OpenAIRE

    Harkanwaldeep Singh; Rathore, R. S.; Satparkash Singh; Pawanjit Singh Cheema

    2011-01-01

    In the present study, the efficacy of polymerase chain reaction (PCR) based on mapA gene of C. jejuni was tested for detection of Campylobacter jejuni in naturally infected as well as spiked faecal and food samples of human and animal origin. Simultaneously, all the samples were subjected to the cultural isolation of organism and biochemical characterization. The positive samples resulted in the amplification of a DNA fragment of size ~589 bp in PCR assay whereas the absence of such amplicon ...

  19. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  20. Validation study of a receptor-based lateral flow assay for detection of beta-lactam antibiotics in milk.

    Science.gov (United States)

    Abouzied, Mohamed; Sarzynski, Michael; Walsh, Aaron; Wood, Heather; Mozola, Mark

    2009-01-01

    A validation study designed to meet the requirements of the AOAC Research Institute and the U.S. Food and Drug Administration (FDA), Center for Veterinary Medicine, was conducted for a receptor-based, immunochromatographic method (BetaStar US) for detection of beta-lactam antibiotic residues in raw, commingled bovine milk. The assay was found to detect amoxicillin, ampicillin, cephapirin, cloxacillin, and penicillin G at levels below the FDA tolerance/safe levels but above the maximum sensitivity thresholds established by the National Conference on Interstate Milk Shipments. Results of the Part I (internal) and Part II (independent laboratory) dose-response studies using spiked samples were in very close agreement for all five drugs tested, with differences between the Part I and Part II 90/95% sensitivity values ranging from 0 to 1 ppb. The test was able to detect all five drugs at the approximate 90/95% sensitivity levels when present as incurred residues in milk collected from cows that had been treated with the specific drug. A sixth drug, ceftiofur, was found to be undetectable at levels of 1000 control milk samples. The assay was found to be applicable to the testing of frozen raw milk samples. Results of ruggedness experiments established the operating parameter tolerances for the BetaStar US assay. Results of cross-reactivity testing established that the assay detects certain other beta-lactam drugs (dicloxacillin and ticarcillin), but it does not cross-react with any of 30 drugs belonging to other classes. Abnormally high bacterial or somatic cell counts in raw milk produced no interference with the ability of the test to detect beta-lactams at tolerance/safe levels. PMID:19610391

  1. Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay

    Science.gov (United States)

    Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Zhang, Pingping; Qiu, Jingfu; Yang, Ruifu; Zhou, Lei

    2016-01-01

    Abrin is a natural plant toxin found in the seeds of Abrus precatorius. It may be used for food poisoning or bioterrorism, seriously endangering public health. In this study, a reliable method for the rapid detection of abrin in foods was developed, based on an up-converting phosphor technology-based lateral flow assay (abrin-UPT-LFA). Nine high-affinity monoclonal antibodies (mAbs) against abrin were prepared, and the optimum mAbs (mAb-6F4 and mAb-10E11) were selected for use in the assay in double-antibody-sandwich mode. The assay was confirmed to be specific for abrin, with a detection sensitivity of 0.1 ng mL−1 for standard abrin solutions. Good linearity was observed for abrin quantitation from 0.1 to 1000 ng mL−1 (r = 0.9983). During the analysis of various abrin-spiked food samples, the assay showed strong sample tolerance and a satisfactory limit of detection for abrin (0.5–10 ng g−1 for solid and powdered samples; 0.30–0.43 ng mL−1 for liquid samples). The analysis of suspected food samples, from sample treatment to result feed-back, could be completed by non-professionals within 20 min. Therefore, the abrin-UPT-LFA is a rapid, sensitive, and reliable method for the on-site detection of abrin in foods. PMID:27703269

  2. Rapid and selective detection of experimental snake envenomation - Use of gold nanoparticle based lateral flow assay.

    Science.gov (United States)

    Pawade, Balasaheb S; Salvi, Nitin C; Shaikh, Innus K; Waghmare, Arun B; Jadhav, Nitin D; Wagh, Vishal B; Pawade, Abhilasha S; Waykar, Indrasen G; Potnis-Lele, Mugdha

    2016-09-01

    In this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view. The test is based on the principle of the paper immunochromatography assay for detection of two snake venom species using polyvalent antisnake venom antibodies (ASVA) raised in equines and species-specific antibodies (SSAbs) against venoms raised in rabbits for conjugation and impregnation respectively. The developed, snake envenomation detection immunoassay (SEDIA) was rapid, selective, and sensitive to detect venom concentrations up to 0.1 ng/ml. The functionality of SEDIA strips was confirmed by experimental envenomation in mice and the results obtained were specific for the corresponding venom. The SEDIA has a potential to be a field diagnostic test to detect snake envenomation and assist in saving lives of snakebite victims. PMID:27377230

  3. A Luminex-based single DNA fragment amplification assay as a practical tool for detecting and serotyping dengue virus.

    Science.gov (United States)

    Cabral-Castro, Mauro Jorge; Peralta, Regina Helena Saramago; Cavalcanti, Marta Guimarães; Puccioni-Sohler, Marzia; Carvalho, Valéria Lima; da Costa Vasconcelos, Pedro Fernando; Peralta, José Mauro

    2016-10-01

    Dengue is a mosquito-borne viral infection that can evolve from subclinical to severe forms of disease. Early recognition during initial primary and secondary infections correlates with a reduced case-fatality rate in susceptible groups. The aim of this study was to standardize a DNA hybridization assay based on the Luminex technology for detecting and serotyping dengue virus (DENV). Reference DENVs representing the four different serotypes were used as controls to standardize the test. For validation, 16 DENV isolates obtained from a reference laboratory were analyzed in a double-blind manner to validate the test. Sixty blood samples from patients suspected of having dengue fever were used to evaluate the methodology after the validation step, and the results were compared with the reference semi-nested RT-PCR. Additionally, five human samples of each Zika and Chikungunya confirmed patients were used for specificity analysis. The Luminex-based assay correctly identified all 16 DENV isolates. In the evaluation step, the results of the RT-PCR/Luminex assay showed a concordance of 86.7% with those of the semi-nested RT-PCR. None of other virus infection samples was amplified. This is the first description of a hybridization assay that can discriminate the four DENV serotypes using probes against a single DENV sequence. The results indicated that the RT-PCR/Luminex DENV assay designed and evaluated in this study is a valuable additional tool for the early and rapid detection and serotyping of DENV, which could, in the future, be applied to new targets such as the Zika and Chikungunya viruses. PMID:27393681

  4. Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Castro-Sesquen, Yagahira E; Kim, Chloe; Gilman, Robert H; Sullivan, David J; Searson, Peter C

    2016-08-01

    A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western blot analysis demonstrated that magnetic beads allow the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and quantum dots conjugated to anti-HRP2 antibodies allows the detection of low concentrations of HRP2 protein (0.5 ng/mL), and quantification in the range of 33-2,000 ng/mL corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a noninvasive point-of-care test for classification of severe malaria. PMID:27185769

  5. Detection of Puccinia kuehnii Causing Sugarcane Orange Rust with a Loop-Mediated Isothermal Amplification-Based Assay.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Grisham, Michael P

    2016-03-01

    Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection. PMID:26837389

  6. Cy5 labeled single-stranded DNA-polydopamine nanoparticle conjugate-based FRET assay for reactive oxygen species detection

    Directory of Open Access Journals (Sweden)

    Lina Ma

    2015-03-01

    Full Text Available This work reports on a simple and feasible fluorescence resonance energy transfer (FRET assay for detecting reactive oxygen species (ROS both in solution and living cell using polydopamine nanoparticle (PDA NP as energy acceptor and Cy5 labeled single-stranded DNA (Cy5-ssDNA as energy donor. The Cy5-ssDNA and PDA NPs form self-assembled conjugates (Cy5-ssDNA-PDA NP conjugates via π-stacking interactions. In the presence of ROS, the PDA NP adsorbed Cy5-ssDNAs can be effectively cleaved, resulting in the release of Cy5 molecules into solution and recovery of fluorescence emission of Cy5. In order to obtain ROS solution, the glucose oxidase-catalyzed oxidation reaction of glucose with O2 is employed to generate hydrogen peroxide for Fenton-like reaction. The formation of ROS in Fenton-like reaction can be detected as low as glucose oxidase-catalyzed oxidation of 100 pM glucose by the Cy5-ssDNA-PDA NP conjugate-based FRET assay. The recovery ratio of Cy5 fluorescence intensity is increased linearly with logarithm of glucose concentration from 100 pM to 1 μM, demonstrating that the FRET assay has wide dynamic range. In particular, intracellular ROS has been successfully detected in chemical stimulated HepG-2 cells by the Cy5-ssDNA-PDA NP conjugate-based FRET assay with a fluorescence microscopy, indicating that this approach has great potential to monitor ROS in living cells.

  7. Electrochemical enzyme-linked immunosorbent assay (ELISA) for α-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification.

    Science.gov (United States)

    Liu, Qin-Lan; Yan, Xiao-Hui; Yin, Xiao-Mao; Situ, Bo; Zhou, Han-Kun; Lin, Li; Li, Bo; Gan, Ning; Zheng, Lei

    2013-01-01

    Since glucose biosensors are one of the most popular and widely used point-of-care testing devices, a novel electrochemical enzyme-linked immunosorbent assay (ELISA) for protein biomarkers has been developed based on a glucose detection strategy. In this study, α-fetoprotein (AFP) was used as the target protein. An electrochemical ELISA system was constructed using anti-AFP antibodies immobilized on microwell plates as the capture antibody (Ab1) and multi-label bioconjugates as signal tracer. The bioconjugates were synthesized by attaching glucoamylase and the secondary anti-AFP antibodies (Ab2) to gold nanoparticles (AuNPs). After formation of the sandwich complex, the Ab2-glucoamylase-AuNPs conjugates converted starch into glucose in the presence of AFP. The concentration of AFP can be calculated based on the linear relation between AFP and glucose, the concentration of which can be detected by the glucose biosensor. When the AFP concentration ranged from 0.05 to 100 ng/mL, a linear calibration plot (i (µA) = 13.62033 - 2.86252 logCAFP (ng/mL), r = 0.99886) with a detection limit of 0.02 ng/mL was obtained under optimal conditions. The electrochemical ELISA developed in this work shows acceptable stability and reproducibility, and the assay for AFP spiked in human serum also shows good recovery (97.0%-104%). This new method could be applied for detecting any protein biomarker with the corresponding antibodies. PMID:24129276

  8. Multiple detection of single nucleotide polymorphism by microarray-based resonance light scattering assay with enlarged gold nanoparticle probes.

    Science.gov (United States)

    Gao, Jiaxue; Ma, Lan; Lei, Zhen; Wang, Zhenxin

    2016-03-01

    The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a critical process for the development of personalized therapy. In this work, a DNA microarray-based resonance light scattering (RLS) assay has been developed for multiplexed detection of breast cancer related SNPs with high sensitivity and selectivity. After hybridization of the desired target single-stranded DNAs (ssDNAs) with the ssDNA probes on a microarray, the polyvalent ssDNA modified 13 nm gold nanoparticles (GNPs) are employed to label the hybridization reaction through the formation of a three-stranded DNA system. The H2O2-mediated enlargement of GNPs is then used to enhance the RLS signal. The microarray-based RLS assay provides a detection limit of 10 pM (S/N = 3) for the target ssDNA and determines an allele frequency as low as 1.0% in the target ssDNA cocktail. Combined with an asymmetric PCR technique, the proposed assay shows good accuracy and sensitivity in profiling 4 SNPs related to breast cancer of three selected cell lines.

  9. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    Science.gov (United States)

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings. PMID:22459802

  10. Improved detection of Tritrichomonas foetus in bovine diagnostic specimens using a novel probe-based real time PCR assay.

    Science.gov (United States)

    McMillen, Lyle; Lew, Ala E

    2006-11-01

    A Tritrichomonas foetus-specific 5' Taq nuclease assay using a 3' minor groove binder-DNA probe (TaqMan MGB) targeting conserved regions of the internal transcribed spacer-1 (ITS-1) was developed and compared to established diagnostic procedures. Specificity of the assay was evaluated using bovine venereal microflora and a range of related trichomonad species. Assay sensitivity was evaluated with log(10) dilutions of known numbers of cells, and compared to that for microscopy following culture (InPouch TF test kit) and the conventional TFR3-TFR4 PCR assay. The 5' Taq nuclease assay detected a single cell per assay from smegma or mucus which was 2500-fold or 250-fold more sensitive than microscopy following selective culture from smegma or mucus respectively, and 500-fold more sensitive than culture followed by conventional PCR assay. The sensitivity of the conventional PCR assay was comparable to the 5' Taq nuclease assay when testing purified DNA extracted from clinical specimens, whereas the 5' Taq nuclease assay sensitivity improved using crude cell lysates, which were not suitable as template for the conventional PCR assay. Urine was evaluated as a diagnostic specimen providing improved and equivalent levels of T. foetus detection in spiked urine by both microscopy following culture and direct 5' Taq nuclease detection, respectively, compared with smegma and mucus, however inconclusive results were obtained with urine samples from the field study. Diagnostic specimens (n=159) were collected from herds with culture positive animals and of the 14 animals positive by 5' Taq nuclease assay, 3 were confirmed by selective culture/microscopy detection (Fisher's exact test P<0.001). The 5' Taq nuclease assay described here demonstrated superior sensitivity to traditional culture/microscopy and offers advantages over the application of conventional PCR for the detection of T. foetus in clinical samples. PMID:16860481

  11. Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II).

    Science.gov (United States)

    You, Jun; Hu, Haoze; Zhou, Jinping; Zhang, Lina; Zhang, Yaping; Kondo, Tetsuo

    2013-04-23

    We provide a highly sensitive and selective assay to detect cysteine (Cys) and Hg(2+) in aqueous solutions using Au nanoparticles (NPs) stabilized by carboxylethyl quaternized cellulose (CEQC). This method is based on the thiophilicity of Hg(2+) and Au NPs as well as the unique optical properties of CEQC-stabilized Au NPs. CEQC chains are good stabilizing agents for Au NPs even in a high-salt solution. The addition of Cys results in the aggregation of CEQC-stabilized Au NPs, which induces the visible color change and obvious redshift in UV-visible absorption spectra. On the other hand, Hg(2+) is more apt to interact with thiols than Au NPs; thus, it can remove the Cys and trigger Au NP aggregate redispersion again. By taking advantage of this mechanism, a novel off-on colorimetric sensor has been established for Cys and Hg(2+) detection. This new assay could selectively detect Cys and Hg(2+) with the detection limits as low as 20 and 40 nM in aqueous solutions, respectively.

  12. Minimizing antibody cross-reactivity in multiplex detection of biomarkers in paper-based point-of-care assays

    Science.gov (United States)

    Dias, J. T.; Lama, L.; Gantelius, J.; Andersson-Svahn, H.

    2016-04-01

    Highly multiplexed immunoassays could allow convenient screening of hundreds or thousands of protein biomarkers simultaneously in a clinical sample such as serum or plasma, potentially allowing improved diagnostic accuracy and clinical management of many conditions such as autoimmune disorders, infections, and several cancers. Currently, antibody microarray-based tests are limited in part due to cross reactivity from detection antibody reagents. Here we present a strategy that reduces the cross-reactivity between nanoparticle-bound reporter antibodies through the application of ultrasound energy. By this concept, it was possible to achieve a sensitivity 103-fold (5 pg mL-1) lower than when no ultrasound was applied (50 ng mL-1) for the simultaneous detection of three different antigens. The detection limits and variability achieved with this technique rival those obtained with other types of multiplex sandwich assays.Highly multiplexed immunoassays could allow convenient screening of hundreds or thousands of protein biomarkers simultaneously in a clinical sample such as serum or plasma, potentially allowing improved diagnostic accuracy and clinical management of many conditions such as autoimmune disorders, infections, and several cancers. Currently, antibody microarray-based tests are limited in part due to cross reactivity from detection antibody reagents. Here we present a strategy that reduces the cross-reactivity between nanoparticle-bound reporter antibodies through the application of ultrasound energy. By this concept, it was possible to achieve a sensitivity 103-fold (5 pg mL-1) lower than when no ultrasound was applied (50 ng mL-1) for the simultaneous detection of three different antigens. The detection limits and variability achieved with this technique rival those obtained with other types of multiplex sandwich assays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09207h

  13. HLA-B27 detection – comparison of genetic sequence-based method and flow cytometry assay

    OpenAIRE

    Skalska, Urszula; Kozakiewicz, Anna; Maśliński, Włodzimierz; Jurkowska, Monika

    2015-01-01

    Objectives The presence of human leukocyte antigen B27 (HLA-B27) is strongly associated with ankylosing spondylitis. HLA-B27 testing is routinely applied in the diagnosis of this disease. The aim of the present study was to compare two methods of HLA-B27 detection – a genetic sequence-based method and a flow cytometry assay. Material and methods Peripheral blood was obtained from 300 individuals with suspected spondyloarthropathy. Expression of HLA-B27 on the T cell surface was analysed by fl...

  14. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine

    Science.gov (United States)

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-01

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS

  15. An electrochemiluminescent assay for high sensitive detection of mercury (II) based on isothermal rolling circular amplification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiaoming; Su Qiang [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Bst DNA polymerase shows specific function on the T-Hg{sup 2+}-T biomimetic structure. Black-Right-Pointing-Pointer T-Hg{sup 2+}-T can be formed in the presence of Hg{sup 2+}, thus induces the RCA reaction. Black-Right-Pointing-Pointer Sub-nanomolar sensitivity and excellent selectivity were achieved for Hg{sup 2+} detection. - Abstract: In this study, we firstly demonstrated that Bst DNA polymerase shows specific recognition and function on the T-Hg{sup 2+}-T biomimetic structure. Based on this, a novel available electrochemiluminescence (ECL) sensor for Hg{sup 2+} has been developed. In this strategy, magnet beads tagged primer was designed to complementary to the region of the circular padlock probe but with two T-T mismatches at the 3 Prime end. The mismatched primers cannot be extended by Bst DNA polymerase in the absence of Hg{sup 2+}. Stable T-Hg{sup 2+}-T can be formed in the presence of Hg{sup 2+}, thus induces the elongation and amplification reaction by DNA polymerase with a rolling circular amplification (RCA) mechanism. Subsequently, the resulted RCA products are hybridized with the tris (bipyridine) ruthenium (TBR)-tagged probes and detected by ECL platform. Current method shows a sub-nanomolar sensitivity and excellent selectivity over a spectrum of interference metal ions.

  16. MICROSPHERE-BASED FLOW CYTOMETRY PROTEASE ASSAYS FOR USE IN PROTEASE ACTIVITY DETECTION AND HIGH-THROUGHPUT SCREENING

    OpenAIRE

    Saunders, Matthew J.; Edwards, Bruce S.; Zhu, Jingshu; Sklar, Larry A.; Graves, Steven W.

    2010-01-01

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein specific protease of interest and results can be measured in both real time and as end point fluorescence assays on a flow cytometer. End point assays...

  17. Colorimetric assay for protein detection based on "nano-pumpkin" induced aggregation of peptide-decorated gold nanoparticles.

    Science.gov (United States)

    Wei, Luming; Wang, Xiaoying; Li, Chao; Li, Xiaoxi; Yin, Yongmei; Li, Genxi

    2015-09-15

    Small peptide can be used as an effective biological recognition element and provide an alternative tool for protein detection. However, the development of peptide-based detecting strategy still remains elusive due to the difficulty of signal transduction. Herein, we report a peptide-based colorimetric strategy for the detection of disease biomarker by using vascular endothelial growth factor receptor 1 (Flt-1) as an example. In this strategy, N-terminal aromatic residue-containing peptide modified gold nanoparticles (GNPs) can form bulky aggregate by the introduction of cucurbit[8]uril (CB[8]) that can selectively accommodate two N-terminal aromatic residue of peptides simultaneously regardless of their sequences. However, in the presence of Flt-1, the peptide can specifically bind to the protein molecule and the N-terminal aromatic residue will be occupied, resulting in little aggregation of GNPs. By taking advantage of the highly affinitive peptide and efficiency cross-linking effect of CB[8] to GNPs, colorimetric assay for protein detection can be achieved with a detection limit of 0.2 nM, which is comparable with traditional methods. The feasibility of our method has also been demonstrated in spiked serum sample, indicating potential application in the future. PMID:25932793

  18. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay.

    Science.gov (United States)

    Tseng, Yi-Ting; Wang, Chih-Hung; Chang, Chih-Peng; Lee, Gwo-Bin

    2016-08-15

    The rapid spread of influenza-associated H1N1 viruses has caused serious concern in recent years. Therefore, there is an urgent need for the development of automatic, point-of-care devices for rapid diagnosis of the influenza virus. Conventional approaches suffer from several critical issues; notably, they are time-consuming, labor-intensive, and are characterized by relatively low sensitivity. In this work, we present a new approach for fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay that is automatically performed on an integrated microfluidic system. The entire detection process was shortened to 30min using this chip-based system which is much faster than the conventional viral culture method. The limit of detection was significantly improved to 0.032 hemagglutination unit due to the high affinity and high specificity of the H1N1-specific aptamers. The results showed that the two-aptamer microfluidic system had about 10(3) times higher sensitivity than the conventional serological diagnosis. It was demonstrated that the developed microfluidic system may play as a powerful tool in the detection of the H1N1 virus. PMID:27054814

  19. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay.

    Science.gov (United States)

    Tseng, Yi-Ting; Wang, Chih-Hung; Chang, Chih-Peng; Lee, Gwo-Bin

    2016-08-15

    The rapid spread of influenza-associated H1N1 viruses has caused serious concern in recent years. Therefore, there is an urgent need for the development of automatic, point-of-care devices for rapid diagnosis of the influenza virus. Conventional approaches suffer from several critical issues; notably, they are time-consuming, labor-intensive, and are characterized by relatively low sensitivity. In this work, we present a new approach for fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay that is automatically performed on an integrated microfluidic system. The entire detection process was shortened to 30min using this chip-based system which is much faster than the conventional viral culture method. The limit of detection was significantly improved to 0.032 hemagglutination unit due to the high affinity and high specificity of the H1N1-specific aptamers. The results showed that the two-aptamer microfluidic system had about 10(3) times higher sensitivity than the conventional serological diagnosis. It was demonstrated that the developed microfluidic system may play as a powerful tool in the detection of the H1N1 virus.

  20. Electrochemical Enzyme-Linked Immunosorbent Assay (ELISA for α-Fetoprotein Based on Glucose Detection with Multienzyme-Nanoparticle Amplification

    Directory of Open Access Journals (Sweden)

    Ning Gan

    2013-10-01

    Full Text Available Since glucose biosensors are one of the most popular and widely used point-of-care testing devices, a novel electrochemical enzyme-linked immunosorbent assay (ELISA for protein biomarkers has been developed based on a glucose detection strategy. In this study, α-fetoprotein (AFP was used as the target protein. An electrochemical ELISA system was constructed using anti-AFP antibodies immobilized on microwell plates as the capture antibody (Ab1 and multi-label bioconjugates as signal tracer. The bioconjugates were synthesized by attaching glucoamylase and the secondary anti-AFP antibodies (Ab2 to gold nanoparticles (AuNPs. After formation of the sandwich complex, the Ab2-glucoamylase-AuNPs conjugates converted starch into glucose in the presence of AFP. The concentration of AFP can be calculated based on the linear relation between AFP and glucose, the concentration of which can be detected by the glucose biosensor. When the AFP concentration ranged from 0.05 to 100 ng/mL, a linear calibration plot (i (µA = 13.62033 − 2.86252 logCAFP (ng/mL, r = 0.99886 with a detection limit of 0.02 ng/mL was obtained under optimal conditions. The electrochemical ELISA developed in this work shows acceptable stability and reproducibility, and the assay for AFP spiked in human serum also shows good recovery (97.0%–104%. This new method could be applied for detecting any protein biomarker with the corresponding antibodies.

  1. Comparative analysis of cultural isolation and PCR based assay for detection of Campylobacter jejuni in food and faecal samples

    Directory of Open Access Journals (Sweden)

    Harkanwaldeep Singh

    2011-03-01

    Full Text Available In the present study, the efficacy of polymerase chain reaction (PCR based on mapA gene of C. jejuni was tested for detection of Campylobacter jejuni in naturally infected as well as spiked faecal and food samples of human and animal origin. Simultaneously, all the samples were subjected to the cultural isolation of organism and biochemical characterization. The positive samples resulted in the amplification of a DNA fragment of size ~589 bp in PCR assay whereas the absence of such amplicon in DNA extracted from E. coli, Listeria, Salmonella and Staphylococcus confirmed the specificity of the primers. Of randomly collected 143 faecal samples comprising human diarrheic stools (43, cattle diarrheic faeces (48 and poultry faecal swabs (52 only 4, 3 and 8, respectively, could be detected by isolation whereas 6, 3 and 10, respectively, were found positive by PCR. However, among food samples viz. beef (30, milk (35, cheese (30, only one beef sample was detected both by culture as well as PCR. Additionally, PCR was found to be more sensitive for C. jejuni detection in spiked faecal and food samples (96.1% each as relative to culture isolation which could detect the organism in 86.7% and 80% samples, respectively. The results depicted the superior efficacy of PCR for rapid screening of samples owing to its high sensitivity, specificity and automation potential.

  2. Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission.

    Science.gov (United States)

    Pei, Haimeng; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-11-15

    We describe a highly sensitive nanoparticle-based fluorescence resonance energy transfer (FRET) probe developed without using molecular fluorophores as donors and acceptors. The success of this work relies on the strategy that DNA scission was designed to occur to the probe when target presented, which enabled the fluorescence signal "turn-on" of graphene quantum dots (GQDs) and thus quantitative analysis. In particular, amino-modified SiO2 NPs were initially coated by GQDs to form highly emitting SiO2/GQDs, followed by conjunction with DNA functionalized gold nanoparticles (Au NPs-DNA) to form SiO2/GQDs-DNA-Au NPs composite. Owing to the FRET interactions between the GQDs and Au NPs, the fluorescence of GQDs was effectively quenched by Au NPs. When bleomycin (BLM), a model analyte, was mixed with the probe, the fluorescence signal of GQDs would be restored due to the removal of Au NPs from the SiO2/GQDs surface by DNA scission treatment with BLM in the presence of Fe (II). The current FRET probe shows a good linear relationship between the fluorescence intensity and the concentration of BLM in the range from 0.5nM to 1μM with a detection limit of 0.2nM. The probe also shows satisfactory results for the analysis of clinical serum samples. This method provides versatility to the application of GQDs in FRET biosensing and could be potentially extended to other similar systems by replacing the linker between the GQDs and Au NPs. PMID:27155119

  3. Toward an international standard for PCR-based detection of Escherichia coli O157 - Part 1. Assay development and multi-center validation

    DEFF Research Database (Denmark)

    Abdulmawjood, A.; Bulte, M.; Cook, N.;

    2003-01-01

    As part of a major European research project, a diagnostic PCR assay, including an internal amplification control, was developed and validated in a collaborative trial for the detection of Escherichia coli O157. The assay is based on amplification of sequences of the rJbE O157 gene. The collabora...

  4. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J;

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward mu...

  5. Global DNA Methylation Detection System Using MBD-Fused Luciferase Based on Bioluminescence Resonance Energy Transfer Assay.

    Science.gov (United States)

    Yoshida, Wataru; Baba, Yuji; Karube, Isao

    2016-09-20

    DNA methylation plays an important role in the regulation of gene expression. In normal cells, transposable elements that constitute approximately 45% of the human genome are highly methylated to silence their expression. In cancer cells, transposable elements are hypomethylated; therefore, global DNA methylation level is considered as a biomarker for cancer diagnostics. In this study, a homogeneous assay for measuring global DNA methylation level based on bioluminescence resonance energy transfer (BRET) was developed using methyl-CpG binding domain (MBD)-fused luciferase. In this assay, the MBD-luciferase recognizes methylated CpG, thus, BRET between the luciferase and fluorescent DNA intercalating dye is detected. We demonstrated that the BRET signal depended on the DNA methylation level of the target DNA. Moreover, the BRET signal was correlated with the LINE1 DNA methylation level on human genomic DNA, as determined by the bisulfite method. These results indicate that the global DNA methylation level of human genomic DNA could be detected simply by measuring the BRET signal. PMID:27541340

  6. Molecular heterogeneity for bovine alpha-mannosidosis: PCR based assays for detection of breed-specific mutations.

    Science.gov (United States)

    Berg, T; Healy, P J; Tollersrud, O K; Nilssen, O

    1997-01-01

    DNA tests, based on the polymerase chain reaction (PCR), were developed for the detection of two breed-specific mutations responsible for the autosomal recessive disorder bovine alpha-mannosidosis. The tests involve separate amplification of two exons of the lysosomal alpha-mannosidase gene followed by restriction enzyme digestion of the amplicons. We demonstrate that one of the mutations, the 662G-->A transition, is responsible for alpha-mannosidosis in Galloway cattle. The other mutation, the 961T-->C transition, is uniquely associated with alpha-mannosidosis in Angus, Murray Grey and Brangus cattle from Australia. The 961T-->C mutation was also detected in Red Angus cattle exported from Canada to Australia as embryos. All 39 animals classified as heterozygotes on the basis of biochemical assays were heterozygous for one of the two mutations. None of 102 animals classified as homozygous-normal on the basis of biochemical assays possessed the mutations. Our results indicate that the two breed-specific mutations may have arisen in Scotland and by the export of animals and germplasm disseminated to America, New Zealand and Australia. PMID:9491457

  7. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  8. Quantum dots nanoparticle-based lateral flow assay for rapid detection of Mycobacterium species using anti-FprA antibodies

    Directory of Open Access Journals (Sweden)

    Fabio Cimaglia

    2012-01-01

    Full Text Available A lateral flow (LF device combined with quantum dots (QDs technology was developed for rapid detection of a specific mycobacterial flavoprotein reductase (fprA. In order to develop the LF assay based on a double-antibody sandwich format, two monoclonal antibodies recognizing different epitopes located in separated fprA domains were identified. The first monoclonal antibody was immobilized onto the detection zone of a porous nitrocellulose membrane, whereas another monoclonal antibody was conjugated to QDs nanoparticles as a detection system. Using these monoclonal antibodies we recorded a good fluorescence signal, the intensity of which was directly proportional to the concentration of fprA protein. The use of antibodies conjugated with fluorescent semiconductor QDs via biotin-streptavidin bridge, allowed the detection of fprA protein at concentrations as low as 12.5 pg/μL in less than 10 min. The reported technology could be useful in the diagnostic investigation of Mycobacterium tuberculosis and other human pathogens in clinical specimens.

  9. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    International Nuclear Information System (INIS)

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10−16 mol L−1. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10−16 mol L−1. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of c

  10. Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko

    2016-01-01

    We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent. PMID:26960620

  11. A recombinant antigen-based enzyme-linked immunosorbent assay (ELISA) for lungworm detection in seals

    OpenAIRE

    Ulrich, Sophia Arlena; Lehnert, Kristina; Siebert, Ursula; Strube, Christina

    2015-01-01

    Background Pinnipeds are frequently infected by the lungworms Otostrongylus circumlitus and Parafilaroides gymnurus (Metastrongyloidea). Infections are frequently associated with secondary bacterial bronchopneumonia and are often lethal. To date, a reliable lungworm diagnosis in individual seals is only possible during necropsy as examination of faeces collected from resting places does not allow assignment to individuals. Therefore, a diagnostic tool for lungworm detection in living seals is...

  12. A Modified Quantum Dot-Based Dot Blot Assay for Rapid Detection of Fish Pathogen Vibrio anguillarum.

    Science.gov (United States)

    Zhang, Yang; Xiao, Jingfan; Wang, Qiyao; Zhang, Yuanxing

    2016-08-28

    Vibrio anguillarum, a devastating pathogen causing vibriosis among marine fish, is prevailing in worldwide fishery industries and accounts for grievous economic losses. Therefore, a rapid on-site detection and diagnostic technique for this pathogen is in urgent need. In this study, two mouse monoclonal antibodies (MAbs) against V. anguillarum, 6B3-C5 and 8G3-B5, were generated by using hybridoma technology and their isotypes were characterized. MAb 6B3-C5 was chosen as the detector antibody and conjugated with quantum dots. Based on MAb 6B3- C5 labeled with quantum dots, a modified dot blot assay was developed for the on-site determination of V. anguillarum. It was found that the method had no cross-reactivity with other than V. anguillarum bacteria. The detection limit (LOD) for V. anguillarum was 1 × 10(3) CFU/ml in cultured bacterial suspension samples, which was a 100-fold higher sensitivity than the reported colloidal gold immunochromatographic test strip. When V. anguillarum was mixed with turbot tissue homogenates, the LOD was 1 × 10(3) CFU/ml, suggesting that tissue homogenates did not influence the detection capabilities. Preenrichment with the tissue homogenates for 12 h could raise the LOD up to 1 × 10(2) CFU/ml, confirming the reliability of the method. PMID:27116991

  13. Clinical evaluation of the mycobacteriophage-based assay in rapid detection of Mycobacterium tuberculosis in respiratory specimens

    Directory of Open Access Journals (Sweden)

    Prakash S

    2009-01-01

    Full Text Available Context: Search for a cost-effective, rapid and accurate test has renewed interest in mycobacteriophage as a tool in the diagnosis of tuberculosis (TB. There has been no reported data on the performance of phage assay in a high burden, low-resource setting like Kanpur city, India. Aims: To assess the sensitivity and specificity of the FASTPlaque TBTM kit ability to impact the bacillary load in the phage assay and its performance in the sputum smear sample negative cases. Materials and Methods: The study involved a cross-sectional blinded assessment of phage assay using the FASTPlaque TBTM kit on 68 suspected cases of pulmonary TB against sputum smear microscopy by Ziehl-Neilsen staining and culture by the LJ method. Results: The sensitivity, specificity and positive and negative predictive values of the phage assay were 90.7, 96, 97.5 and 85.7%, respectively. The assay was negative in all the five specimens growing mycobacteria other than TB. The sensitivity of the phage assay tended to decrease with the bacillary load. Of the smear-negative cases, three were false negative, and all of which were detected by the phage assay. Smear microscopy (three smears per patient had a sensitivity and specificity of 93 and 64%, respectively. Conclusions: The phage assay has the potential clinical utility as a simple means of rapid and accurate detection of live Mycobacterium tuberculosis bacilli; however, its performance has been inconsistent across various studies, which highlights that the assay requires a high degree of quality control demanding infrastructure and its performance is vulnerable to common adversities observed in "out of research" practice settings like storage, transport and cross-contamination.

  14. Recent developments in antibody-based assays for the detection of bacterial toxins.

    Science.gov (United States)

    Zhu, Kui; Dietrich, Richard; Didier, Andrea; Doyscher, Dominik; Märtlbauer, Erwin

    2014-04-11

    Considering the urgent demand for rapid and accurate determination of bacterial toxins and the recent promising developments in nanotechnology and microfluidics, this review summarizes new achievements of the past five years. Firstly, bacterial toxins will be categorized according to their antibody binding properties into low and high molecular weight compounds. Secondly, the types of antibodies and new techniques for producing antibodies are discussed, including poly- and mono-clonal antibodies, single-chain variable fragments (scFv), as well as heavy-chain and recombinant antibodies. Thirdly, the use of different nanomaterials, such as gold nanoparticles (AuNPs), magnetic nanoparticles (MNPs), quantum dots (QDs) and carbon nanomaterials (graphene and carbon nanotube), for labeling antibodies and toxins or for readout techniques will be summarized. Fourthly, microscale analysis or minimized devices, for example microfluidics or lab-on-a-chip (LOC), which have attracted increasing attention in combination with immunoassays for the robust detection or point-of-care testing (POCT), will be reviewed. Finally, some new materials and analytical strategies, which might be promising for analyzing toxins in the near future, will be shortly introduced.

  15. Antibody-based biosensor assays for the detection of zilpaterol and markers for prostate cancer

    OpenAIRE

    Dillon, Mary

    2008-01-01

    The research presented in this thesis describes the production and application of antibodies against the drug of abuse zilpaterol, and the application of antibodies against prostate-specific antigen (PSA), a cancer marker. Polyclonal antibodies were used in the development of immunoassays in a competitive ELISA format and on the Biacore (a surface plasmon resonance-based optical biosensor capable of monitoring biomolecular interactions in 'real-time'). A zilpaterol-HSA conjugate was u...

  16. Evaluation of enzyme-linked immunosorbent assays based on monoclonal antibodies for the serology and antigen detection in canine parvovirus infections.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); N. Juntti; B. Klingeborn; J. Groen (Jan); F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Ab)

    1990-01-01

    textabstractAn enzyme-linked immunosorbent assay (ELISA) system was developed for the detection of canine parvovirus (CPV) or CPV antigen in dog faeces and two other ELISA systems were developed for the detection of CPV-specific antibodies in dog sera. The ELISA's were based on the use of CPV-specif

  17. A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection

    International Nuclear Information System (INIS)

    We describe a sensitive fluorometric and colorimetric dual-readout probe for folic acid (FA). It is based on the use of the gold nanoclusters (AuNCs) and cysteamine–modified gold nanoparticles (cyst-AuNPs). The bovine serum albumin stabilized AuNCs exhibit strong fluorescence emission at 652 nm. Upon addition of cyst-AuNPs, the fluorescence intensity of the AuNCs showed dramatic decrease due to the surface plasmon enhanced energy transfer process. This is due to an FA-induced aggregation of the cyst-AuNPs which shifts the absorption peaks from 530 to 670 nm. Thus, the surface plasmon enhanced energy transfer between cyst-AuNPs and AuNCs is weakened and the fluorescence intensity of AuNCs is recovered. The fluorescence intensity of the AuNCs/cyst-AuNPs system is proportional to the concentration of FA in the range from 0.11 to 2.27 μmol L−1. The dual-readout probe reported here was successfully applied to the determination of FA in spiked serum samples and folic acid tablets. (author)

  18. A Cu@Au nanoparticle-based colorimetric competition assay for the detection of sulfide anion and cysteine.

    Science.gov (United States)

    Zhang, Jia; Xu, Xiaowen; Yuan, Yue; Yang, Cheng; Yang, Xiurong

    2011-08-01

    As an extension of our previous work, which described the unique ability of the core/shell Cu@Au nanoparticle (NP) to selectively recognize iodide, (1) herein, we wish to report the development of an alternatively sensitive and selective colorimetric detection for sulfide anion and cysteine based upon the Cu@Au NP by a competition avenue. In the absence of sulfide anion or cysteine, iodide can induce an appreciable color change of the Cu@Au NP solution from purple to red by transforming the clusters of NP to single, nearly spherical, and larger ones. However, the transformation is severely interfered by the presence of sulfide or cysteine because of a higher binding strength of the S-Au bond than the I-Au one. As a result, the clear purple-to-red color change induced by iodide is affected as a correlation with the concentration of sulfide or cysteine. By taking advantage of this fact, we can detect a concentration of 3 μM for sulfide and 0.4 μM for cysteine with the naked eye or 0.3 μM (10 ppb) for sulfide and 50 nM (6 ppb) for cysteine aided by a UV/vis spectrometer. Given the detrimental effect of hydrogen sulfide and the biological importance of cysteine, the assay may become useful in the environment monitoring, water quality inspection and biomedical diagnosis as well.

  19. The development of a GeXP-based multiplex reverse transcription-PCR assay for simultaneous detection of sixteen human respiratory virus types/subtypes

    Directory of Open Access Journals (Sweden)

    Li Jin

    2012-08-01

    Full Text Available Abstract Background Existing standard non-molecular diagnostic methods such as viral culture and immunofluorescent (DFA are time-consuming, labor intensive or limited sensitivity. Several multiplex molecular assays are costly. Therefore, there is a need for the development of a rapid and sensitive diagnosis of respiratory viral pathogens. Methods A GeXP-based multiplex RT-PCR assay (GeXP assay was developed to detect simultaneously sixteen different respiratory virus types/subtypes. Seventeen sets of chimeric primers were used to initiate the RT-PCR, and one pair of universal primers was used for the subsequent cycles of the RT-PCR. The specificity of the GeXP assay was examined with positive controls for each virus type/subtype. The sensitivity was evaluated by performing the assay on serial ten-fold dilutions of in vitro-transcribed RNA of all RNA viruses and the plasmids containing the Adv and HBoV target sequence. GeXP assay was further evaluated using 126 clinical specimens and compared with Luminex xTAG RVP Fast assay. Results The GeXP assay achieved a sensitivity of 20–200 copies for a single virus and 1000 copies when all of the 16 pre-mixed viral targets were present. Analyses of 126 clinical specimens using the GeXP assay demonstrated that GeXP assay and the RVP Fast assay were in complete agreement for 109/126 (88.51% of the specimens. GeXP assay was more sensitive than the RVP Fast assay for the detection of HRV and PIV3, and slightly less sensitive for the detection of HMPV, Adv, RSVB and HBoV. The whole process of the GeXP assay for the detection of 12 samples was completed within 2.5 hours. Conclusions In conclusion, the GeXP assay is a rapid, cost-effective, sensitive, specific and high throughput method for the detection of respiratory virus infections.

  20. A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal.

    Science.gov (United States)

    Chen, Lu; Wen, Fang; Li, Ming; Guo, Xiaodong; Li, Songli; Zheng, Nan; Wang, Jiaqi

    2017-01-15

    A fluorescent assay for the rapid, sensitive and specific detection of Aflatoxin B1 (AFB1) was developed in this study. Initially, a DNA/DNA duplex was formed between a fluorescein-labeled AFB1 aptamer and its partially complementary DNA strand containing a quencher moiety, resulting in fluorescence quenching due to the close proximity of fluorophore and quencher. Upon the addition of AFB1, an aptamer/AFB1 complex was generated to release the quencher-modified DNA strand, thus recovered the fluorescence of fluorescein and enabled quantitative detection for AFB1 by monitoring fluorescence enhancement. Under optimized conditions, this assay exhibited a linear response to AFB1 in the range of 5-100ng/mL with a detection limit down to 1.6ng/mL. Trials of this assay in infant rice cereal with satisfactory recovery in the range of 93.0%-106.8%, demonstrate that the new assay could be a potential sensing platform for AFB1 determination in food. PMID:27542489

  1. Universal fieldable assay with unassisted visual detection

    Science.gov (United States)

    Chelyapov, Nicolas (Inventor)

    2012-01-01

    A universal detection system based on allosteric aptamers, signal amplification cascade, and eye-detectable phrase transition. A broadly applicable homogeneous detection system is provided. It utilizes components of the blood coagulation cascade in the presence of polystyrene microspheres (MS) as a signal amplifier. Russell's viper venom factor X activator (RVV-X) triggers the cascade, which results in an eye-visible phase transition--precipitation of MS bound to clotted fibrin. An allosteric RNA aptamer, RNA132, with affinity for RVV-X and human vascular endothelial growth factor (VEGF.sub.165) was created. RNA132 inhibits enzymatic activity of RVV-X. The effector molecule, VEGF.sub.165, reverses the inhibitory activity of RNA132 on RVV-X and restores its enzymatic activity, thus triggering the cascade and enabling the phase transition. Similar results were obtained for another allosteric aptamer modulated by a protein tyrosine phosphatase. The assay is instrumentation-free for both processing and readout.

  2. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus.

    Science.gov (United States)

    Su, Mingjun; Li, Chunqiu; Guo, Donghua; Wei, Shan; Wang, Xinyu; Geng, Yufei; Yao, Shuang; Gao, Jing; Wang, Enyu; Zhao, Xiwen; Wang, Zhihui; Wang, Jianfa; Wu, Rui; Feng, Li; Sun, Dongbo

    2016-05-01

    Recently, porcine deltacoronavirus (PDCoV) has been proven to be associated with enteric disease in piglets. Diagnostic tools for serological surveys of PDCoV remain in the developmental stage when compared with those for other porcine coronaviruses. In our study, an indirect enzyme-linked immunosorbent assay (ELISA) (rPDCoV-N-ELISA) was developed to detect antibodies against PDCoV using a histidine-tagged recombinant nucleocapsid (N) protein as an antigen. The rPDCoV-N-ELISA did not cross-react with antisera against porcine epidemic diarrhea virus, swine transmissible gastroenteritis virus, porcine group A rotavirus, classical swine fever virus, porcine circovirus-2, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus; the receiver operating characteristic (ROC) curve analysis revealed 100% sensitivity and 90.4% specificity of the rPDCoV-N-ELISA based on samples of known status (n=62). Analyses of field samples (n=319) using the rPDCoV-N-ELISA indicated that 11.59% of samples were positive for antibodies against PDCoV. These data demonstrated that the rPDCoV-N-ELISA can be used for epidemiological investigations of PDCoV and that PDCoV had a low serum prevalence in pig population in Heilongjiang province, northeast China. PMID:26668175

  3. Simultaneous Detection of Seven Enteric Viruses Associated with Acute Gastroenteritis by a Multiplexed Luminex-Based Assay

    OpenAIRE

    Liu, Yan; Xu, Zi-qian; Zhang, Qing; Jin, Miao; Yu, Jie-mei; Li, Jin-song; Liu, Na; Cui, Shu-Xian; Kong, Xiang-Yu; Wang, Hong; Li, Hui-Ying; Cheng, Wei-Xia; Ma, Xue-Jun; Duan, Zhao-jun

    2012-01-01

    Rapid and broad diagnostic methods are needed for the identification of viral agents of gastroenteritis. In this study, we used Luminex xMAP technology to develop a multiplexed assay for the simultaneous identification of major enteric viral pathogens, including rotavirus A (RVA), noroviruses (NoVs) (including genogroups GI and GII), sapoviruses (SaV), human astrovirus (HAstV), enteric adenoviruses (EAds), and human bocavirus 2 (HBoV2). The analytical sensitivity allowed detection of 103 (EAd...

  4. Matrix effects on a cell-based assay used for the detection of paralytic shellfish toxins in bivalve shellfish samples.

    Science.gov (United States)

    Aballay-Gonzalez, Ambbar; Ulloa, Viviana; Rivera, Alejandra; Hernández, Víctor; Silva, Macarena; Caprile, Teresa; Delgado-Rivera, Lorena; Astuya, Allisson

    2016-05-01

    Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection.

  5. Matrix effects on a cell-based assay used for the detection of paralytic shellfish toxins in bivalve shellfish samples.

    Science.gov (United States)

    Aballay-Gonzalez, Ambbar; Ulloa, Viviana; Rivera, Alejandra; Hernández, Víctor; Silva, Macarena; Caprile, Teresa; Delgado-Rivera, Lorena; Astuya, Allisson

    2016-05-01

    Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection. PMID:27002718

  6. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S-H; Tsai, M-H; Lin, C-W [Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan (China); Yang, T-C; Chuang, P-H [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (China); Tsai, I-S; Lu, H-C [Nanotechnology Research Center, Feng Chia University, Taichung, Taiwan (China); Wan Lei; Lin, Y-J [Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Lai, C-H [Department of Microbiology and Immunology, China Medical University, Taichung, Taiwan (China)], E-mail: cwlin@mail.cmu.edu.tw

    2008-10-08

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  7. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    Science.gov (United States)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  8. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

    Directory of Open Access Journals (Sweden)

    Zsolt Czimmerer

    Full Text Available Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.

  9. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    Science.gov (United States)

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  10. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4

    Science.gov (United States)

    Lin, Yi-Jia; Chang, Tsai-De; Hong, Li-Ling; Chen, Tzu-Yu; Chang, Pi-Fang Linda

    2016-01-01

    This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring) could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method. PMID:27448242

  11. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4.

    Science.gov (United States)

    Lin, Ying-Hong; Lin, Yi-Jia; Chang, Tsai-De; Hong, Li-Ling; Chen, Tzu-Yu; Chang, Pi-Fang Linda

    2016-01-01

    This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring) could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method. PMID:27448242

  12. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4.

    Directory of Open Access Journals (Sweden)

    Ying-Hong Lin

    Full Text Available This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method.

  13. Use of conserved genomic regions and degenerate primers in a PCR-based assay for the detection of members of the genus Caulimovirus.

    Science.gov (United States)

    Pappu, H R; Druffel, K L

    2009-04-01

    The genus Caulimovirus consists of several distinct virus species with a double-stranded DNA genome that infect diverse plant species. A comparative analysis of the sequences of known Caulimovirus species revealed two regions that are conserved in all Caulimovirus species with the exception of Strawberry vein banding virus. Degenerate primers based on these two regions were designed and tested in a polymerase chain reaction-based assay for broad spectrum detection of members of this genus. Cauliflower mosaic virus, Figwort mosaic virus and three distinct caulimoviruses associated with dahlia (Dahlia variabilis) were used to show the utility of this test in detecting diverse caulimoviruses. The primer pair gave an amplicon of expected size (840bp). Amplicons from each virus were cloned and sequenced to verify their identity. The primer pair and the PCR assay provide approach for the broad spectrum detection of several members of the genus Caulimovirus. PMID:19100290

  14. Audit and improve! Evaluation of a real-time probe-based PCR assay with internal control for the direct detection of Mycobacterium tuberculosis complex.

    Science.gov (United States)

    Inoue, M; Tang, W Y; Wee, S Y; Barkham, T

    2011-01-01

    We retrospectively audited the performance of the commercial kit in use in our laboratory for the detection of Mycobacterium tuberculosis complex (MTBC) and found the sensitivity to be unacceptably low at 69% (52/75). We developed an in-house end-point polymerase chain reaction (PCR) detecting IS6110, an IS-like element of MTBC, and achieved a sensitivity of 90% (66/73) with the same DNA samples, re-emphasising the poor performance of the commercial kit. In order to avoid specificity issues surrounding gel-based PCR, we developed a probe-based real-time PCR assay with an internal control and achieved a sensitivity of 84%, specificity of 97% and diagnostic odds ratio (DOR) of 207. The evaluation was performed on clinically requested samples, so we expect the performance of the assay in real life to match the data from this evaluation. Centers for Disease Control and Prevention (CDC) guidelines recommending nucleic acid tests for the investigation of possible cases of tuberculosis are expected to promote the use of molecular assays. It is important that clinical laboratories do not assume that assays, in-house or commercial, will perform well or that they will continue to perform well. Audit at regular intervals is necessary to maintain confidence and to demonstrate that the assay works to specification in the real test population.

  15. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    Science.gov (United States)

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks.

  16. A novel bead-based assay to detect specific antibody responses against Toxoplasma gondii and Trichinella spiralis simultaneously in sera of experimentally infected swine

    Directory of Open Access Journals (Sweden)

    Bokken Gertie CAM

    2012-03-01

    Full Text Available Abstract Background A novel, bead-based flow cytometric assay was developed for simultaneous determination of antibody responses against Toxoplasma gondii and Trichinella spiralis in pig serum. This high throughput screening assay could be an alternative for well known indirect tests like ELISA. One of the advantages of a bead-based assay over ELISA is the possibility to determine multiple specific antibody responses per single sample run facilitated by a series of antigens coupled to identifiable bead-levels. Furthermore, inclusion of a non-coupled bead-level in the same run facilitates the determination of, and correction for non-specific binding. The performance of this bead-based assay was compared to one T. spiralis and three T. gondii ELISAs. For this purpose, sera from T. gondii and T. spiralis experimentally infected pigs were used. With the experimental infection status as gold standard, the area under the curve, Youden Index, sensitivity and specificity were determined through receiver operator curve analysis. Marginal homogeneity and inter-rater agreement between bead-based assay and ELISAs were evaluated using McNemar's Test and Cohen's kappa, respectively. Results Results indicated that the areas under the curve of the bead-based assay were 0.911 and 0.885 for T. gondii and T. spiralis, respectively, while that of the T. gondii ELISAs ranged between 0.837 and 0.930 and the T. spiralis ELISA was 0.879. Bead-based T. gondii assay had a sensitivity of 86% and specificity of 96%, while the ELISAs ranged between 64-84% and 93-99%, respectively. The bead-based T. spiralis assay had a sensitivity of 68% and specificity of 100% while the ELISA scored 72% and 95%, respectively. Marginal homogeneity was found between the T. gondii bead-based test and one of the T. gondii ELISAs. Moreover, in this test combination and between T. spiralis bead-based assay and respective ELISA, an excellent inter-rater agreement was found. When results of

  17. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis

    Directory of Open Access Journals (Sweden)

    Backeljau Thierry

    2006-02-01

    Full Text Available Abstract Background Appropriate monitoring of vector resistance to insecticides is an integral component of planning and evaluation of insecticide use in malaria control programmes. The malaria vectors Anopheles gambiae s.s. and Anopheles arabiensis have developed resistance to pyrethroid insecticides as a result of a mechanism conferring reduced nervous system sensitivity, better known as knockdown resistance (kdr. In An. gambiae s.s. and An. arabiensis, two different substitutions in the para-type sodium channel, a L1014F substitution common in West Africa and a L1014S replacement found in Kenya, are linked with kdr. Two different allele-specific polymerase chain reactions (AS-PCR are needed to detect these known kdr mutations. However, these AS-PCR assays rely on a single nucleotide polymorphism mismatch, which can result in unreliable results. Methods Here, a new assay for the detection of knockdown resistance in An. gambiae s.s. and An. arabiensis based on Fluorescence Resonance Energy Transfer/Melt Curve analysis (FRET/MCA is presented and compared with the existing assays. Results The new FRET/MCA method has the important advantage of detecting both kdr alleles in one assay. Moreover, results show that the FRET/MCA is more reliable and more sensitive than the existing AS-PCR assays and is able to detect new genotypes. By using this technique, the presence of the East African kdr mutation (L1014S is shown for the first time in An. arabiensis specimens from Uganda. In addition, a new kdr genotype is reported in An. gambiae s.s. from Uganda, where four An. gambiae s.s. mosquitoes possess both, the West (L1014F and East (L1014S African kdr allele, simultaneously. Conclusion The presence of both kdr mutations in the same geographical region shows the necessity of a reliable assay that enables to detect both mutations in one single assay. Hence, this new assay based on FRET/MCA will improve the screening of the kdr frequencies in An. gambiae s

  18. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay

    Science.gov (United States)

    Paião, F.G.; Arisitides, L.G.A.; Murate, L.S.; Vilas-Bôas, G.T.; Vilas-Boas, L.A.; Shimokomaki, M.

    2013-01-01

    The presence of Salmonella in the intestinal tract, on the chickens skin and among their feathers, may cause carcasses contamination during slaughtering and processing and possibly it is responsible by the introduction of this microorganism in the slaughterhouses. A rapid method to identify and monitor Salmonella and their sorovars in farm is becoming necessary. A pre-enriched multiplex polymerase chain reaction (m-PCR) assay employing specific primers was developed and used to detect Salmonella at the genus level and to identify the Salmonella enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Typhimurium (S. Typhimurium) in broiler chicken swab samples. The method was validated by testing DNA extract from 90 fresh culture cloacal swab samples from poultry chicken cultured in phosphate buffer peptone water at 37 °C for 18 h. The final results showed the presence of Salmonella spp. in 25% of samples, S. Enteritidis was present in 12% of the Salmonella-positive samples and S. Typhimurium in 3% of the samples. The m-PCR assay developed in this study is a specific and rapid alternative method for the identification of Salmonella spp. and allowed the observation of specific serovar contamination in the field conditions within the locations where these chickens are typically raised. PMID:24159281

  19. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    Full Text Available Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a "probe dropout" manner (quantification cycle = 0; thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100% were correctly detected through the assay. Of these isolates, 88/88 (100% were determined as RFP susceptible and 52/54 (96.3% were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.

  20. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhao, Yong; Li, Guilian; Sun, Chongyun; Li, Chao; Wang, Xiaochen; Liu, Haican; Zhang, Pingping; Zhao, Xiuqin; Wang, Xinrui; Jiang, Yi; Yang, Ruifu; Wan, Kanglin; Zhou, Lei

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a "probe dropout" manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.

  1. Magnetic bead-based phage anti-immunocomplex assay (PHAIA) for the detection of the urinary biomarker 3-phenoxybenzoic acid to assess human exposure to pyrethroid insecticides.

    Science.gov (United States)

    Kim, Hee-Joo; Ahn, Ki Chang; González-Techera, Andrés; González-Sapienza, Gualberto G; Gee, Shirley J; Hammock, Bruce D

    2009-03-01

    Noncompetitive immunoassays are advantageous over competitive assays for the detection of small molecular weight compounds. We recently demonstrated that phage peptide libraries can be an excellent source of immunoreagents that facilitate the development of sandwich-type noncompetitive immunoassays for the detection of small analytes, avoiding the technical challenges of producing anti-immunocomplex antibody. In this work we explore a new format that may help to optimize the performance of the phage anti-immunocomplex assay (PHAIA) technology. As a model system we used a polyclonal antibody to 3-phenoxybenzoic acid (3-PBA) and an anti-immunocomplex phage clone bearing the cyclic peptide CFNGKDWLYC. The assay setup with the biotinylated antibody immobilized onto streptavidin-coated magnetic beads significantly reduced the amount of coating antibody giving identical sensitivity (50% saturation of the signal (SC(50))=0.2-0.4ng/ml) to the best result obtained with direct coating of the antibody on ELISA plates. The bead-based assay tolerated up to 10 and 5% of methanol and urine matrix, respectively. This assay system accurately determined the level of spiked 3-PBA in different urine samples prepared by direct dilution or clean-up with solid-phase extraction after acidic hydrolysis with overall recovery of 80-120%.

  2. Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System

    OpenAIRE

    Laura P. Rodríguez; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Louzao, M. Carmen; Taylor, Palmer; Talley, Todd; Botana, Luis M.

    2013-01-01

    Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a “fast-acting” toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic a...

  3. Comparison of monoclonal antibody-based sandwich enzyme-linked immunosorbent assay and virus isolation for detection of peste des petits ruminants virus in goat tissues and secretions.

    OpenAIRE

    Saliki, J T; House, J A; MEBUS, C.A.; Dubovi, E. J.

    1994-01-01

    A monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (S-ELISA) was developed for specific detection of peste des petits ruminants virus. Compared with virus isolation in Vero cell cultures using 89 paired tissue and secretion samples from six experimentally infected goats, S-ELISA was significantly more sensitive (71.9% versus 65.2%; P < 0.05). The S-ELISA is a suitable alternative to virus isolation.

  4. Microbead agglutination based assays

    KAUST Repository

    Castro, David

    2013-11-28

    A method for detecting the presence of an analyte in a sample can include adding a plurality of microparticles of a first-type to the sample, where each microparticle of the first-type includes a first binding partner configured to interact with at least a first portion of the analyte, adding a plurality of microparticles of a second-type to the sample, where each microparticle of the second-type includes a second binding partner configured to interact with at least a second portion of the analyte, the first portion of the analyte being different from the second portion of the analyte, and identifying an aggregate including at least one microparticle of the first-type, at least one microparticle of the second-type and the analyte, where the aggregate indicates the presence of the analyte.

  5. Development and validation of fast duplex real-time PCR assays based on SYBER Green florescence for detection of bovine and poultry origins in feedstuffs.

    Science.gov (United States)

    Safdar, Muhammad; Junejo, Yasmeen

    2015-04-15

    SYBR duplex real-time polymerase chain reaction (SDRT-PCR) with melting curve analysis was developed that can unite the reward of multiplex PCR with real-time PCR to recognize animal genes rapidly in feedstuffs. The method merges the use of bovine (Bos taurus) and poultry (Gallus gallus) specific primers that amplify small fragments (amplicons melting peaks simultaneously at 79.5 °C and 87.5 °C, respectively. Multiplex analysis of the reference feed samples showed that the detection limit of the assay was 0.001% for bovine and poultry species. Based upon the assay results it has been concluded that SDRT-PCR assay might be an efficient tool for the verification of species origin in feedstuffs. PMID:25466073

  6. Simultaneous detection of eight swine reproductive and respiratory pathogens using a novel GeXP analyser-based multiplex PCR assay.

    Science.gov (United States)

    Zhang, Minxiu; Xie, Zhixun; Xie, Liji; Deng, Xianwen; Xie, Zhiqin; Luo, Sisi; Liu, Jiabo; Pang, Yaoshan; Khan, Mazhar I

    2015-11-01

    A new high-throughput GenomeLab Gene Expression Profiler (GeXP) analyser-based multiplex PCR assay was developed for the detection of eight reproductive and respiratory pathogens in swine. The reproductive and respiratory pathogens include North American porcine reproductive and respiratory syndrome virus (PRRSV-NA), classical swine fever virus (CSFV), porcine circovirus 2 (PCV-2), swine influenza virus (SIV) (including H1 and H3 subtypes), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV). Nine pairs of specific chimeric primers were designed and used to initiate PCRs, and one pair of universal primers was used for subsequent PCR cycles. The specificity of the GeXP assay was examined using positive controls for each virus. The sensitivity was evaluated using serial ten-fold dilutions of in vitro-transcribed RNA from all of the RNA viruses and plasmids from DNA viruses. The GeXP assay was further evaluated using 114 clinical specimens and was compared with real-time PCR/single RT-PCR methods. The specificity of the GeXP assay for each pathogen was examined using single cDNA/DNA template. Specific amplification peaks of the reproductive and respiratory pathogens were observed on the GeXP analyser. The minimum copies per reaction detected for each virus by the GeXP assay were as follows: 1000 copies/μl for PRV; 100 copies/μl for CSFV, JEV, PCV-2 and PPV; and 10 copies/μl for SIV-H1, SIV-H3 and PRRSV-NA. Analysis of 114 clinical samples using the GeXP assay demonstrated that the GeXP assay had comparable detection to real-time PCR/single RT-PCR. This study demonstrated that the GeXP assay is a new method with high sensitivity and specificity for the identification of these swine reproductive and respiratory pathogens. The GeXP assay may be adopted for molecular epidemiological surveys of these reproductive and respiratory pathogens in swine populations. PMID:26259690

  7. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  8. Detection of Eperythrozoon wenyoni by PCR assay

    Institute of Scientific and Technical Information of China (English)

    Jian WANG; Yutao ZHU; Jianhua QIN; Fumei ZHANG; Yuelan ZHAO

    2009-01-01

    The objective of this research was to develop a detection method for Eperythrozoon wenyoni infection using polymerase chain reaction (PCR) assay technique. A pair of primers was designed and synthesized according to the conservative sequence 16S rRNA. The PCR assay was performed with the primers. A 985-bp fragment was amplified by using PCR. The amplified fragments with the expected size were identified by EcoR I restriction digestion. The crossing-reaction, specific-reaction and duplicate-reaction indicated that the PCR method is a specific, sensitive, fast and effective method for diagnosing E. Wenyoni infection at group level.

  9. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    Science.gov (United States)

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present. PMID:26524545

  10. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines

    Science.gov (United States)

    Asing; Ali, Md. Eaqub; Abd Hamid, Sharifah Bee; Hossain, M. A. Motalib; Mustafa, Shuhaimi; Kader, Md. Abdul; Zaidul, I. S. M.

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition. PMID:27716792

  11. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander

    Science.gov (United States)

    A TaqMan-based real-time PCR assay is developed for strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences present only in genomic sequence of oleander strain Ann1. The assay is spe...

  12. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    Science.gov (United States)

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  13. Design and development of PCR-free highly sensitive electrochemical assay for detection of telomerase activity using Nano-based (liposomal) signal amplification platform.

    Science.gov (United States)

    Alizadeh-Ghodsi, Mohammadreza; Zavari-Nematabad, Ali; Hamishehkar, Hamed; Akbarzadeh, Abolfazl; Mahmoudi-Badiki, Tohid; Zarghami, Faraz; Pourhassan Moghaddam, Mohammad; Alipour, Esmaeel; Zarghami, Nosratollah

    2016-06-15

    Telomerase, which has been detected in almost all kinds of cancer tissues, is considered as an important tumor marker for early cancer diagnostics. In the present study, an electrochemical method based on liposomal signal amplification platform is proposed for simple, PCR-free, and highly sensitive detection of human telomerase activity, extracted from A549 cells. In this strategy, telomerase reaction products, which immobilized on streptavidin-coated microplate, hybridized with biotinylated capture probes. Then, dopamine-loaded biotinylated liposomes are attached through streptavidin to biotinylated capture probes. Finally, liposomes are ruptured by methanol and the released-dopamine is subsequently measured using differential pulse voltammetry technique by multi-walled carbon nanotubes modified glassy carbon electrode. Using this strategy, the telomerase activity extracted from 10 cultured cancer cells could be detected. Therefore, this approach affords high sensitivity for telomerase activity detection and it can be regarded as an alternative to telomeric repeat amplification protocol assay, having the advantages of simplicity and less assay time. PMID:26874110

  14. Nanoparticles assembled by aptamers and crystal violet for arsenic(iii) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay

    Science.gov (United States)

    Wu, Yuangen; Zhan, Shenshan; Xing, Haibo; He, Lan; Xu, Lurong; Zhou, Pei

    2012-10-01

    Aptamer-assembled nanomaterials have captured much attention from the field of analytical chemistry in recent years. Although they have been regarded as a promising tool for heavy metal monitoring, report involving aptamer-based biosensors for arsenic detection are rare. Herein we developed a highly sensitive and selective aptamer biosensor for As(iii) detection based on a Resonance Rayleigh Scattering (RRS) spectral assay. Prior to As(iii) detection, we firstly assembled a variety of nanoparticles with different sizes via controlling the concentration of arsenic-binding aptamers in crystal violet (CV) solutions. The results of photon correlation spectroscopy (PCS) and scanning probe microscope (SPM) testified that the introduction of As(iii) had indeed changed the size of nanoparticles, which caused a great variation in the RRS intensity at 310 nm. In the presence of 100 ppb As(iii), a maximum decline in the ratio of RRS intensity was achieved for large nanoparticles assembled from 200 nM of aptamers and CV molecules, where the average size of nanoparticles had decreased from 273 nm to 168 nm. In the case of small nanoparticles, the maximum increase ratio of the RRS intensity was obtained when the concentration of aptamer was over 600 nM. Combined with an RRS spectral assay, an effective biosensor has been developed for As(iii) detection, using the above large and small nanoparticles as the target recognition element. The present biosensor has a detection limit as low as 0.2 ppb, a dynamic range from 0.1 ppb to 200 ppb, and high selectivity over other metal ions. Such an efficient biosensor will play an important role in environmental detection.

  15. Mrassf1a-pap, a novel methylation-based assay for the detection of cell-free fetal DNA in maternal plasma.

    Directory of Open Access Journals (Sweden)

    Jessica M E van den Oever

    Full Text Available OBJECTIVES: RASSF1A has been described to be differentially methylated between fetal and maternal DNA and can therefore be used as a universal sex-independent marker to confirm the presence of fetal sequences in maternal plasma. However, this requires highly sensitive methods. We have previously shown that Pyrophosphorolysis-activated Polymerization (PAP is a highly sensitive technique that can be used in noninvasive prenatal diagnosis. In this study, we have used PAP in combination with bisulfite conversion to develop a new universal methylation-based assay for the detection of fetal methylated RASSF1A sequences in maternal plasma. METHODS: Bisulfite sequencing was performed on maternal genomic (gDNA and fetal gDNA from chorionic villi to determine differentially methylated regions in the RASSF1A gene using bisulfite specific PCR primers. Methylation specific primers for PAP were designed for the detection of fetal methylated RASSF1A sequences after bisulfite conversion and validated. RESULTS: Serial dilutions of fetal gDNA in a background of maternal gDNA show a relative percentage of ~3% can be detected using this assay. Furthermore, fetal methylated RASSF1A sequences were detected both retrospectively as well as prospectively in all maternal plasma samples tested (n = 71. No methylated RASSF1A specific bands were observed in corresponding maternal gDNA. Specificity was further determined by testing anonymized plasma from non-pregnant females (n = 24 and males (n = 21. Also, no methylated RASSF1A sequences were detected here, showing this assay is very specific for methylated fetal DNA. Combining all samples and controls, we obtain an overall sensitivity and specificity of 100% (95% CI 98.4%-100%. CONCLUSIONS: Our data demonstrate that using a combination of bisulfite conversion and PAP fetal methylated RASSF1A sequences can be detected with extreme sensitivity in a universal and sex-independent manner. Therefore, this assay could be of great

  16. Creation of a gold nanoparticle based electrochemical assay for the detection of inhibitors of bacterial cytochrome bd oxidases.

    Science.gov (United States)

    Fournier, Eugénie; Nikolaev, Anton; Nasiri, Hamid R; Hoeser, Jo; Friedrich, Thorsten; Hellwig, Petra; Melin, Frederic

    2016-10-01

    Cytochrome bd oxidases are membrane proteins expressed by bacteria including a number of pathogens, which make them an attractive target for the discovery of new antibiotics. An electrochemical assay is developed to study the activity of these proteins and inhibition by quinone binding site tool compounds. The setup relies on their immobilization at electrodes specifically modified with gold nanoparticles, which allows achieving a direct electron transfer to/from the heme cofactors of this large enzyme. After optimization of the protein coverages, the assay shows at pH7 a good reproducibility and readout stability over time, and it is thus suitable for further screening of small molecule collections. PMID:27314676

  17. Short communication: serum-based assay accurately detects single nucleotide polymorphisms of IL28B and SOCS3 in HIV/hepatitis C virus-coinfected subjects.

    Science.gov (United States)

    Shaffer, Ashton; Hubbard, Jon J; Townsend, Kerry; Kottilil, Shyam; Polis, Michael A; Masur, Henry; Kohli, Anita

    2014-08-01

    Single nucleotide polymorphisms (SNPs) have become important in predicting treatment response to interferon containing anti-hepatitis C virus (HCV) therapy in HCV and HIV/HCV-infected patients. A reliable method for extracting host DNA from serum for genotyping assays would present a practical alternative for clinicians and investigators seeking to perform SNP analyses in HCV-infected patients, particularly in resource-limited settings. Human genomic DNA was extracted from peripheral blood mononuclear cells (PBMCs) and serum of 51 HIV/HCV coinfected patients using the QIAamp DNA Blood Mini Kit and QIAamp Min Elute Virus Spin Kit, respectively. Genotyping assays for the IL28B SNP (rs12979860) and SOCS3 SNP (rs4969170) were performed using the commercially available ABI Taqman allelic discrimination kit and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using 50 cycles. Results of the genotyping assays using DNA from both PBMCs and cell-free serum were determined separately and then analyzed for concurrence. Genotype analyses performed using DNA isolated from PBMCs or cell-free serum showed a 100% agreement between the IL28B genotyping results from the serum and PBMC isolates and 98% agreement for SOCS3 SNP. This novel serum-based assay to isolate DNA fragments from the serum of HIV/HCV-coinfected subjects can accurately determine a subject's genotype for IL28B (rs12979860) and SOCS3 (rs4969170). This assay could be immediately valuable for detecting clinically relevant SNPs from serum in cases in which PBMCs are not available.

  18. Analyte detection using an active assay

    Science.gov (United States)

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  19. An immunoassay-based reverse-transcription loop-mediated isothermal amplification assay for the rapid detection of avian influenza H5N1 virus viremia.

    Science.gov (United States)

    Tang, Yi; Yu, Xu; Chen, Hao; Diao, Youxiang

    2016-12-15

    Avian influenza virus (AIV) subtype H5N1 attracts particular consideration because it is a continuous threat to animals and public health systems. The viremia caused by AIV H5N1 infection may increase the risk of blood-borne transmission between humans. Therefore, there is a need to rapidly evaluate and implement screening measures for AIV H5N1 viremia that allows for rapid response to this potentially pandemic threat. The present report describes an immunoassay-based reverse-transcription loop-mediated isothermal amplification (immuno-RT-LAMP) assay for the rapid detection of AIV H5N1 in whole blood samples. Using PCR tubes coated with an H5 subtype monoclonal antibody, AIV H5N1 virions were specifically captured from blood samples. After a thermal lysis step, the released viral N1 gene was exponentially amplified using RT-LAMP on either a real-time PCR instrument for quantitative analysis, or in a water bath system for endpoint analysis. The detection limit of the newly developed immuno-RT-LAMP assay was as low as 1.62×10(1) 50% embryo infectious dose/mL of virus in both regular samples and simulated viremia samples. There were no cross-reactions with non-H5N1 influenza viruses or other avian viruses. The reproducibility of the assay was confirmed using intra- and inter-assay tests with variability ranging from 1.05% to 3.37%. Our results indicate that immuno-RT-LAMP is a novel, effective point-of-care virus identification solution for the rapid diagnosis and monitoring of AIV H5N1 in blood samples. PMID:27376196

  20. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    Science.gov (United States)

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  1. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    Science.gov (United States)

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  2. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  3. Lab-on-a-chip-based PCR-RFLP assay for the confirmed detection of short-length feline DNA in food.

    Science.gov (United States)

    Ali, Md Eaqub; Al Amin, Md; Hamid, Sharifah Bee Abd; Hossain, M A Motalib; Mustafa, Shuhaimi

    2015-01-01

    Wider availability but lack of legal market trades has given feline meat a high potential for use as an adulterant in common meat and meat products. However, mixing of feline meat or its derivatives in food is a sensitive issue, since it is a taboo in most countries and prohibited in certain religions such as Islam and Judaism. Cat meat also has potential for contamination with of severe acute respiratory syndrome, anthrax and hepatitis, and its consumption might lead to an allergic reaction. We developed a very short-amplicon-length (69 bp) PCR assay, authenticated the amplified PCR products by AluI-restriction digestion followed by its separation and detection on a lab-on-a-chip-based automated electrophoretic system, and proved its superiority over the existing long-amplicon-based assays. Although it has been assumed that longer DNA targets are susceptible to breakdown under compromised states, scientific evidence for this hypothesis has been rarely documented. Strong evidence showed that shorter targets are more stable than the longer ones. We confirmed feline-specificity by cross-challenging the primers against 10 different species of terrestrial, aquatic and plant origins in the presence of a 141-bp site of an 18S rRNA gene as a universal eukaryotic control. RFLP analysis separated 43- and 26-bp fragments of AluI-digest in both the gel-image and electropherograms, confirming the original products. The tested detection limit was 0.01% (w/w) feline meat in binary and ternary admixed as well as meatball matrices. Shorter target, better stability and higher sensitivity mean such an assay would be valid for feline identification even in degraded specimens. PMID:26208950

  4. Irradiation detection of food by DNA Comet Assay

    International Nuclear Information System (INIS)

    Microgel electrophoresis of single cells or nuclei (DNA Comet Assay) has been investigated to detect irradiation treatment of more than 50 food commodities e.g. meats, seafood, cereals, pulses, nuts, fruits and vegetables, and spices. The foodstuffs have been exposed to radiation doses covering the range of potential commercial irradiation for inactivation of pathogenic and spoilage micro-organisms, for insect disinfestation and for shelf-life extension. The Comet Assay is based on detection of DNA fragments presumptive to irradiation. For most of the food items investigated, the assay can be applied successfully for irradiation detection by working out different conditions of the assay. However, with some of the foods difficulties arose due to - lack of discrimination between the irradiated and unirradiated food samples due to the presence of the same kinds of comets in both cases and the total absence of the typical intact cells in unirradiated samples. - Sufficient DNA material was not available from some of the foods. - Insufficient lysis of the cell walls in case of some plant foods. In conclusion, the DNA Comet Assay can help to detect the irradiation treatment of several varieties of foods using low-cost equipment in a short time of analysis. (orig.)

  5. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O6-Alkylguanine-DNA Alkyltransferase Activity

    Directory of Open Access Journals (Sweden)

    Maria Tintoré

    2010-01-01

    Full Text Available Human O6-alkylguanine-DNA alkyltransferase (hAGT is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6 position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA. The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O6-methyl-guanine. The sequence also contains a fluorophore (fluorescein and a quencher (dabsyl attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O6-methyl group.

  6. Rapid detection and identification of viral and bacterial fish pathogens using a DNA array‐based multiplex assay

    DEFF Research Database (Denmark)

    Lievens, B.; Frans, I.; Heusdens, C.;

    2011-01-01

    Fish diseases can be caused by a variety of diverse organisms, including bacteria, fungi, viruses and protozoa, and pose a universal threat to the ornamental fish industry and aquaculture. The lack of rapid, accurate and reliable means by which fish pathogens can be detected and identified has been...... for sensitive pathogen detection and identification in complex samples such as infected tissue is demonstrated in this study....

  7. 21 CFR 866.3402 - Plasmodium species antigen detection assays.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasmodium species antigen detection assays. 866... Plasmodium species antigen detection assays. (a) Identification. A Plasmodium species antigen detection assay... malaria caused by the four malaria species capable of infecting humans: Plasmodium falciparum,...

  8. Real-Time Detection and Identification of Chlamydophila Species in Veterinary Specimens by Using SYBR Green-Based PCR Assays

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Kabell, Susanne; Pedersen, Karl

    2011-01-01

    Chlamydiaceae and differentiate the most prevalent veterinary Chlamydophila species: Cp. psittaci, Cp. abortus, Cp. felis, and Cp. caviae. By adding bovine serum albumin to the master mixes, target DNA could be detected directly in crude lysates of enzymatically digested conjunctival or pharyngeal swabs or...

  9. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification.

    Science.gov (United States)

    Hammond, Rosemarie W; Zhang, Shulu

    2016-10-01

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39°C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in infected leaf and seed tissues. The performance of the AmplifyRP(®) Acceler8™ RT-RPA diagnostic assay, utilizing a lateral flow strip contained within an amplicon detection chamber, was evaluated and the results were compared with a standard RT-PCR assay. The AmplifyRP(®) Acceler8™ assay was specific for TCDVd in leaf and seed tissues, its sensitivity was comparable to conventional RT-PCR in leaf tissues, and it does not require extensive sample purification, specialized equipment, or technical expertise. This is the first report utilizing an RT-RPA assay to detect viroids and the assay can be used both in the laboratory and in the field for TCDVd detection. PMID:27427473

  10. Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes.

    Science.gov (United States)

    Aghamollaei, Hosseine; Moghaddam, Mehrdad M; Kooshki, Hamid; Heiat, Mohammad; Mirnejad, Reza; Barzi, Nastaran S

    2015-01-01

    Pseudomonas aeruginosa is a nosocomial pathogen, which, due to its inherent and acquired resistance to a wide range of antibiotics, causes high mortality rates. Therefore, rapid detection of the bacterium with high specificity and sensitivity plays a critical role in the control of the pathogenic bacterium. The aim of this study was to evaluate the accuracy and specificity of a prompt detection of the bacterium based on a triplex polymerase chain reaction that amplifies the lasI, lasR and gyrB genes. For this purpose, 30 clinical isolates of P. aeruginosa and 30 wound biopsy samples were retrieved from clinical diagnostic laboratories. After the extraction of the chromosomal DNA, the desired genes were amplified using uniplex and triplex PCR with appropriate primers. The specificity of the primers was evaluated by a comparison of the PCR results for P. aeruginosa clinical samples and non-Pseudomonas species control samples. The sensitivity of the primers was determined using a serial dilution of the genomic DNA template (100 ng to 100 fg) and by a comparison of the PCR and bacterial culture results. The results showed that the triplex PCR assay was positive for all of the samples (100%), while the PCR identifications were negative for non-Pseudomonas species. Additionally, at 10(-4) and 10(-5) diluted genomic DNA from P. aeruginosa (10 pg and 1 pg), the triplex PCR test was positive for the Las and gyrB genes in all of the samples, respectively. Based on these results, the designed primers can be used for the rapid, specific and sensitive diagnosis of P. aeruginosa in a triplex PCR assay. PMID:25863575

  11. Diagnostic efficacy of monoclonal antibody based sandwich enzyme linked immunosorbent assay (ELISA for detection of Fasciola gigantica excretory/secretory antigens in both serum and stool

    Directory of Open Access Journals (Sweden)

    Zoheiry Mona K

    2011-09-01

    Full Text Available Abstract Background This research was carried out to develop a reliable monoclonal antibody (MoAb-based sandwich enzyme linked immunosorbent assay (ELISA for the diagnosis of active Fasciola gigantica infection in both serum and stool for comparative purposes. Methods From a panel of MoAbs raised against F. gigantica excretory/secretory antigens (ES Ags, a pair (12B/11D/3F and 10A/9D/10G was chosen due to its high reactivity and strict specificity to F. gigantica antigen by indirect ELISA. Results The two MoAbs were of the IgG1 and IgG2a subclasses, respectively. Using SDS-PAGE and EITB, the selected MoAbs recognized 83, 64, 45 and 26 kDa bands of ES Ags. The lower detection limit of ELISA assay was 3 ng/ml. In stool, the sensitivity, specificity and diagnostic efficacy of ELISA was 96%, 98.2 and 97.1%; while in serum they were 94%, 94.6% and 94.3%, respectively. Moreover, a positive correlation was found between ova count in stool of F. gigantica infected patients and the OD readings of ELISA in both stool and serum samples (r = 0.730, p Conclusions These data showed that the use of MoAb-based sandwich ELISA for the detection of F. gigantica coproantigens in stool specimens was superior to serum samples; it provides a highly efficient, non-invasive technique for the diagnosis of active F. gigantica infection.

  12. Nucleoprotein-based indirect enzyme-linked immunosorbent assay(indirect ELISA) for detecting antibodies specific to Ebola virus and Marbug virus

    Institute of Scientific and Technical Information of China (English)

    Yi; Huang; Youjie; Zhu; Mengshi; Yang; Zhenqing; Zhang; Donglin; Song; Zhiming; Yuan

    2014-01-01

    Full-length nucleoproteins from Ebola and Marburg viruses were expressed as His-tagged recombinant proteins in Escherichia coli and nucleoprotein-based enzyme-linked immunosorbent assays(ELISAs) were established for the detection of antibodies specific to Ebola and Marburg viruses. The ELISAs were evaluated by testing antisera collected from rabbit immunized with Ebola and Marburg virus nucleoproteins. Although little cross-reactivity of antibodies was observed in antiEbola virus nucleoprotein rabbit antisera, the highest reactions to immunoglobulin G(Ig G) were uniformly detected against the nucleoprotein antigens of homologous viruses. We further evaluated the ELISA’s ability to detect antibodies to Ebola and Marburg viruses using human sera samples collected from individuals passing through the Guangdong port of entry. With a threshold set at the mean plus three standard deviations of average optical densities of sera tested, the ELISA systems using these two recombinant nucleoproteins have good sensitivity and specificity. These results demonstrate the usefulness of ELISA for diagnostics as well as ecological and serosurvey studies of Ebola and Marburg virus infection.

  13. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia

    DEFF Research Database (Denmark)

    Jamal, Syed M.; Belsham, Graham

    2015-01-01

    . Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysableprobe-based real time reverse transcription quantitative polymerase chain reaction (RTqPCR) assays were developed for specific detection...... and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnosticassays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of OPan...... and detected the RNA from the targetviruses with cycle threshold (CT) values comparable with those obtained with the serotype independentpan-FMDV diagnostic assays. No cross-reactivity was observed in the seassays between the heterotypic viruses circulating in the region. The assays reported here have higher...

  14. WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations

    Directory of Open Access Journals (Sweden)

    Assawamakin Anunchai

    2007-08-01

    Full Text Available Abstract Background Allele-specific (AS Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number

  15. Is the Comet Assay a Sensitive Procedure for Detecting Genotoxicity?

    OpenAIRE

    Sasaki, Yu F.; Satomi Kawaguchi; Takanori Nakamura; Gisho Honda; Ayumi Yamamoto

    2010-01-01

    Although the Comet assay, a procedure for quantitating DNA damage in mammalian cells, is considered sensitive, it has never been ascertained that its sensitivity is higher than the sensitivity of other genotoxicity assays in mammalian cells. To determine whether the power of the Comet assay to detect a low level of genotoxic potential is superior to those of other genotoxicity assays in mammalian cells, we compared the results of Comet assay with those of micronucleus test (MN test). WTK1 hum...

  16. Nanoparticle-based assay for the detection of virgin argan oil adulteration and its rapid quality evaluation.

    Science.gov (United States)

    Zougagh, M; Salghi, R; Dhair, S; Rios, A

    2011-03-01

    A new method, based on the formation of gold nanoparticles (AuNPs) and spectrophotometric analysis, is proposed to determine total phenolic acids in virgin argan oil samples. These compounds have reducibility due to the presence of the phenol group in their molecular structure, and a redox reaction occurs in the presence of HAuCl(4). The formation of AuNPs as a result of the redox reaction leading to colour changes can be visually observed, resulting in strong light signals that show absorption at 555 nm. As ferulic acid represents more than 95% of the total phenolic acid content of virgin argan oil, this compound was used as an adulteration marker to carry out the screening of samples for the evaluation of the authenticity of virgin argan oils. The analytical features of this screening method also allowed a low precision quantization of the quality of the product. Then, a reference HPLC-DAD/FD method was used to confirm the potential adulterated samples, as well as to provide a detailed quantitative analysis of the most representative phenolic compounds in the samples. The overall screening-confirmation strategy was validated by analysing pure virgin argan oil samples and argan oil samples adulterated with other commercial vegetable oils, demonstrating the reliability of the results. This approach is characterised by its simplicity, low cost, rapid information and responded to practical laboratories needs.

  17. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  18. Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples.

    Science.gov (United States)

    Brooks, B W; Devenish, J; Lutze-Wallace, C L; Milnes, D; Robertson, R H; Berlie-Surujballi, G

    2004-10-01

    A monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) was described and evaluated for use as a presumptive screening test for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. A total of 725 diagnostic samples collected in the field and submitted in Clark's transport enrichment medium (TEM) were analyzed. Cultural isolation of C. fetus was used as the standard for comparison. After incubation of the TEM vials for 4-5 days, fluid was removed for culture and ELISA testing. A sandwich ELISA format was used and the target antigen was C. fetus lipopolysaccharides (LPS). A rabbit anti-C. fetus polyclonal antiserum was used as the capture antibody. Murine monoclonal antibodies (MAbs) to C. fetus serotype A and B LPS core and O-polysaccharides and a goat anti-mouse horseradish peroxidase conjugate were used as detection antibodies. ELISA and culture results for the diagnostic samples were in complete agreement. Seven hundred and eight samples were negative by both tests. All 17 culture positive samples were positive by ELISA with a MAb to LPS core. The ELISA with MAbs to LPS O-polysaccharides detected all culture positive samples with the homologous C. fetus serotype. Sixty-six preputial wash samples from three known C. fetus culture positive bulls were also analyzed. Forty-nine of these samples were positive by both ELISA and culture, 16 were positive by ELISA only, and one was negative by both ELISA and culture. The results indicate that this ELISA is useful as a screening test for the detection of C. fetus in diagnostic samples. PMID:15381269

  19. Successful Application of a Direct Detection Slide-Based Sequential Phenotype/Genotype Assay Using Archived Bone Marrow Smears and Paraffin Embedded Tissue Sections

    OpenAIRE

    Bedell, Victoria; Forman, Stephen J.; Gaal, Karl; Pullarkat, Vinod; Weiss, Lawrence M.; Slovak, Marilyn L.

    2007-01-01

    Identification of genetic abnormalities in pathological samples is critical for accurate diagnosis, risk stratification, detection of minimal residual disease, and assessment of response to therapy. Interphase fluorescence in situ hybridization analysis is the standard cytogenetic assay used by many laboratories to detect specific clonal karyotypic aberrations in formalin-fixed, paraffin-embedded tissue. However, direct correlation with immunophenotype or morphology in individual cells is rar...

  20. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle

    NARCIS (Netherlands)

    Monti, G.E.; Frankena, K.; Engel, B.; Buist, W.; Tarabla, H.D.; Jong, de M.C.M.

    2005-01-01

    The objective of this study was to validate a new blocking enzyme-linked immunosorbent assay (ELISA) (designated M108 for milk and S108 for serum samples) for detecting bovine leukemia virus (BLV) infection in dairy cattle. Milk, serum, and ethylenediaminetetraacetic acid-blood samples were collecte

  1. Pistachio (Pistacia vera L.) Detection and Quantification Using a Murine Monoclonal Antibody-Based Direct Sandwich Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Liu, Changqi; Chhabra, Guneet S; Sathe, Shridhar K

    2015-10-21

    A commercially available direct sandwich enzyme-linked immunosorbent assay (ELISA) (BioFront Technologies, Tallahassee, FL, USA) using murine anti-pistachio monoclonal antibodies (mAbs) as capture and detection antibodies was evaluated. The assay was sensitive (limit of detection = 0.09 ± 0.02 ppm full fat pistachio, linear detection range = 0.5-36 ppm, 50% maximum signal concentration = 7.9 ± 0.7 ppm), reproducible (intra- and inter-assay variability < 24% CV), and rapid (post-extraction testing time ∼ 1.5 h). The target antigen was stable and detectable in whole pistachio seeds subjected to autoclaving (121 °C, 15 psi, 15, 30 min), blanching (100 °C, 5, 10 min), frying (191 °C, 1 min), microwaving (500, 1000 W, 3 min), and dry roasting (140 °C, 30 min; 168 °C, 12 min). No cross-reactivity was observed in 156 food matrices, each tested at 100,000 ppm, suggesting the ELISA to be pistachio specific. The pistachio recovery ranges for spiked (10 ppm) and incurred (10-50000 ppm) food matrices were 93.1-125.6% and 35.7-112.2%, respectively. The assay did not register any false-positive or -negative results among the tested commercial and laboratory prepared samples. PMID:26416205

  2. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  3. Pistachio (Pistacia vera L.) Detection and Quantification Using a Murine Monoclonal Antibody-Based Direct Sandwich Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Liu, Changqi; Chhabra, Guneet S; Sathe, Shridhar K

    2015-10-21

    A commercially available direct sandwich enzyme-linked immunosorbent assay (ELISA) (BioFront Technologies, Tallahassee, FL, USA) using murine anti-pistachio monoclonal antibodies (mAbs) as capture and detection antibodies was evaluated. The assay was sensitive (limit of detection = 0.09 ± 0.02 ppm full fat pistachio, linear detection range = 0.5-36 ppm, 50% maximum signal concentration = 7.9 ± 0.7 ppm), reproducible (intra- and inter-assay variability pistachio seeds subjected to autoclaving (121 °C, 15 psi, 15, 30 min), blanching (100 °C, 5, 10 min), frying (191 °C, 1 min), microwaving (500, 1000 W, 3 min), and dry roasting (140 °C, 30 min; 168 °C, 12 min). No cross-reactivity was observed in 156 food matrices, each tested at 100,000 ppm, suggesting the ELISA to be pistachio specific. The pistachio recovery ranges for spiked (10 ppm) and incurred (10-50000 ppm) food matrices were 93.1-125.6% and 35.7-112.2%, respectively. The assay did not register any false-positive or -negative results among the tested commercial and laboratory prepared samples.

  4. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins.

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    Full Text Available Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1 and streptococcal (SpeA and SpeC toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA, 3 pg/ml (SEB, 25 pg/ml (TSST-1, 6 ng/ml (SpeA, and 100 pg/ml (SpeC. These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.

  5. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus

    DEFF Research Database (Denmark)

    Hakhverdyan, M.; Rasmussen, Thomas Bruun; Thoren, P.;

    2006-01-01

    remained negative. The sensitivity of assay was five copies of viral genome equivalents. A key point of the assay is tolerance toward mutations in the probe region. Melting curve analysis directly after PCR, with determination of probe melting point, confirmed specific hybridisation of the SVDV strains....... Eight of twenty SVDV strains tested, revealed shifted melting points that indicated mutations in the probe region. All predicted mutations were confirmed by nucleotide sequencing. With the PriProET system there is a chance to identify phylogenetically divergent strains of SVDV, which may appear negative...... in other probe-based real-time PCR assays. At the same time, any difference in melting points may provide an indication of divergence in the probe region. The high sensitivity, specificity, and tolerance toward mutations in the probe region of the SVDV PriProET assay may improve the early and rapid...

  6. Two Types of Assays for Detecting Frog Sperm Chemoattraction

    OpenAIRE

    Burnett, Lindsey A.; Tholl, Nathan; Chandler, Douglas E.

    2011-01-01

    Sperm chemoattraction in invertebrates can be sufficiently robust that one can place a pipette containing the attractive peptide into a sperm suspension and microscopically visualize sperm accumulation around the pipette1. Sperm chemoattraction in vertebrates such as frogs, rodents and humans is more difficult to detect and requires quantitative assays. Such assays are of two major types - assays that quantitate sperm movement to a source of chemoattractant, so-called sperm accumulation assay...

  7. Nonradioactive PCR-enzyme-linked immunosorbent assay method for detection of human cytomegalovirus DNA.

    OpenAIRE

    Allen, R. D.; Pellett, P E; Stewart, J A; Koopmans, M

    1995-01-01

    We developed a rapid, sensitive, and specific PCR-based assay for human cytomegalovirus (HCMV). The assay includes primer and probe sequences derived from conserved HCMV nucleotide sequences and nonradioactive hybridization-confirmation. The assay detected between 10 and 100 viral genomes. All HCMV clinical isolates tested (39 of 39) gave positive reactions.

  8. Clinical Impact of Laboratory Implementation of Verigene BC-GN Microarray-Based Assay for Detection of Gram-Negative Bacteria in Positive Blood Cultures.

    Science.gov (United States)

    Walker, Tamar; Dumadag, Sandrea; Lee, Christine Jiyoun; Lee, Seung Heon; Bender, Jeffrey M; Cupo Abbott, Jennifer; She, Rosemary C

    2016-07-01

    Gram-negative bacteremia is highly fatal, and hospitalizations due to sepsis have been increasing worldwide. Molecular tests that supplement Gram stain results from positive blood cultures provide specific organism information to potentially guide therapy, but more clinical data on their real-world impact are still needed. We retrospectively reviewed cases of Gram-negative bacteremia in hospitalized patients over a 6-month period before (n = 98) and over a 6-month period after (n = 97) the implementation of a microarray-based early identification and resistance marker detection system (Verigene BC-GN; Nanosphere) while antimicrobial stewardship practices remained constant. Patient demographics, time to organism identification, time to effective antimicrobial therapy, and other key clinical parameters were compared. The two groups did not differ statistically with regard to comorbid conditions, sources of bacteremia, or numbers of intensive care unit (ICU) admissions, active use of immunosuppressive therapy, neutropenia, or bacteremia due to multidrug-resistant organisms. The BC-GN panel yielded an identification in 87% of Gram-negative cultures and was accurate in 95/97 (98%) of the cases compared to results using conventional culture. Organism identifications were achieved more quickly post-microarray implementation (mean, 10.9 h versus 37.9 h; P < 0.001). Length of ICU stay, 30-day mortality, and mortality associated with multidrug-resistant organisms were significantly lower in the postintervention group (P < 0.05). More rapid implementation of effective therapy was statistically significant for postintervention cases of extended-spectrum beta-lactamase-producing organisms (P = 0.049) but not overall (P = 0.12). The Verigene BC-GN assay is a valuable addition for the early identification of Gram-negative organisms that cause bloodstream infections and can significantly impact patient care, particularly when resistance markers are detected. PMID:27098961

  9. Development of an Enzyme-Linked Immunosorbent Assay Based on Fusion VP2332-452 Antigen for Detecting Antibodies against Aleutian Mink Disease Virus.

    Science.gov (United States)

    Chen, Xiaowei; Song, Cailing; Liu, Yun; Qu, Liandong; Liu, Dafei; Zhang, Yun; Liu, Ming

    2016-02-01

    For detection of Aleutian mink disease virus (AMDV) antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant VP2332-452 protein as an antigen. Counterimmunoelectrophoresis (CIEP) was used as a reference test to compare the results of the ELISA and Western blotting (WB); the specificity and sensitivity of the VP2332-452 ELISA were 97.9% and 97.3%, respectively, which were higher than those of WB. Therefore, this VP2332-452 ELISA may be a preferable method for detecting antibodies against AMDV.

  10. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Directory of Open Access Journals (Sweden)

    Wan Zhixiang

    2005-07-01

    Full Text Available Abstract Background Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR-based assays and enzyme-linked immunosorbent assays (ELISA are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS method was applied to detect HBV and HCV antibodies rapidly and simultaneously. Methods Chemically modified glass slides were used as solid supports (named chip, on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. Results We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05 existed between the results determined by our assay and ELISA respectively. Conclusion

  11. PCR assay based on DNA coding for 16S rRNA for detection and identification of mycobacteria in clinical samples.

    Science.gov (United States)

    Kox, L F; van Leeuwen, J; Knijper, S; Jansen, H M; Kolk, A H

    1995-01-01

    A PCR and a reverse cross blot hybridization assay were developed for the detection and identification of mycobacteria in clinical samples. The PCR amplifies a part of the DNA coding for 16S rRNA with a set of primers that is specific for the genus Mycobacterium and that flanks species-specific sequences within the genes coding for 16S rRNA. The PCR product is analyzed in a reverse cross blot hybridization assay with probes specific for M. tuberculosis complex (pTub1), M. avium (pAvi3), M. intracellulare (pInt5 and pInt7), M. kansasii complex-M. scrofulaceum complex (pKan1), M. xenopi (pXen1), M. fortuitum (pFor1), M. smegmatis (pSme1), and Mycobacterium spp. (pMyc5a). The PCR assay can detect 10 fg of DNA, the equivalent of two mycobacteria. The specificities of the probes were tested with 108 mycobacterial strains (33 species) and 31 nonmycobacterial strains (of 17 genera). The probes pAvi3, pInt5, pInt7, pKan1, pXen1, and pMyc5a were specific. With probes pTub1, pFor1, and pSme1, slight cross hybridization occurred. However, the mycobacterial strains from which the cross-hybridizing PCR products were derived belonged to nonpathogenic or nonopportunistic species which do not occur in clinical samples. The test was used on 31 different clinical specimens obtained from patients suspected of having mycobacterial disease, including a patient with a double mycobacterial infection. The samples included sputum, bronchoalveolar lavage, tissue biopsy samples, cerebrospinal fluid, pus, peritoneal fluid, pleural fluid, and blood. The results of the PCR assay agreed with those of conventional identification methods or with clinical data, showing that the test can be used for the direct and rapid detection and identification of mycobacteria in clinical samples. PMID:8586707

  12. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    Science.gov (United States)

    Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  13. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    Science.gov (United States)

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  14. Development of Chemiluminescent Lateral Flow Assay for the Detection of Nucleic Acids

    OpenAIRE

    Nugen, Sam R.; Catherine Fill; Yuhong Wang

    2012-01-01

    Rapid, sensitive detection methods are of utmost importance for the identification of pathogens related to health and safety. Herein we report the development of a nucleic acid sequence-based lateral flow assay which achieves a low limit of detection using chemiluminescence. On-membrane enzymatic signal amplification is used to reduce the limit of detection to the sub-femtomol level. To demonstrate this assay, we detected synthetic nucleic acid sequences representative of Trypanosoma mRNA, th...

  15. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  16. Magnetic Barcode Assay for Genetic Detection of Pathogens

    Science.gov (United States)

    Liong, Monty; Hoang, Anh N.; Chung, Jaehoon; Gural, Nil; Ford, Christopher B.; Min, Changwook; Shah, Rupal R.; Ahmad, Rushdy; Fernandez-Suarez, Marta; Fortune, Sarah M.; Toner, Mehmet; Lee, Hakho; Weissleder, Ralph

    2013-01-01

    The task of rapidly identifying patients infected with Mycobacterium tuberculosis (MTB) in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids based on a magnetic barcoding strategy. PCR-amplified mycobacterial genes are sequence-specifically captured on microspheres, labeled by magnetic nanoprobes, and detected by nuclear magnetic resonance. All components are integrated into a single, small fluidic cartridge for streamlined on-chip operation. We use this platform to detect MTB and identify drug-resistance strains from mechanically processed sputum samples within 2.5 hours. The specificity of the assay is confirmed by a panel of clinically relevant non-MTB bacteria, and the clinical utility is demonstrated by the measurements in MTB-positive patient specimens. Combined with portable systems, the magnetic barcode assay holds promise to become a sensitive, high-throughput, and low-cost platform for point-of-care diagnostics. PMID:23612293

  17. Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay.

    Science.gov (United States)

    Liu, Wenli; Zhang, Lanwei; Yi, Huaxi; Shi, John; Xue, Chaohui; Li, Hongbo; Jiao, Yuehua; Shigwedha, Nditange; Du, Ming; Han, Xue

    2014-05-01

    In the present study, a YGNGV-motif-based assay was developed and applied. Given that there is an increasing demand for natural preservatives, we set out to obtain lactic acid bacteria (LAB) that produce bacteriocins against Gram-positive and Gram-negative bacteria. We here isolated 123 LAB strains from 5 types of traditional Chinese fermented food and screened them for the production of bacteriocins using the agar well diffusion assay (AWDA). Then, to acquire LAB producing class IIa bacteriocins, we used a YGNGV-motif-based assay that was based on 14 degenerate primers matching all class IIa bacteriocin-encoding genes currently deposited in NCBI. Eight of the LAB strains identified by AWDA could inhibit Gram-positive and Gram-negative bacteria; 5 of these were YGNGV-amplicon positive. Among these 5 isolates, amplicons from 2 strains (Y31 and Y33) matched class IIa bacteriocin genes. Strain Y31 demonstrated the highest inhibitory activity and the best match to a class IIa bacteriocin gene in NCBI, and was identified as Enterococcus faecium. The bacteriocin from Enterococcus avium Y33 was 100% identical to enterocin P. Both of these strains produced bacteriocins with strong antimicrobial activity against Listeria monocytogenes, Escherichia coli, and Bacillus subtilis, hence these bacteriocins hold promise as potential bio-preservatives in the food industry. These findings also indicated that the YGNGV-motif-based assay used in this study could identify novel class IIa bacteriocinogenic LAB, rapidly and specifically, saving time and labour by by-passing multiple separation and purification steps.

  18. Development of polyclonal antibody-based indirect enzyme-linked immunosorbent assay for the detection of Alicyclobacillus strains in apple juice.

    Science.gov (United States)

    Wang, Zhouli; Yue, Tianli; Yuan, Yahong; Cai, Rui; Guo, Caixia; Wang, Xin; Niu, Chen

    2012-11-01

    A sort of specific polyclonal anti-Alicyclobacillus antibody was generated by immunizing New Zealand white rabbits, and a sensitive indirect enzyme-linked immunosorbent assay (ELISA) was developed for Alicyclobacillus detection in apple juice. A set of experimental parameters such as concentration of antigen, dilutions of the antibody and goat anti-rabbit IgG-horseradish peroxidase conjugate, selection of the blocking reagent, incubation time, and temperature was optimized. The cross-reactivity of the antibody was evaluated by ELISA and the result was consistent with Western blot analysis. The detection limit of the ELISA was about 10(5) colony forming units (CFU)/mL in apple juice samples. Samples were detected by ELISA and conventional culture method, and the ELISA results gave a good agreement with the results obtained by plating on Alicyclobacillus acidoterrestris medium agar. ELISA takes a total detection time of 6 to 7 h, which is less than the time of conventional techniques requiring more than 24 to 48 h. These results indicated that the established ELISA was a potential useful analytical method for detection of Alicyclobacillus in apple juice.

  19. Detection of irradiated onion by means of the comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Alvarez, Damaris L.; Prieto Miranda, Enrique Fco.; Carro Palacio, Sandra [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear. (CEADEN), Ciudad de La Habana (Cuba)]. E-mail: damaris@ceaden.edu.cu; efprieto@ceaden.edu.cu; Iglesia Enriquez, Isora [Instituto de Investigacion para la Industria Alimenticia (IIIA), Ciudad de La Habana (Cuba)

    2007-07-01

    The ionizing radiations are used as a harmless alternative treatment that it substitutes the employment of chemical treatments, which after their application in the food products can remain residuals not desired that they come to be carcinogenic. With the food irradiation is eliminated microorganisms and the storage time is prolonged, which produces benefits for the Food Industry and the consumers. In many countries the search of sensitive detecting methods of irradiated foods is promoted by the necessity of the assurance of the consumption of foods with nutritional quality and to test directly the radiation processing, for which several techniques have been developed, these are based on the changes that induce the ionizing radiations in the food products. A recommended method is the Comet Assay of DNA, it is approved by the European Committee of Standardization (EN 13784). The DNA molecule is very sensitive to gamma radiations even at low radiation dose, where the modifications produced in the molecule can be monitored for this analytical technique well-known as Comet Assay of DNA or Single Cell Gel Electrophoresis. The objective of the present paper was to evaluate the modifications of the DNA molecule of irradiated onions with the Comet Assay for several dose values, the onions were conserved at environment and refrigeration temperatures. The samples were irradiated in a self-shielding irradiator with {sup 60}Co source, dose rate of 20.45 Gy/min and absorbed dose values of 0.5; 0.6; 0.8 and 1.0 kGy. This detection method demonstrates to be one sensitive and quick technique for the qualitative detection of irradiated onions. (author)

  20. Detection of irradiated onion by means of the comet assay

    International Nuclear Information System (INIS)

    The ionizing radiations are used as a harmless alternative treatment that it substitutes the employment of chemical treatments, which after their application in the food products can remain residuals not desired that they come to be carcinogenic. With the food irradiation is eliminated microorganisms and the storage time is prolonged, which produces benefits for the Food Industry and the consumers. In many countries the search of sensitive detecting methods of irradiated foods is promoted by the necessity of the assurance of the consumption of foods with nutritional quality and to test directly the radiation processing, for which several techniques have been developed, these are based on the changes that induce the ionizing radiations in the food products. A recommended method is the Comet Assay of DNA, it is approved by the European Committee of Standardization (EN 13784). The DNA molecule is very sensitive to gamma radiations even at low radiation dose, where the modifications produced in the molecule can be monitored for this analytical technique well-known as Comet Assay of DNA or Single Cell Gel Electrophoresis. The objective of the present paper was to evaluate the modifications of the DNA molecule of irradiated onions with the Comet Assay for several dose values, the onions were conserved at environment and refrigeration temperatures. The samples were irradiated in a self-shielding irradiator with 60Co source, dose rate of 20.45 Gy/min and absorbed dose values of 0.5; 0.6; 0.8 and 1.0 kGy. This detection method demonstrates to be one sensitive and quick technique for the qualitative detection of irradiated onions. (author)

  1. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia.

    Directory of Open Access Journals (Sweden)

    Syed M Jamal

    Full Text Available Rapid and accurate diagnosis of foot-and-mouth disease (FMD and virus serotyping are of paramount importance for control of this disease in endemic areas where vaccination is practiced. Ideally this virus characterization should be achieved without the need for virus amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVs in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysable probe-based real time reverse transcription quantitative polymerase chain reaction (RT-qPCR assays were developed for specific detection and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnostic assays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-PanAsia, A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08. In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 sublineage were also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target viruses with cycle threshold (CT values comparable with those obtained with the serotype-independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these assays between the heterotypic viruses circulating in the region. The assays reported here have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95% CI = 81.4-100%] for serotype A positive samples and specificity (100% each for serotypes O, A and Asia-1 positive samples for the viruses currently circulating in West Eurasia compared to the serotyping assays reported earlier. Comparisons of the sequences of the primers and probes used in these assays and the corresponding regions of the circulating viruses provided explanations for

  2. ASSAYS FOR DETECTION OF TELOMERASE ACTIVITY

    OpenAIRE

    Skvortsov, D.; Zvereva, M.; Shpanchenko, O.; Dontsova, O.

    2011-01-01

    Progressive loss of the telomeric ends of chromosomes caused by the semi-conservative mechanism of DNA replication is an important timing mechanism which controls the number of cells doubling. Telomerase is an enzyme which elongates one chain of the telomeric DNA and compensates for its shortening during replication. Therefore, telomerase activity serves as a proliferation marker. Telomerase activity is not detected in most somatic cells, with the exception of embryonic tissues, stem cells, a...

  3. Advances in Assays and Analytical Approaches for Botulinum Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.; Bruckner-Lea, Cindy J.; Marks, James D.

    2010-08-04

    Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.

  4. A rapid and highly sensitive protocol for the detection of Escherichia coli O157:H7 based on immunochromatography assay combined with the enrichment technique of immunomagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Qi H

    2011-11-01

    Full Text Available Hui Qi1, Zhen Zhong1, Han-Xin Zhou1, Chun-Yan Deng1, Hai Zhu2, Jin-Feng Li2, Xi-Li Wang2, Fu-Rong Li1,31Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People's Hospital, Jinan University, 2Shenzhen Bioeasy Biotechnologies Co, Ltd, 3Shenzhen Institute of Gerontology, Shenzhen, People's Republic of ChinaBackground: Escherichia coli O157:H7 (E. coli O157:H7 is an important pathogenic bacterium that threatens human health. A rapid, simple, highly sensitive, and specific method for the detection of E. coli O157:H7 is necessary.Methods: In the present study, immunomagnetic nanoparticles (IMPs were prepared with nanopure iron as the core, coated with E. coli O157:H7 polyclonal antibodies. These IMPs were used in combination with immunochromatographic assay (ICA and used to establish highly sensitive and rapid kits (IMPs+ICA to detect E. coli O157:H7. The kits were then used to detect E. coli O157:H7 in 150 food samples and were compared with conventional ICA to evaluate their efficacy.Results: The average diameter of IMPs was 56 nm and the amount of adsorbed antibodies was 106.0 µg/mg. The sensitivity of ICA and IMPs+ICA was 105 colony-forming units/mL and 103 CFUs/mL, respectively, for purified E. coli O157:H7 solution. The sensitivity of IMPs+ICA was increased by two orders, and its specificity was similar to ICA.Conclusion: The kits have the potential to offer important social and economic benefits in the screening, monitoring, and control of food safety.Keywords: colloidal gold, immunomagnetic nanoparticles, Escherichia coli O157:H7, immunochromatographic assay

  5. Reporter Gene Assay for Detection of Shellfish Toxins

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG YANG; MIN-YI WU; JIE-SHENG LIU; XI-CHUN PENG; HONG-YE LI

    2009-01-01

    Objective To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the existing methods including HPLC and bioassay are inappropriate for identifying HAB toxins which poses a serious problem on human health and shellfish industry. Methods A reporter plasmid pEGFP-c-fos containing c-fos promoter and EGFP was constructed and transfected into T24 cells using LipofectAMINE 2000. Positive transfectants were screened by G418 to produce a pEGFP-c-fos-T24 cell line. After addition of increasing neurotoxic shellfish poison (NSP) or GTX2,3, primary components of paralytic shellfish poison (PSP), changes in expression of EGFP in the cell line were observed under a laser scanning confocal microscope and quantified with Image-pro Plus software. Results Dose-dependent changes in the intensity of green fluorescence were observed for NSP in a range from 0 to 10 ng/mL and for GTX 2,3 from 0 to 16 ng/mL. Conclusion pEGFP-c-fos-T24 can be applied in detecting HAB toxins, and cell-based assay can be used as an alternative for screening sodium channel-specific HAB toxins.

  6. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Science.gov (United States)

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  7. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten;

    2010-01-01

    glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene......The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...

  8. Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Wei, Bo; Li, Fang; Yang, Huicui; Yu, Lei; Zhao, Kaihong; Zhou, Rui; Hu, Yonggang

    2012-05-15

    In this paper, a simple, easily-operated and enzyme-amplified fluorescence immunoassay method using magnetic particles for the detection of antibody against Actinobacillus pleuropneumoniae (APP) has been presented. The A protein of APP Repeats-in-Toxin IV (ApxIVA) with high specificity to the APP species was immobilized onto the magnetic bead surfaces. Horseradish peroxidase (HRP), which can catalyze the substrate 4-hydroxyphenylacetic acid (p-HPA), generating fluorescent bi-p, p'-hydroxyphenylacetic acid (DBDA), was selected as an enzymatic-amplified tracer. The ApxIVA antibody was detected for the presence of APP infection by measuring the fluorescence intensity of DBDA. Under optimal conditions, the calibration plot obtained for standard positive serum was approximately linear within the dilution range 1:160-1:5120. The limit of detection (LOD) for the assay was 1:10240, considerably lower than that of ApxIVA-ELISA (1:320) (S/N=3). A series of repeatability measurements of using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation (RSD) of 4.8% (n=11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor yielded an efficiency of 89.7%, sensitivity of 90.9% and specificity of 89.3% compared with ApxIVA-ELISA.

  9. Development of a nanogold-based immunochromatographic assay for detection of morphine in urine using the Amor-HK16 monoclonal antibody.

    Science.gov (United States)

    Dehghannezhad, Ardeshir; Paknejad, Maliheh; Rasaee, Mohammad Javad; Omidfar, Kobra; Seyyed Ebrahimi, Shadi Sadat; Ghahremani, Hossein

    2012-12-01

    A simple, rapid competitive immunochromatography (ICG) strip test was developed to detect morphine in urine samples using a monoclonal antibody produced in-house and conjugated to gold nanoparticles. Hybridoma cells were cultured and the Amor-HK16 monoclonal antibody against morphine was obtained from the supernatant after purification by salting out and passing through a Protein G-Agarose affinity column. Morphine was obtained from morphine sulfate and a C6-hemisuccinate derivative of morphine was prepared, conjugated to bovine serum albumin, and immobilized to a nitrocellulose membrane as the test line. Goat anti-mouse antibody was used as a binder in the control line in the detection zone of the strip. Colloidal gold particles of diameter approximately 20 nm were prepared and conjugated to the monoclonal antibody. The detection limit of the test strip was found to be 2000 ng/mL of morphine in urine samples. Reliability was determined by performing the ICG test on 103 urine samples and comparing the results with those obtained by thin-layer chromatography. The sensitivity of the test was 100%, and the analysis time for the assay was approximately 5 min. The new ICG method was adequately sensitive and accurate for the rapid screening of morphine in urine. PMID:23244319

  10. Development and evaluation of a one-step SYBR-Green I-based real-time RT-PCR assay for the detection and quantification of Chikungunya virus in human, monkey and mosquito samples.

    Science.gov (United States)

    Ummul Haninah, A; Vasan, S S; Ravindran, T; Chandru, A; Lee, H L; Shamala Devi, S

    2010-12-01

    This paper reports the development of a one-step SYBR-Green I-based realtime RT-PCR assay for the detection and quantification of Chikungunya virus (CHIKV) in human, monkey and mosquito samples by targeting the E1 structural gene. A preliminary evaluation of this assay has been successfully completed using 71 samples, consisting of a panel of negative control sera, sera from healthy individuals, sera from patients with acute disease from which CHIKV had been isolated, as well as monkey sera and adult mosquito samples obtained during the chikungunya fever outbreak in Malaysia in 2008. The assay was found to be 100-fold more sensitive than the conventional RT-PCR with a detection limit of 4.12x10(0) RNA copies/μl. The specificity of the assay was tested against other related viruses such as Dengue (serotypes 1-4), Japanese encephalitis, Herpes Simplex, Parainfluenza, Sindbis, Ross River, Yellow fever and West Nile viruses. The sensitivity, specificity and efficiency of this assay were 100%, 100% and 96.8% respectively. This study on early diagnostics is of importance to all endemic countries, especially Malaysia, which has been facing increasingly frequent and bigger outbreaks due to this virus since 1999. PMID:21399603

  11. Sensitive Detection and Simultaneous Discrimination of Influenza A and B Viruses in Nasopharyngeal Swabs in a Single Assay Using Next-Generation Sequencing-Based Diagnostics

    Science.gov (United States)

    Liu, Jikun; Vemula, Sai Vikram; Lin, Corinna; Tan, Jiying; Ragupathy, Viswanath; Wang, Xue; Mbondji-wonje, Christelle; Ye, Zhiping; Landry, Marie L.; Hewlett, Indira

    2016-01-01

    Reassortment of 2009 (H1N1) pandemic influenza virus (pdH1N1) with other strains may produce more virulent and pathogenic forms, detection and their rapid characterization is critical. In this study, we reported a “one-size-fits-all” approach using a next-generation sequencing (NGS) detection platform to extensively identify influenza viral genomes for diagnosis and determination of novel virulence and drug resistance markers. A de novo module and other bioinformatics tools were used to generate contiguous sequence and identify influenza types/subtypes. Of 162 archived influenza-positive patient specimens, 161(99.4%) were positive for either influenza A or B viruses determined using the NGS assay. Among these, 135(83.3%) were A(H3N2), 14(8.6%) were A(pdH1N1), 2(1.2%) were A(H3N2) and A(pdH1N1) virus co-infections and 10(6.2%) were influenza B viruses. Of the influenza A viruses, 66.7% of A(H3N2) viruses tested had a E627K mutation in the PB2 protein, and 87.8% of the influenza A viruses contained the S31N mutation in the M2 protein. Further studies demonstrated that the NGS assay could achieve a high level of sensitivity and reveal adequate genetic information for final laboratory confirmation. The current diagnostic platform allows for simultaneous identification of a broad range of influenza viruses, monitoring emerging influenza strains with pandemic potential that facilitating diagnostics and antiviral treatment in the clinical setting and protection of the public health. PMID:27658193

  12. Emerging Technologies and Generic Assays for the Detection of Anti-Drug Antibodies

    Science.gov (United States)

    Elango, Chinnasamy

    2016-01-01

    Anti-drug antibodies induced by biologic therapeutics often impact drug pharmacokinetics, pharmacodynamics response, clinical efficacy, and patient safety. It is critical to assess the immunogenicity risk of potential biotherapeutics in producing neutralizing and nonneutralizing anti-drug antibodies, especially in clinical phases of drug development. Different assay methodologies have been used to detect all anti-drug antibodies, including ELISA, radioimmunoassay, surface plasmon resonance, and electrochemiluminescence-based technologies. The most commonly used method is a bridging assay, performed in an ELISA or on the Meso Scale Discovery platform. In this report, we aim to review the emerging new assay technologies that can complement or address challenges associated with the bridging assay format in screening and confirmation of ADAs. We also summarize generic anti-drug antibody assays that do not require drug-specific reagents for nonclinical studies. These generic assays significantly reduce assay development efforts and, therefore, shorten the assay readiness timeline. PMID:27556048

  13. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  14. Development of an enzyme-linked immunosorbent assay method to detect mustard protein in mustard seed oil

    NARCIS (Netherlands)

    Koppelman, S.J.; Vlooswijk, R.; Bottger, G.; Duijn, G. van; Schaft, P. van der; Dekker, J.; Bemgen, H. van

    2007-01-01

    An enzyme-linked immunosorbent assay for the detection of mustard protein was developed. The assay is based on a polyclonal antiserum directed against a mixture of mustard proteins raised in rabbits. The assay has a detection limit of 1.5 ppm (milligrams per kilogram) and is suitable for the detecti

  15. Development of a new procedure based on the energy charge measurement using ATP bioluminescence assay for the detection of living mould from graphic documents.

    Science.gov (United States)

    Rakotonirainy, Malalanirina Sylvia; Arnold, Sylvia

    2008-01-01

    Fungal contamination is a major cause of deterioration in libraries and archives. Curators and conservators increasingly need rapid microbiological analyses. This paper presents a rapid detection method for the fungal contaminants on documents. A previous study showed that the calculation of energy charge, using bioluminescence ATP assays, provides a useful indicator to determinate the viability of fungal strains. We argue that this sensitive and time-saving method is better than traditional culture techniques. However, the procedure needs to be modified to make it usable for lay persons. An improved and simplified protocol is proposed here for the extraction of adenylate nucleotides (AN) from fungal spores and for their measurements. Our new procedure can detect the existence of viable fungal strains on documents, presenting suspect spots within minutes. The extraction is performed by filtration with DMSO-TE solution as extractant. The different step of the measurement of AN content is carried out successively in a single test tube instead of the three tubes necessary in the initial method. The new procedure was tested on 12 strains among those most frequently found in archives and libraries and validated on swab samples from real documents.

  16. Enzyme-Linked Immunosorbent Assay (Elisa Based Detection of Antibodies to Mycoplasma bovis in Cattle Naturally Infected with Haemoparasites in Institutional farms in Sokoto State, Nigeria

    Directory of Open Access Journals (Sweden)

    F.M. Tambuwal

    2011-01-01

    Full Text Available This was a cross-sectional study involving cattle from four (4 institutional farms (Prison farm, Livestock Investigation and Breeding Centre (LIBC, Usmanu Danfodiyo University Teaching and Research (UDUTRF and Kebbe Cattle Ranch (KCR in Sokoto state, Nigeria. A total of 62 cattle comprising 49 females and 13 males were randomly selected and bled from a total population of 205. The cattle sampled were local breeds comprising Gudali, Rahaji, White-Fulani and their crosses. They were aged 1-10 years and are managed semi-intensively. The enzyme-linked immunosorbent assay was used for the detection M. bovis antibody. Of the 62 cattle screened, M. bovis antibody was detected in 41(66%. Also, 24 out of the 41 M. bovis positive cattle were found infected with haemoparasites. Similarly, 11 out of the 21 serologically negative cattle were infected with one or more haemoparasites. Seven (17%, 3 (7.3% and 7 (17% of the M. bovis positive cattle were infected with Babesia bigemina, Anaplasma marginale, and or B. bigemina and A. marginale, respectively. In the overall, 27 of the 62 screened cattle were infected with one of blood parasites or a combination of both. However, there is no significant statistical relationship (p> 0.05 between the number of cattle positive for M. bovis and the presence of haemoparasites among the examined cattle.

  17. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia.

    Science.gov (United States)

    Jamal, Wafaa; Al Roomi, Ebtehal; AbdulAziz, Lubna R; Rotimi, Vincent O

    2014-07-01

    Health care-associated pneumonia due to multidrug-resistant organisms represents a major therapeutic challenge. Unfortunately, treatment is dependent on empirical therapy, which often leads to improper and inadequate antimicrobial therapy. A rapid multiplex PCR-based Unyvero pneumonia application (UPA) assay that assists in timely decision-making has recently become available. In this study, we evaluated the performance of UPA in detecting etiological pathogens and resistance markers in patients with nosocomial pneumonia (NP). The impact of this assay on the management of severe nosocomial pneumonia was also assessed. Appropriate specimens were processed by UPA according to the manufacturer's protocol in parallel with conventional culture methods. Of the 56 patients recruited into the study, 49 (87.5%) were evaluable. Of these, 27 (55.1%) and 4 (8.2%) harbored multiple bacteria by the PCR assay and conventional culture, respectively. A single pathogen was detected in 8 (16.3%) and 4 (8.2%) patients, respectively. Thirteen different genes were detected from 38 patients, including the ermB gene (40.8%), the blaOXA-51-like gene (28.6%), the sul1 (28.6%) and int1 (20.4%) integrase genes, and the mecA and blaCTX-M genes (12.3% each). The time from sample testing to results was 4 h versus 48 to 96 h by UPA and culture, respectively. Initial empirical treatment was changed within 5 to 6 h in 33 (67.3%) patients based on the availability of UPA results. Thirty (62.2%) of the patients improved clinically. A total of 3 (6.1%) patients died, mainly from their comorbidities. These data demonstrate the potential of a multiplex PCR-based assay for accurate and timely detection of etiological agents of NP, multidrug-resistant (MDR) organisms, and resistance markers, which can guide clinicians in making early antibiotic adjustments.

  18. A Comparison of In-House Real-Time LAMP Assays with a Commercial Assay for the Detection of Pathogenic Bacteria

    OpenAIRE

    Deguo Wang; Yongzhen Wang; Fugang Xiao; Weiyun Guo; Yongqing Zhang; Aiping Wang; Yanhong Liu

    2015-01-01

    Molecular detection of bacterial pathogens based on LAMP methods is a faster and simpler approach than conventional culture methods. Although different LAMP-based methods for pathogenic bacterial detection are available, a systematic comparison of these different LAMP assays has not been performed. In this paper, we compared 12 in-house real-time LAMP assays with a commercialized kit (Isothermal Master Mix) for the detection of Listeria monocytogenes, Salmonella spp, Staphylococcus aureus, E...

  19. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-08-01

    Full Text Available A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA was established for Borrelia burgdorferi (B. burgdorferi detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients’ serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.

  20. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    Science.gov (United States)

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  1. Comparison of Two Rapid Diagnostic Assays for Detection of Immunoglobulin M Antibodies to Dengue Virus

    OpenAIRE

    Wu, Shuenn-Jue L.; Paxton, Helene; Hanson, Barbara; Kung, Cheryl G.; Chen, Timothy B.; Rossi, Cindy; David W Vaughn; Murphy, Gerald S.; Hayes, Curtis G.

    2000-01-01

    Two easy-to-use commercial diagnostic assays, a dipstick enzyme-linked immunosorbent assay (ELISA) (Integrated Diagnostics, Baltimore, Md.) and an immunochromatographic card assay (PanBio, Brisbane, Australia) were evaluated for detection of immunoglobulin M (IgM) antibody to dengue virus with an in-house IgM antibody capture microplate ELISA as a reference assay. The dipstick ELISA was based on the indirect-ELISA format using dengue 2 virus as the only antigen and enzyme-labeled goat anti-hu...

  2. Detection of Shiga Toxins by Lateral Flow Assay

    OpenAIRE

    Ching, Kathryn H; Xiaohua He; Stanker, Larry H.; Lin, Alice V.; Jeffery A. McGarvey; Robert Hnasko

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) produce shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript, we report the development of a colorimetric lateral flow assay (LFA) for the rapid detection of Stxs in <10 min using a pair of monoclonal antibodies that bind epitopes common to Stx1 and six Stx2 variants...

  3. 鸭坦布苏病毒TaqMan荧光定量PCR方法的优化%Optimization of TaqMan-based real-time PCR assay for detection of duck Tembusu virus

    Institute of Scientific and Technical Information of China (English)

    彭珊; 闫丽萍; 李国新; 李雪松; 滕巧泱; 肖亚莉; 何文兴; 李泽君

    2013-01-01

    To establish a sensitivity method for the detection of the newly emerged duck Tembusu virus (DTMUV), an optimized TaqMan real-time PCR assay was developed and by using a specific reverse transcription primer and an optimized reaction buffer based previous TaqMan real-time PCR assay. The detection limit of the optimized real-time PCR assay was 10 copies, the sensitivity of this assay was 5 times than non-optimized real-time PCR assay, and sensitive was 100 times than the conventional PCR. For the DTMUV, the detection limit of the optimized assay was 0.01 ELD50,. The reproducibility of this optimized real-time PCR assay was verified better than non-optimized assay using inter- and intra- assay. The specificity of the real-time PCR assay were confirmed using RNAs and DNAs extracted from other duck viruses. The reliability of this real-time PCR assay was confirmed in 57 of the 60 tissue samples collected from clinical suspected DTMUV infected ducks, the positive coincidence rate was 100% with the conventional PCR and non-optimized real-time PCR. The results reveal that the optimized real-time PCR assay might be a useful diagnostic method for epidemiologically investigating the emerged DTMUV.%为提高鸭坦布苏病毒(DTMUV) TaqMan荧光定量PCR方法的敏感性和简化反应条件,本研究在前期建立的TaqMan荧光定量PCR方法的基础上,设计一条特异性的反转录引物,优化反应体系,建立了简便、快速、敏感的TaqMan荧光定量PCR方法.该荧光定量PCR方法最低检测限为10拷贝,敏感性是未优化的荧光定量PCR方法的5倍、是普通PCR方法的100倍,并且该方法对DTMUV的最低检测限是0.01半数鸡胚致死量(ELD50).通过批内和批间实验的变异系数表明优化的荧光定量PCR方法的重复性比未优化的荧光定量PCR方法好.通过该优化的荧光定量PCR方法检测其它常见的鸭病病毒的DNAs或RNAs,证明了该方法特异性好.对现地60份疑似DTMUV

  4. A single-nucleotide-polymorphism-based genotyping assay for simultaneous detection of different carbendazim-resistant genotypes in the Fusarium graminearum species complex

    Science.gov (United States)

    Zhang, Hao; Brankovics, Balázs; van der Lee, Theo A.J.; Waalwijk, Cees; van Diepeningen, Anne A.D.; Xu, Jin; Xu, Jingsheng

    2016-01-01

    The occurrence resistance to methyl benzimidazole carbamates (MBC)-fungicides in the Fusarium graminearum species complex (FGSC) is becoming a serious problem in the control of Fusarium head blight in China. The resistance is caused by point mutations in the β2-tubulingene. So far, five resistant genotypes (F167Y, E198Q, E198L, E198K and F200Y) have been reported in the field. To establish a high-throughput method for rapid detection of all the five mutations simultaneously, an efficient single-nucleotide-polymorphism-based genotyping method was developed based on the Luminex xMAP system. One pair of amplification primers and five allele specific primer extension probes were designed and optimized to specially distinguish the different genotypes within one single reaction. This method has good extensibility and can be combined with previous reported probes to form a highly integrated tool for species, trichothecene chemotype and MBC resistance detection. Using this method, carbendazim resistant FGSC isolates from Jiangsu, Anhui and Sichuan Province in China were identified. High and moderate frequencies of resistance were observed in Jiangsu and Anhui Province, respectively. Carbendazim resistance in F. asiaticum is only observed in the 3ADON genotype. Overall, our method proved to be useful for early detection of MBC resistance in the field and the result aids in the choice of fungicide type. PMID:27812414

  5. Development of Chemiluminescent Lateral Flow Assay for the Detection of Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Sam R. Nugen

    2012-01-01

    Full Text Available Rapid, sensitive detection methods are of utmost importance for the identification of pathogens related to health and safety. Herein we report the development of a nucleic acid sequence-based lateral flow assay which achieves a low limit of detection using chemiluminescence. On-membrane enzymatic signal amplification is used to reduce the limit of detection to the sub-femtomol level. To demonstrate this assay, we detected synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, with relevance in human and animal health in sub-Saharan Africa. The intensity of the chemiluminescent signal was evaluated by using a charge-coupled device as well as a microtiter plate reader. We demonstrated that our lateral flow chemiluminescent assay has a very low limit of detection and is easy to use. The limit of detection was determined to be 0.5 fmols of nucleic acid target.

  6. [[Virus-like particle-based immunoglobulin M capture enzyme-linked immunosorbent assay for the detection of IgM antibodies against Chikungunya virus].

    Science.gov (United States)

    Li, Jian-dong; Zhang, Quan-fu; Zhang, Shuo; Li, Chuan; Liu, Qin-zhi; Liang, Mi-fang; Li, De-xin

    2014-11-01

    To establish a MacELISA method for the detection of IgM antibodies against Chikungunya virus (CHIKV), we prepared virus like particle (VLP) antigens of CHIKV using the whole structural protein C-E3-E2-6K-E1 encoding gene with a baculovirus expression system in Sf9 insect cells. The VLPs were purified and used to immunize Kunming mice. Then, polyclonal antibodies were purified from the samples of ascites with a protein G HiTrap SP column and labeled with horseradish peroxidase. A MacELISA method for the detection of IgM antibodies against CHIKV was assembled with goat anti-human IgM antibody, VLP antigens and an enzyme-labeled polyclonal antibody. The results were evaluated with a serum panel containing serum samples from laboratory-confirmed CHIK, HFRS patients, healthy donors, and commercially available CHIKV IgM as a quality control. It was shown that the MacELISA had a specificity of 99% (99/100), the coefficients of variation (CoV) within a plate were ELISA plates in terms of the plate variation coefficient was <15%. A comparative analysis was performed to compare the current method against a commercial CHIKV IgM antibody detection kit for IIFA-IgM. The detection limit of MacELISA was significantly lower than that of the IIFA-IgM commercial kit (P< 0.0001). Here, we demonstrate that the VLP-based MacELISA is a promising tool for the early diagnosis and epidemiological investigation of CHIKV infection, with a high level of sensitivity and specificity for the detection of IgM antibodies against CHIKV.

  7. A novel fluorescence-based cellular permeability assay.

    Science.gov (United States)

    Chandra, Ankur; Barillas, Samuel; Suliman, Ahmed; Angle, Niren

    2007-04-10

    Vascular permeability is a pathologic process in many disease states ranging from metastatic progression of malignancies to ischemia-reperfusion injury. In order to more precisely study tissue, and more specifically cell layer permeability, our goal was to create a fluorescence-based assay which could quantify permeability without radioactivity or electrical impedance measurements. Human aortic endothelial cells were grown in monolayer culture on Costar-Transwell clear polyester membrane 6-well cell culture inserts. After monolayer integrity was confirmed, vascular endothelial growth factor (VEGF(165)) at varying concentrations with a fixed concentration of yellow-green fluorescent 0.04 microm carboxylate-modified FluoSpheres microspheres were placed in the luminal chamber and incubated for 24 h. When stimulated with VEGF(165) at 20, 40, 80, and 100 ng/ml, this assay system was able to detect increases in trans-layer flux of 8.2+/-2.4%, 16.0+/-3.7%, 41.5+/-4.9%, and 58.6+/-10.1% for each concentration, respectively. This represents the first fluorescence-based permeability assay with the sensitivity to detect changes in the permeability of a cell layer to fluid flux independent of protein flux; as well as being simpler and safer than previous radioactive-and impedance-based permeability assays. With the application of this in vitro assay to a variety of pathologic conditions, both the dynamics and physiology relating to cellular permeability can be more fully investigated. PMID:16962665

  8. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Functional Assay for Rapid Detection of Resistance against β-Lactam Antibiotics

    OpenAIRE

    Sparbier, Katrin; Schubert, Sören; Weller, Ulrich; Boogen, Christiane; Kostrzewa, Markus

    2012-01-01

    Resistance against β-lactam antibiotics is a growing challenge for managing severe bacterial infections. The rapid and cost-efficient determination of β-lactam resistance is an important prerequisite for the choice of an adequate antibiotic therapy. β-Lactam resistance is based mainly on the expression/overexpression of β-lactamases, which destroy the central β-lactam ring of these drugs by hydrolysis. Hydrolysis corresponds to a mass shift of +18 Da, which can be easily detected by matrix-as...

  9. Electrochemical DNA sandwich assay with a lipase label for attomole detection of DNA

    DEFF Research Database (Denmark)

    Ferapontova, Elena; Hansen, Majken Nørgaard; Saunders, Aaron Marc;

    2010-01-01

    A fast and sensitive electrochemical lipase-based sandwich hybridization assay for detection of attomole levels of DNA has been developed. A combination of magnetic beads, used for pre-concentration and bioseparation of the analyte with a lipase catalyst label allowed detection of DNA with a limit...

  10. Rapid, Simultaneous Detection of Clostridium sordellii and Clostridium perfringens in Archived Tissues by a Novel PCR-Based Microsphere Assay: Diagnostic Implications for Pregnancy-Associated Toxic Shock Syndrome Cases

    Directory of Open Access Journals (Sweden)

    Julu Bhatnagar

    2012-01-01

    Full Text Available Clostridium sordellii and Clostridium perfringens are infrequent human pathogens; however, the case-fatality rates for the infections are very high, particularly in obstetric C. sordellii infections (>90%. Deaths from Clostridium sordellii and Clostridium perfringens toxic shock (CTS are sudden, and diagnosis is often challenging. Formalin-fixed, paraffin-embedded (FFPE tissues usually are the only specimens available for sudden fatal cases, and immunohistochemistry (IHC for Clostridia is generally performed but it cannot identify species. A clear need exists for a rapid, species-specific diagnostic assay for FFPE tissues. We developed a duplex PCR-based microsphere assay for simultaneous detection of C. sordellii and C. perfringens and evaluated DNA extracted from 42 Clostridium isolates and FFPE tissues of 28 patients with toxic shock/endometritis (20 CTS, 8 non-CTS, as confirmed by PCR and sequencing. The microsphere assay correctly identified C. sordellii and C. perfringens in all known isolates and in all CTS patients (10 C. sordellii, 8 C. perfringens, 2 both and showed 100% concordance with PCR and sequencing results. The microsphere assay is a rapid, specific, and cost-effective method for the diagnosis of CTS and offers the advantage of simultaneous testing for C. sordellii and C. perfringens in FFPE tissues using a limited amount of DNA.

  11. Fluidic Force Discrimination Assays: A New Technology for Tetrodotoxin Detection

    Directory of Open Access Journals (Sweden)

    Cy R. Tamanaha

    2010-03-01

    Full Text Available Tetrodotoxin (TTX is a low molecular weight (~319 Da neurotoxin found in a number of animal species, including pufferfish. Protection from toxin tainted food stuffs requires rapid, sensitive, and specific diagnostic tests. An emerging technique for the detection of both proteins and nucleic acids is Fluidic Force Discrimination (FFD assays. This simple and rapid method typically uses a sandwich immunoassay format labeled with micrometer-diameter beads and has the novel capability of removing nonspecifically attached beads under controlled, fluidic conditions. This technique allows for near real-time, multiplexed analysis at levels of detection that exceed many of the conventional transduction methods (e.g., ELISAs. In addition, the large linear dynamic range afforded by FFD should decrease the need to perform multiple sample dilutions, a common challenge for food testing. By applying FFD assays to an inhibition immunoassay platform specific for TTX and transduction via low magnification microscopy, levels of detection of ~15 ng/mL and linear dynamic ranges of 4 to 5 orders of magnitude were achieved. The results from these studies on the first small molecule FFD assay, along with the impact to detection of seafood toxins, will be discussed in this manuscript.

  12. Mismatch oxidation assay: detection of DNA mutations using a standard UV/Vis microplate reader.

    Science.gov (United States)

    Tabone, Tania; Sallmann, Georgina; Cotton, Richard G H

    2009-01-01

    Simple, low-cost mutation detection assays that are suitable for low-throughput analysis are essential for diagnostic applications where the causative mutation may be different in every family. The mismatch oxidation assay is a simple optical absorbance assay to detect nucleotide substitutions, insertions, and deletions in heteroduplex DNA. The method relies on detecting the oxidative modification products of mismatched thymine and cytosine bases by potassium permanganate as it is reduced to manganese dioxide. This approach, unlike other methods commonly used to detect sequence variants, does not require costly labeled probes or primers, toxic chemicals, or a time-consuming electrophoretic separation step. The oxidation rate, and hence the presence of a sequence variant, is detected by measuring the formation of the potassium permanganate reduction product (hypomanganate diester), which absorbs at the 420-nm visible wavelength, using a standard UV/vis microplate reader. PMID:19768598

  13. An Immuno-Magnetic Nanobead Probe Competitive Assay for Rapid Detection of Salmonella choleraesuis.

    Science.gov (United States)

    Liu, Daofeng; Yu, Zhibiao; Huang, Yanmei; Wang, Shuying; Wang, Jingyun; Guo, Qi; Xu, Chaolian; Xia, Shiqi; Lai, Weihua

    2016-03-01

    A competitive lateral flow assay for the rapid detection of Salmonella choleraesuis was developed. Immuno-magnetic nanobeads were produced by covalently coupling anti-Salmonella choleraesuis antibody to magnetic nanobeads. These immuno-magnetic nanobeads were used as visually detected probes in the subsequent assay. Compared with the traditional sandwich assay, which is used for detecting macro-molecules, this new method was developed based on the competitive relationship between S. choleraesuis in the inspected sample and the outer membrane protein immobilized on the T line. Thus, only one antibody was necessary in the new assay, whereas a pair of rigorously selected antibodies were required in the sandwich assay. The sensitivity of the competitive assay for S. choleraesuis was 1.2 x 10(7) cfu/mL. In addition, no cross reactions were found in the 17 common non-Salmonella bacteria strains and in the 4 Salmonella strains of other serotypes. Thus, with satisfactory sensitivity and specificity, the assay can be applied for the rapid detection of pre-enriched culture that may contain S. choleraesuis. PMID:27455631

  14. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    Science.gov (United States)

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  15. An Immuno-Magnetic Nanobead Probe Competitive Assay for Rapid Detection of Salmonella choleraesuis.

    Science.gov (United States)

    Liu, Daofeng; Yu, Zhibiao; Huang, Yanmei; Wang, Shuying; Wang, Jingyun; Guo, Qi; Xu, Chaolian; Xia, Shiqi; Lai, Weihua

    2016-03-01

    A competitive lateral flow assay for the rapid detection of Salmonella choleraesuis was developed. Immuno-magnetic nanobeads were produced by covalently coupling anti-Salmonella choleraesuis antibody to magnetic nanobeads. These immuno-magnetic nanobeads were used as visually detected probes in the subsequent assay. Compared with the traditional sandwich assay, which is used for detecting macro-molecules, this new method was developed based on the competitive relationship between S. choleraesuis in the inspected sample and the outer membrane protein immobilized on the T line. Thus, only one antibody was necessary in the new assay, whereas a pair of rigorously selected antibodies were required in the sandwich assay. The sensitivity of the competitive assay for S. choleraesuis was 1.2 x 10(7) cfu/mL. In addition, no cross reactions were found in the 17 common non-Salmonella bacteria strains and in the 4 Salmonella strains of other serotypes. Thus, with satisfactory sensitivity and specificity, the assay can be applied for the rapid detection of pre-enriched culture that may contain S. choleraesuis.

  16. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Li Xincang [School of Life Sciences, Shandong University, Jinan 250100 (China); Li Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2011-01-24

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10{sup -14} mol L{sup -1}. Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  17. A selective detection of fluoride ions in DMSO by fluorescent and colorimetry competition assays based on 4-bromo-2,6-bis-(hydroxymethyl)phenol

    Institute of Scientific and Technical Information of China (English)

    Hossein Tavallali; Gohar Deilamy-Rad; Mahboobe Tabandeh

    2011-01-01

    A novel and very simple colorimetric and fluorometric method for selectively sensing F-was proposed based on 4-bromo-2,6-bis(hydroxymethyl)phenol (BBHMP), which is a simple and available phenolic receptor the absence of any special chromophoric function and with over wide range of anions (Cl-, Br-, I-, AcO-, HSO4-, NO3-and BzO-) in DMSO media. The colorimetric method is described for naked-eye detection of F~ in the presence of the BBHMP. The BBHMP was found to show selective and sensitive fluorescence quenching response toward fluoride over than Cl-, Br-, I-, AcO-, HSO4-, NO3-and BzO-.

  18. Enzymatic electrochemical detection of epidemic-causing Vibrio cholerae with a disposable oligonucleotide-modified screen-printed bisensor coupled to a dry-reagent-based nucleic acid amplification assay.

    Science.gov (United States)

    Yu, Choo Yee; Ang, Geik Yong; Chan, Kok Gan; Banga Singh, Kirnpal Kaur; Chan, Yean Yean

    2015-08-15

    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.

  19. Real-time immuno-PCR assay for detecting PCBs in soil samples.

    Science.gov (United States)

    Chen, Han-Yu; Zhuang, Hui-Sheng

    2009-06-01

    A fast and robust assay, based on immuno-polymerase chain reaction (IPCR) techniques, was developed for the detection of polychlorinated biphenyls (PCBs) in soil samples. Real-time IPCR (rt-IPCR) is a powerful technique that combines enzyme-linked immunosorbent assay (ELISA) with the specificity and sensitivity of PCR. In our assay, indirect ELISAs based on immobilization of PCB37 hapten-ovalbumin conjugates was used for evaluation of the immune response. The effect of optimal reagent concentrations to reduce background fluorescence was also investigated. Using the optimized assay, the linear sensitivity range of the assay covered more than six orders of magnitude, and the minimum detection limits reached 5 fg ml(-1) antigen. Rt-IPCR was tested for its cross-reactivity profiles using four selected congeners and four Aroclor products. The assays were highly specific for congeners but less specific for Aroclor1242. We took four soil samples to validate the method, and the results were confirmed by gas chromatography/mass spectrometry (GC/MS). The rt-IPCR results for soil samples correlated well with the concentrations of PCBs obtained by GC/MS (r = 0.99, n = 6). These data indicate that this highly specific, sensitive, and robust assay can be modified for detecting PCB compounds in the environment.

  20. A spectrophotometric assay for the detection of fungal peroxygenases.

    Science.gov (United States)

    Poraj-Kobielska, Marzena; Kinne, Matthias; Ullrich, René; Scheibner, Katrin; Hofrichter, Martin

    2012-02-01

    Rapid and simple spectrophotometric methods are required for the unambiguous detection of recently discovered fungal peroxygenases in vivo and in vitro. This paper describes a peroxygenase-specific assay using 5-nitro-1,3-benzodioxole as substrate. The product, 4-nitrocatechol, produces a yellow color at pH 7, which can be followed over time at 425 nm (ε(425)=9,700 M(-1) cm(-1)), and a red color when adjusted to pH >12, which can be measured in form of an end-point determination at 514 nm (ε(514)=11,400 M(-1) cm(-1)). The assay is suitable for detecting peroxygenase activities in complex growth media and environmental samples as well as for high-throughput screenings.

  1. Rapid and Sensitive Detection of Didymella bryoniae by Visual Loop-Mediated Isothermal Amplification Assay

    Science.gov (United States)

    Yao, Xiefeng; Li, Pingfang; Xu, Jinghua; Zhang, Man; Ren, Runsheng; Liu, Guang; Yang, Xingping

    2016-01-01

    Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB) in Cucurbitaceae crops (e.g., cantaloupe, muskmelon, cucumber, and watermelon). GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP) assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462) common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII) of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR). The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL-1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  2. Simple and sensitive progesterone detection in human serum using a CdSe/ZnS quantum dot-based direct binding assay.

    Science.gov (United States)

    Oh, Sung-Duk; Duong, Hong Dinh; Rhee, Jong Il

    2015-08-15

    In this study, we developed a CdSe/ZnS quantum dot (QD)-based immunoassay for use in determining the presence of progesterone (P4) in human serum. Hydrophilic QDs were conjugated to anti-progesterone antibody (P4Ab) via ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling reagents. After purification, the P4Ab-QD conjugates were immobilized onto the wells of a 96-well microtiter plate, and a direct-binding immunoassay based on the binding of P4 to immobilized P4Ab-QD conjugates had a detection limit of 0.21 ng/ml and a sensitivity of 1.37 ng/ml, with a linear range of 0.385 to 4.55 ng/ml. The proposed immunoassay was successfully used to determine the P4 concentration in real human serum, and the results showed a good correlation with the accredited radioimmunoassay (RIA). PMID:25963894

  3. A highly scalable peptide-based assay system for proteomics.

    Directory of Open Access Journals (Sweden)

    Igor A Kozlov

    Full Text Available We report a scalable and cost-effective technology for generating and screening high-complexity customizable peptide sets. The peptides are made as peptide-cDNA fusions by in vitro transcription/translation from pools of DNA templates generated by microarray-based synthesis. This approach enables large custom sets of peptides to be designed in silico, manufactured cost-effectively in parallel, and assayed efficiently in a multiplexed fashion. The utility of our peptide-cDNA fusion pools was demonstrated in two activity-based assays designed to discover protease and kinase substrates. In the protease assay, cleaved peptide substrates were separated from uncleaved and identified by digital sequencing of their cognate cDNAs. We screened the 3,011 amino acid HCV proteome for susceptibility to cleavage by the HCV NS3/4A protease and identified all 3 known trans cleavage sites with high specificity. In the kinase assay, peptide substrates phosphorylated by tyrosine kinases were captured and identified by sequencing of their cDNAs. We screened a pool of 3,243 peptides against Abl kinase and showed that phosphorylation events detected were specific and consistent with the known substrate preferences of Abl kinase. Our approach is scalable and adaptable to other protein-based assays.

  4. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay.

    OpenAIRE

    Chehab, F. F.; Kan, Y W

    1989-01-01

    We have developed a color complementation assay that allows rapid screening of specific genomic DNA sequences. It is based on the simultaneous amplification of two or more DNA segments with fluorescent oligonucleotide primers such that the generation of a color, or combination of colors, can be visualized and used for diagnosis. Color complementation assay obviates the need for gel electrophoresis and has been applied to the detection of a large and small gene deletion, a chromosomal transloc...

  5. Clinical utility of the Xpert MRSA assay for early detection of methicillin-resistant Staphylococcus aureus

    OpenAIRE

    OH, AE-CHIN; Lee, Jin Kyung; LEE, HA NA; HONG, YOUNG JUN; Chang, Yoon Hwan; Hong, Seok-Il; Kim, Dong Ho

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for many nosocomial and community-acquired infections, resulting in significant morbidity and mortality. A practical way to limit the spread of MRSA is early detection and proper treatment. However, screening culture for MRSA typically requires 2–3 days. The Xpert MRSA assay (Cepheid, Sunnyvale, CA, USA) is a real-time polymerase chain reaction-based assay developed for screening an MRSA-specific DNA sequence within the staphyl...

  6. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    Science.gov (United States)

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%). PMID:27367694

  7. Detection of Protein SUMOylation In Situ by Proximity Ligation Assays.

    Science.gov (United States)

    Sahin, Umut; Jollivet, Florence; Berthier, Caroline; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2016-01-01

    Sumoylation is a posttranslational process essential for life and concerns a growing number of crucial proteins. Understanding the influence of this phenomenon on individual proteins or on cellular pathways in which they function has become an intense area of research. A critical step in studying protein sumoylation is to detect sumoylated forms of a particular protein. This has proven to be a challenging task for a number of reasons, especially in the case of endogenous proteins and in vivo studies or when studying rare cells such as stem cells. Proximity ligation assays that allow detection of closely interacting protein partners can be adapted for initial detection of endogenous sumoylation or ubiquitination in a rapid, ultrasensitive, and cheap manner. In addition, modified forms of a given protein can be detected in situ in various cellular compartments. Finally, the flexibility of this technique may allow rapid screening of drugs and stress signals that may modulate protein sumoylation. PMID:27631803

  8. Detection of Shiga Toxins by Lateral Flow Assay

    Directory of Open Access Journals (Sweden)

    Kathryn H. Ching

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC produce shiga toxins (Stxs that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript, we report the development of a colorimetric lateral flow assay (LFA for the rapid detection of Stxs in <10 min using a pair of monoclonal antibodies that bind epitopes common to Stx1 and six Stx2 variants. This LFA provides a rapid and sensitive test for the detection of Stxs directly from STEC culture supernatants or at risk food samples with a 0.1 ng/mL limit of detection (LOD for Stx2a. This Stx LFA is applicable for use in the rapid evaluation of Stx production from cultured E. coli strains or as a tool to augment current methods as part of food safety testing.

  9. Development and evaluation of a new PCR assay for detection of Pseudomonas aeruginosa D genotype.

    Science.gov (United States)

    Lødeng, A G G; Ahlén, C; Lysvand, H; Mandal, L H; Iversen, O J

    2006-08-01

    This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype. PMID:16842571

  10. Comparison of an enzyme-linked immunosorbent assay, an immunofluorescence assay and a hemagglutination inhibition assay for detection of antibodies to K-papovavirus in mice.

    NARCIS (Netherlands)

    J. Groen (Jan); A.D.M.E. Osterhaus (Ab); H.W.J. Broeders; H.E.M. Spijkers (Ine)

    1989-01-01

    textabstractThe sensitivity of a newly developed enzyme-linked immunosorbent assay (ELISA) for detection of antibody to K virus was compared with the sensitivities of an immunofluorescence assay (IFA) and a hemagglutination inhibition assay (HIA). Specific pathogen-free BALB/c RIVM mice, 5 weeks old

  11. Syphilis detection: evaluation of serological screening and pilot reverse confirmatory assay algorithm in blood donors.

    Science.gov (United States)

    Sommese, Linda; Paolillo, Rossella; Sabia, Chiara; Costa, Dario; De Pascale, Maria Rosaria; Iannone, Carmela; Esposito, Antonella; Schiano, Concetta; Napoli, Claudio

    2016-07-01

    Serological assays are still considered the most useful tests in the diagnosis of syphilis. Since no single serological assay is able to provide a satisfactory result, in our laboratory we have evaluated the usefulness of a commercially-available immunoblot to diagnose syphilis infection among blood donors. From October 2012 to June 2013, 4572 blood donors were screened for syphilis with an automated chemiluminescent microparticle immunoassay (CMIA). To confirm the presence of treponemal antibodies, CMIA-reactive sera were tested by standard Treponema pallidum haemagglutination assay (TPHA). In addition, an alternative confirmatory test - the immunoblot INNO-LIA assay was introduced in our laboratory. Since two additional positives among CMIA-reactive-TPHA-negative samples were found, we concluded that the INNO-LIA immunoblot allowed a better detection of syphilis compared to TPHA. A confirmatory strategy based on the use of two treponemal assays could meet the screening requirements for blood donors as well as in our centre. PMID:26068964

  12. 荧光微球免疫层析法定量检测牛乳中酪蛋白%Fluorescent microsphere-based lateral flow assay for the quantitative detection of casein in milk

    Institute of Scientific and Technical Information of China (English)

    杨亚杰; 倪小琴; 王茜; 游琼; 张富生; 赖卫华

    2014-01-01

    Objective To develop a fluorescent microsphere-based lateral flow assay for the quantitative detection of casein in milk. Methods Casein was used as the antigen to immunize the New Zealand rabbits to make the corresponding polyclonal antibody against the antigen, and EDC mediated method was used to couple the purified polyclonal antibody with fluorescent microspheres. The filter pad, sample pad, conjugate pad, NC membrane, and absorption pad were assembled to develop the fluorescent microsphere-based lateral flow assay for the quantitative detection of casein in milk. Results The results could be obtained within 25 min without sophisticated equipment, and the limit of detection of the test strip was 100 ng/mL. The developed assay was highly specific to the casein protein as a result of that it had no cross-reactivity with other non-target proteins, such as BSA and OVA. The recovery rates of the intra-assay at casein concentrations of 100.0, 500.0, and 1000.0 ng/mL were (89.03±5.2)%, (93.47±6.9)% and (91.2±7.8)%, respectively, while the inter-assay were (87.69±6.2)%, (92.73±8.3)%and (89.82±8.5)%, respectively. Conclusion The fluorescent microsphere-based lateral flow assay for the quantitative detection of casein in milk with the advantages of rapid, convenient, and high sensitivity was established preliminarily.%目的:研究用荧光微球免疫层析法定量检测牛乳中的酪蛋白。方法本文以酪蛋白为抗原,免疫新西兰大白兔制备抗酪蛋白的多克隆抗体,将纯化后的多克隆抗体通过EDC介导法与荧光微球进行偶联,将滤纸、样品垫、结合垫、NC膜和吸水纸组装成试纸条,用此荧光微球免疫层析法定量检测牛乳中的酪蛋白。结果试纸条在25 min内就能判定结果,最低检测限为100 ng/mL,该方法与BSA、OVA均无交叉反应,具有很好的特异性。检测酪蛋白浓度为100.0、500.0、1000.0 ng/mL 的样品,试纸条的批内回收率分别为(89.03±5.2)%、(93.47±6

  13. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay.

    NARCIS (Netherlands)

    Rutjes, Saskia A; Berg, Harold H J L van den; Lodder, Willemijn J; Roda Husman, Ana Maria de

    2006-01-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection

  14. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  15. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement.

    Science.gov (United States)

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pK(a) of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time

  16. Evaluation of Rapid Molecular Detection Assays for Salmonella in Challenging Food Matrices at Low Inoculation Levels and Using Difficult-to-Detect Strains.

    Science.gov (United States)

    Ryan, Gina; Roof, Sherry; Post, Laurie; Wiedmann, Martin

    2015-09-01

    Assays for detection of foodborne pathogens are generally initially evaluated for performance in validation studies carried out according to guidelines provided by validation schemes (e.g., AOAC International or the International Organization for Standardization). End users often perform additional validation studies to evaluate the performance of assays in specific matrices (e.g., specific foods or raw material streams of interest) and with specific pathogen strains. However, these types of end-user validations are typically not well defined. This study was conducted to evaluate a secondary end user validation of four AOAC-validated commercial rapid detection assays (an isothermal nucleic acid amplification, an immunoassay, and two PCR-based assays) for their ability to detect Salmonella in two challenging matrices (dry pet food and dark chocolate). Inclusivity was evaluated with 68 diverse Salmonella strains at low population levels representing the limit of detection (LOD) for each assay. One assay detected all strains at the LOD, two assays detected multiple strains only at 10 times the LOD, and the fourth assay failed to detect two strains (Salmonella bongori and S. enterica subsp. houtenae) even at 1,000 times the LOD; this assay was not further evaluated. The three remaining assays were subsequently evaluated for their ability to detect five selected Salmonella strains in food samples contaminated at fractional levels. Unpaired comparisons revealed no significant difference between the results for each given assay and the results obtained with the reference assay. However, analysis of paired culture-confirmed results revealed assay false-negative rates of 4 to 26% for dry pet food and 12 to 16% for dark chocolate. Overall, our data indicate that rapid assays may have high false-negative rates when performance is evaluated under challenging conditions, including low-moisture matrices, strains that are difficult to detect, injured cells, and low inoculum

  17. Evaluation of five hepatitis delta virus marker assays for detection of antigen and antibody.

    OpenAIRE

    Bezeaud, A; Rosenswajg, M; Guillin, M C

    1989-01-01

    Five commercially available assays for hepatitis delta (HD) virus markers were compared for sensitivity, specificity, and reproducibility: three assays for antibody (anti-HD), provided by Diagnostics Pasteur, Organon Teknika, and Abbott Laboratories, and two assays for antigen (HD Ag), from Pasteur and Organon Teknika. The assay from Organon Teknika is the less sensitive assay for anti-HD detection. Although the sensitivities of the Pasteur and Abbott assays for anti-HD detection are similar,...

  18. DNA & Protein detection based on microbead agglutination

    KAUST Repository

    Kodzius, Rimantas

    2012-06-06

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microparticles in the presence of a specific analyte thus enabling the macroscopic observation. Agglutination-based tests are most often used to explore the antibody-antigen reactions. Agglutination has been used for mode protein assays using a biotin/streptavidin two-component system, as well as a hybridization based two-component assay; however, as our work shows, two-component systems are prone to self-termination of the linking analyte and thus have a lower sensitivity. Three component systems have also been used with DNA hybridization, as in our work; however, their assay requires 48 hours for incubation, while our assay is performed in 5 minutes making it a real candidate for POC testing. We demonstrate three assays: a two-component biotin/streptavidin assay, a three-component hybridization assay using single stranded DNA (ssDNA) molecules and a stepped three-component hybridization assay. The comparison of these three assays shows our simple stepped three-component agglutination assay to be rapid at room temperature and more sensitive than the two-component version by an order of magnitude. An agglutination assay was also performed in a PDMS microfluidic chip where agglutinated beads were trapped by filter columns for easy observation. We developed a rapid (5 minute) room temperature assay, which is based on microbead agglutination. Our three-component assay solves the linker self-termination issue allowing an order of magnitude increase in sensitivity over two–component assays. Our stepped version of the three-component assay solves the issue with probe site saturation thus enabling a wider range of detection. Detection of the agglutinated beads with the naked eye by trapping in microfluidic channels has been shown.

  19. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: Optimisation and application in alkaline phosphatase-based assays

    Energy Technology Data Exchange (ETDEWEB)

    Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Queipo, Paula [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo, Asturias (Spain); Fanjul-Bolado, Pablo [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-05-12

    Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) were used to modify the working electrode surface of different screen-printed electrodes. The effect of this modification on the electrodic characteristics (double layer capacitance, electroactive area and heterogeneous rate constants for the electron transfer) was evaluated and optimized for the cyclic voltammetric determination of p-aminophenol. The enzymatic hydrolysis of p-aminophenylphosphate was employed for the quantification of alkaline phosphatase, one of the most important label enzymes in immunoassays. Finally, ELISA assays were carried out to quantify pneumolysin using this enzymatic system. Results obtained indicated that low superficial densities of MWCNT-COOH (0.03-0.06 {mu}g mm{sup -2}) yielded the same electrodic improvements but with better analytical properties.

  20. Evaluation of a Novel Heminested PCR Assay Based on the Phosphoglucosamine Mutase Gene for Detection of Helicobacter pylori in Saliva and Dental Plaque

    OpenAIRE

    Goosen, C.; Theron, J.; Ntsala, M.; Maree, F F; Olckers, A; Botha, S. J.; Lastovica, A. J.; van der Merwe, S. W.

    2002-01-01

    A novel heminested PCR protocol was developed for the specific detection of Helicobacter pylori at low copy numbers. A set of primers specific for the phosphoglucosamine mutase gene (glmM) of H. pylori produced a 765-bp fragment that was used as template for the heminested primer pair delineating a 496-bp fragment. By using agarose gel electrophoresis for detection of the heminested PCR-amplified products, amplification of H. pylori genomic DNA was achieved at concentrations as low as 0.1 pg,...

  1. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices.

    Directory of Open Access Journals (Sweden)

    Diana Pauly

    Full Text Available BACKGROUND: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed. Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex

  2. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk

    Science.gov (United States)

    A rapid lateral flow fluorescent microspheres immunochromatography test strip (FMs-ICTS) has been developed for the detection of aflatoxin M1 (AFM1) residues in milk. For this purpose, an ultra-sensitive anti-AFM1 monoclonal antibody (MAb) 1D3 was prepared and identified. The IC50 value of the MA...

  3. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  4. Extended-spectrum β-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex® SuperBug CRE assay: Proof of concept.

    Science.gov (United States)

    Hinić, V; Ziegler, J; Straub, C; Goldenberger, D; Frei, R

    2015-12-01

    A commercially available assay (eazyplex® SuperBug CRE) detecting the most common carbapenemase and ESBL types was evaluated directly on 50 urine samples. Eazyplex® correctly detected ESBL-encoding genes in all 30 urine samples with confirmed ESBL production (sensitivity 100%). Two specimens showed invalid and one specimen false-positive results (specificity 97.9%). PMID:26506282

  5. Evaluation of 5 ' nuclease assay for detection of Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Angen, Øystein; Jensen, J.; Lavritsen, D. T.

    2001-01-01

    , nonspecific reactions appeared when testing dilutions of DNA templates or pure cultures of A. pleuropneumoniae, as well as when testing tonsil scrapings from specific-pathogen-free herds. The diagnostic sensitivity, as evaluated with 586 tonsil scrapings from animals infected with A. pleuropneumoniae, is the...... equal to 30 must be chosen in order to obtain reliable results. The investigation emphasizes that a thorough evaluation of the criteria used to define a positive test result is necessary.......Sequence detection by the 5' nuclease TaqMan assay uses online detection of internal fluorogenic probes in closed PCR tubes. Primers and probe were chosen from a part of the omlA gene common to all serotypes of Actinobacillus pleuropneumoniae, which gave an amplicon of 92 bp, The test was evaluated...

  6. Detection of radiation treatment of beans using DNA comet assay

    International Nuclear Information System (INIS)

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5 kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60 min in 2.5% SDS and electrophoresis was carried out at a voltage of 2 V/cm for 2-2.5 min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans

  7. Detection of radiation treatment of beans using DNA comet assay

    Science.gov (United States)

    Khan, Ashfaq A.; Khan, Hasan M.; Delincée, Henry

    2002-03-01

    A simple technique of microgel electrophoresis of single cells (DNA Comet Assay) enabled a quick detection of radiation treatment of several kinds of leguminous beans (azuki, black, black eye, mung, pinto, red kidney and white beans). Each variety was exposed to radiation doses of 0.5, 1 and 5kGy covering the permissible limits for insect disinfestation. The cells or nuclei from beans were extracted in cold PBS, embedded in agarose on microscope slides, lysed between 15 and 60min in 2.5% SDS and electrophoresis was carried out at a voltage of 2V/cm for 2-2.5min. After silver staining, the slides were evaluated through an ordinary transmission microscope. In irradiated samples, fragmented DNA stretched towards the anode and the damaged cells appeared as a comet. The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. Hence, the DNA comet assay provides an inexpensive, rapid and relatively simple screening method for the detection of irradiated beans.

  8. Chemiluminescence assay for the detection of biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Langry, K; Horn, J

    1999-11-05

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. This chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.

  9. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus.

    Science.gov (United States)

    Shen, Wentao; Tuo, Decai; Yan, Pu; Yang, Yong; Li, Xiaoying; Zhou, Peng

    2014-08-01

    Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya. PMID:24769198

  10. Development of PCR assays for detection of Trichomonas vaginalis in urine specimens.

    Science.gov (United States)

    Bandea, Claudiu I; Joseph, Kahaliah; Secor, Evan W; Jones, Laurie A; Igietseme, Joseph U; Sautter, Robert L; Hammerschlag, Margaret R; Fajman, Nancy N; Girardet, Rebecca G; Black, Carolyn M

    2013-04-01

    Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of T. vaginalis in urine, a noninvasive specimen, and development of a protocol for differentiating among Trichomonas species that commonly infect humans.

  11. ELISA assays for the detection of Bothrops lanceolatus venom in envenomed patient plasmas.

    Science.gov (United States)

    Rodriguez-Acosta, A; Uzcategui, W; Azuaje, R; Giron, M E; Aguilar, I

    1998-01-01

    A double antibody sandwich enzyme linked immunosorbant assay (ELISA) was carried out to detect Bothrops Ianceolatus venom in plasma from envenomed patients at various time intervals (0, 6, 12, 18 and 24 hrs). The test could detect Bothrops lanceolatus levels up to 12 ng/mL of envenomed patient plasmas. Elaboration of an easy, fast and species-diagnostic based on this ELISA technique useful to physicians is discussed. PMID:11845439

  12. Newly established monoclonal antibody diagnostic assays for Schistosoma mansoni direct detection in areas of low endemicity.

    Directory of Open Access Journals (Sweden)

    Rafaella Fortini Queiroz Grenfell

    Full Text Available BACKGROUND: Current available methods for diagnosis of schistosomiasis mansoni lack sufficient sensitivity, which results in underreporting of infectious in areas of low endemicity. METHODOLOGY/PRINCIPAL FINDINGS: We developed three novel diagnostic methodologies for the direct detection of schistosome infection in serum samples. These three new methods were evaluated with positive patients from a low endemicity area in southeast Brazil. The basis of the assay was the production of monoclonal antibodies against the protein backbone of heavily glycosylated Circulating Cathodic Antigen (CCA. The antibodies were also selected for having no specificity to repeating poly-Lewis x units. Assays based on the detection CCA-protein should not encounter a limitation in sensitivity due to a biological background of this particular epitope. Three diagnostic methodologies were developed and validated, (i Immunomagnetic Separation based on improved incubation steps of non-diluted serum, (ii Direct Enzyme-linked Immunosorbent Assay and (iii Fluorescent Microscopy Analysis as a qualitative assay. The two quantitative assays presented high sensitivity (94% and 92%, respectively and specificity (100%, equivalent to the analysis of 3 stool samples and 16 slides by Kato-Katz, showing promising results on the determination of cure. CONCLUSIONS/SIGNIFICANCE: The Immunomagnetic Separation technique showed excellent correlation with parasite burden by Cohen coefficient. The qualitative method detected 47 positive individuals out of 50 with the analysis of 3 slides. This easy-to-do method was capable of discriminating positive from negative cases, even for patients with low parasite burden.

  13. How to evaluate PCR assays for the detection of low-level DNA

    DEFF Research Database (Denmark)

    Banch-Clausen, Frederik; Urhammer, Emil; Rieneck, Klaus;

    2015-01-01

    High sensitivity of PCR-based detection of very low copy number DNA targets is crucial. Much focus has been on design of PCR primers and optimization of the amplification conditions. Very important are also the criteria used for determining the outcome of a PCR assay, e.g. how many replicates are...... significantly different from experimental data generated by testing of cell-free foetal DNA. Also, the simplified formula was applicable for fast and accurate assay evaluation. In conclusion, the model can be applied for evaluation of sensitivity of real-time PCR-based detection of low-level DNA, and may also...... distribution describing parameters for singleplex real-time PCR-based detection of low-level DNA. The model was tested against experimental data of diluted cell-free foetal DNA. Also, the model was compared with a simplified formula to enable easy predictions. The model predicted outcomes that were not...

  14. Two novel nonradioactive polymerase chain reaction-based assays of dried blood spots, genomic DNA, or whole cells for fast, reliable detection of Z and S mutations in the alpha 1-antitrypsin gene

    DEFF Research Database (Denmark)

    Andresen, B S; Knudsen, I; Jensen, P K;

    1992-01-01

    Two new nonradioactive polymerase chain reaction (PCR)-based assays for the Z and S mutations in the alpha 1-antitrypsin gene are presented. The assays take advantage of PCR-mediated mutagenesis, creating new diagnostic restriction enzyme sites for unambiguous discrimination between test samples...... from individuals who are normal, heterozygous, or homozygous for the mutations. We show that the two assays can be performed with purified genomic DNA as well as with boiled blood spots. The new assays were validated by parallel testing with a technique in which PCR is combined with allele...

  15. Detection of plant viruses by enzyme-linked immunosorbent assay

    International Nuclear Information System (INIS)

    Investigations were carried out to check the sensitivity, specificity and efficiency of the enzyme-linked immunosorbent assay (ELISA) test for the detection of potato leafroll virus, potato virus Y, potato virus S, potato virus M and beet necrotic yellow vein virus (BNYVV). For the identification of potato viruses, a comparative test of the conventional eye-shoot and ELISA techniques was performed on leaf and tuber material. A good correlation (88-100%) was achieved between the results obtained with these methods and the large differences between the extinction values of infected and healthy plant material (positive results were 13-49 times higher than negative ones). For detection of BNYVV in sugar-beets, the ELISA method and immune electron microscopy (the Derrick method) were compared. Correlation between the results obtained with the two assays was 78 and 87%, respectively. Owing to the low titre of immunized gammaglobulin and the long reaction time, after pipetting, of the p-nitrophenylphosphate, overlapping extinction values of the positive and negative samples occurred in classes 0.100-0.200. Investigations of the host range of BNYVV were carried out by ELISA and inoculation of test plants. Chenopodium quinoa was used as the indicator plant. Six days after mechanical inoculation, plants showed yellow-coloured local lesions with necrotic centres. If the concentration of BNYVV was low in the original plant material, inoculated indicator plants showed no symptoms of virus infection. After reinoculation of a second generation, specific lesions occurred. If high-quality test kits are available, ELISA is a very sensitive and rapid method for the detection of plant viruses. The ELISA technique is as reliable, or even more reliable, than the best conventional methods. (author)

  16. Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay.

    Science.gov (United States)

    Scholz, Holger C; Joseph, Marina; Tomaso, Herbert; Al Dahouk, Sascha; Witte, Angela; Kinne, Joerg; Hagen, Ralph M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich

    2006-04-01

    A polymerase chain reaction (PCR) assay targeting the flagellin P (fliP)-I S407A genomic region of Burkholderia mallei was developed for the specific detection of this organism in pure cultures and clinical samples from a recent outbreak of equine glanders. Primers deduced from the known fliP-IS407A sequence of B. mallei American Type Culture Collection (ATCC) 23344(T) allowed the specific amplification of a 989-bp fragment from each of the 20 B. mallei strains investigated, whereas other closely related organisms tested negative. The detection limit of the assay was 10 fg for purified DNA of B. mallei ATCC 23344(T). B. mallei DNA was also amplified from various tissues of horses with a generalized B. mallei infection. The developed PCR assay can be used as a simple and rapid tool for the specific and sensitive detection of B. mallei in clinical samples.

  17. A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance GenesXa21, xa13 andxa5 in Rice

    Institute of Scientific and Technical Information of China (English)

    S. K. HAJIRA; M. ANILA; S. BHASKAR; V. ABHILASH; H. K. MAHADEVASWAMY; M. KOUSIK; T. DILIPKUMAR; G. HARIKA; G. REKHA; R. M. SUNDARAM; G. S. LAHA; A. YUGANDER; S. M. BALACHANDRAN; B. C. VIRAKTAMATH; K. SUJATHA; C. H. BALACHIRANJEEVI; K. PRANATHI

    2016-01-01

    In marker-assisted breeding for bacterial blight (BB) resistance in rice, three major resistance genes, viz.,Xa21, xa13andxa5,are routinely deployed either singly or in combinations. As efficient and functional markers are yet to be developed forxa13 andxa5,we have developed simple PCR-based functional markers for both the genes.Forxa13,we designed a functional PCR-based marker, xa13-prom targeting the InDel polymorphism in the promoter of candidate geneOs8N3 located on chromosome 8 of rice. With respect toxa5, a multiplex-PCR based functional marker system, named xa5FM, consisting of two sets of primer pairs targeting the 2-bp functional nucleotide polymorphism in the exon II of the geneTFIIAɤ5 (candidate forxa5), has been developed. Both xa13-prom and xa5FM can differentiate the resistant and susceptible alleles forxa13 andxa5, respectively, in a co-dominant fashion. Using these two functional markers along with the already reported functional PCR-based marker forXa21 (pTA248),we designed a single-tube multiplex PCR based assay for simultaneous detection of all the three major resistance genes and demonstrated the utility of the multiplex marker system in a segregating population.

  18. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop.

    Science.gov (United States)

    Karabasanavar, Nagappa S; Singh, S P; Kumar, Deepak; Shebannavar, Sunil N

    2014-02-15

    We describe a highly specific PCR assay for the authentic identification of pork. Accurate detection of tissues derived from pig (Sus scrofa) was accomplished by using newly designed primers targeting porcine mitochondrial displacement (D-loop) region that yielded an unique amplicon of 712 base pairs (bp). Possibility of cross-amplification was precluded by testing as many as 24 animal species (mammals, birds, rodent and fish). Suitability of PCR assay was confirmed in raw (n = 20), cooked (60, 80 and 100 °C), autoclaved (121 °C) and micro-oven processed pork. Sensitivity of detection of pork in other species meat using unique pig-specific PCR was established to be at 0.1%; limit of detection (LOD) of pig DNA was 10 pg (pico grams). The technique can be used for the authentication of raw, processed and adulterated pork and products under the circumstances of food adulteration related disputes or forensic detection of origin of pig species.

  19. Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets.

    Science.gov (United States)

    Marcali, Merve; Elbuken, Caglar

    2016-07-01

    Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest. We present modelling and experimental verification of impedimetric detection of hemagglutination in microdroplets. We have detected agglutinated red blood cells in microdroplets and screened whole blood samples for multiple antibody sera using conventional microelectrodes. We were able to form antibody and whole blood microdroplets in PDMS microchannels without any tedious chemical surface treatment. Following the injection of a blood sample into antibody droplets, we have detected the agglutination-positive and negative droplets in an automated manner. In order to understand the characteristics of impedimetric detection inside microdroplets, we have developed the lumped electrical circuit equivalent of an impedimetric droplet content detection system. The empirical lumped element values are in accordance with similar models developed for single phase electrical impedance spectroscopy systems. The presented approach is of interest for label-free, quantitative analysis of droplets. In addition, the standard electronic equipment used for detection allows miniaturized detection circuitries that can be integrated with a fluidic system for a quantitative microdroplet-based hemagglutination assay that is conventionally performed in well plates. PMID:27270895

  20. Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets.

    Science.gov (United States)

    Marcali, Merve; Elbuken, Caglar

    2016-07-01

    Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest. We present modelling and experimental verification of impedimetric detection of hemagglutination in microdroplets. We have detected agglutinated red blood cells in microdroplets and screened whole blood samples for multiple antibody sera using conventional microelectrodes. We were able to form antibody and whole blood microdroplets in PDMS microchannels without any tedious chemical surface treatment. Following the injection of a blood sample into antibody droplets, we have detected the agglutination-positive and negative droplets in an automated manner. In order to understand the characteristics of impedimetric detection inside microdroplets, we have developed the lumped electrical circuit equivalent of an impedimetric droplet content detection system. The empirical lumped element values are in accordance with similar models developed for single phase electrical impedance spectroscopy systems. The presented approach is of interest for label-free, quantitative analysis of droplets. In addition, the standard electronic equipment used for detection allows miniaturized detection circuitries that can be integrated with a fluidic system for a quantitative microdroplet-based hemagglutination assay that is conventionally performed in well plates.

  1. Detection of garlic gamma-irradiated by assay comet

    International Nuclear Information System (INIS)

    The garlic samples were irradiated in a facility with 60Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  2. Detection of garlic gamma-irradiated by assay comet

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Ciudad de La Habana (Cuba)], e-mail: damaris@ceaden.edu.cu

    2009-07-01

    The garlic samples were irradiated in a facility with {sup 60}Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  3. Rapid and Sensitive Detection of Didymella bryoniae by Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Yao, Xiefeng; Li, Pingfang; Xu, Jinghua; Zhang, Man; Ren, Runsheng; Liu, Guang; Yang, Xingping

    2016-01-01

    Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB) in Cucurbitaceae crops (e.g., cantaloupe, muskmelon, cucumber, and watermelon). GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP) assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462) common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII) of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR). The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL(-1) of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics. PMID:27625648

  4. Comprehensive TP53-denaturing gradient gel electrophoresis mutation detection assay also applicable to archival paraffin-embedded tissue

    NARCIS (Netherlands)

    Hayes, V M; Bleeker, W; Verlind, E; Timmer, T; Karrenbeld, A; Plukker, J T; Marx, M P; Hofstra, R M; Buys, C H

    1999-01-01

    A comprehensive mutation detection assay is described for the entire coding region and all splice site junctions of TP53. The assay is based on denaturing gradient gel electrophoresis, which follows either multiplex polymerase chain reaction (PCR) applied to DNA extracted from fresh or frozen tissue

  5. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples

    Energy Technology Data Exchange (ETDEWEB)

    Otero, Paz; Alfonso, Amparo [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain); Alfonso, Carmen [CIFGA Laboratorio, Plaza de Santo Domingo, 1, 27001 Lugo (Spain); Araoz, Romulo; Molgo, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Developpement UPR3294, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex (France); Vieytes, Mercedes R. [Departamento de Fisiologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo (Spain); Botana, Luis M., E-mail: luis.botana@usc.es [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain)

    2011-09-09

    Highlights: {yields} A direct assay based in the binding of nAChR to spirolide toxins by FP is described. {yields} A direct relationship between FP and 13-desMeC in the range of 10-500 nM is obtained. {yields} FP is dependent on the 13, 19-didesMeC in a higher concentration range than 13-desMeC. {yields} FP assay is a sensitive method to detect and quantify 13-desMeC in mussel samples. - Abstract: In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 {mu}g kg{sup -1} meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.

  6. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples

    International Nuclear Information System (INIS)

    Highlights: → A direct assay based in the binding of nAChR to spirolide toxins by FP is described. → A direct relationship between FP and 13-desMeC in the range of 10-500 nM is obtained. → FP is dependent on the 13, 19-didesMeC in a higher concentration range than 13-desMeC. → FP assay is a sensitive method to detect and quantify 13-desMeC in mussel samples. - Abstract: In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 μg kg-1 meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.

  7. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    Science.gov (United States)

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery. PMID:27240009

  8. Fast detection of Noroviruses using a real-time PCR assay and automated sample preparation

    Directory of Open Access Journals (Sweden)

    Schmid Michael

    2004-06-01

    Full Text Available Abstract Background Noroviruses (NoV have become one of the most commonly reported causative agents of large outbreaks of non-bacterial acute gastroenteritis worldwide as well as sporadic gastroenteritis in the community. Currently, reverse transcriptase polymerase chain reaction (RT-PCR assays have been implemented in NoV diagnosis, but improvements that simplify and standardize sample preparation, amplification, and detection will be further needed. The combination of automated sample preparation and real-time PCR offers such refinements. Methods We have designed a new real-time RT-PCR assay on the LightCycler (LC with SYBR Green detection and melting curve analysis (Tm to detect NoV RNA in patient stool samples. The performance of the real-time PCR assay was compared with that obtained in parallel with a commercially available enzyme immunoassay (ELISA for antigen detection by testing a panel of 52 stool samples. Additionally, in a collaborative study with the Baden-Wuerttemberg State Health office, Stuttgart (Germany the real-time PCR results were blindly assessed using a previously well-established nested PCR (nPCR as the reference method, since PCR-based techniques are now considered as the "gold standard" for NoV detection in stool specimens. Results Analysis of 52 clinical stool samples by real-time PCR yielded results that were consistent with reference nPCR results, while marked differences between the two PCR-based methods and antigen ELISA were observed. Our results indicate that PCR-based procedures are more sensitive and specific than antigen ELISA for detecting NoV in stool specimens. Conclusions The combination of automated sample preparation and real-time PCR provided reliable diagnostic results in less time than conventional RT-PCR assays. These benefits make it a valuable tool for routine laboratory practice especially in terms of rapid and appropriate outbreak-control measures in health-care facilities and other settings.

  9. Detection of irradiation treatment of foods using DNA 'comet assay'

    International Nuclear Information System (INIS)

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results

  10. Detection of Irradiation Treatment of Foods Using DNA `Comet Assay'

    Science.gov (United States)

    Khan, Hasan M.; Delincée, Henry

    1998-06-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.

  11. Comet assay in the detection of irradiated garlic

    International Nuclear Information System (INIS)

    The increased claim for fresh produce has forced a consensus between nations to pay more attention to the phytosanitary regulations. Inhibition of sprouting of bulbs and tubers by applying ionising radiation is authorised by the National Food Codes in Brazil. The availability of methods for detection of irradiated food will contribute to increase consumers' confidence. A quick and simple screening test to indicate whether a food product has been irradiated or not was utilised in this study. The DNA comet assay was applied to verify whether garlic imported from China had been irradiated or not. This test has already been adopted as a European Standard (EN 13784), for detection of irradiated food. Non-irradiated control samples of garlic and garlic treated with maleic hydrazide were compared with garlic samples irradiated in our department. The unirradiated samples exhibited only limited DNA migration. If samples were irradiated, an increased DNA fragmentation was observed which permitted the discrimination between non-irradiated and irradiated samples. Since the garlic samples from China showed only very limited DNA fragmentation, they were deemed non-irradiated. Thus, this simple screening test was shown to be successful for identification of an irradiation treatment. (author)

  12. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water.

    Science.gov (United States)

    Xing, Changrui; Liu, Liqiang; Song, Shanshan; Feng, Min; Kuang, Hua; Xu, Chuanlai

    2015-04-15

    In this paper, we describe the development of a multicomponent lateral-flow assay based on an antibody-antigen reaction for the rapid and simultaneous detection of trace contaminants in water, including a heavy metal, algal toxin, antibiotic, hormone, and pesticide. The representative analytes chosen for the study were lead (Pb(II), microcystin-leucine-arginine (MC-LR), chloramphenicol (CAP), testosterone (T), and chlorothalonil (CTN). Five different antigens were immobilized separately in five test lines on a nitrocellulose membrane. The monoclonal antibodies specifically recognized the corresponding antigens, and there was no cross-reactivity between the antibodies in the detection assay. Samples or standards containing the five analytes were preincubated with the freeze-dried colloidal-gold-labeled monoclonal antibody conjugates to improve the sensitivity of the assay. The results were obtained within 20min with a paper-based sensor. The cut-off values for the strip test were 4ng/mL for Pb(II), 1ng/mL for MC-LR, 0.1ng/mL for CAP, 5ng/mL for T, and 5ng/mL for CTN. The assay was evaluated using spiked water samples, and the accuracy and reproducibility of the results were good. In summary, this lateral-flow device provides an effective and rapid method for the onsite detection of multiple contaminants in water samples, with no treatment or devices required. PMID:25499659

  13. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    Science.gov (United States)

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  14. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  15. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    Science.gov (United States)

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  16. Bacteriophage-Based Pathogen Detection

    Science.gov (United States)

    Ripp, Steven

    Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.

  17. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding.

    Science.gov (United States)

    Kim, Min Young; Chae, Ji Hyung; Oh, Chang-Ho; Kim, Chul Geun

    2013-10-15

    To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.

  18. Performance of MycAssay Aspergillus DNA real-time PCR assay compared with the galactomannan detection assay for the diagnosis of invasive aspergillosis from serum samples.

    Science.gov (United States)

    Danylo, Alexis; Courtemanche, Chantal; Pelletier, René; Boudreault, Alexandre A

    2014-08-01

    Invasive aspergillosis (IA) is a major problem in the immunocompromised population, and its diagnosis is difficult due to the low sensitivity of available tests. Detection of Aspergillus nucleic acid by polymerase chain reaction (PCR) in serum samples is a promising diagnostic tool; however, use of multiple "in-house" methods precludes standardization. The first commercial PCR assay, MycAssay Aspergillus (Myconostica, Ltd), became available recently, and its performance in the diagnosis of IA was evaluated and compared with the galactomannan (GM) assay. Serum samples obtained from patients with hematological cancer were tested retrospectively with MycAssay Aspergillus PCR. Per-episode and per-test analyses were undertaken with 146 sera from 35 hematological patients. Sixteen patients had proven or probable IA and 19 had possible or no IA. In per-episode analysis, MycAssay Aspergillus had a sensitivity of 43.8% (95% confidence interval [CI], 19.8%-70.1%) and a specificity of 63.2% (95% CI, 38.4%-83.7%) for IA diagnosis. In per-test analyses, MycAssay Aspergillus had a lower specificity than the GM assay (83.3% vs. 93.1%, P = 0.04). The addition of PCR to routine clinical practice would have permitted the diagnosis of one additional probable IA in our cohort. Use of PCR instead of GM assay would have delayed the diagnosis in two cases. Aspergillus DNA detection by PCR with serum specimens using MycAssay showed a lower specificity than the GM assay and was associated with a low sensitivity for IA diagnosis. More studies are needed to determine the exact role of MycAssay in IA diagnosis in patients with hematological malignancy.

  19. The Fibrin slide assay for detecting urokinase activity in human fetal kidney cells

    Science.gov (United States)

    Sedor, K.

    1985-01-01

    The Fibrin Slide Technique of Hau C. Kwaan and Tage Astrup is discussed. This relatively simple assay involves two steps: the formation of an artificial clot and then the addition of an enzyme (UKOKINASE) to dissolve the clot. The actual dissolving away of the clot is detected by the appearance of holes (lysis zones) in the stained clot. The procedure of Kwaan and Astrup is repeated, along with modifications and suggestions for improvements based on experience with the technique.

  20. Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Directory of Open Access Journals (Sweden)

    Mahajan Supriya D.

    2003-01-01

    Full Text Available Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method.

  1. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays

    Science.gov (United States)

    The identification of fecal pollution sources is commonly performed using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. To this end, we compared the detection frequency of host specific marke...

  2. Platelet hexosaminidase a enzyme assay effectively detects carriers missed by targeted DNA mutation analysis.

    Science.gov (United States)

    Nakagawa, Sachiko; Zhan, Jie; Sun, Wei; Ferreira, Jose Carlos; Keiles, Steven; Hambuch, Tina; Kammesheidt, Anja; Mark, Brian L; Schneider, Adele; Gross, Susan; Schreiber-Agus, Nicole

    2012-01-01

    Biochemical testing of hexosaminidase A (HexA) enzyme activity has been available for decades and has the ability to detect almost all Tay-Sachs disease (TSD) carriers, irrespective of ethnic background. This is increasingly important, as the gene pool of those who identify as Ashkenazi Jewish is diversifying. Here we describe the analysis of a cohort of 4,325 individuals arising from large carrier screening programs and tested by the serum and/or platelet HexA enzyme assays and by targeted DNA mutation analysis. Our results continue to support the platelet assay as a highly effective method for TSD carrier screening, with a low inconclusive rate and the ability to detect possible disease-causing mutation carriers that would have been missed by targeted DNA mutation analysis. Sequence analysis performed on one such platelet assay carrier, who had one non-Ashkenazi Jewish parent, identified the amino acid change Thr259Ala (A775G). Based on crystallographic modeling, this change is predicted to be deleterious, as threonine 259 is positioned proximal to the HexA alpha subunit active site and helps to stabilize key residues therein. Accordingly, if individuals are screened for TSD in broad-based programs by targeted molecular testing alone, they must be made aware that there is a more sensitive and inexpensive test available that can identify additional carriers. Alternatively, the enzyme assays can be offered as a first tier test, especially when screening individuals of mixed or non-Jewish ancestry. PMID:23430931

  3. Sandwich Enzyme-Linked Immunosorbent Assay for Detecting Sesame Seed in Foods

    Directory of Open Access Journals (Sweden)

    Stef J. Koppelman

    2015-01-01

    Full Text Available Small amounts of sesame can trigger allergic reactions in sesame-allergic patients. Because sesame is a widely used food ingredient, analytical methods are needed to support quality control and food safety programs in the food industry. In this study, polyclonal antibodies against sesame seed proteins were raised, and an enzyme-linked immunosorbent assay (ELISA was developed for the detection and quantification of sesame seed residue in food. A comparison was made between this ELISA and other assays, particularly focusing on recovery of sesame seed residue from different food matrices. The developed ELISA is sensitive with a lower limit of quantification of 0.5 ppm and shows essentially no cross-reactivity with other foods or food ingredients (92 tested. The ELISA has a good recovery for analyzing sesame-based tahini in peanut butter, outperforming one other test. In a baked bread matrix, the ELISA has a low recovery, while two other assays perform better. We conclude that a sensitive and specific ELISA can be constructed based on polyclonal antibodies, which is suitable for detection of small amounts of sesame seed relevant for highly allergic patients. Furthermore, we conclude that different food products may require different assays to ensure adequate quantification of sesame.

  4. Rapid detection of Candida albicans by polymerase spiral reaction assay in clinical blood samples

    Directory of Open Access Journals (Sweden)

    Xiaoqun eJiang

    2016-06-01

    Full Text Available Candida albicans is the most common human yeast pathogen which causes mucosal infections and invasive fungal diseases. Early detection of this pathogen is needed to guide preventative and therapeutic treatment. The aim of this study was to establish a polymerase spiral reaction (PSR assay that rapidly and accurately detects C. albicans and to assess the clinical applicability of PSR-based diagnostic testing. Internal transcribed spacer 2 (ITS2, a region between 5.8S and 28S fungal ribosomal DNA, was used as the target sequence. Four primers were designed for amplification of ITS2 with the PSR method, which was evaluated using real time turbidity monitoring and visual detection using a pH indicator. Fourteen non- C. albicans yeast strains were negative for detection, which indicated the specificity of PSR assay was 100%. A 10-fold serial dilution of C. albicans genomic DNA was subjected to PSR and conventional PCR to compare their sensitivities. The detection limit of PSR was 6.9 pg/µl within 1 h, 10-fold higher than that of PCR (69.0 pg/µl. Blood samples (n=122 were collected from intensive care unit and hematological patients with proven or suspected C. albicans infection at two hospitals in Beijing, China. Both PSR assay and the culture method were used to analyze the samples. Of the 122 clinical samples, 34 were identified as positive by PSR. The result was consistent with those obtained by the culture method. In conclusion, a novel and effective C. albicans detection assay was developed that has a great potential for clinical screening and point-of-care testing.

  5. Magnetic Barcode Assay for Genetic Detection of Pathogens

    OpenAIRE

    Liong, Monty; Hoang, Anh N.; Chung, Jaehoon; Gural, Nil; Ford, Christopher B; Min, Changwook; Shah, Rupal R.; Ahmad, Rushdy; Fernandez-Suarez, Marta; Fortune, Sarah M.; Toner, Mehmet; Lee, Hakho; Weissleder, Ralph

    2013-01-01

    The task of rapidly identifying patients infected with Mycobacterium tuberculosis (MTB) in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids based on a magnetic barcoding strategy. PCR-amplified mycobacterial genes are sequence-specifically captured on microspheres, labeled...

  6. Development and Evaluation of a Novel Taqman Real-Time PCR Assay for Rapid Detection of Mycoplasma bovis: Comparison of Assay Performance with a Conventional PCR Assay and Another Taqman Real-Time PCR Assay

    OpenAIRE

    Hemant Naikare; Daniela Bruno; Debabrata Mahapatra; Alesia Reinisch; Russell Raleigh; Robert Sprowls

    2015-01-01

    The objective of this study was to develop and validate a Taqman real-time PCR assay for the detection of Mycoplasma bovis (M. bovis). Unique primers targeting the highly conserved house-keeping gene (uvrC) were designed and the probe sequence was derived from a previously published microarray study. There was 100% agreement in the outcome between our assay and the other two published assays for M. bovis detection. The analytical limit of detection of our assay is 83 copies of the uvrC gene. ...

  7. Investigation of polymerase chain reaction assays to improve detection of bacterial involvement in bovine respiratory disease.

    Science.gov (United States)

    Bell, Colin J; Blackburn, Paul; Elliott, Mark; Patterson, Tony I A P; Ellison, Sean; Lahuerta-Marin, Angela; Ball, Hywel J

    2014-09-01

    Bovine respiratory disease (BRD) causes severe economic losses to the cattle farming industry worldwide. The major bacterial organisms contributing to the BRD complex are Mannheimia haemolytica, Histophilus somni, Mycoplasma bovis, Pasteurella multocida, and Trueperella pyogenes. The postmortem detection of these organisms in pneumonic lung tissue is generally conducted using standard culture-based techniques where the presence of therapeutic antibiotics in the tissue can inhibit bacterial isolation. In the current study, conventional and real-time polymerase chain reaction (PCR) assays were used to assess the prevalence of these 5 organisms in grossly pneumonic lung samples from 150 animals submitted for postmortem examination, and the results were compared with those obtained using culture techniques. Mannheimia haemolytica was detected in 51 cases (34%) by PCR and in 33 cases (22%) by culture, H. somni was detected in 35 cases (23.3%) by PCR and in 6 cases (4%) by culture, Myc. bovis was detected in 53 cases (35.3%) by PCR and in 29 cases (19.3%) by culture, P. multocida was detected in 50 cases (33.3%) by PCR and in 31 cases (20.7%) by culture, and T. pyogenes was detected in 42 cases (28%) by PCR and in 31 cases (20.7%) by culture, with all differences being statistically significant. The PCR assays indicated positive results for 111 cases (74%) whereas 82 cases (54.6%) were culture positive. The PCR assays have demonstrated a significantly higher rate of detection of all 5 organisms in cases of pneumonia in cattle in Northern Ireland than was detected by current standard procedures.

  8. Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses.

    Science.gov (United States)

    Lee, Seoho; Mehta, Saurabh; Erickson, David

    2016-09-01

    Acute undifferentiated febrile illnesses (AFIs) represent a significant health burden worldwide. AFIs can be caused by infection with a number of different pathogens including dengue (DENV) and Chikungunya viruses (CHIKV), and their differential diagnosis is critical to the proper patient management. While rapid diagnostic tests (RDTs) for the detection of IgG/IgM against a single pathogen have played a significant role in enabling the rapid diagnosis in the point-of-care settings, the state-of-the-art assay scheme is incompatible with the multiplex detection of IgG/IgM to more than one pathogen. In this paper, we present a novel assay scheme that uses two-color latex labels for rapid multiplex detection of IgG/IgM. Adapting this assay scheme, we show that 4-plex detection of the IgG/IgM antibodies to DENV and CHIKV is possible in 10 min by using it to correctly identify 12 different diagnostic scenarios. We also show that blue, mixed, and red colorimetric signals corresponding to IgG, IgG/IgM, and IgM positive cases, respectively, can be associated with distinct ranges of hue intensities, which could be exploited by analyzer systems in the future for making accurate, automated diagnosis. This represents the first steps toward the development of a single RDT-based system for the differential diagnosis of numerous AFIs of interest. PMID:27490379

  9. Compact upconverting phosphor detection system for wick assays

    Science.gov (United States)

    Riris, Haris; Van der Laan, Jan E.; Cooper, David E.; Nashold, Karen M.; Carlisle, Clinton B.; Schneider, Luke V.

    1997-05-01

    We describe an integrated detection system based on upconverting phosphor particles bound to capture sites on the inside surfaces of rectangular wick capillaries. This deice can be used with either antibody or nucleic acid to detect specific micro-organisms. The system uses a high- power, 980 nm, semiconductor diode laser to illuminate 200 X 300 X 20 micrometers capture surfaces. The rectangular capillary wicks are held in a tray that is inserted into the detection system, positioning the capture surface at the object plane of the optical system. Phosphorescent light emitted from the capture surface is collected by a high numerical aperture microscope objective and directed through a series of filters onto either a CCD camera or a photomultiplier. A combination of band-reject filters attenuates the 980 nm laser excitation light and its harmonic at 490 nm, and a tunable liquid crystal filter provides for rapid scanning from 400 to 750 nm. The data acquisition and control is controlled by a laptop PC with a custom GUI interface developed using LabWindows/CVI. The system can detect a single phosphor particle bound to a capture surface.

  10. Development of a multiplex PCR assay detecting 52 autosomal SNPs

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Phillips, C.; Børsting, Claus;

    2006-01-01

    An efficient method that can be used to simultaneously amplify a set of genetic loci across the genome with high reliability can provide a valuable tool for single nucleotide polymorphism (SNP) forensic genotyping. A crucial element is the number of individual biochemical reactions that must...... be performed. The SNPforID consortium (www.snpforid.org) was established in 2003 with the principal goal of developing a SNP-based system of DNA analysis that would have comparable discrimination power and ease of use to those of existing short tandem repeat (STR) based techniques. Here, we describe a strategy...... for amplifying 52 genomic DNA fragments, each containing one SNP, in a single tube, and accurately genotyping the PCR product mixture using two single base extension reactions. This multiplex approach reduces the cost of SNP genotyping and requires as little as 0.5 ng of genomic DNA to detect 52 SNPs. We used...

  11. Assessment of Listeria sp. Interference Using a Molecular Assay To Detect Listeria monocytogenes in Food.

    Science.gov (United States)

    Zittermann, Sandra I; Stanghini, Brenda; See, Ryan Soo; Melano, Roberto G; Boleszczuk, Peter; Murphy, Allana; Maki, Anne; Mallo, Gustavo V

    2016-01-01

    Detection of Listeria monocytogenes in food is currently based on enrichment methods. When L. monocytogenes is present with other Listeria species in food, the species compete during the enrichment process. Overgrowth competition of the nonpathogenic Listeria species might result in false-negative results obtained with the current reference methods. This potential issue was noted when 50 food samples artificially spiked with L. monocytogenes were tested with a real-time PCR assay and Canada's current reference method, MFHPB-30. Eleven of the samples studied were from foods naturally contaminated with Listeria species other than those used for spiking. The real-time PCR assay detected L. monocytogenes in all 11 of these samples; however, only 6 of these samples were positive by the MFHPB-30 method. To determine whether L. monocytogenes detection can be affected by other species of the same genus due to competition, an L. monocytogenes strain and a Listeria innocua strain with a faster rate of growth in the enrichment broth were artificially coinoculated at different ratios into ground pork meat samples and cultured according to the MFHPB-30 method. L. monocytogenes was detected only by the MFHPB-30 method when L. monocytogenes/L. innocua ratios were 6.0 or higher. In contrast, using the same enrichments, the real-time PCR assay detected L. monocytogenes at ratios as low as 0.6. Taken together, these findings support the hypothesis that L. monocytogenes can be outcompeted by L. innocua during the MFHPB-30 enrichment phase. However, more reliable detection of L. monocytogenes in this situation can be achieved by a PCR-based method mainly because of its sensitivity.

  12. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sandra J Laney

    Full Text Available BACKGROUND: Existing molecular assays for filarial parasite DNA in mosquitoes cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3 capable of establishing new infections in humans. We now report development of a molecular L3-detection assay for Brugia malayi in vectors based on RT-PCR detection of an L3-activated gene transcript. METHODOLOGY/PRINCIPAL FINDINGS: Candidate genes identified by bioinformatics analysis of EST datasets across the B. malayi life cycle were initially screened by PCR using cDNA libraries as templates. Stage-specificity was confirmed using RNA isolated from infected mosquitoes. Mosquitoes were collected daily for 14 days after feeding on microfilaremic cat blood. RT-PCR was performed with primer sets that were specific for individual candidate genes. Many promising candidates with strong expression in the L3 stage were excluded because of low-level transcription in less mature larvae. One transcript (TC8100, which encodes a particular form of collagen was only detected in mosquitoes that contained L3 larvae. This assay detects a single L3 in a pool of 25 mosquitoes. CONCLUSIONS/SIGNIFICANCE: This L3-activated gene transcript, combined with a control transcript (tph-1, accession # U80971 that is constitutively expressed by all vector-stage filarial larvae, can be used to detect filarial infectivity in pools of mosquito vectors. This general approach (detection of stage-specific gene transcripts from eukaryotic pathogens may also be useful for detecting infective stages of other vector-borne parasites.

  13. Detection of hypoxic cells in murine tumors using the comet assay. Comparison with a conventional radiobiological assay

    International Nuclear Information System (INIS)

    The comet (single-cell electrophoresis) assay has been developed as a method for measuring DNA damage in single cells after irradiation. We have developed our own methods and image analysis system for the comet assay to identify hypoxic fractions. In vitro, we tested our system using a cultured tumor cell line (SCCVII). In vivo, we compared the hypoxic fractions detected by this assay with those determined by the in vivo-in vitro clonogenic assay using two rodent tumors (SCCVII/C3H, EMT6/KU/balb/c), which exhibit different types of hypoxia: acute and chronic. In vitro, our method could differentiate hypoxic cells from oxic cells, using the parameter of tail moment. In vivo, there were good correlations between the hypoxic fractions determined by the comet assay and by the clonogenic assay, in SCCVII/C3H (r=0.85) and in EMT6/KU/balb/c (r=0.75) tumors. By comparison of the two methods in chronically hypoxic and acutely hypoxic tumors, we further confirmed that the comet assay is clinically useful for estimating hypoxic fractions of solid tumors. (author)

  14. A homogeneous nucleic acid hybridization assay based on strand displacement.

    OpenAIRE

    Vary, C P

    1987-01-01

    A homogeneous nucleic acid hybridization assay which is conducted in solution and requires no separation steps is described. The assay is based on the concept of strand displacement. In the strand displacement assay, an RNA "signal strand" is hybridized within a larger DNA strand termed the "probe strand", which is, in turn, complementary to the target nucleic acid of interest. Hybridization of the target nucleic acid with the probe strand ultimately results in displacement of the RNA signal ...

  15. Application of a Homogenous Assay for the Detection of 2,4,6-Trinitrotoluene to Environmental Water Samples

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2005-01-01

    Full Text Available A homogeneous assay was used to detect 2,4,6-trinitrotoluene (TNT spiked into environmental water samples. This assay is based on changes in fluorescence emission intensity when TNT competitively displaces a fluorescently labeled, TNT analog bound to an anti-TNT antibody. The effectiveness of the assay was highly dependent on the source of the sample being tested. As no correlation between pH and assay performance was observed, ionic strength was assumed to be the reason for variation in assay results. Addition of 10x phosphate-buffered saline to samples to increase their ionic strength to that of our standard laboratory buffer (about 0.17 M significantly improved the range over which the assay functioned in several river water samples.

  16. Reliability of a bioluminescence ATP assay for detection of bacteria.

    OpenAIRE

    Selan, L.; Berlutti, F; Passariello, C.; Thaller, M C; Renzini, G

    1992-01-01

    The reliability of bioluminescence assays which employ the luciferin-luciferase ATP-dependent reaction to evaluate bacterial counts was studied, both in vitro and on urine specimens. Bioluminescence and cultural results for the most common urinary tract pathogens were analyzed. Furthermore, the influence of the culture medium, of the assaying method, and of the phase of growth on bioluminescence readings was studied. Results show that Proteus, Providencia, and Morganella strains are not corre...

  17. Gold Nanoparticle-based Dynamic Light Scattering Assay for Detection of Mercury Ion%基于金纳米粒子的动态光散射法检测溶液中的汞离子

    Institute of Scientific and Technical Information of China (English)

    马立娜; 刘殿骏; 王振新

    2014-01-01

    A gold nanoparticle ( GNP)-based dynamic light scattering ( DLS) assay has been developed for detecting mercury ion ( Hg2+) in aqueous solution. The GNPs are able to maintain monodisperse state in relative high ionic strength ( 0. 1 mol/L NaCl ) aqueous solution because Hg2+ aptamer 5’-TTTCTTCTTTCTTCCCCCCTTGTTTGTTGTTT-3’( Probe DNA ) can adsorb on the GNP surface by electrostatic interaction. In the presence of Hg2+, the Probe DNA molecules easily desorb from GNP surface because of T-Hg2+-T formation. The unprotected GNPs form aggregates in 100 mmol/L NaCl solution, resulting in increased significantly the average hydrodynamic diameter of GNPs. Under the conditions of pH 7. 43, 110 nmol/L aptamer, 100 mmol/L NaCl and 30 minutes incubation time of Hg2+with aptamer, the difference of average hydrodynamic diameter (△D ) of GNPs was increased linearly with logarithm of Hg2+concentration over the range from 0. 1 nmol/L to 5 μmol/L, with a detection limit of 0. 1 nmol/L. Moreover, satisfactory results were obtained when the proposed method was applied to detect Hg2+ in real samples.%发展了一种基于汞离子( Hg2+)适配体( Aptamer)免标记金纳米粒子的动态光散射( DLS)法,用于灵敏、选择性的检测溶液中的Hg2+。 Aptamer 5'-TTTCTTCTTTCTTCCCCCCTTGTTTGTTGTTT-3'与Hg2+的特异性结合使金纳米粒子失去保护,在含有100 mmol/L NaCl的缓冲溶液中发生聚集,金纳米粒子的平均水合粒径变大。在pH=7.43,110 nmol/L Aptamer ,100 mmol/L NaCl,Hg2+与Probe DNA孵育时间为30 min的实验条件下,金纳米粒子水合粒径的变化值(DD)与Hg2+的浓度成正比。检出Hg2+的线性范围为0.1 nmol/L~5μmol/L,检出限达0.1 nmol/L。湖水及矿泉水两种水样加标实验表明本方法能够用于实际水样中Hg2+的检测。

  18. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection

    Directory of Open Access Journals (Sweden)

    Amanda de Faveri Pitz

    2013-12-01

    Full Text Available Introduction Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR assay for the detection of Paracoccidioides brasiliensis. Methods We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. Results The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. Conclusions The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  19. Design of a multiplex PCR assay for the simultaneous detection and confirmation of Neisseria gonorrhoeae.

    LENUS (Irish Health Repository)

    O'Callaghan, Isabelle

    2010-05-01

    To improve the detection of Neisseria gonorrhoeae by designing a multiplex PCR assay using two N gonorrhoeae-specific genes as targets, thereby providing detection and confirmation of a positive result simultaneously.

  20. Integrated sample-to-detection chip for nucleic acid test assays.

    Science.gov (United States)

    Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S

    2016-06-01

    Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.

  1. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    Science.gov (United States)

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  2. Reverse transcription genome exponential amplification reaction assay for rapid and universal detection of human rhinoviruses.

    Science.gov (United States)

    Guan, Li; Zhao, Lin-Qing; Zhou, Hang-Yu; Nie, Kai; Li, Xin-Na; Zhang, Dan; Song, Juan; Qian, Yuan; Ma, Xue-Jun

    2016-07-01

    Human rhinoviruses (HRVs) have long been recognized as the cause of more than one-half of acute viral upper respiratory illnesses, and they are associated with more-serious diseases in children, such as asthma, acute otitis media and pneumonia. A rapid and universal test for of HRV infection is in high demand. In this study, a reverse transcription genome exponential amplification reaction (RT-GEAR) assay targeting the HRV 5' untranslated region (UTR) was developed for pan-HRV detection. The reaction was performed in a single tube in one step at 65 °C for 60 min using a real-time fluorometer (Genie(®)II; Optigene). The RT-GEAR assay showed no cross-reactivity with common human enteroviruses, including HEV71, CVA16, CVA6, CVA10, CVA24, CVB5, Echo30, and PV1-3 or with other common respiratory viruses including FluA H3, FluB, PIV1-4, ADV3, RSVA, RSVB and HMPV. With in vitro-transcribed RNA containing the amplified regions of HRV-A60, HRV-B06 and HRV-C07 as templates, the sensitivity of the RT-GEAR assay was 5, 50 and 5 copies/reaction, respectively. Experiments to evaluate the clinical performance of the RT-GEAR assay were also carried out with a panel of 143 previously verified samples, and the results were compared with those obtained using a published semi-nested PCR assay followed by sequencing. The tested panel comprised 91 HRV-negative samples and 52 HRV-positive samples (18 HRV-A-positive samples, 3 HRV-B-positive samples and 31 HRV-C-positive samples). The sensitivity and specificity of the pan-HRVs RT-GEAR assay was 98.08 % and 100 %, respectively. The kappa correlation between the two methods was 0.985. The RT-GEAR assay based on a portable Genie(®)II fluorometer is a sensitive, specific and rapid assay for the universal detection of HRV infection.

  3. Improved microbial screning assay for the detection of quinolone residues in poultry and eggs

    NARCIS (Netherlands)

    Pikkemaat, M.G.; Mulder, P.P.J.; Elferink, J.W.A.; Cocq, A.; Nielen, M.W.F.; Egmond, van H.J.

    2007-01-01

    An improved microbiological screening assay is reported for the detection of quinolone residues in poultry muscle and eggs. The method was validated using fortified tissue samples and is the first microbial assay to effectively detect enrofloxacin, difloxacin, danofloxacin, as well as flumequine and

  4. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  5. An immunohistochemical assay to detect trophoblasts in frozen feline placenta.

    Science.gov (United States)

    Scott, Veronica L; Wallace, Kedra; Mays, Stephany; Ryan, Peter; Coats, Karen S

    2011-03-01

    The placenta, a fetal endocrine organ, is composed of subpopulations of trophoblasts, including cytotrophoblasts, and syncytiotrophoblasts. Trophoblastic populations can be distinguished based upon their expression of cytokeratin. The purpose of the current study was to develop an immunohistochemistry (IHC) method to identify trophoblasts selectively in frozen feline placental tissue using antibodies specific for cytokeratin. The mouse monoclonal antibody anti-human pan-cytokeratin AE1/AE3 and a commercial detection system were used. Nonspecific immunoreactivity was encountered that could not be eliminated with altered blocking methods. The nonspecific reactivity was attributed to the goat anti-mouse/rabbit immunoglobulin G (IgG) peroxidase polymer included in the commercial kit. Alternatively, a polyclonal rabbit anti-cow cytokeratin wide spectrum screening antibody with goat anti-rabbit IgG polyclonal secondary antibody was used to detect cytokeratin in feline placental tissue. The IHC procedure eliminated nonspecific immunoreactivity while specifically labeling cytokeratin. This new approach provides an IHC method to identify trophoblasts specifically in feline placenta. PMID:21398447

  6. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus and PCV2 (DNA virus from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29% and TGEV (11.7% preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  7. 番茄环斑病毒纳米荧光颗粒试纸条的研制%Rapid Detection of Tomato ringspot Nepovirus with Fluorescent Nanoparticles Based Lateral Flow Strip Assay

    Institute of Scientific and Technical Information of China (English)

    李鑫; 刘卉秋; 胡强; 曹冬梅; 曹际娟

    2014-01-01

    Objective: To establish a rapid and simple method for detecting the Tomato ringspot Nepovirus (ToRSV). Methods: Based on the method of immuno-chromatographic test, fluorescent nanoparticles strip of ToRSV was preparated which using the fluorescent nanoparticles as markers. The fluorescence signal results could be readed under the UV light. Results: The method had good specificity and there were no cross-reaction with non-ToRSV. The sensitivity and stability tests were showed that fluorescent nanoparticles strip higher than doubled colloidal gold test strip. Conclusion: This fluorescent nanoparticles strip assay is a sensitive, convenient, rapid method without the need of special apparatus, so it is of good practical value for the detection of ToRSV in quar⁃antine or field test site.%目的:研发一种快速、便捷检测番茄环斑病毒(ToRSV)的方法。方法:以荧光纳米颗粒为标记物,采用免疫层析试验方法制备ToRSV荧光纳米颗粒试纸条,在紫外灯下观察试纸条上的荧光信号,作为结果判定依据。结果:用制备的荧光纳米颗粒试纸条检测包括ToRSV在内的9种病毒,仅ToRSV有阳性反应,其余待测样品均呈阴性,表明该试纸条具有较好的特异性;用该荧光试纸条与传统胶体金试纸条进行灵敏度测试时,其灵敏性高于胶体金试纸条1倍以上,且稳定性试验结果良好。结论:ToRSV荧光纳米颗粒试纸条的研制,为快速检测ToRSV提供了有效手段,该方法可用于现场检验,具有广阔的应用前景。

  8. Computer-determined assay time based on preset precision

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L.A.; Hagan, R.; Martin, E.R.; Wachter, J.R.; Bonner, C.A.; Malcom, J.E. [Los Alamos National Lab., NM (United States). Nuclear Materials Measurement and Accountability

    1994-08-01

    Most current assay systems for special nuclear materials (SNM) operate on the principle of a fixed assay time which provides acceptable measurement precision without sacrificing the required throughput of the instrument. Waste items to be assayed for SNM content can contain a wide range of nuclear material. Counting all items for the same preset assay time results in a wide range of measurement precision and wastes time at the upper end of the calibration range. A short time sample taken at the beginning of the assay could optimize the analysis time on the basis of the required measurement precision. To illustrate the technique of automatically determining the assay time, measurements were made with a segmented gamma scanner at the Plutonium Facility of Los Alamos National Laboratory with the assay time for each segment determined by counting statistics in that segment. Segments with very little SNM were quickly determined to be below the lower limit of the measurement range and the measurement was stopped. Segments with significant SNM were optimally assays to the preset precision. With this method the total assay time for each item is determined by the desired preset precision. This report describes the precision-based algorithm and presents the results of measurements made to test its validity.

  9. Biotoxin Detection Using Cell-Based Sensors

    OpenAIRE

    Pratik Banerjee; Spyridon Kintzios; Balabhaskar Prabhakarpandian

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results ob...

  10. Immunochromatographic assay for ultrasensitive detection of aflatoxin B₁ in maize by highly luminescent quantum dot beads.

    Science.gov (United States)

    Ren, Meiling; Xu, Hengyi; Huang, Xiaolin; Kuang, Min; Xiong, Yonghua; Xu, Hong; Xu, Yang; Chen, Hongyu; Wang, Andrew

    2014-08-27

    Highly luminescent quantum dot beads (QBs) were synthesized by encapsulating CdSe/ZnS and used for the first time as immunochromatographic assay (ICA) signal amplification probe for ultrasensitive detection of aflatoxin B1 (AFB1) in maize. The challenges to using high brightness QBs as probes for ICA are smooth flow of QBs and nonspecific binding on nitrocellulose (NC) membrane, which are overcome by unique polymer encapsulation of quantum dots (QDs) and surface blocking method. Under optimal conditions, the QB-based ICA (QB-ICA) sensor exhibited dynamic linear detection of AFB1 in maize extract from 5 to 60 pg mL(-1), with a median inhibitory concentration (IC50) of 13.87 ± 0.16 pg mL(-1), that is significantly (39-fold) lower than those of the QD as a signal probe (IC50 = 0.54 ± 0.06 ng mL(-1)). The limit of detection (LOD) for AFB1 using QB-ICA sensor was 0.42 pg mL(-1) in maize extract, which is approximately 2 orders of magnitude better than those of previously reported gold nanoparticle based immunochromatographic assay (AuNP-ICA) and is even comparable with or better than the conventional enzyme-linked immunosorbent assay (ELISA) method. The performance and practicability of our QB-ICA sensor were validated with a commercial ELISA kit and further confirmed with liquid chromatography tandem mass spectrometry (LC-MS/MS). Given its efficient signal amplification performance, the proposed QB-ICA offers great potential for rapid, sensitive, and cost-effective quantitative detection of analytes in food safety monitoring. PMID:25109633

  11. Immunoradiometric assay for the detection of circulating antibodies to murine monoclonal antibodies in humans (HAMA)

    International Nuclear Information System (INIS)

    The increasing clinical use of monoclonal antibodies (MAb) has focussed attention on the importance of the generation of human anti-mouse antibodies (HAMA). HAMA can not only be life threatening but can also be associated with reduced image quality and accelerated MAb clearance in vivo as well as interfere with in vitro MAb based assays. The development of a two step immunoradiometric assay (IRMA) for detecting circulating HAMA is reported. Preliminary results have been generated with specific MAb coated polystyrene wells. The appropriately diluted serum sample is first incubated with the MAb coated wells followed by a wash step and a second incubation with 125I labeled goat anti-human IgG. After a final wash, the wells are assayed for 125I and the results expressed as percent of the input bound. The prototype assay is compared with an existing commercially available ELISA kit using patient sera obtained at various time periods up to 7 months after IV MAb injection for radioimmunoscintigraphy. 18 refs., 2 tabs., 1 fig

  12. PCR and real-time PCR assays to detect fungi of Alternaria alternata species.

    Science.gov (United States)

    Kordalewska, Milena; Brillowska-Dąbrowska, Anna; Jagielski, Tomasz; Dworecka-Kaszak, Bożena

    2015-01-01

    Fungi of the Alternaria genus are mostly associated with allergic diseases. However, with a growing number of immunocompromised patients, these fungi, with A. alternata being the most prevalent one, are increasingly recognized as etiological agents of infections (phaeohyphomycoses) in humans. Nowadays, identification of Alternaria spp. requires their pure culture and is solely based on morphological criteria. Clinically, Alternaria infections may be indistinguishable from other fungal diseases. Therefore, a diagnostic result is often delayed or even not achieved at all. In this paper we present easy to perform and interpret PCR and real-time PCR assays enabling detection of A. alternata species. On the basis of alignment of β-tubulin gene sequences, A. alternata-specific primers were designed. DNA from fungal isolates, extracted in a two-step procedure, were used in PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The assays specificity was confirmed, since positive results were obtained for all A. alternata isolates, and no positive results were obtained neither for other molds, dermatophytes, yeast-like fungi, nor human DNA. The assays developed here enable fast and unambiguous identification of A. alternata pathogens. PMID:26610309

  13. Identification of IgM as a contaminant in lectin-FLISA assays for HCC detection.

    Science.gov (United States)

    Wang, Mengjun; Comunale, Mary Ann; Herrera, Harmin; Betesh, Lucy; Kono, Yuko; Mehta, Anand

    2016-07-29

    Liver disease, in the form of hepatocellular carcinoma (HCC) accounts for > 700,000 deaths worldwide. A major reason for this is late diagnosis of HCC. The currently used biomarker, serum alpha-fetoprotein (AFP) is elevated in 40-60% of those with HCC and other markers that can either compliment or replace AFP are desired. Our previous work has identified a number of proteins that contain altered glycans in HCC. Specifically, these altered glycans were increased levels of core and outer arm fucosylation. To determine the clinical usefulness of those identified glycoproteins, a plate based assay was developed that allowed for the detection of fucosylated glycoforms. While this method was applicable to a number of independent patient sets, it was unable to specifically detect fucosylated glycoforms in many patient samples. That is, some material was present in serum that led to non-specific signal in the lectin- fluorescence -linked immunosorbent assay (lectin-FLISA). To address this issue, a systematic process was undertaken to identify the material. This material was found to be increased levels of lectin reactive IgM. Removal of both IgG and IgM using a multi-step protein A/G incubation and filtration step removed the contaminating signal and allowed for the analysis of specific protein glycoforms. This assay was subsequently used on two sample sets, one that was shown previously to be unable to be tested via a lectin FLISA and in a larger independent sample set. The clinical usefulness of this assay in the early detection of HCC is discussed.

  14. Dye Labelled Monoclonal Antibody Assay for Detection of Toxic Shock Syndrome Toxin -1 from Staphylococcus Aureus

    Directory of Open Access Journals (Sweden)

    V Javid Khojasteh

    2011-12-01

    Full Text Available Objective: The aim of study was to develop a rapid assay, dye labelled monoclonal antibody assay (DLMAA, using non-radioactive organic synthetic dyes for identification of Toxic Shock Syndrome Toxin-1 (TSST-1 producing strains of Staphylococcus aureus.Materials and Methods: The assay protocol required only two simple steps; addition of TSST-1 antigen to a nitrocellulose membrane and then adding a colloidal dye labelled antibody (D/A suspension detection reagent.Results: The sensitivity and specificity of the assay was determined relative to positive and negative strains compared to an ELISA assay. Overall 100% agreement was found between both assays. The sensitivity for detection of TSST-1 was 30 ng.Conclusion: The DLMAA did not require handling and disposal of radioactive materials. It is a rapid qualitative technique for detection of TSST-1 toxin at room temperature within a short time.

  15. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams

    Science.gov (United States)

    Chen, Yanni; Wang, Yongwei; Liu, Liqiang; Wu, Xiaoling; Xu, Liguang; Kuang, Hua; Li, Aike; Xu, Chuanlai

    2015-10-01

    A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL-1, respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples.A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively

  16. Transcribed single nucleotide polymorphism: Ideal markers for detecting gene imprinting by 5' nuclease assay

    Institute of Scientific and Technical Information of China (English)

    ZHU Guan-shan; WAN Mo-bin; ZHU Zhong-zheng; ZHENG Rui-ying

    2002-01-01

    Objective:To establish a novel approach for quick and highly efficient verification of human gene imprinting. Methods: A pair of dye-labelled probes, 5' nuclease assay was combined with RT-PCR to determine the genotype of a transcribed single nucleotide polymorphism (SNP) rs705 (C>T) of a known imprinted gene, small nuclear ribonucleotide protein N (SNRPN), on both genomic DNA and cDNA of human lymphoblast cell lines. Results: Allele discrimination showed a clear monoallelic expression pattern of SNRPN,which was confirmed by RT-PCR based restriction fragment length polymorphism (RFLPs). Pedigree analysis verified the paternal origin of expressed allele, which was in consistency with previous report. Conclusion: Transcribed SNP is an ideal marker for detecting gene imprinting by 5' nuclease assay. This approach also may be used to discover differential allele expression of non-imprinted genes, finding out gene cis-acting functional polymorphism.

  17. Cell-based Assays to Identify Inhibitors of Viral Disease

    Science.gov (United States)

    Green, Neil; Ott, Robert D.; Isaacs, Richard J.; Fang, Hong

    2009-01-01

    Background Antagonizing the production of infectious virus inside cells requires drugs that can cross the cell membrane without harming host cells. Objective It is therefore advantageous to establish intracellular potency of anti-viral drug candidates early in the drug-discovery pipeline. Methods To this end, cell-based assays are being developed and employed in high-throughput drug screening, ranging from assays that monitor replication of intact viruses to those that monitor activity of specific viral proteins. While numerous cell-based assays have been developed and investigated, rapid counter screens are also needed to define the specific viral targets of identified inhibitors and to eliminate nonspecific screening hits. Results/Conclusions Here, we describe the types of cell-based assays being used in antiviral drug screens and evaluate the equally important counter screens that are being employed to reach the full potential of cell-based high-throughput screening. PMID:19750206

  18. Detection of telomerase activity by combination of telomeric repeat amplification protocol and electrochemiluminescence assay

    Institute of Scientific and Technical Information of China (English)

    Xiao Ming Zhou; Li Jia

    2008-01-01

    A highly sensitive telomerase detection method that combines telomeric repeat amplification protocol (TRAP) and magnetic beads based electrochemiluminescence (ECL) assay has been developed. Briefly, telomerase recognizes biotinylated telomerase synthesis primer (B-TS) and synthesizes extension products, which then serve as the templates for PCR amplification using B-TS as the forward primer and Iris-(2'2'-bipyridyl) ruthenium (TBR) labeled ACX (TBR-ACX) as the reversed primer. The amplified product is captured on streptavidin-coated paramagnetic beads and detected by ECL. Telomerase positive HeLa cells were used to validate the feasibility of the method. The experimental results showed down to 10 cancer cells can be detected easily. The method is a useful tool for telomerase activity analysis due to its sensitivity, rapidity, safety, high throughput, and low cost. It can be used for screening a large amount of clinical samples.

  19. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane. PMID:27014303

  20. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  1. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane. PMID:27014303

  2. A lateral flow assay for quantitative detection of amplified HIV-1 RNA.

    Directory of Open Access Journals (Sweden)

    Brittany A Rohrman

    Full Text Available Although the accessibility of HIV treatment in developing nations has increased dramatically over the past decade, viral load testing to monitor the response of patients receiving therapy is often unavailable. Existing viral load technologies are often too expensive or resource-intensive for poor settings, and there is no appropriate HIV viral load test currently available at the point-of-care in low resource settings. Here, we present a lateral flow assay that employs gold nanoparticle probes and gold enhancement solution to detect amplified HIV RNA quantitatively. Preliminary results show that, when coupled with nucleic acid sequence based amplification (NASBA, this assay can detect concentrations of HIV RNA that match the clinically relevant range of viral loads found in HIV patients. The lateral flow test is inexpensive, simple and rapid to perform, and requires few resources. Our results suggest that the lateral flow assay may be integrated with amplification and sample preparation technologies to serve as an HIV viral load test for low-resource settings.

  3. An agar gel enzyme assay (AGEA) for simple detection of Salmonella enteritidis antibodies in chicken sera.

    Science.gov (United States)

    Kim, C J; Nagaraja, K V

    1991-01-01

    An agar gel enzyme assay (AGEA) was developed for the detection of antibodies to Salmonella enteritidis (SE). The assay was based on the ability of antibodies to diffuse through an agar gel and react with antigen coated on a polystyrene surface. The antigen-antibody reaction was then made visible by applying an enzyme-conjugated anti-immunoglobulin and the addition, subsequently, of a substrate-containing gel. The color change in circular zones was taken as the indication for the presence of antibodies. The present investigation reports identification of an antigen specific for SE and its use in the development of a relatively simple AGEA procedure. The results of AGEA were compared with those of conventional microagglutination (MA) test and serum plate (SP) test. The percentage agreement between MA and AGEA in positive serum sample was found to be 94.4%, and in negative serum samples it was found to be 88.8%. The present results suggest that the AGEA could be a very useful screening test for the detection of SE antibodies because the assay is inexpensive, specific and simple to perform without much equipment, and give results within a 3-hr period. PMID:1832368

  4. Standardization of a cytometric p24-capture bead-assay for the detection of main HIV-1 subtypes.

    Science.gov (United States)

    Merbah, Mélanie; Onkar, Sayali; Grivel, Jean-Charles; Vanpouille, Christophe; Biancotto, Angélique; Bonar, Lydia; Sanders-Buell, Eric; Kijak, Gustavo; Michael, Nelson; Robb, Merlin; Kim, Jerome H; Tovanabutra, Sodsai; Chenine, Agnès-Laurence

    2016-04-01

    The prevailing method to assess HIV-1 replication and infectivity is to measure the production of p24 Gag protein by enzyme-linked immunosorbent assay (ELISA). Since fluorescent bead-based technologies offer a broader dynamic range and higher sensitivity, this study describes a p24 capture Luminex assay capable of detecting HIV-1 subtypes A-D, circulating recombinant forms (CRF) CRF01_AE and CRF02_AG, which together are responsible for over 90% of HIV-1 infections worldwide. The success of the assay lies in the identification and selection of a cross-reactive capture antibody (clone 183-H12-5C). Fifty-six isolates that belonged to six HIV-1 subtypes and CRFs were successfully detected with p-values below 0.021; limits of detection ranging from 3.7 to 3 × 104 pg/ml. The intra- and inter-assay variation gave coefficient of variations below 6 and 14%, respectively. The 183-bead Luminex assay also displayed higher sensitivity of 91% and 98% compared to commercial p24 ELISA and a previously described Luminex assay. The p24 concentrations measured by the 183-bead Luminex assay showed a significant correlation (R=0.92, pdetection of up to 500 analytes in a single sample, and delivers a valuable tool for the field. PMID:26808359

  5. An improved haemolytic plaque assay for the detection of cells secreting antibody to bacterial antigens

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C

    1992-01-01

    Recent advances in the development of conjugate polysaccharide vaccines for human use have stimulated interest in the use of assays detecting antibody-secreting cells (AbSC) with specificity for bacterial antigens. Here we present improved haemolytic plaque-forming cell (PFC) assays detecting Ab......SC with specificity for tetanus and diphtheria toxoid as well as for Haemophilus influenzae type b and pneumococcal capsular polysaccharides. These assays were found to be less time consuming, more economical and yielded 1.9-3.4-fold higher plaque numbers than traditional Jerne-type PFC assays. In the case of anti...

  6. SNaPshot Assay for the Detection of the Most Common CFTR Mutations in Infertile Men

    OpenAIRE

    Predrag Noveski; Svetlana Madjunkova; Marija Mircevska; Toso Plaseski; Vanja Filipovski; Dijana Plaseska-Karanfilska

    2014-01-01

    Congenital bilateral absence of vas deferens (CBAVD) is the most common CFTR-related disorder (CFTR-RD) that explains about 1-2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot) assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA an...

  7. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification.

    Science.gov (United States)

    Derda, Ratmir; Lockett, Matthew R; Tang, Sindy K Y; Fuller, Renee C; Maxwell, E Jane; Breiten, Benjamin; Cuddemi, Christine A; Ozdogan, Aysegul; Whitesides, George M

    2013-08-01

    This paper describes a method to detect the presence of bacteria in aqueous samples, based on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal amplification: (i) the replication of phage inside a live bacterial host and (ii) the delivery and expression of the complementing gene that turns on enzymatic activity and produces a colored or fluorescent product. Here we demonstrate a phage-based amplification scheme with an M13KE phage that delivers a small peptide motif to an F(+), α-complementing strain of Escherichia coli K12, which expresses the ω-domain of β-galactosidase (β-gal). The result of this complementation-an active form of β-gal-was detected colorimetrically, and the high level of expression of the ω-domain of β-gal in the model K12 strains allowed us to detect, on average, five colony-forming units (CFUs) of this strain in 1 L of water with an overnight culture-based assay. We also detected 50 CFUs of the model K12 strain in 1 L of water (or 10 mL of orange juice, or 10 mL of skim milk) in less than 4 h with a solution-based assay with visual readout. The solution-based assay does not require specialized equipment or access to a laboratory, and is more rapid than existing tests that are suitable for use at the point of access. This method could potentially be extended to detect many different bacteria with bacteriophages that deliver genes encoding a full-length enzyme that is not natively expressed in the target bacteria.

  8. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay.

    Directory of Open Access Journals (Sweden)

    Robert Grützmann

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. METHODOLOGY/PRINCIPAL FINDINGS: Using a PCR assay for analysis of Septin 9 (SEPT9 hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls. 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48% and 7/102 controls (7%. In the test study 73/126 CRCs (58% and 18/183 control samples (10% were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected while maintaining 90% specificity (19/183 for controls. Positive rates for plasmas from the other cancers (11/96 and non-cancerous conditions (41/315 were low. The rate of polyp detection (>1 cm was approximately 20%. CONCLUSIONS/SIGNIFICANCE: Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.

  9. Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices

    OpenAIRE

    Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin B.; Brigitte G. Dorner

    2012-01-01

    Background In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. Methodology/Findings This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus commun...

  10. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices.

    OpenAIRE

    Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin; Dorner, Brigitte

    2012-01-01

    Background: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. Methodology/Findings: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus ...

  11. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  12. Development of a fluorescent microsphere-based assay for the detection of enzootic bovine leukosis%牛地方流行性白血病液相蛋白芯片检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    刘志玲; 陈茹; 舒鼎铭; 马静云; 朱道中; 吴晓薇; 林志雄

    2012-01-01

    应用xMAP液相芯片技术原理,以原核表达的重组牛白血病病毒gp51蛋白为抗原,建立了检测牛白血病病毒抗体的LiquiChip液相蛋白芯片检测方法,并进行了特异性、敏感性、重复性与稳定性试验。结果表明,该方法对牛白血病病毒阳性血清检测阳性,对其他常见牛病毒阳性血清检测阴性,表明特异性好;液相蛋白芯片方法对牛白血病病毒抗体的检测敏感性可达119.7ng/gL,对多份牛白血病病毒阳性血清的检测结果显示该方法的检测敏感性与商品化ELISA试剂盒无显著差异;对3份牛白血病病毒阳性血清进行4次重复检测,批内、批间的变异系数均低于10%。所制备的偶联微球芯片保存3个月,其检测结果无显著差异。采用该方法对169份临床牛血清样品进行检测,检出阳性率达57.4%,该检测结果与瑞典进口ELISA试剂盒检测结果的符合率为94.67%。本方法为牛地方流行性白血病的进出境检疫、疫病监测和流行学调查研究提供了一种特异、敏感的新型快速检测技术。%Recombinant gp51 protein of bovine leukemia virus(BLV) was expressed using a prokaryotic expression system, and purified and eovalently coupled to fluorescent xMap microspheres. The purified mysB-gp51 protein was used to establish an xMap method for the detection of antibodies against BLV. And the specificity,sensitivity'reproducibility and stability of the method were examined. For specificity analysis,no positive reaction with positive sera of bluetongue virus, bovine viral diarrhea virus,infectious bovine rhinotracheitis virus, foot-and-mouth disease virus,or bovine ephemeral fever virus was found. For sensitivity analysis,as low as 119. 7 ng/μL BLV positive serum could be detected and no significant difference with commercial ELISA kit. The variation coefficients of intra- or inter-batch were all less than 10% based on 4 replications of 3

  13. Evaluation of the VIDAS glutamate dehydrogenase assay for the detection of Clostridium difficile.

    Science.gov (United States)

    Shin, Bo-Moon; Lee, Eun Joo; Moon, Jung Wha; Lee, Seon Yeong

    2016-08-01

    We evaluated the performance of the VIDAS GDH assay for the detection of Clostridium difficile. In total, 350 fecal specimens collected from patients clinically suspected of having CDI were analyzed by C. difficile culture and enzyme-linked fluorescent immunoassay (VIDAS GDH); the results were compared with those of toxigenic C. difficile culture (TC), PCR (Xpert C. difficile assay), and toxin AB EIA (VIDAS CDAB). The numbers of culture-positive and culture-negative samples were 108 and 242, respectively. The concordance between the GDH assay and C. difficile culture was 90.3%. With PCR, 12 more samples were found to be positive in GDH-positive/C. difficile culture-negative specimens. Thus, the concordance between GDH assay and C. difficile culture/PCR was 93.7%. The sensitivity, specificity, positive predictive value, and negative predictive value of the VIDAS GDH assay were 97.2%, 87.2%, 77.2%, and 98.6%, respectively, based on the C. difficile culture, and 97.5%, 91.7%, 86.0%, and 98.6%, respectively, based on C. difficile culture/PCR. Positivity rates of the GDH assay were partially associated with those of semi-quantitative C. difficile cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). We evaluated the two-step or three-step algorithm using GDH assay as a first step. No toxin EIA-positive case was found among GDH-negative samples, and 60.8% (48/79) were TC- and/or PCR-positive among the GDH-positive/toxin EIA-negative samples. Thus, approximately 25% of the 350 samples required a confirmatory test (TC or PCR) in the GDH-toxin EIA algorithm, whereas only 2.3% of the total samples in GDH-PCR algorithm was discrepant and required another confirmatory test like TC. PMID:27282799

  14. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  15. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    Science.gov (United States)

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts. PMID:23930975

  16. Inhibition enzyme-linked immunosorbent assay for detection of Pseudomonas fluorescens on meat surfaces.

    OpenAIRE

    Eriksson, P V; di Paola, G N; Pasetti, M F; Manghi, M A

    1995-01-01

    An inhibition enzyme-linked immunosorbent assay was developed for Pseudomonas fluorescens enumeration of meat surfaces. The assay detected contamination levels as low as 3 x 10(5) bacteria per ml and could be completed within 4 h. It could be used as a framework for a test system for quantifying P. fluorescens spoilage in meat products.

  17. Specific PCR Assay for Rapid and Direct Detection of Neisseria meningitidis in Cerebrospinal Fluid Specimens

    Directory of Open Access Journals (Sweden)

    M Qurbanalizadegan

    2010-12-01

    Full Text Available Background: Neisseria meninigitidis is one of the most frequently encountered microorganisms associated with central nervous system infections. The aim of this study was to evaluate a PCR-based assay for specific and rapid detection of N. meninigitidis in CSF specimens.  Methods: Since April 2002 to July 2006, 130 CSF specimens were collected from patients suspected of having bacterial meningitis. Bacterial isolation and identification was carried out according to the standard bacteriological methods.  The PCR was used to amplify a 101bp fragment of capsular transport gene A (ctrA of N. meningitidis. Results: PCR yielded an amplified product with the expected size of 101 base pair fragment. Sensitivity test proved 500 ng of N. meningitidis DNA as the final detection limit and specificity test revealed no cross-reaction for a wide range of res­pira­tory pathogenic organisms. Conclusion: The PCR assay was more sensitive than the bacterial culturing. It might be possible to apply this procedure for rapid diagnosis of meningococci in clinical samples.

  18. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels.

  19. DEVELOPMENT OF INTERGENIC SPACERS BASED PCR ASSAY FOR DETECTION OF GIARDIALAMBLIA%犬猫贾第虫IGS序列特异性检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    李雅文; 刘远佳; 郑国超; 谭立娉; 胡伟; 罗琴; 林丽琴; 路鹏云; 李国清

    2013-01-01

    The intergenic spacers (IGS) were amplified in PCR from nuclear ribosomal DNAs of two Giardialamblia strains (assemble D from dog and assemble F from cat) isolated from feces of naturally infected pets in Guangzhou. The PCR products were purified, cloned and sequenced. The resulting nucleotide sequences were compared with related sequences in the GenBank databases. The IGS sequences were 1355 bp for the canine Giardia strain and 1388 bp for the feline Giardia strain. The interspecific difference in the IGS sequence might serve as a genetic marker for the identification and differentiation of Giardia lamblia. Furthermore, a PCR detection method was developed based on IGS sequence. The established PCR assay specifically amplified IGS sequence of G. lamblia but not all control parasites such as Toxocaracanis etc. The minimum detection limit of G.lamblia was 82 fg. Total 84 clinical samples were tested using this method. The positive rate of clinical samples was 3.57%, higher than 2.38%by traditional method.%应用PCR技术对广州市某宠物寄养所采集的一株D型犬源贾第虫和一株F型猫源贾第虫的核糖体IGS序列进行了扩增、克隆、测序,将测序结果与GenBank已上传的贾第虫相应序列进行比对分析,基于贾第虫IGS序列建立了具有良好特异性和敏感性的PCR检测方法,并对84份临床粪样进行了检测。结果显示,D型犬源贾第虫和F型猫源贾第虫的IGS序列长分别为1355 bp和1388 bp,贾第虫IGS序列存在多态性现象,种间差异明显,可以作为区分不同基因型的分子标记;建立的PCR方法能特异性扩增犬源贾第虫核糖体IGS序列,而犬蛔虫等对照虫体DNA均不能扩增,该方法对贾第虫DNA的最小检测量为82 fg,对84份临床粪样的检出率为3.57%,比传统镜检法高出2.38%,具有一定的临床应用价值。

  20. A Simple and Reliable Assay for Detecting Specific Nucleotide Sequences in Plants Using Optical Thin-film Biosensor Chips

    Institute of Scientific and Technical Information of China (English)

    S. Bai; X. Zhong; L. Ma; W. Zheng; L. Fan; N. Wei; X.W. Deng

    2007-01-01

    @@ Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes.

  1. EUROarray human papillomavirus (HPV) assay is highly concordant with other commercial assays for detection of high-risk HPV genotypes in women with high grade cervical abnormalities.

    Science.gov (United States)

    Cornall, A M; Poljak, M; Garland, S M; Phillips, S; Machalek, D A; Tan, J H; Quinn, M A; Tabrizi, S N

    2016-06-01

    The purpose of this study was to evaluate the performance of the EUROIMMUN EUROArray HPV genotyping assay against the Roche Cobas 4800, Roche HPV Amplicor, Roche Linear Array and Qiagen Hybrid Capture 2 assays in the detection of high-risk HPV (HR-HPV) from liquid based cervical cytology samples collected from women undergoing follow-up for abnormal cervical cytology results. Cervical specimens from 404 women undergoing management of high-grade cytological abnormality were evaluated by EUROarray HPV for detection of HR-HPV genotypes and prediction of histologically-confirmed cervical intraepithelial neoplasia grade 2 or higher (≥CIN2). The results were compared to Hybrid Capture 2, Cobas 4800 HPV, Amplicor and Linear Array HPV. Positivity for 14 HR-HPV types was 80.0 % for EUROarray (95 % CI; 75.7-83.8 %). Agreement (κ, 95 % CI) between the EUROarray and other HPV tests for detection of HR-HPV was good to very good [Hybrid Capture κ = 0.62 (0.54-0.71); Cobas κ = 0.81 (0.74-0.88); Amplicor κ = 0.68 (0.60-0.77); Linear Array κ = 0.77 (0.70-0.85)]. For detection of HR-HPV, agreement with EUROarray was 87.90 % (Hybrid Capture), 93.58 % (Cobas), 92.84 % (Amplicor) and 92.59 % (Linear Array). Detection of HR-HPV was not significantly different between EUROarray and any other test (p < 0.001). EUROarray was concordant with other assays evaluated for detection of high-risk HPV and showed sensitivity and specificity for detection of ≥ CIN2 of 86 % and 71 %, respectively. PMID:27048314

  2. Thyroid Histopathology Assessments for the Amphibian Metamorphosis Assay to Detect Thyroid-active Substances

    Science.gov (United States)

    In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...

  3. Bioluminescent bioreporter assays for targeted detection of chemical and biological agents

    Science.gov (United States)

    Ripp, Steven; Jegier, Pat; Johnson, Courtney; Moser, Scott; Islam, Syed; Sayler, Gary

    2008-04-01

    Bioluminescent bioreporters carrying the bacterial lux gene cassette have been well established for the sensing and monitoring of select chemical agents. Their ability to generate target specific visible light signals with no requirement for extraneous additions of substrate or other hands-on manipulations affords a real-time, repetitive assaying technique that is remarkable in its simplicity and accuracy. Although the predominant application of lux-based bioluminescent bioreporters has been towards chemical compound detection, novel genetic engineering schemes are yielding a variety of new bioreporter systems that extend the lux sensing mechanism beyond mere analyte discrimination. For example, the unique specificity of bacteriophage (bacterial viruses) has been exploited in lux bioluminescent assays for specific identification of foodborne bacterial pathogens such as Escherichia coli O157:H7. With the concurrent ability to interface bioluminescent bioreporter assays onto integrated circuit microluminometers (BBICs; bioluminescent bioreporter integrated circuits), the potential exists for the development of sentinel microchips that can function as environmental monitors for multiplexed recognition of chemical and biological agents in air, food, and water. The size and portability of BBIC biosensors may ultimately provide a deployable, interactive network sensing technology adaptable towards chem/bio defense.

  4. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia; Fan, Yongfeng; Garcia-Rodriguez, Consuelo; Lou, Jianlong; Marks, James D.; Varnum, Susan M.

    2014-10-21

    Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.

  5. SNaPshot assay for the detection of the most common CFTR mutations in infertile men.

    Directory of Open Access Journals (Sweden)

    Predrag Noveski

    Full Text Available Congenital bilateral absence of vas deferens (CBAVD is the most common CFTR-related disorder (CFTR-RD that explains about 1-2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA and 1717-1G->A and IVS8polyT variants. The assay was validated on 50 previously genotyped samples and was used to screen a total of 369 infertile men with different impairment of spermatogenesis and 136 fertile controls. Our results show that double heterozygosity of cystic fibrosis (CF and CFTR-related disorder (CFTR-RD mutations are found in a high percentage (22.7% of infertile men with obstructive azoospermia, but not in other studied groups of infertile men. The SNaPshot assay described here is an inexpensive, fast and robust method for primary screening of the most common CFTR mutations both in patients with classical CF and CFTR-RD. It can contribute to better understanding of the role of CFTR mutations in impaired spermatogenesis, ultimately leading to improved management of infertile men.

  6. Colorimetric peroxidase mimetic assay for uranyl detection in sea water

    KAUST Repository

    Zhang, Dingyuan

    2015-03-04

    Uranyl (UO2 2+) is a form of uranium in aqueous solution that represents the greatest risk to human health because of its bioavailability. Different sensing techniques have been used with very sensitive detection limits especially the recently reported uranyl-specific DNAzymes systems. However, to the best of our knowledge, few efficient detection methods have been reported for uranyl sensing in seawater. Herein, gold nanoclusters (AuNCs) are employed in an efficient spectroscopic method to detect uranyl ion (UO2 2+) with a detection limit of 1.86 ÎM. In the absence of UO2 2+, the BSA-stabilized AuNCs (BSA-AuNCs) showed an intrinsic peroxidase-like activity. In the presence of UO2 2+, this activity can be efficiently restrained. The preliminary quenching mechanism and selectivity of UO2 2+ was also investigated and compared with other ions. This design strategy could be useful in understanding the binding affinity of protein-stabilized AuNCs to UO2 2+ and consequently prompt the recycling of UO2 2+ from seawater.

  7. Rapid Detection of Irreversible Acetylcholineasterase Inhibitor by Mass Spectrometry Assay

    Institute of Scientific and Technical Information of China (English)

    蔡婷婷; 张立; 汪蓉; 梁晨; 赵武生; 傅得锋; 张玉荣; 郭寅龙

    2012-01-01

    Here we developed a rapid method to detect acetylcholinesterase (ACHE) activity by matrix-assisted laser de- sorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) for screening irreversible AChE inhibi- tors. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS could facilitate rapid detection, especially detection in real application. AChE activity was determined through calculating abundance of substrate and product in mass spectrometry. By this approach, we investigated the relation of organophosphorous (OP) con- centrations and AChE inhibition. Shown in different inhibition curves from different OP pesticides, enzyme inhibi- tions still kept good correlation with concentration of OPs. Finally, this AChE-inhibited method was applied to screen whole bloods of four decedents and discuss their death reason. In contrast to healthy persons, three of dece- dents showed low AChE activity, and probably died for irreversible AChE inhibitors. Through the following de- tecting in GC-MS/MS, the possible death reason of these three decedents was confirmed, and another decedent actually died for sumicidin, a non-AChE inhibitor. It demonstrated that screening irreversible AChE inhibitors by detecting enzyme activity in MALDI-FTMS provided fast and accurate analysis results and excluded another toxicants not functioning on ACHE. This method offered alternative choices for indicating the existence of enzyme inhibitors.

  8. Detection of shiga toxins by lateral flow assay

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) produce Shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript we report ...

  9. Evaluation of Elecsys Syphilis Assay for Routine and Blood Screening and Detection of Early Infection

    Science.gov (United States)

    Kremastinou, J.; Polymerou, V.; Lavranos, D.; Aranda Arrufat, A.; Harwood, J.; Martínez Lorenzo, M. J.; Ng, K. P.; Queiros, L.; Vereb, I.

    2016-01-01

    Treponema pallidum infections can have severe complications if not diagnosed and treated at an early stage. Screening and diagnosis of syphilis require assays with high specificity and sensitivity. The Elecsys Syphilis assay is an automated treponemal immunoassay for the detection of antibodies against T. pallidum. The performance of this assay was investigated previously in a multicenter study. The current study expands on that evaluation in a variety of diagnostic settings and patient populations, at seven independent laboratories. The samples included routine diagnostic samples, blood donation samples, samples from patients with confirmed HIV infections, samples from living organ or bone marrow donors, and banked samples, including samples previously confirmed as syphilis positive. This study also investigated the seroconversion sensitivity of the assay. With a total of 1,965 syphilis-negative routine diagnostic samples and 5,792 syphilis-negative samples collected from blood donations, the Elecsys Syphilis assay had specificity values of 99.85% and 99.86%, respectively. With 333 samples previously identified as syphilis positive, the sensitivity was 100% regardless of disease stage. The assay also showed 100% sensitivity and specificity with samples from 69 patients coinfected with HIV. The Elecsys Syphilis assay detected infection in the same bleed or earlier, compared with comparator assays, in a set of sequential samples from a patient with primary syphilis. In archived serial blood samples collected from 14 patients with direct diagnoses of primary syphilis, the Elecsys Syphilis assay detected T. pallidum antibodies for 3 patients for whom antibodies were not detected with the Architect Syphilis TP assay, indicating a trend for earlier detection of infection, which may have the potential to shorten the time between infection and reactive screening test results. PMID:27358468

  10. Evaluation of Elecsys Syphilis Assay for Routine and Blood Screening and Detection of Early Infection.

    Science.gov (United States)

    Kremastinou, J; Polymerou, V; Lavranos, D; Aranda Arrufat, A; Harwood, J; Martínez Lorenzo, M J; Ng, K P; Queiros, L; Vereb, I; Cusini, M

    2016-09-01

    Treponema pallidum infections can have severe complications if not diagnosed and treated at an early stage. Screening and diagnosis of syphilis require assays with high specificity and sensitivity. The Elecsys Syphilis assay is an automated treponemal immunoassay for the detection of antibodies against T. pallidum The performance of this assay was investigated previously in a multicenter study. The current study expands on that evaluation in a variety of diagnostic settings and patient populations, at seven independent laboratories. The samples included routine diagnostic samples, blood donation samples, samples from patients with confirmed HIV infections, samples from living organ or bone marrow donors, and banked samples, including samples previously confirmed as syphilis positive. This study also investigated the seroconversion sensitivity of the assay. With a total of 1,965 syphilis-negative routine diagnostic samples and 5,792 syphilis-negative samples collected from blood donations, the Elecsys Syphilis assay had specificity values of 99.85% and 99.86%, respectively. With 333 samples previously identified as syphilis positive, the sensitivity was 100% regardless of disease stage. The assay also showed 100% sensitivity and specificity with samples from 69 patients coinfected with HIV. The Elecsys Syphilis assay detected infection in the same bleed or earlier, compared with comparator assays, in a set of sequential samples from a patient with primary syphilis. In archived serial blood samples collected from 14 patients with direct diagnoses of primary syphilis, the Elecsys Syphilis assay detected T. pallidum antibodies for 3 patients for whom antibodies were not detected with the Architect Syphilis TP assay, indicating a trend for earlier detection of infection, which may have the potential to shorten the time between infection and reactive screening test results. PMID:27358468

  11. Species-specific real-time PCR assay for the detection of Streptococcus suis from clinical specimens.

    Science.gov (United States)

    Srinivasan, Velusamy; McGee, Lesley; Njanpop-Lafourcade, Berthe-Marie; Moïsi, Jennifer; Beall, Bernard

    2016-06-01

    A real-time polymerase chain reaction was developed to detect all known strains of Streptococcus suis. The assay was highly specific, and sensitivity was <10 copies/assay for S. suis detection from clinical samples. PMID:27041105

  12. A Rapid, Sensitive Assay to Detect EGFR Mutation in Small Biopsy Specimens from Lung Cancer

    OpenAIRE

    Yatabe, Yasushi; Hida, Toyoaki; Horio, Yoshitsugu; Kosaka, Takayuki; Takahashi, Takashi; Mitsudomi, Tetsuya

    2006-01-01

    It has been demonstrated that lung cancers, specifically a subset of pulmonary adenocarcinomas, with epidermal growth factor receptor (EGFR) mutation are highly sensitive to EGFR-targeted drugs. Therefore, a rapid, sensitive assay for mutation detection using routine pathological specimens is demanded in clinical practice to predict the response. We therefore developed a new assay for detecting EGFR mutation using only a paraffin section of a small biopsy specimen. The method was very sensiti...

  13. Development and Evaluation of a Novel Taqman Real-Time PCR Assay for Rapid Detection of Mycoplasma bovis: Comparison of Assay Performance with a Conventional PCR Assay and Another Taqman Real-Time PCR Assay

    Directory of Open Access Journals (Sweden)

    Hemant Naikare

    2015-03-01

    Full Text Available The objective of this study was to develop and validate a Taqman real-time PCR assay for the detection of Mycoplasma bovis (M. bovis. Unique primers targeting the highly conserved house-keeping gene (uvrC were designed and the probe sequence was derived from a previously published microarray study. There was 100% agreement in the outcome between our assay and the other two published assays for M. bovis detection. The analytical limit of detection of our assay is 83 copies of the uvrC gene. This assay was validated on a total of 214 bovine clinical specimens that were submitted to the Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL, Texas, USA. The specificity of the assay was assessed to be 100% since no cross-reactivity occurred with 22 other bacterial and other Mycoplasma species. We conclude that the uvrC gene serves as a good and reliable diagnostic marker for the accurate and rapid detection of M. bovis from a wider variety of specimen matrices.

  14. Evaluation of Commercially Available Chikungunya Virus Immunoglobulin M Detection Assays.

    Science.gov (United States)

    Johnson, Barbara W; Goodman, Christin H; Holloway, Kimberly; de Salazar, P Martinez; Valadere, Anne M; Drebot, Michael A

    2016-07-01

    Commercial chikungunya virus (CHIKV)-specific IgM detection kits were evaluated at the Centers for Disease Control and Prevention (CDC), the Public Health Agency of Canada National Microbiology Laboratory, and the Caribbean Public Health Agency (CARPHA). The Euroimmun Anti-CHIKV IgM ELISA kit had ≥ 95% concordance with all three reference laboratory results. The limit of detection for low CHIK IgM+ samples, as measured by serial dilution of seven sera up to 1:12,800 ranged from 1:800 to 1:3,200. The Euroimmun IIFT kit evaluated at CDC and CARPHA performed well, but required more retesting of equivocal results. The InBios CHIKjj Detect MAC-ELISA had 100% and 98% concordance with CDC and CARPHA results, respectively, and had equal sensitivity to the CDC MAC-ELISA to 1:12,800 dilution in serially diluted samples. The Abcam Anti-CHIKV IgM ELISA had high performance at CARPHA, but at CDC, performance was inconsistent between lots. After replacement of the biotinylated IgM antibody controls with serum containing CHIKV-specific IgM and additional quality assurance/control measures, the Abcam kit was rereleased and reevaluated at CDC. The reformatted Abcam kit had 97% concordance with CDC results and limit of detection of 1:800 to 1:3,200. Two rapid tests and three other CHIKV MAC-ELISAs evaluated at CDC had low sensitivity, as the CDC CHIKV IgM in-house positive controls were below the level of detection. In conclusion, laboratories have options for CHIKV serological diagnosis using validated commercial kits. PMID:26976887

  15. The PapilloCheck Assay for Detection of High-Grade Cervical Intraepithelial Neoplasia.

    Science.gov (United States)

    Crosbie, Emma J; Bailey, Andrew; Sargent, Alex; Gilham, Clare; Peto, Julian; Kitchener, Henry C

    2015-11-01

    Human papillomavirus (HPV) testing is used in primary cervical screening, as an adjunct to cervical cytology for the management of low grade abnormal cytology, and in a test of cure. PapilloCheck (Greiner Bio-One) is a PCR-based DNA microarray system that can individually identify 24 HPV types, including the 13 high-risk (HR) types identified by Hybrid Capture 2 (HC2). Here, we compare PapilloCheck with HC2 for the detection of high-grade cervical intraepithelial neoplasia (CIN2+) in a total of 8,610 cervical cytology samples from the ARTISTIC population-based cervical screening study. We performed a retrospective analysis of 3,518 cytology samples from round 1 ARTISTIC enriched for underlying CIN2+ (n = 723) and a prospective analysis of 5,092 samples from round 3 ARTISTIC. Discrepant results were tested using the Roche reverse line blot (RLB) or Linear Array (LA) assay. The relative sensitivity and specificity of HR PapilloCheck compared with that of HC2 for the detection of CIN2+ in women aged over 30 years were 0.94 (95% confidence interval [CI], 0.91, 0.97) and 1.05 (95% CI, 1.04, 1.05), respectively. HC2 missed 44/672 (7%) CIN2+ lesions, while HR PapilloCheck missed 74/672 (11%) CIN2+ lesions. Thirty-six percent of HC2-positive normal cytology samples were HR HPV negative by both PapilloCheck and RLB/LA, indicating that the use of HR PapilloCheck rather than HC2 in population-based primary screening would reduce the number of additional tests required (e.g., reflex cytology) in women where underlying CIN2+ is extremely unlikely. HR PapilloCheck could be a suitable HPV detection assay for use in the cervical screening setting. PMID:26338859

  16. Ice recovery assay for detection of Golgi-derived microtubules.

    Science.gov (United States)

    Grimaldi, Ashley D; Fomicheva, Maria; Kaverina, Irina

    2013-01-01

    Proper organization of the microtubule cytoskeleton is essential for many cellular processes including maintenance of Golgi organization and cell polarity. Traditionally, the centrosome is considered to be the major microtubule organizing center (MTOC) of the cell; however, microtubule nucleation can also occur through centrosome-independent mechanisms. Recently, the Golgi has been described as an additional, centrosome-independent, MTOC with distinct cellular functions. Golgi-derived microtubules contribute to the formation of an asymmetric microtubule network, control Golgi organization, and support polarized trafficking and directed migration in motile cells. In this chapter, we present an assay using recovery from ice treatment to evaluate the potential of the Golgi, or other MTOCs, to nucleate microtubules. This technique allows for clear separation of distinct MTOCs and observation of newly nucleated microtubules at these locations, which are normally obscured by the dense microtubule network present at steady-state conditions. This type of analysis is important for discovery and characterization of noncentrosomal MTOCs and, ultimately, understanding of their unique cellular functions. PMID:24295320

  17. Chikungunya Virus Growth and Fluorescent Labeling: Detection of Chikungunya Virus by Immunofluorescence Assay.

    Science.gov (United States)

    Moi, Meng Ling; Takasaki, Tomohiko

    2016-01-01

    Immunofluorescence assay (IFA) is a highly versatile and sensitive assay for detection and titration of chikungunya virus (CHIKV). The IFA technique requires virus-infected cells (viral antigen) and antibodies specific to the viral antigens for detection. Suitable antibodies for detection include monoclonal antibodies specific to CHIKV structural and nonstructural proteins, polyclonal antibodies, and convalescent serum samples. Here, the details of virus antigen preparation, detection by IFA method, and applications are described. The described IFA method is potentially useful in a wide range of studies including virus growth kinetics and virus infection mechanism studies. Additionally, the described IFA method can be modified for applications in arbovirus diagnosis, including CHIKV.

  18. Development of a rapid PCR assay specific for Staphylococcus saprophyticus and application to direct detection from urine samples.

    Science.gov (United States)

    Martineau, F; Picard, F J; Ménard, C; Roy, P H; Ouellette, M; Bergeron, M G

    2000-09-01

    Staphylococcus saprophyticus is one of the most frequently encountered microorganisms associated with acute urinary tract infections (UTIs) in young, sexually active female outpatients. Conventional identification methods based on biochemical characteristics can efficiently identify S. saprophyticus, but the rapidities of these methods need to be improved. Rapid and direct identification of this bacterium from urine samples would be useful to improve time required for the diagnosis of S. saprophyticus infections in the clinical microbiology laboratory. We have developed a PCR-based assay for the specific detection of S. saprophyticus. An arbitrarily primed PCR amplification product of 380 bp specific for S. saprophyticus was sequenced and used to design a set of S. saprophyticus-specific PCR amplification primers. The PCR assay was specific for S. saprophyticus when tested with DNA from 49 gram-positive and 31 gram-negative bacterial species. This assay was also able to amplify efficiently DNA from all 60 strains of S. saprophyticus from various origins tested. This assay was adapted for direct detection from urine samples. The sensitivity levels achieved with urine samples was 19 CFU with 30 cycles of amplification and 0.5 CFU with 40 cycles of amplification. This PCR assay for the specific detection of S. saprophyticus is simple and rapid (approximately 90 min, including the time for urine specimen preparation).

  19. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis.

    Science.gov (United States)

    Clancy, Eoin; Coughlan, Helena; Higgins, Owen; Boo, Teck Wee; Cormican, Martin; Barrett, Louise; Smith, Terry J; Reddington, Kate; Barry, Thomas

    2016-08-01

    Three duplex molecular beacon based real-time Nucleic Acid Sequence Based Amplification (NASBA) assays have been designed and experimentally validated targeting RNA transcripts for the detection and identification of Haemophilus influenzae, Neisseria meningitidis and Streptococcus pneumoniae respectively. Each real-time NASBA diagnostics assay includes an endogenous non-competitive Internal Amplification Control (IAC) to amplify the splice variant 1 mRNA of the Homo sapiens TBP gene from human total RNA. All three duplex real-time NASBA diagnostics assays were determined to be 100% specific for the target species tested for. Also the Limits of Detection (LODs) for the H. influenzae, N. meningitidis and S. pneumoniae duplex real-time NASBA assays were 55.36, 0.99, and 57.24 Cell Equivalents (CE) respectively. These robust duplex real-time NASBA diagnostics assays have the potential to be used in a clinical setting for the rapid (<60min) specific detection and identification of the most prominent microorganisms associated with bacterial meningitis in humans. PMID:27319375

  20. Gold nanoparticles-based colorimetric and visual creatinine assay

    International Nuclear Information System (INIS)

    We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine. (author)

  1. GTP-specific fab fragment-based GTPase activity assay.

    Science.gov (United States)

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  2. Automated 5 ' nuclease assay for detection of virulence factors in porcine Escherichia coli

    DEFF Research Database (Denmark)

    Frydendahl, K.; Imberechts, H.; Lehmann, S.

    2001-01-01

    (STa, STb, EAST1) and heat labile LT) enterotoxins and the verocytotoxin variant 2e (VT2e). To correctly identify false negative results, an endogenous internal control targeting the E. coil 16S rRNA gene was incorporated in each test tube. The assay was evaluated using a collection of E. coil....... When testing field strains there was generally excellent agreement with results obtained by laboratories in Belgium and Germany. In conclusion, the 5' nuclease assay developed is a fast and specific tool for detection of E. coli virulence genes in the veterinary diagnostic laboratory....... reference strains which have previously been examined with phenotypical assays or DNA hybridization. Furthermore, the assay was evaluated by testing porcine E. coil field strains, previously characterized. The 5' nuclease assay correctly detected the presence of virulence genes in all reference strains...

  3. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Martin, Anandi; Montoro, Ernesto; Lemus, Dihadenys; Simboli, Norberto; Morcillo, Nora; Velasco, Maritza; Chauca, José; Barrera, Lucía; Ritacco, Viviana; Portaels, Françoise; Palomino, Juan Carlos

    2005-11-01

    The performance of the nitrate reductase assay was evaluated in a multicenter laboratory study to detect resistance of Mycobacterium tuberculosis to the first-line anti-tuberculosis drugs rifampicin, isoniazid, ethambutol and streptomycin using a set of coded isolates. Compared with the gold standard proportion method on Löwenstein-Jensen medium, the assay was highly accurate in detecting resistance to rifampicin, isoniazid and ethambutol with an accuracy of 98%, 96.6% and 97.9%, respectively. For streptomycin, discrepant results were obtained with an overall accuracy of 85.3%. The assay proved easy to be implemented in countries with limited laboratory facilities. PMID:15893391

  4. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens.

    Science.gov (United States)

    Saponari, Maria; Loconsole, Giuliana; Liao, Hui-Hong; Jiang, Bo; Savino, Vito; Yokomi, Raymond K

    2013-11-01

    A number of important citrus pathogens are spread by graft propagation, arthropod vector transmission and inadvertent import and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs require pathogen detection systems which are economical and sensitive to maintain a healthy industry. To this end, multiplex quantitative real-time PCR (qPCR) assays were developed allowing high-throughput and simultaneous detection of some major invasive citrus pathogens. Automated high-throughput extraction comparing several bead-based commercial extraction kits were tested and compared with tissue print and manual extraction to obtain nucleic acids from healthy and pathogen-infected citrus trees from greenhouse in planta collections and field. Total nucleic acids were used as templates for pathogen detection. Multiplex reverse transcription-qPCR (RT-qPCR) assays were developed for simultaneous detection of six targets including a virus, two viroids, a bacterium associated with huanglongbing and a citrus RNA internal control. Specifically, two one-step TaqMan-based multiplex RT-qPCR assays were developed and tested with target templates to determine sensitivity and detection efficiency. The first assay included primers and probes for 'Candidatus Liberibacter asiaticus' (CLas) and Citrus tristeza virus (CTV) broad spectrum detection and genotype differentiation (VT- and T3-like genotypes). The second assay contained primers and probes for Hop stunt viroid (HSVd), Citrus exocortis viroid (CEVd) and the mitochondrial NADH dehydrogenase (nad5) mRNA as an internal citrus host control. Primers and TaqMan probes for the viroids were designed in this work; whereas those for the other pathogens were from reports of others. Based on quantitation cycle values, automated high-throughput extraction of samples proved to be as suitable as manual extraction. The multiplex RT-qPCR assays detected both RNA and DNA pathogens in the same dilution series

  5. HIV-1 Reverse Transcriptase based assay to determine cellular dNTP concentrations

    Science.gov (United States)

    Hollenbaugh, Joseph A.; Kim, Baek

    2016-01-01

    Summary Deoxynucleoside triphosphates (dNTPs) are the building blocks of DNA and their biosynthesis are tightly regulated in the cell. HPLC-MS and enzyme-based methods are currently employed to determine dNTP concentrations from cellular extracts. Here, we describe a highly efficient, HIV-1 reverse transcriptase (RT)-based assay to quantitate dNTP concentrations. The assay is based on the ability of HIV-1 RT to function at very low dNTP concentrations, thus providing for the high sensitivity of detection. PMID:26714705

  6. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples.

    Science.gov (United States)

    Guo, Yi-Rong; Liu, Shao-Ying; Gui, Wen-Jun; Zhu, Guo-Nian

    2009-06-01

    Using a simple test for rapid identification and quantification of pesticide multiresidues in food and environmental samples is a long-cherished approach for practical monitoring purposes. Here two gold-based lateral-flow strips (strip A and strip B) were investigated for simultaneous detection of carbofuran and triazophos. For the strip A format, a bispecific monoclonal antibody (BsMcAb) against both carbofuran and triazophos was employed to prepare the immunogold probe. For the strip B format, anti-carbofuran monoclonal antibody (McAb) and anti-triazophos McAb separately labeled with colloidal gold were combined as detector reagents. By comparison of visual results from pesticide standard tests between the two formats, the strip B assay manifested higher sensitivities for both pesticides. Analysis of spiked water samples by the preferable strip indicated that the detection limits for carbofuran and triazophos were 32 and 4 microg/L, respectively. The strength of the portable one-step strip assay was in the simultaneous screening for two pesticides within a short time (8-10 min) without any equipment.

  7. Development of A Real-Time PCR Assay for Plasmodiophora brassicae and Its Detection in Soil Samples

    Institute of Scientific and Technical Information of China (English)

    LI Jin-ping; LI Yan; SHI Yan-xia; XIE Xue-wen; Chai A-li; LI Bao-ju

    2013-01-01

    A SYBR Green I real-time PCR assay was developed to detect and quantify Plasmodiophora brassicae ribosomal DNA (rDNA) and internal transcribed spacer (ITS). A pair of primers PBF1/PBR1 was designed based on the conservative region of rDNA-ITS of P. brassicae. The positive plasmid pB12 was obtained and used as the template to create standard curve. The specificity, sensitivity, and reproducibility of real-time PCR were evaluated respectively. Naturally and artificially infested soil samples containing different concentrations of P. brassicae were detected. The results demonstrated that standard curve established by recombinant plasmid was shown a fine linear relationship between threshold cycle and template concentration. The melting curve was specific with the correlation coefficient of 0.995 and that the amplification efficiency was 93.8%. The detection limit of P. brassicae genomic DNA was approximately 40 copies per 25μL. The sensitivity of the assay was at least 100-fold higher than conventional PCR. Only DNA from P. brassicae could be amplified and detected using this assay, suggesting the highly specific of this assay. The coefficient of variation was less than 3%, indicating the PCR method revealed high reproducibility. The detection limit in soil samples corresponded to 1 000 resting spores g-1 soil. Bait plants were used to validate the real-time PCR assay. This developed real-time PCR assay allows for fast and sensitive detection of P. brassicae in soil and should be useful in disease management and pest interception so as to prevent further spread of P. brassicae.

  8. Seropositivity rates of water channel protein 4 antibodies compared between a cell-based immunofluorescence assay and an enzyme-linked immunosorbent assay in neuromyelitis optica patients

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Wu; Zhangyuan Liao; Jing Ye; Huiqing Dong; Chaodong Wang; Piu Chan

    2011-01-01

    A total of 66 samples (from 27 cases with neuromyelitis optica, 26 cases with multiple sclerosis, and 13 cases with optic neuritis) were tested for aquaporin-4 antibody by a cell-based immunofluorescence assay and an enzyme-linked immunosorbent assay.The sensitivities and specificities of the two assays were similar.We further analyzed an additional 68 patients and 93 healthy controls using the enzyme-linked immunosorbent assay.A Kappa test showed good consistency between the two methods in terms of detection of anti-aquaporin-4 antibody in the sera of neuromyelitis optica patients.No significant correlations were identified with onset age or disease duration, suggesting that aquaporin-4 antibody is a good marker for neuromyelitis optica.The enzyme-linked immunosorbent assay can be used for quantifying aquaporin-4 antibody concentrations and may be useful to dynamically monitor changes in the levels of aquaporin-4 antibody during disease duration.

  9. HLA antibody detection with solid phase assays: great expectations or expectations too great?

    Science.gov (United States)

    Gebel, H M; Bray, R A

    2014-09-01

    Alloantibodies directed against HLA antigens, are a barrier to long-term solid organ allograft survival. The clinical impact of preformed, donor-directed HLA alloantibodies range from acceptable risk to unequivocal contraindication for organ transplantation. HLA antibodies are key factors that limit patient access to donor organs. Serological methods were once the only approach to identify HLA antigens and antibodies. Limitations in these technologies led to the development of solid phase approaches. In the early 1990s, the development of the polymerase chain reaction enabled DNA-based HLA antigen testing to be performed. By the mid-1990s, microparticle-based technology that utilized flow cytometry for analysis was developed to detect both classes I and II HLA antibodies. These methodologies revolutionized clinical histocompatibility testing. The strengths and weaknesses of these assays are described in detail in this review.

  10. Development and Application of Nested PCR Assay for Detection of Dairy Cattle-Derived Cyclospora sp.

    Institute of Scientific and Technical Information of China (English)

    XIAO Shu-min; LI Guo-qing; LI Wei-hua; ZHOU Rong-qiong; YANG Jian-wei

    2007-01-01

    To develop a nested PCR assay for the detection of cattle-derived Cyclospora sp.,two pairs of primers were designed on the basis of the cattle-derived Cyclospora sp.sequences.These primers selectively amplified a 168-bp DNA fragment of the 18S rRNA gene of cattle-derived Cyclospora sp.With these primers,a nested PCR assay for the detection of cattlederived Cyclospora sp.was developed.The nested PCR assay was specific and there is no cross-reaction with other parasites,such as Eimeria spp.,Cryptosporidium spp.,Giardia sp.,Toxoplasma sp.,Trichuris sp.and cattle ciliate.The assay was able to detect as low as 2.85 x 10-2 fg of the control positive DNA.The results of the detection of clinical samples indicated that the assay coincided with microscopic examination.The results show that the nested PCR assay will be an effective tool for the detection of Cyclospora sp.in cattle feces.

  11. Using Exclusion-Based Sample Preparation (ESP to Reduce Viral Load Assay Cost.

    Directory of Open Access Journals (Sweden)

    Scott M Berry

    Full Text Available Viral load (VL measurements are critical to the proper management of HIV in developing countries. However, access to VL assays is limited by the high cost and complexity of existing assays. While there is a need for low cost VL assays, performance must not be compromised. Thus, new assays must be validated on metrics of limit of detection (LOD, accuracy, and dynamic range. Patient plasma samples from the Joint Clinical Research Centre in Uganda were de-identified and measured using both an existing VL assay (Abbott RealTime HIV-1 and our assay, which combines low cost reagents with a simplified method of RNA isolation termed Exclusion-Based Sample Preparation (ESP.71 patient samples with VLs ranging from 3,000,000 copies/mL were used to compare the two methods. We demonstrated equivalent LOD (~50 copies/mL and high accuracy (average difference between methods of 0.08 log, R2 = 0.97. Using expenditures from this trial, we estimate that the cost of the reagents and consumables for this assay to be approximately $5 USD. As cost is a significant barrier to implementation of VL testing, we anticipate that our assay will enhance access to this critical monitoring test in developing countries.

  12. Visual Detection of Brucella spp. in Spiked Bovine Semen Using Loop-Mediated Isothermal Amplification (LAMP) Assay.

    Science.gov (United States)

    Prusty, Bikash R; Chaudhuri, Pallab; Chaturvedi, V K; Saini, Mohini; Mishra, B P; Gupta, Praveen K

    2016-06-01

    Several pathogens including Brucella spp. are shed in semen of infected bulls and can be transmitted to cows through contaminated semen during artificial insemination. The present study reports omp2a and bcsp31 gene based loop-mediated isothermal amplification (LAMP) assays for detection of Brucella genomic DNA in semen from infected bulls. The positive results could be interpreted visually by change in colour of reaction mixture containing hydroxyl naphthol blue (HNB) dye from violet to sky blue. LAMP assays based on omp2a and bcsp31 could detect as little as 10 and 100 fg of B. abortus S19 genomic DNA, respectively. Sensitivity of omp2a and bcsp31 LAMP assays for direct detection of organisms in bovine semen was 2.28 × 10(1) CFU and 2.28 × 10(2) CFU of B. abortus S19 in spiked bovine semen, respectively. The omp2a LAMP assay was found equally sensitive to TaqMan probe based real-time PCR and 100 times more sensitive than conventional PCR in identifying Brucella in spiked semen. The diagnostic applicability of the omp2a LAMP assay was evaluated with seventy-nine bovine semen samples and results were re-evaluated through TaqMan probe based real-time PCR and conventional PCR. Taken together, the omp2a LAMP assay is easy to perform, rapid and sensitive in diagnosis of Brucella spp. in bovine semen. PMID:27570305

  13. Rapid detection of bovine adipose tissue using lateral flow strip assay.

    Science.gov (United States)

    Hsieh, Yun-Hwa P; Gajewski, Kamil

    2016-07-01

    Currently no rapid immunoassays are developed to identify the species content of fat tissue in mixtures. We report a simple protocol enabling the effective detection of bovine fat in highly processed materials using a lateral flow (LF) immunoassay which targets a ruminant-specific muscle protein. A portion (50 gm) of muscle-free fat samples was rendered to separate the molten fat from the proteinaceous residue, then soluble proteins were extracted from the solid residue with 0.5 mol/L NaCl for the LF analysis. The assay could detect 2% bovine fat-in-pork fat, 1% bovine fat-in-porcine meat-and-bone meal, and 0.5% bovine fat-in-soy meal mixtures. Rendered bovine fat could be detected up to 213°C. These results demonstrate that low levels of bovine fat tissue can be detected in processed materials using an immunoassay based on the presence of the muscle protein which serves as a species marker in the fat tissue. PMID:27386108

  14. A molecular assay for sensitive detection of pathogen-specific T-cells.

    Directory of Open Access Journals (Sweden)

    Victoria O Kasprowicz

    Full Text Available Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR for two reporters--monokine-induced by IFN-γ (MIG and the IFN-γ inducible protein-10 (IP10. We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001. Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings.

  15. Diagnostic Molecular Mycobacteriology in Regions With Low Tuberculosis Endemicity: Combining Real-time PCR Assays for Detection of Multiple Mycobacterial Pathogens With Line Probe Assays for Identification of Resistance Mutations.

    Science.gov (United States)

    Deggim-Messmer, Vanessa; Bloemberg, Guido V; Ritter, Claudia; Voit, Antje; Hömke, Rico; Keller, Peter M; Böttger, Erik C

    2016-07-01

    Molecular assays have not yet been able to replace time-consuming culture-based methods in clinical mycobacteriology. Using 6875 clinical samples and a study period of 35months we evaluated the use of PCR-based assays to establish a diagnostic workflow with a fast time-to-result of 1-2days, for 1. detection of Mycobacterium tuberculosis complex (MTB), 2. detection and identification of nontuberculous mycobacteria (NTM), and 3. identification of drug susceptible MTB. MTB molecular-based detection and culture gave concordant results for 97.7% of the specimens. NTM PCR-based detection and culture gave concordant results for 97.0% of the specimens. Defining specimens on the basis of combined laboratory data as true positives or negatives with discrepant results resolved by clinical chart reviews, we calculated sensitivity, specificity, PPV and NPV for PCR-based MTB detection as 84.7%, 100%, 100%, and 98.7%; the corresponding values for culture-based MTB detection were 86.3%, 100%, 100%, and 98.8%. PCR-based detection of NTM had a sensitivity of 84.7% compared to 78.0% of that of culture-based NTM detection. Molecular drug susceptibility testing (DST) by line-probe assay was found to predict phenotypic DST results in MTB with excellent accuracy. Our findings suggest a diagnostic algorithm to largely replace lengthy culture-based techniques by rapid molecular-based methods.

  16. Avian haemosporidian parasites (Haemosporida): A comparative analysis of different polymerase chain reaction assays in detection of mixed infections.

    Science.gov (United States)

    Bernotienė, Rasa; Palinauskas, Vaidas; Iezhova, Tatjana; Murauskaitė, Dovilė; Valkiūnas, Gediminas

    2016-04-01

    Mixed infections of different species and genetic lineages of haemosporidian parasites (Haemosporida) predominate in wildlife, and such infections are particularly virulent. However, currently used polymerase chain reaction (PCR)-based detection methods often do not read mixed infections. Sensitivity of different PCR assays in detection of mixed infections has been insufficiently tested, but this knowledge is essential in studies addressing parasite diversity in wildlife. Here, we applied five different PCR assays, which are broadly used in wildlife avian haemosporidian research, and compared their sensitivity in detection of experimentally designed mixed infections of Haemoproteus and Plasmodium parasites. Three of these PCR assays use primer sets that amplify fragments of cytochrome b gene (cyt b), one of cytochrome oxidase subunit I (COI) gene, and one target apicoplast genome. We collected blood from wild-caught birds and, using microscopic and PCR-based methods applied in parallel, identified single infections of ten haemosporidian species with similar parasitemia. Then, we prepared 15 experimental mixes of different haemosporidian parasites, which often are present simultaneously in wild birds. Similar concentration of total DNA was used in each parasite lineage during preparation of mixes. Positive amplifications were sequenced, and the presence of mixed infections was reported by visualising double-base calling in sequence electropherograms. This study shows that the use of each single PCR assay markedly underestimates biodiversity of haemosporidian parasites. The application of at least 3 PCR assays in parallel detected the majority, but still not all lineages present in mixed infections. We determined preferences of different primers in detection of parasites belonging to different genera of haemosporidians during mixed infections.

  17. Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: Use of rapid molecular assays to differentiate between vesicular disease viruses.

    Science.gov (United States)

    Fowler, Veronica L; Howson, Emma L A; Madi, Mikidache; Mioulet, Valérie; Caiusi, Chiara; Pauszek, Steven J; Rodriguez, Luis L; King, Donald P

    2016-08-01

    Vesicular stomatitis (VS) is endemic in Central America and northern regions of South America, where sporadic outbreaks in cattle and pigs can cause clinical signs that are similar to foot-and-mouth disease (FMD). There is therefore a pressing need for rapid, sensitive and specific differential diagnostic assays that are suitable for decision making in the field. RT-LAMP assays have been developed for vesicular diseases such as FMD and swine vesicular disease (SVD) but there is currently no RT-LAMP assay that can detect VS virus (VSV), nor are there any multiplex RT-LAMP assays which permit rapid discrimination between these 'look-a-like' diseases in situ. This study describes the development of a novel RT-LAMP assay for the detection of VSV focusing on the New Jersey (VSNJ) serotype, which has caused most of the recent VS cases in the Americas. This RT-LAMP assay was combined in a multiplex format combining molecular lateral-flow devices for the discrimination between FMD and VS. This assay was able to detect representative VSNJV's and the limit of detection of the singleplex and multiplex VSNJV RT-LAMP assays were equivalent to laboratory based real-time RT-PCR assays. A similar multiplex RT-LAMP assay was developed to discriminate between FMDV and SVDV, showing that FMDV, SVDV and VSNJV could be reliably detected within epithelial suspensions without the need for prior RNA extraction, providing an approach that could be used as the basis for a rapid and low cost assay for differentiation of FMD from other vesicular diseases in the field. PMID:27118518

  18. Bioanalytical method transfer considerations of chromatographic-based assays.

    Science.gov (United States)

    Williard, Clark V

    2016-07-01

    Bioanalysis is an important part of the modern drug development process. The business practice of outsourcing and transferring bioanalytical methods from laboratory to laboratory has increasingly become a crucial strategy for successful and efficient delivery of therapies to the market. This chapter discusses important considerations when transferring various types of chromatographic-based assays in today's pharmaceutical research and development environment. PMID:27277876

  19. Early detection of influenza virus by using a fluorometric assay of infected tissue culture.

    OpenAIRE

    Pachucki, C T; Creticos, C

    1988-01-01

    A fluorometric substrate, 4-methylumbelliferyl-alpha-ketoside of N-acetylneuramide, was used directly on clinical specimens and infected tissue culture 24 h after inoculation for the detection of influenza viral neuraminidase. Viral neuraminidase was detected in infected tissue culture but not in clinical specimens. The sensitivity of the assay on tissue culture was 92%, and the specificity was 96%.

  20. Indirect solid-phase immunosorbent assay for detection of arenavirus antigens and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.P.; Rezapkin, G.V.; Dzagurova, T.K.; Tkachenko, E.A. (Institute of Poliomyelitis anU Viral Encephalities of the U.S.S.R. Academy of Medical Sciences, Moscow)

    1984-05-01

    Indirect enzyme-linked immunosorbent assay (ELISA) and solid phase radioimmunoassay (SPRIA) using either enti-human or anti-mouse IgG labelled with horseradish peroxidase and /sup 125/I, respectively, were developed for the detection of Junin, Machupo, Tacaribe, Amapari, Tamiami, Lassa and LCM arenaviruses. Both methods allow high sensitivity detection of arenavirus antigens and antibodies.

  1. Characterization of a nested polymerase chain reaction assay for detection of parvovirus B19.

    OpenAIRE

    Patou, G.; Pillay, D.; Myint, S; Pattison, J.

    1993-01-01

    The characterization and application of a nested polymerase chain reaction (PCR) assay for the detection of human parvovirus B19 DNA is described. The assay was evaluated with 149 diagnostic serum samples (collected up to 150 days after the onset of symptoms) previously tested by dot blot hybridization for B19 DNA and by class-specific capture radioimmunoassays for the detection of B19 immunoglobulin M (IgM) and IgG. B19 DNA was detectable by the PCR in 70% of the sera. There was a statistica...

  2. Short report : Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages

    OpenAIRE

    Schielke, E.; Costantini, Carlo; Carchini, G.; Sagnon, N.; J. Powell; Caccone, A

    2007-01-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detect...

  3. Preparation of Monoclonal Antibodies and a Simple Myeloperoxidase-Immunosorbent Assay for Detecting Human Myeloperoxidase.

    Science.gov (United States)

    Bian, Zhi-Ping; Li, Xiong-Zhi; Wu, Heng-Fang; Xu, Jin-Dan; Gu, Chun-Rong; Chen, Xiang-Jian; Yang, Di

    2016-04-01

    Myeloperoxidase (MPO), a leukocyte hemoprotein released from neutrophils, is thought to be a potential participant in plaque formation and plaque rupture. Therefore, MPO is regarded as an early marker predicting the risk for atherosclerosis, especially for coronary artery disease and acute coronary syndrome. We generated hybridoma clones 1E3 and 3E8 secreting monoclonal antibodies (mAbs) specific to human MPO. BALB/c mice were immunized with MPO protein purified from human neutrophils. Splenocytes from these mice were fused with the mouse myeloma cell line SP2/0. Based on isotyping of the mAbs, both clones 1E3 and 3E8 were referred to the IgG1 subclass. The specificities of 1E3 and 3E8 were assessed by enzyme-linked immunosorbent assay (ELISA), and only 3E8 was confirmed by western blot. We developed a simple MPO-immunosorbent assay (MPO-ISA) on microplate based on both the immune activity and peroxidase activity of MPO. The mAb secreted by clone 3E8 was chosen as coating antibody to capture the plasma MPO without interfering with the peroxidase activity of MPO. Then, tetramethylbenzidine substrate was added to the microwell directly, catalyzed by captured MPO, and a colored product was formed. The simple MPO-ISA test has a sensitivity of 3.68 ng/mL. The linear concentration of MPO-ISA for commercial MPO standard ranged to 250 ng/mL. The average recovery rate is 101.02%. The imprecision within-day was ELISA assay, the MPO-ISA can be used to detect the natural human MPO protein, but not recombinant MPO polypeptides. The generated mAbs and MPO-ISA test may be useful tools to assess risk for inflammation and cardiac events.

  4. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform.

    Directory of Open Access Journals (Sweden)

    Coby M M Laarakkers

    Full Text Available Mass spectrometry (MS-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role in iron metabolism. Here we describe the design, validation and use of a novel stable hepcidin-25(+40 isotope as internal standard for quantification. Importantly, the relative large mass shift of 40 Da makes this isotope also suitable for easy-to-use medium resolution linear time-of-flight (TOF platforms. As expected, implementation of hepcidin-25(+40 as internal standard in our weak cation exchange (WCX TOF MS method yielded very low inter/intra run coefficients of variation. Surprisingly, however, in samples from kidney disease patients, we detected a novel peak (m/z 2673.9 with low intensity that could be identified as hepcidin-24 and had previously remained unnoticed due to peak interference with the formerly used internal standard. Using a cell-based bioassay it was shown that synthetic hepcidin-24 was, like the -22 and -20 isoforms, a significantly less potent inducer of ferroportin degradation than hepcidin-25. During prolonged storage of plasma at room temperature, we observed that a decrease in plasma hepcidin-25 was paralleled by an increase in the levels of the hepcidin-24, -22 and -20 isoforms. This provides first evidence that all determinants for the conversion of hepcidin-25 to smaller inactive isoforms are present in the circulation, which may contribute to the functional suppression of hepcidin-25, that is significantly elevated in patients with renal impairment. The present update of our hepcidin TOF MS assay together with improved insights in the source and preparation of the internal standard, and sample stability will further improve our understanding of circulating hepcidin and pave the way towards further optimization and

  5. Combined thioflavin T–Congo red fluorescence assay for amyloid fibril detection

    Science.gov (United States)

    Girych, Mykhailo; Gorbenko, Galyna; Maliyov, Ivan; Trusova, Valeriya; Mizuguchi, Chiharu; Saito, Hiroyuki; Kinnunen, Paavo

    2016-09-01

    Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535–540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT–CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

  6. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection

    Science.gov (United States)

    Girych, Mykhailo; Gorbenko, Galyna; Maliyov, Ivan; Trusova, Valeriya; Mizuguchi, Chiharu; Saito, Hiroyuki; Kinnunen, Paavo

    2016-09-01

    Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

  7. Genotype MTBDR plus assay for molecular detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Soniya Sharma

    2014-01-01

    Full Text Available Aim: This study was performed for the rapid identification of Mycobacterium tuberculosis complex and its resistance to rifampicin and isoniazid, directly from the sputum samples of pulmonary tuberculosis patients. Materials and Methods: A commercially available genotype MTBDR plus assay was used for the identification and detection of mutations in Mycobacterial isolates. A total of 100 sputum samples of pulmonary tuberculosis patients were analyzed by using the genotype MTBDR plus assay. The MTBDR plus assay is designed to detect the mutations in the hotspot region of rpoB gene, katG and regulatory region of inhA gene. Results: The genotype MTBDR plus assay detected 22% multidrug resistant (MDR, 2% rifampicin (RMP monoresistant and 1% isoniazid (INH monoresistant isolates. In 22 MDR isolates, the codons most frequently involved in RMP-associated mutations were codon 531 (54.55%, 516 (31.82% and 526 (13.63%, and 90.90% of MDR isolates showed KatG S315T mutations and 9.1% showed inhA C-15T mutations associated with INH resistance. Conclusion: The new genotype MTBDR plus assay represents a rapid, reliable tool for the detection of MDR-TB, wherein results are obtained in 5 h allowing early and appropriate treatment, which is essential to cut the transmission path and reduce the spread of MDR-TB. The genotype MTBDR plus assay can readily be included in a routine laboratory work for the early diagnosis and control of MDR-TB.

  8. Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis.

    Science.gov (United States)

    Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L

    2014-07-01

    A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis.

  9. Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis.

    Science.gov (United States)

    Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L

    2014-07-01

    A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. PMID:24792836

  10. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements

    International Nuclear Information System (INIS)

    L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10–500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). - Highlights: • Tb-based FRET assay with aptamers toward a protein is presented for the first time. • L-selectin can be detected in concentrations relevant for the Alzheimer's Disease. • The assay can be realized in one hour with the LOD equal to 10 ng/ml

  11. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements

    Energy Technology Data Exchange (ETDEWEB)

    Cywiński, Piotr J., E-mail: piotr.cywinski@iap.fraunhofer.de [Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, Geiselberstr.69, 14476 Potsdam-Golm (Germany); Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm (Germany); Olejko, Lydia; Löhmannsröben, Hans-Gerd [Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm (Germany)

    2015-08-05

    L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10–500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). - Highlights: • Tb-based FRET assay with aptamers toward a protein is presented for the first time. • L-selectin can be detected in concentrations relevant for the Alzheimer's Disease. • The assay can be realized in one hour with the LOD equal to 10 ng/ml.

  12. Serological Assays Based on Recombinant Viral Proteins for the Diagnosis of Arenavirus Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Masayuki Saijo

    2012-10-01

    Full Text Available The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW and New World (NW complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  13. Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers.

    Science.gov (United States)

    Kuwayama, Masaru; Shigemoto, Naoki; Oohara, Sachiko; Tanizawa, Yukie; Yamada, Hiroko; Takeda, Yoshihiro; Matsuo, Takeshi; Fukuda, Shinji

    2011-07-01

    We have developed simultaneous detection of eight genes associated with the five categories of diarrheagenic Escherichia coli by the multiplex PCR assay with Alexa Fluor-labeled primers. This assay can easily distinguish eight genes based on the size and color of amplified products without gel staining.

  14. An enzyme-linked immunosorbent assay to detect antibodies against glycoprotein gE of bovine herpesvirus 1 allows differentiation between infected and vaccinated cattle

    NARCIS (Netherlands)

    Oirschot, van J.T.; Kaashoek, M.J.; Maris-Veldhuis, M.A.; Weerdmeester, K.; Rijsewijk, F.A.M.

    1997-01-01

    A blocking enzyme-linked immunosorbent assay (ELISA) was developed for detecting antibodies against glycoprotein gE (gE) of bovine herpesvirus 1 (BHV1). The assay is based on the use of two monoclonal antibodies directed against different antigenic domains on gE. Sera from uninfected cattle and catt

  15. Nondestructive assay holdup measurements with the Ortec detective

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc [Los Alamos National Laboratory; Wenz, Tracy [Los Alamos National Laboratory; Bracken, David [Los Alamos National Laboratory

    2009-01-01

    facility, we used a new technique that we tentatively named 'Room Holdup Measurement' to do holdup measurements of the site. This technique uses the portable, electric-cooled high-purity germanium detectors from Ortec (the Detectives) to measure the activities of the isotopes.

  16. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    Science.gov (United States)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  17. Detection of TGEV Antibody by Enzyme-Linked Immunosorbent Assay Using Recombinant Nucleocapsid Proteins

    Institute of Scientific and Technical Information of China (English)

    YU Li-yun; HOU Xi-lin

    2005-01-01

    An enzyme linked immunosorbent assays (ELISA) based on recombinant nucleocapsid (N) protein generated in Escherichia coli was evaluated for its sensitivity and specificity for diagnosis of transmissible gastroenteritis virus (TGEV) infection.The N gene encoding the N protein was cloned and expressed as a fusion protein with His tag protein in E. coli. The recombinant N protein migrated at 42 kDa and reacted with His6 tag specific monoclonal antibody by immunoblotting.Recombinant N protein ELISA (rnELISA) demonstrated 97.5% specificity among 80 TGEV-free individuals, and 97.3%sensitivity ranging among 110 clinical samples with TGEV. Taken together, these results indicated that nucleocapsid may be a useful antigen for the sera-diagnosis of TGEV and it was also suggested that the ELISA is a highly sensitive and specific test for detecting antibodies against TGEV.

  18. Activity-based assay for ricin-like toxins

    Science.gov (United States)

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  19. Improvement in the specificity of assays for detection of antibody to hepatitis B core antigen.

    OpenAIRE

    Weare, J A; Robertson, E F; Madsen, G; Hu, R; Decker, R H

    1991-01-01

    Reducing agents dramatically alter the specificity of competitive assays for antibody to hepatitis B core antigen (anti-HBc). A specificity improvement was demonstrated with a new assay which utilizes microparticle membrane capture and chemiluminescence detection as well as a current radioimmunoassay procedure (Corab: Abbott Laboratories, Abbott Park, Ill.). The effect was most noticeable with elevated negative and weakly reactive samples. In both systems, reductants increased separation of a...

  20. A reverse transcription-polymerase chain reaction assay for the detection of avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    1999-01-01

    A reverse transcription-polymerase chain reaction assay was developed for the detection of avian pneumovirus (Colorado strain) (APV-Col). The specific primers were designed from the published sequence of the matrix protein gene of APV-Col. The primers amplified a product of 631 nucleotides from APV-Col. The assay identified only APV-Col and did not react with Newcastle disease virus and infectious bronchitis virus.

  1. Microsphere Suspension Array Assays for Detection and Differentiation of Hendra and Nipah Viruses

    OpenAIRE

    Foord, Adam J.; John R. White; Axel Colling; Heine, Hans G.

    2013-01-01

    Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were develop...

  2. Bioluminescence assay platform for selective and sensitive detection of Ub/Ubl proteases.

    Science.gov (United States)

    Orcutt, Steven J; Wu, Jian; Eddins, Michael J; Leach, Craig A; Strickler, James E

    2012-11-01

    As the importance of ubiquitylation in certain disease states becomes increasingly apparent, the enzymes responsible for removal of ubiquitin (Ub) from target proteins, deubiquitylases (DUBs), are becoming attractive targets for drug discovery. For rapid identification of compounds that alter DUB function, in vitro assays must be able to provide statistically robust data over a wide dynamic range of both substrate and enzyme concentrations during high throughput screening (HTS). The most established reagents for HTS are Ubs with a quenched fluorophore conjugated to the C-terminus; however, a luciferase-based strategy for detecting DUB activity (DUB-Glo™, Promega) provides a wider dynamic range than traditional fluorogenic reagents. Unfortunately, this assay requires high enzyme concentrations and lacks specificity for DUBs over other isopeptidases (e.g. desumoylases), as it is based on an aminoluciferin (AML) derivative of a peptide derived from the C-terminus of Ub (Z-RLRGG-). Conjugation of aminoluciferin to a full-length Ub (Ub-AML) yields a substrate that has a wide dynamic range, yet displays detection limits for DUBs 100- to 1000-fold lower than observed with DUB-Glo™. Ub-AML was even a sensitive substrate for DUBs (e.g. JosD1 and USP14) that do not show appreciable activity with DUB-Glo™. Aminoluciferin derivatives of hSUMO2 and NEDD8 were also shown to be sensitive substrates for desumoylases and deneddylases, respectively. Ub/Ubl-AML substrates are amenable to HTS (Z'=0.67) yielding robust signal, and providing an alternative drug discovery platform for Ub/Ubl isopeptidases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.

  3. Development of a Real-time Turbidimeter-based Loop-mediated Isothermal Amplification Assay for Detection of Transgenic Soybean%应用LAMP实时浊度法检测转基因大豆

    Institute of Scientific and Technical Information of China (English)

    袁瑛娜; 单潇潇; 王宗德; 石磊; 袁秀金; 谭贵良

    2011-01-01

    Loop-mediated isothermal amplification method (LAMP) is a novel nucleic acid ampli- fication technology. The LAMP method amplifies DNA with rapidity, high specificity and sensitivity under isothermal conditions. Since turbidity of the reaction mixture would increase in correlation with the DNA yield, real-time monitoring of the LAMP reaction was achieved by real-time turbidimeter. Enolpyruvl Shimimate phosphate syntheses gene was amplified by a set of four specially primers that recognize six distinct sequences of the target. The amplification can be obtained in 1 h by incubating all of the reagents in a single tube by real-time turbidimeter at 63 ℃. Results from this study showed that the LAMP method was an effective method for the rapid detection of Transgenic Soybean and their test results were consistent with the results of conventional PCR methods. LAMP assay results were found to be 10 times more sensitive than the conventional PCR. The LAMP detection method was specific, stable and reliable, and will be an effective tool for rapid detection of Transgenic Soybean.%DNA环介导等温扩增(Loop Mediated Isothermal Amplification,LAMP)方法是一种新型的核酸扩增检测方法,该方法操作简便、所需时间短、灵敏度高、特异性强.实时浊度法可以实时检测反应过程中所产生的白色沉淀,从而实现对LAMP整个反应过程的实时监控.本研究以抗草甘膦转基因大豆为研究对象,针对外源基因cp4-epsps的保守区域设计特异性引物,通过实时浊度法在63℃恒温条件下完成转基因大豆的检测工作.结果显示,LAMP实时浊度法能够特异性检测cp4-epsps基因,其检测灵敏度是常规定性PCR方法的10倍.本研究建立了针对转基因大豆cp4-epsps基因的LAMP实时浊度检测方法,该方法具有高度的稳定性与特异性,结果准确,适合于转基因抗草甘膦大豆的快速检测.

  4. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Science.gov (United States)

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  5. Detection of hypoxia in human brain tumor xenografts using a modified comet assay

    OpenAIRE

    Jingli Wang; Jack Klem; Wyrick, Jan B; Tomoko Ozawa; Erin Cunningham; Jay Golinveaux; Allen, Max J; Lamborn, Kathleen R.; Dennis F. Deen

    2003-01-01

    We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U2...

  6. A simple colorimetric assay for specific detection of glutathione-S transferase activity associated with DDT resistance in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Evangelia Morou

    Full Text Available BACKGROUND: Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. METHODOLOGY/PRINCIPAL FINDINGS: We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. CONCLUSIONS/SIGNIFICANCE: The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control.

  7. Application of the DNA ''comet assay'' to detect irradiation treatment of foods

    International Nuclear Information System (INIS)

    Since treatment with ionising radiation causes DNA fragmentation, microgel electrophoresis of single cells (''comet assay'') offers a simple and rapid tool for identification of irradiated foods. The principle is based on migration of DNA in an agarose gel exposed to an electric field. Single cells or nuclei are embedded in the agarose and after lysis, intact DNA will virtually not move out of the cell upon electrophoresis, whereas if DNA has been fragmented, the fragments are able to migrate and ''comets'' following the cells become visible after staining. The advantages of this test, however, for foods not exposed to heat are its speed and simplicity, as the electrophoretic separation only requires a few minutes. DNA is visualised by silver staining, avoiding the need for a fluorescence microscope. Thus the method requires only relatively cheap equipment - in contrast to other methods for identification of irradiated food such as electron spin resonance (ESR) spectroscopy or gas chromatography/mass spectrometry (GC/MS). The DNA ''comet assay'' , therefore, seems suitable as a pre-screening test to detect whether food has been radiation processed. Suspected samples may subsequently be analysed by established, but more expensive techniques. (author)

  8. Gold nanoparticles mediated colorimetric assay for HIV-Tat protein detection

    Science.gov (United States)

    Hashwan, Saeed S. Ba; Ruslinda, A. Rahim; Fatin, M. F.; Gopinath, Subash C. B.; Thivina, V.; Tony, V. C. S.; Arshad, M. K. Md.; Hashim, U.

    2016-07-01

    Gold-nanoparticle (AuNP) based colorimetric assays have been formulated for different biomolecular interactions. With this assay the probe such as antibody immobilized on the Au surface and in the presence of appropriate binding partner (antigen), will interact with each other on the Au surface. By following this strategy, herein we formulated a detection system with two anti-HIV-Tat antibodies, Mono (McAb) - and polyclonal (PcAb) by immobilizing them independently with different AuNPs. Under this condition, these two antibodies are under dispersed condition, and in the presence of HIV-Tat antigen, these molecules will be connected and forms the aggregation of AuNPs. This strategy yield rapid results, can be monitored by the spectral changes in UV-Vis spectrophotometry. Experiments were performed with two different methods using two anti-HIV-Tats monoclonal and one Polyclonal antibody against the antigen HIV-Tat. Between these methods conjugation of HIV-Tat and McAb on the AuNP followed by addition of PcAb yielded better results.

  9. Detecting ricin: sensitive luminescent assay for ricin A-chain ribosome depurination kinetics.

    Science.gov (United States)

    Sturm, Matthew B; Schramm, Vern L

    2009-04-15

    Ricin is a family member of the lethal ribosome-inactivating proteins (RIP) found in plants. Ricin toxin A-chain (RTA) from castor beans catalyzes the hydrolytic depurination of a single base from a GAGA tetraloop of eukaryotic rRNA to release a single adenine from the sarcin-ricin loop (SRL). Protein synthesis is inhibited by loss of the elongation factor binding site resulting in cell death. We report a sensitive coupled assay for the measurement of adenine released from ribosomes or small stem-loop RNAs by RTA catalysis. Adenine phosphoribosyl transferase (APRTase) and pyruvate orthophosphate dikinase (PPDK) convert adenine to ATP for quantitation by firefly luciferase. The resulting AMP is cycled to ATP to give sustained luminescence proportional to adenine concentration. Subpicomole adenine quantitation permits the action of RTA on eukaryotic ribosomes to be followed in continuous, high-throughput assays. Facile analysis of RIP catalytic activity will have applications in plant toxin detection, inhibitor screens, mechanistic analysis of depurinating agents on oligonucleotides and intact ribosomes, and in cancer immunochemotherapy. Kinetic analysis of the catalytic action of RTA on rabbit reticulocyte 80S ribosomes establishes a catalytic efficiency of 2.6 x 10(8) M(-1) s(-1), a diffusion limited reaction indicating catalytic perfection even with large reactants. PMID:19364139

  10. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    Science.gov (United States)

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. PMID:24128588

  11. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    Science.gov (United States)

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained.

  12. Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    Directory of Open Access Journals (Sweden)

    Mattiuz Pier

    2005-10-01

    Full Text Available Abstract Background The minor histocompatibility antigens (mHags are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability.

  13. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    Science.gov (United States)

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation.

  14. Evaluation of Diagnos Malaria Stix test (antigen detection assay) for diagnosis of malaria.

    Science.gov (United States)

    Khan, Haris M; Shujatullah, Fatima; Shahid, M; Raza, Adil; Malik, Ritu

    2010-06-01

    Malaria is one of the most common parasitic infection in India. The diagnosis largely depends on peripheral blood smear examination. Newer diagnostic methods like various antigen detection assays are now in use for prompt diagnosis and treatment. This study was done to determine the effectiveness of Diagnos Malaria Stix (antigen detection) assay in diagnosis of malaria. This involves detection of PfHRP-2 antigen and P.V. specific pLDH antigen. 162 patients with signs and symptoms of malaria included in the study. Leishman stained blood smear examination was done for all patients. Commercially available Diagnos Malaria Stix assay was used. Diagnos Malaria Stix showed sensitivity, specificity positive and negative predictive values of 100% each while Sensitivity, specificity, positive and negative predictive values of Leishman stained blood smear examination were 45.45%, 100%, 100% and 92% respectively. PMID:22471175

  15. Rapid and Sensitive Detection of PRRSV by a Reverse Transcription-Loop-mediated Isothermal Amplification Assay

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Ye-bing Liu; Lei Chen; Jian-huan Wang; Yi-bao Ning

    2011-01-01

    A real-time monitoring reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the sensitive and specific detection of prototypic,prevalent North American porcine reproductive and respiratory syndrome virus (PRRSV)strains.As a higher sensitivity and specificity method than reverse transcription polymerase chain reaction (RT-PCR),the RT-LAMP method only used a turbidimeter,exhibited a detection limit corresponding to a 10-4 dilution of template RNA extracted from 250 μL of 105 of the 50% tissue culture infective dose (TCID50) of PRRSV containing cells,and no cross-reactivity was observed with other related viruses including porcine circovirus type 2,swine influenza virus,porcine rotavirus and classical swine fever virus.From forty-two field samples,33 samples in the RT-LAMP assay was detected positive,whereas three of which were not detected by RT-PCR.Furthermore,in 33 strains of PRRSV,an identical detection rate was observed with the RT-LAMP assay to what were isolated using porcine alveolar macrophages.These findings demonstrated that the RT-LAMP assay has potential clinical applications for the detection of highly pathogenic PRRSV isolates,especially in developing countries.

  16. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    Directory of Open Access Journals (Sweden)

    Cécile Feuillie

    Full Text Available In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR. In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  17. Development of fluorescence-based high-throughput screening assays: choice of appropriate instrumentation

    Science.gov (United States)

    Burns, David J.; Alder, Elisabeth; Fan, Yi-Hong; McKeegan, Evelyn; Warrior, Usha; Beutel, Bruce

    1998-04-01

    Fluorescence-based assays have become increasingly popular in high throughput screening for a variety of reasons (e.g. sensitivity). However, new screening technologies are pushing the limits of conventional fluorescence plate readers. For example, instruments that have optical sensitivities beyond most of the commercially available plate readers are required to reproducibly measure the fluorescence generated by the green fluorescent protein (GFP)--a novel reporter gene. Also, miniaturization of screening formats (with densities higher than the conventional 96-well plate) requires high resolution instrumentation to measure fluorescence. Several assays based on optical fluorescence measurements have been developed and screened in our Biological Screening group. These assays include various fluorescence-based protease assays (standard end-point and kinetic modes) and a functional cell-based screen using the green fluorescent protein as a reporter gene. The choice of instrumentation was the critical factor in the performance and success of each of these arrays. Data will be presented for the cell- based reporter assay including the type of instrumentation (fluorescence plate readers; fluorescence imaging systems) used for detection of GFP fluorescence.

  18. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    Science.gov (United States)

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  19. Detection of Brugia malayi in laboratory and wild-caught Mansonioides mosquitoes (Diptera: Culicidae) using Hha I PCR assay.

    Science.gov (United States)

    Hoti, S L; Vasuki, V; Lizotte, M W; Patra, K P; Ravi, G; Vanamail, P; Manonmani, A; Sabesan, S; Krishnamoorthy, K; Williams, S A

    2001-04-01

    An Hha 1 based polymerase chain reaction (PCR) assay developed for the detection of Brugia malayi, the causative agent of Brugian lymphatic filariasis, was evaluated for its sensitivity in the laboratory and for its usefulness in measuring changes in transmission of the disease in the field. Laboratory studies showed that the new assay was highly sensitive in comparison with the standard dissection and microscopy technique. The assay can detect as little as 4 pg of parasite DNA or a single microfilaria in pools of up to 100 mosquitoes. The optimum pool size for convenience was found to be 50 mosquitoes per pool. The efficacy of PCR assay was evaluated in filariasis control programmes in operation in endemic areas of Kerala State, South India. The infection rates obtained by the Hha I PCR assay and the conventional dissection and microscopy technique were 1.2% and 1.7% respectively in operational areas and 8.3% and 4.4% respectively, in check areas, which were not significantly different (P used as a new epidemiological tool for assessing parasite infection in field-collected mosquitoes. PMID:11260722

  20. Integration of agglutination assay for protein detection in microfluidic disc using Blu-ray optical pickup unit and optical fluid scanning

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco;

    2015-01-01

    We present a novel strategy for thrombin detection by combining a magnetic bead based agglutination assay and low-cost microfluidic disc. The detection method is based on an optomagnetic readout system implemented using a Blu-ray optical pickup unit (OPU) as main optoelectronic component. The ass...

  1. A real-time PCR assay for the detection of atypical strains of Chlamydiaceae from pigeons.

    Directory of Open Access Journals (Sweden)

    Aleksandar Zocevic

    Full Text Available Recent evidence of the occurrence of atypical Chlamydiaceae strains in pigeons, different from the established Chlamydiaceae, requires the development of a specific and rapid detection tool to investigate their prevalence and significance. Here is described a new real-time PCR assay that allows specific detection of atypical Chlamydiaceae from pigeons. The assay has been used to assess the dissemination of these strains in field samples collected from Parisian pigeon populations in 2009. The results suggest a limited dissemination compared to the usually higher prevalence of Chlamydia psittaci that is the main species associated with avian chlamydiosis.

  2. Detection of antibodies and antigens of human parvovirus B19 by enzyme-linked immunosorbent assay.

    OpenAIRE

    Anderson, L J; Tsou, C; Parker, R. A.; Chorba, T L; Wulff, H; Tattersall, P; Mortimer, P P

    1986-01-01

    Acute-phase serum from a patient with aplastic crisis provided sufficient human parvovirus B19 to make a monoclonal antibody against B19 and to develop antigen and immunoglobulin M (IgM) and IgG antibody detection enzyme-linked immunosorbent assays (ELISAs). The indirect capture antibody method was used for all three assays. Antigen was detected in 8 of 29 sera drawn within 2 days of onset of illness from patients with aplastic crisis. These sera had high titers of virus by electron microscop...

  3. Panfungal PCR Assay for Detection of Fungal Infection in Human Blood Specimens

    OpenAIRE

    Van Burik, Jo-Anne; Myerson, David; Schreckhise, Randall W.; Bowden, Raleigh A.

    1998-01-01

    A novel panfungal PCR assay which detects the small-subunit rRNA gene sequence of the two major fungal organism groups was used to test whole-blood specimens obtained from a series of blood or bone marrow transplant recipients. The 580-bp PCR product was identified after amplification by panfungal primers and hybridization to a 245-bp digoxigenin-labeled probe. The lower limit of detection of the assay was approximately four organisms per milliliter of blood. Multiple whole-blood specimens fr...

  4. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay

    DEFF Research Database (Denmark)

    Tuo, J; Loft, S; Thomsen, M S;

    1996-01-01

    The myelotoxic and genotoxic effects of benzene have been related to oxidative DNA damage after metabolism by CYP2E1. Single cell gel electrophoresis (alkaline comet assay) detects DNA damage and may thus be a convenient method for the study of benzene genotoxicity. Benzene exposure to NMRI mice.......01). By comparing our data with those from genotoxicity studies on benzene using other methods, we conclude that the 'alkaline comet assay' is a sensitive method to detect DNA damage induced by benzene. We also infer that CYP2E1 contributes, at least partly, to the formation of the 'comet'-inducing metabolites...

  5. Capture-S, a nontreponemal solid-phase erythrocyte adherence assay for serological detection of syphilis.

    OpenAIRE

    Stone, D L; Moheng, M C; Rolih, S; Sinor, L T

    1997-01-01

    A solid-phase erythrocyte adherence assay has been developed for the serological detection of reagin antibodies in syphilis. Capture-S (Immucor, Inc., Norcross, Ga.) is a nontreponemal, qualitative screening test for the detection of immunoglobulin G (IgG) and IgM antilipid antibodies in serum or plasma samples from blood donors. The Capture-S assay utilizes a modified Venereal Disease Research Laboratory antigen bound to microtitration wells and anti-IgG- plus anti-IgM-coated indicator eryth...

  6. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates.

  7. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Martin; Vieths, Stefan [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany); Holzhauser, Thomas, E-mail: holth@pei.de [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany)

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg{sup -1} almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg{sup -1}. We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg{sup -1} almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg{sup -1}. Further, between 100 and 100,000 mg kg{sup -1} spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n = 5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a

  8. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    Full Text Available Abstract Background A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel. Methods The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP, were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens. Results To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml and RSV (103 copies/ml. The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found. The incidence of respiratory viruses was compared in tracheal secretion (TS samples (n = 100 of mechanically ventilated patients in winter (n = 50 and summer (n = 50. In winter, respiratory viruses were detected in 32 TS samples (64% by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32% and PIV-2 (20%. Multiple infections were detected

  9. TaqMan MGB探针实时荧光定量PCR快速检测布鲁氏菌%Development of a TaqMan MGB-probe based real-time fluorescencequantitative PCR assay for rapid detection of Brucella

    Institute of Scientific and Technical Information of China (English)

    高正琴; 邢进; 冯育芳; 岳秉飞; 贺争鸣

    2011-01-01

    The new generation TaqMan Minor Groove Binding (MGB) probe approach was used to develop the specific and sensitive real time fluorescence quantitative PCR (RTFQ-PCR) assay for rapid detecting Brucella in our study. The specific primers and probe for TaqMan MGB-probe based RTFQ-PCR were designed based on 16S rRNA sequence of genus Brucella. A TaqMan MGB-probe based RTFQ-PCR assay was established, and its specificity, sensitivity and stability were assessed. Then, the established TaqMan MGB-probe based RTFQ-PCR assay was applied to detect Brucella in 773 animal specimens during 2008 - 2010, and compared with conventional PCR assay. The specificity of this established TaqMan MGB-probe based RTFQ-PCR was high and there were no cross-reactivity with Yersinia enterocolitica , Yersinia pseudotuberculosis, Salmonella enterica, Escherichia colt, Pseudomonasaeruginosa , Campylobacter jejuni, and Clostridium piliforme. The correlation coefficient and slope value of standard curve were 0. 999 and -3. 301 respectively and the efficiency of TaqMan MGB-probe based RTFQ-PCR was 100.872%. The TaqMan MGB-probe based RTFQ-PCR assay was able to accurately detect Brucella DNA from brucellosis-positive specimens. The detection limit for this assay was 9. 3 copies, and the sensitivity of this assay was 100-fold higher than conventional PCR assay. The TaqMan MGB-probe based RTFQ-PCR was preformed to detect Brucella in 773 animal specimens, and a total of 53 specimens were positive for Brucella. However, there was only 37 specimens were positive by conventional PCR. The results showed that TaqMan MGB-probe based RTFQ-PCR for Brucella was more sensitive than conventional PCR assay, and it could detect Brucella DNA from animal specimens directly, and detection time is only 2 hours. To the knowledge of the authors, this is the first TaqMan MGB-probe based RTFQ-PCR assay for the direct detection of Brucella in animal specimens. The technique appears to be sufficiently adaptable to meet the

  10. Performance of Simplexa Dengue Molecular Assay Compared to Conventional and SYBR Green RT-PCR for Detection of Dengue Infection in Indonesia

    OpenAIRE

    R Tedjo Sasmono; Aryati Aryati; Puspa Wardhani; Benediktus Yohan; Hidayat Trimarsanto; Sukmal Fahri; Setianingsih, Tri Y.; Febrina Meutiawati

    2014-01-01

    Diagnostic tests based on detection of dengue virus (DENV) genome are available with varying sensitivities and specificities. The Simplexa Dengue assay (Focus Diagnostics) is a newly developed real-time RT-PCR method designed to detect and serotype DENV simultaneously. To assess the performance of the Simplexa Dengue assay, we performed comparison with conventional RT-PCR and SYBR Green real-time RT-PCR on patients sera isolated from eight cities across Indonesia, a dengue endemic country. A ...

  11. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    Science.gov (United States)

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  12. Variability in assays used for detection of lentiviral infection in bobcats (Lynx rufus), pumas (Puma concolor), and ocelots (Leopardus pardalis)

    Science.gov (United States)

    Franklin, S.P.; Troyer, J.L.; TerWee, J.A.; Lyren, L.M.; Kays, R.W.; Riley, S.P.D.; Boyce, W.M.; Crooks, K.R.; VandeWoude, S.

    2007-01-01

    Although lentiviruses similar to feline immunodeficiency virus (FIV) are known to infect numerous felid species, the relative utility of assays used for detecting lentiviral infection has not been compared for many of these hosts. We tested bobcats (Lynx rufus), pumas (Felis concolor), and ocelots (Leopardus pardalis) for exposure to lentivirus using five different assays: puma lentivirus (PLV), African lion lentivirus (LLV), and domestic cat FIV-based immunoblots, a commercially available enzyme-linked immunosorbent assay (ELISA) kit, and nested polymerase chain reaction (PCR). Puma lentivirus immunoblots identified more seropositive individuals than the other antibody-detection assays. The commercial ELISA provided a fair ability to recognize seropositive samples when compared with PLV immunoblot for screening bobcats and ocelots, but not pumas. Polymerase chain reaction identified fewer positive samples than PLV immunoblot for all three species. Immunoblot results were equivalent whether the sample tested was serum, plasma, or whole blood. The results from this study and previous investigations suggest that the PLV immunoblot has the greatest ability to detect reactive samples when screening wild felids of North America and is unlikely to produce false positive results. However, the commercial ELISA kit may provide ap adequate alternative for screening of some species and is more easily adapted to field conditions. ?? Wildlife Disease Association 2007.

  13. Variability in assays used for detection of lentiviral infection in bobcats (Lynx rufus), pumas (Puma concolor), and ocelots (Leopardus pardalis).

    Science.gov (United States)

    Franklin, Samuel P; Troyer, Jennifer L; Terwee, Julie A; Lyren, Lisa M; Kays, Roland W; Riley, Seth P D; Boyce, Walter M; Crooks, Kevin R; Vandewoude, Sue

    2007-10-01

    Although lentiviruses similar to feline immunodeficiency virus (FIV) are known to infect numerous felid species, the relative utility of assays used for detecting lentiviral infection has not been compared for many of these hosts. We tested bobcats (Lynx rufus), pumas (Felis concolor), and ocelots (Leopardus pardalis) for exposure to lentivirus using five different assays: puma lentivirus (PLV), African lion lentivirus (LLV), and domestic cat FIV-based immunoblots, a commercially available enzyme-linked immunosorbent assay (ELISA) kit, and nested polymerase chain reaction (PCR). Puma lentivirus immunoblots identified more seropositive individuals than the other antibody-detection assays. The commercial ELISA provided a fair ability to recognize seropositive samples when compared with PLV immunoblot for screening bobcats and ocelots, but not pumas. Polymerase chain reaction identified fewer positive samples than PLV immunoblot for all three species. Immunoblot results were equivalent whether the sample tested was serum, plasma, or whole blood. The results from this study and previous investigations suggest that the PLV immunoblot has the greatest ability to detect reactive samples when screening wild felids of North America and is unlikely to produce false positive results. However, the commercial ELISA kit may provide an adequate alternative for screening of some species and is more easily adapted to field conditions. PMID:17984266

  14. Immunity Based Worm Detection System

    Institute of Scientific and Technical Information of China (English)

    HONG Zheng; WU Li-fa; WANG Yuan-yuan

    2007-01-01

    Current worm detection methods are unable to detect multi-vector polymorphic worms effectively.Based on negative selection mechanism of the immune system,a local network worm detection system that detects worms was proposed.Normal network service requests were represented by self-strings,and the detection system used self-strings to monitor the network for anomaly.According to the properties of worm propagation,a control center correlated the anomalies detected in the form of binary trees to ensure the accuracy of worm detection.Experiments show the system to be effective in detecting the traditional as well as multi-vector polymorphic worms.

  15. Comparison of the Vitek Immunodiagnostic Assay System with Three Immunoassay Systems for Detection of Cytomegalovirus-Specific Immunoglobulin G

    OpenAIRE

    Hopson, D K; Niles, A C; Murray, P R

    1993-01-01

    The Vitek Immunodiagnostic Assay System (VIDAS; bioMerieux Vitek Inc., Hazelwood, Mo.) was evaluated for its ability to detect anticytomegalovirus immunoglobulin G (IgG) and was compared with the following assay systems: Abbott IMx Cytomegalovirus IgG antibody assay (Abbott Laboratories, Abbott Park, Ill.), Whittaker Cytomegelisa II IgG assay (Whittaker Bioproducts, Walkersville, Md.), and Whittaker FIAX Cytomegalovirus IgG assay (Whittaker Bioproducts). Samples were considered positive if at...

  16. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  17. Bluetongue virus: comparative evaluation of enzyme-linked immunosorbent assay, immunodiffusion, and serum neutralization for detection of viral antibodies.

    OpenAIRE

    Poli, G.; Stott, J.; Liu, Y. S.; Manning, J S

    1982-01-01

    Comparative studies on the detection of bovine serum immunoglobulin G antibodies to bluetongue virus with an enzyme-linked immunosorbent assay, an immunodiffusion method, and a serum neutralization assay demonstrated complete concordance between the enzyme-linked immunosorbent assay and the serum neutralization assay results. However, the immunodiffusion method failed to detect bluetongue virus antibody in a substantial number of sera found to possess bluetongue virus immunoglobulin G with th...

  18. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi

    OpenAIRE

    Kellermann, Gottfried H.; Lehmann, Paul V; Diana R. Roen; Chenggang Jin

    2013-01-01

    Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B....

  19. A Neutralizing Antibody Assay Based on a Reporter of Antibody-Dependent Cell-Mediated Cytotoxicity.

    Science.gov (United States)

    Wu, Yuling; Li, Jia J; Kim, Hyun Jun; Liu, Xu; Liu, Weiyi; Akhgar, Ahmad; Bowen, Michael A; Spitz, Susan; Jiang, Xu-Rong; Roskos, Lorin K; White, Wendy I

    2015-11-01

    Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function. An ADCC reporter cell-based neutralizing antibody (NAb) assay was developed and characterized to detect NAb against benralizumab in human serum to support the clinical development of benralizumab. The optimal ratio of target cells to effector cells was 3:1. Neither parental benralizumab (fucosylated) nor benralizumab Fab resulted in ADCC activity, confirming the requirement for ADCC activity in the NAb assay. The serum tolerance of the cells was determined to be 2.5%. The cut point derived from normal and asthma serum samples was comparable. The effective range of benralizumab was determined, and 35 ng/mL [80% maximal effective concentration (EC80)] was chosen as the standard concentration to run in the assessment of NAb. An affinity purified goat anti-benralizumab polyclonal idiotype antibody preparation was shown to have NAb since it inhibited ADCC activity in a dose-dependent fashion. The low endogenous concentrations of IL5 and soluble IL5 receptor (sIL5R) did not demonstrate to interfere with the assay. The estimated assay sensitivities at the cut point were 1.02 and 1.10 μg/mL as determined by the surrogate neutralizing goat polyclonal and mouse monoclonal anti-drug antibody (ADA) controls, respectively. The assay can detect NAb (at 2.5 μg/mL) in the presence of 0.78 μg/mL benralizumab. The assay was not susceptible to non-specific matrix effects. This study provides an approach and feasibility of developing an ADCC cell-based NAb assay to support biopharmaceuticals with an ADCC function. PMID:26205082

  20. 12C6+ ion beam induced DNA damage in human hepatocyte L02 cells detected by comet assay

    International Nuclear Information System (INIS)

    Human hepatocyte L02 cells were irradiated by the carbon ion beam with LET of 30 keV/μm and DNA strand breaks were detected immediately after the irradiation using comet assay. Based on the comet images, all the indexes of comet assay including head DNA%, tail DNA%, comet length, tail length, tail moment and olive tail moment were analyzed with CASP and SPSS 11.5 code. Statistically significant dose-effect relationships could be observed in all the indexes of comet assay and TM increased with increasing the radiation dose. These experimental results suggest that carbon ion beam with intermediate LET value would cause remarkable DNA strand breaks immediately and the damage increases in a dose-dependent manner. This work provides basic data and evidence for the risk assessment of heavy ion radiation to healthy tissue. (authors)

  1. Ultrasonication of pyrogenic microorganisms improves the detection of pyrogens in the Mono Mac 6 assay

    DEFF Research Database (Denmark)

    Moesby, Lise; Hansen, E W; Christensen, J D

    2000-01-01

    The monocytic cell line Mono Mac 6 is sensitive to pyrogens. When exposed to pyrogens secretion of interleukin-6 is induced. However, some eukaryotic pyrogenic microorganisms are not detectable. The aim of this study is to introduce a pretreatment of samples to expand the detection range of the a......The monocytic cell line Mono Mac 6 is sensitive to pyrogens. When exposed to pyrogens secretion of interleukin-6 is induced. However, some eukaryotic pyrogenic microorganisms are not detectable. The aim of this study is to introduce a pretreatment of samples to expand the detection range...... of the assay. The interleukin-6 inducing capacity of a broad spectrum of UV-killed and ultrasonicated microorganisms is examined in Mono Mac 6 cells. The interleukin-6 secretion is determined in a sandwich immunoassay (DELFIA). The Mono Mac 6 assay is able to detect UV-killed Bacillus subtilis, Staphylococcus......, ultrasonication of S. aureus results in a 100-fold increase in the interleukin-6 response. Even after ultrasonication Streptococcus faecalis can not be detected. Ultrasonication is an easy and simple method for expanding the detection range in the Mono Mac 6 assay....

  2. Evaluation of an improved bioluminescence assay for the detection of bacteria in soy milk.

    Science.gov (United States)

    Shinozaki, Yohei; Sato, Jun; Igarashi, Toshinori; Suzuki, Shigeya; Nishimoto, Kazunori; Harada, Yasuhiro

    2013-01-01

    Because soy milk is nutrient rich and nearly neutral in pH, it favors the growth of microbial contaminants. To ensure that soy milk meets food-safety standards, it must be pasteurized and have its sterility confirmed. ATP bioluminescence assay has become a widely accepted means of detecting food microorganisms. However, the high background bioluminescence intensity of soy milk has rendered it unsuitable for ATP analysis. Here, we tested the efficacy of an improved pre-treated bioluminescence assay on soy milk. By comparing background bioluminescence intensities obtained by the conventional and improved methods, we demonstrated that our method significantly reduces soy milk background bioluminescence. The dose-response curve of the assay was tested with serial dilutions of Bacillus sp. culture. An extremely strong log-linear relation between the bioluminescence intensity relative light units and colony formation units CFU/ml emerged for the tested strain. The detection limit of the assay was estimated as 5.2×10(3) CFU/ml from the dose-response curve and an imposed signal limit was three times the background level. The results showed that contaminated samples could be easily detected within 24 h using our improved bioluminescence assay.

  3. Immunostained plaque assay for detection and titration of rabies virus infectivity.

    Science.gov (United States)

    Park, Jun-Sun; Um, Jihye; Choi, Young-Ki; Lee, Yeong Seon; Ju, Young Ran; Kim, Su Yeon

    2016-02-01

    The fluorescent antibody test (FAT) is the most commonly used method for detection of the rabies virus (RV). The plaque assay can only be applied to fixed RVs, and cannot be used for street RVs. In this study, plaque formation allowing the determination of both fixed and street RVs was achieved using the immune plaque assay. The immune plaque assay carried out using both fixed and street RVs showed the formation of clear and countable plaques after immunostaining with anti-RV P monoclonal antibody and HRP-conjugated anti-mouse IgG. Plaque size increased with incubation time, and the plaque morphology differed according to viral strain. Fixed RVs had the dot-shaped regular plaque morphology and street RVs had the small irregular-shape plaque morphology. In addition, no significant differences were observed between the growth kinetics of the KGH strain when the virus was titrated using the FAT and the immune plaque assay. It allowed the successful detection and quantification of both street and fixed RVs through the production of clear, countable plaques, making it easy to obtain objective results. The assay is an applicable tool for the detection of RVs in various investigations, including virus neutralizing antibody testing, cell-to-cell spread, and viral drug sensitivity testing.

  4. Qualitative and Quantitative Assays for Detection and Characterization of Protein Antimicrobials.

    Science.gov (United States)

    Farris, M Heath; Ford, Kara A; Doyle, Richard C

    2016-01-01

    Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest.

  5. Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages.

    Science.gov (United States)

    Schielke, Erika; Costantini, Carlo; Carchini, Gianmaria; Sagnon, N'falé; Powell, Jeffrey; Caccone, Adalgisa

    2007-09-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detected after ingestion by members of the families Lestidae (order Odonata) after four hours, Libellulidae (order Odonata) after six hours, and Notonectidae (order Hemiptera) after 24 hours. This method is an improvement over previously published methods because of ease of execution and increased time of detection after ingestion. PMID:17827361

  6. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  7. Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei.

    Science.gov (United States)

    Mirzai, S; Safi, S; Mossavari, N; Afshar, D; Bolourchian, M

    2016-01-01

    The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders. PMID:27609471

  8. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T;

    2013-01-01

    as control antibody. Without antibodies this system is suitable for analyses of natural killer cell activity. In optimization of the assay we have used effector lymphocytes from healthy donors. The most effective effector cells are CD56(+) cells. CD8(+) T cells also express CD107a in ADCC. Using the adapted......Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable...... assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients...

  9. Detection and identification of entamoeba species in stool samples by a reverse line hybridization assay.

    Science.gov (United States)

    Verweij, Jaco J; Laeijendecker, Daphne; Brienen, Eric A T; van Lieshout, Lisette; Polderman, Anton M

    2003-11-01

    Classically, detection of Entamoeba histolytica is performed by microscopic examination for characteristic cysts and/or trophozoites in fecal preparations. Differentiation of E. histolytica cysts and those of nonpathogenic amoebic species is made on the basis of the appearance and the size of the cysts. However, by classical means objective tools for confirmation and quality control do not exist. Therefore, a reverse line blot hybridization assay was developed to detect a variety of Entamoeba species and genetic variants known to infect humans. The assay was performed after amplification with general Entamoeba-specific primers. The assay could identify four genetic variants of Entamoeba polecki-like cysts as well as E. histolytica, Entamoeba dispar, Entamoeba hartmanni, Entamoeba moshkovskii and Entamoeba coli and even mixed infections in a range of controls and fecal samples. This technique can be used as an additional standard for diagnosis, epidemiology, and quality control for amoebic infections. PMID:14605136

  10. The application of reporter gene assays for the detection of endocrine disruptors in sport supplements

    International Nuclear Information System (INIS)

    The increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC50 of 0.01 ng mL-1 and 0.16 ng mL-1 respectively. The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC-MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC-MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined. The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally active compounds the

  11. The application of reporter gene assays for the detection of endocrine disruptors in sport supplements

    Energy Technology Data Exchange (ETDEWEB)

    Plotan, Monika; Elliott, Christopher T. [Institute of Agri-Food and Land Use, School of Biological Sciences, Queen' s University Belfast, Belfast BT95AG, Northern Ireland (United Kingdom); Scippo, Marie Louise [Department of Food Sciences, University of Liege, 4000 Liege (Belgium); Muller, Marc [Molecular Biology and Genetic Engineering GIGA-R, University of Liege, 4000 Liege (Belgium); Antignac, Jean-Philippe [LABERCA, ENVN, USC INRA 2013, BP 50707, 44 307, Nantes (France); Malone, Edward [The State Laboratory, Young' s Cross, Celbridge, Co. Kildare (Ireland); Bovee, Toine F.H. [RIKILT Institute of Food Safety, P.O. Box 230, AE Wageningen 6700 (Netherlands); Mitchell, Samuel [Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute of Agri-Food and Land Use, School of Biological Sciences, Queen' s University Belfast, Belfast BT95AG, Northern Ireland (United Kingdom)

    2011-08-26

    The increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC{sub 50} of 0.01 ng mL{sup -1} and 0.16 ng mL{sup -1} respectively. The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC-MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC-MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined. The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally

  12. Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Hillary L Shane

    Full Text Available Although accurate assessment of the prevalence of Schistosoma mansoni is important for the design and evaluation of control programs, the most widely used tools for diagnosis are limited by suboptimal sensitivity, slow turn-around-time, or inability to distinguish current from former infections. Recently, two tests that detect circulating cathodic antigen (CCA in urine of patients with schistosomiasis became commercially available. As part of a larger study on schistosomiasis prevalence in young children, we evaluated the performance and diagnostic accuracy of these tests--the carbon test strip designed for use in the laboratory and the cassette format test intended for field use. In comparison to 6 Kato-Katz exams, the carbon and cassette CCA tests had sensitivities of 88.4% and 94.2% and specificities of 70.9% and 59.4%, respectively. However, because of the known limitations of the Kato-Katz assay, we also utilized latent class analysis (LCA incorporating the CCA, Kato-Katz, and schistosome-specific antibody results to determine their sensitivities and specificities. The laboratory-based CCA test had a sensitivity of 91.7% and a specificity of 89.4% by LCA while the cassette test had a sensitivity of 96.3% and a specificity of 74.7%. The intensity of the reaction in both urine CCA tests reflected stool egg burden and their performance was not affected by the presence of soil transmitted helminth infections. Our results suggest that urine-based assays for CCA may be valuable in screening for S. mansoni infections.

  13. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    Science.gov (United States)

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  14. Evaluation of the Hologic Panther Transcription-Mediated Amplification Assay for Detection of Mycoplasma genitalium.

    Science.gov (United States)

    Tabrizi, S N; Costa, A M; Su, J; Lowe, P; Bradshaw, C S; Fairley, C K; Garland, S M

    2016-08-01

    The detection of Mycoplasma genitalium was evaluated on 1,080 urine samples by the use of a Panther instrument. Overall sensitivity, specificity, positive predictive values, and negative predictive values were 100%, 99.4%, 93.6%, and 100%, respectively. Detection of M. genitalium by the use of the Panther transcription-mediated amplification assay offers a simple, accurate, and sensitive platform for diagnostic laboratories. PMID:27307453

  15. A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target

    OpenAIRE

    Cécile Feuillie; Maxime Mohamad Merheb; Benjamin Gillet; Gilles Montagnac; Isabelle Daniel; Catherine Hänni

    2011-01-01

    International audience In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to ...

  16. Shifted termination assay (STA) fragment analysis to detect BRAF V600 mutations in papillary thyroid carcinomas

    OpenAIRE

    Kang, So Young; Ahn, Soomin; Lee, Sun-Mi; Jeong, Ji Yun; Sung, Ji-Youn; Oh, Young Lyun; Kim, Kyoung-Mee

    2013-01-01

    Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to...

  17. PCR Assay To Detect Bacillus anthracis Spores in Heat-Treated Specimens

    OpenAIRE

    Fasanella, A.; Losito, S.; Adone, R.; Ciuchini, F.; Trotta, T.; Altamura, S. A.; D. Chiocco; Ippolito, G

    2003-01-01

    Recent interest in anthrax is due to its potential use in bioterrorism and as a biowarfare agent against civilian populations. The development of rapid and sensitive techniques to detect anthrax spores in suspicious specimens is the most important aim for public health. With a view to preventing exposure of laboratory workers to viable Bacillus anthracis spores, this study evaluated the suitability of PCR assays for detecting anthrax spores previously inactivated at 121°C for 45 min. The resu...

  18. Detection and Identification of Entamoeba Species in Stool Samples by a Reverse Line Hybridization Assay

    OpenAIRE

    Verweij, Jaco J.; Laeijendecker, Daphne; Brienen, Eric A. T.; van Lieshout, Lisette; Polderman, Anton M.

    2003-01-01

    Classically, detection of Entamoeba histolytica is performed by microscopic examination for characteristic cysts and/or trophozoites in fecal preparations. Differentiation of E. histolytica cysts and those of nonpathogenic amoebic species is made on the basis of the appearance and the size of the cysts. However, by classical means objective tools for confirmation and quality control do not exist. Therefore, a reverse line blot hybridization assay was developed to detect a variety of Entamoeba...

  19. Specific Dot-Immunobinding Assay for Detection and Enumeration of Thiobacillus ferrooxidans

    OpenAIRE

    Arredondo, Renato; Jerez, Carlos A.

    1989-01-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in 125I-labeled protein A or 125I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 103 cells per dot could be detected, the method offers the possibility of si...

  20. DETECTION OF FRNA COLIPHAGES IN GROUNDWATER: INTERFERENCE WITH THE ASSAY BY SOMATIC SALMONELLA BACTERIOPHAGES

    Science.gov (United States)

    Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...

  1. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Science.gov (United States)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  2. Detection of enterovirus RNA in cerebrospinal fluid : Comparison of two molecular assays

    NARCIS (Netherlands)

    de Crom, S. C. M.; Obihara, C. C.; van Loon, A. M.; Argilagos-Alvarez, A. A.; Peeters, M. F.; van Furth, A. M.; Rossen, J. W. A.

    2012-01-01

    Enterovirus (EV) and human parechovirus (HPeV) are a major cause of infection in childhood. A rapid diagnostic test may improve the management of patients with EV and HPeV infection. The aim of this study is to evaluate the performance of the GeneXpert enterovirus assay (GXEA) for detection of EV RN

  3. Salivary IgG assay to detect Helicobacter pylori infection in an Indian adult population

    Directory of Open Access Journals (Sweden)

    Ramya Thirumala Krishnaswamy

    2012-01-01

    Conclusion: EIAgen H. pylori IgG assay is a noninvasive, moderately accurate, and sensitive method for the detection of H. pylori infection in saliva. Salivary anti H. pylori IgG test prior to endoscopy is a useful screening test for seroepidemiological studies.

  4. An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms

    OpenAIRE

    Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.

    1994-01-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.

  5. An Immunofluorescence Assay to Detect Urediniospores of the Soybean Rust Pathogen, Phakopsora pachyrhizi

    Science.gov (United States)

    An indirect immunofluorescence spore assay (IFSA) was developed to detect urediniospores of Phakopsora pachyrhizi, utilizing rabbit polyclonal antisera produced in response to intact non-germinated (SBR1A) or germinated (SBR2) urediniospores of P. pachyrhizi. Both antisera were specific to Phakopso...

  6. Detecting West Nile Virus in Owls and Raptors by an Antigen-capture Assay

    OpenAIRE

    Gancz, Ady Y.; Campbell, Douglas G.; Barker, Ian K; Lindsay, Robbin; Hunter, Bruce

    2004-01-01

    We evaluated a rapid antigen-capture assay (VecTest) for detection of West Nile virus in oropharyngeal and cloacal swabs, collected at necropsy from owls (N = 93) and raptors (N = 27). Sensitivity was 93.5%–95.2% for northern owl species but

  7. Development of Ss-NIE-1 recombinant antigen based assays for immunodiagnosis of strongyloidiasis.

    Science.gov (United States)

    Rascoe, Lisa N; Price, Courtney; Shin, Sun Hee; McAuliffe, Isabel; Priest, Jeffrey W; Handali, Sukwan

    2015-04-01

    Strongyloides stercoralis is a widely distributed parasite that infects 30 to 100 million people worldwide. In the United States strongyloidiasis is recognized as an important infection in immigrants and refugees. Public health and commercial reference laboratories need a simple and reliable method for diagnosis of strongyloidiasis to identify and treat cases and to prevent transmission. The recognized laboratory test of choice for diagnosis of strongyloidiasis is detection of disease specific antibodies, most commonly using a crude parasite extract for detection of IgG antibodies. Recently, a luciferase tagged recombinant protein of S. stercoralis, Ss-NIE-1, has been used in a luciferase immunoprecipitation system (LIPS) to detect IgG and IgG4 specific antibodies. To promote wider adoption of immunoassays for strongyloidiasis, we used the Ss-NIE-1 recombinant antigen without the luciferase tag and developed ELISA and fluorescent bead (Luminex) assays to detect S. stercoralis specific IgG4. We evaluated the assays using well-characterized sera from persons with or without presumed strongyloidiasis. The sensitivity and specificity of Ss-NIE-1 IgG4 ELISA were 95% and 93%, respectively. For the IgG4 Luminex assay, the sensitivity and specificity were 93% and 95%, respectively. Specific IgG4 antibody decreased after treatment in a manner that was similar to the decrease of specific IgG measured in the crude IgG ELISA. The sensitivities of the Ss-NIE-1 IgG4 ELISA and Luminex assays were comparable to the crude IgG ELISA but with improved specificities. However, the Ss-NIE-1 based assays are not dependent on native parasite materials and can be performed using widely available laboratory equipment. In conclusion, these newly developed Ss-NIE-1 based immunoassays can be readily adopted by public health and commercial reference laboratories for routine screening and clinical diagnosis of S. stercoralis infection in refugees and immigrants in the United States.

  8. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    Science.gov (United States)

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration. PMID:27140308

  9. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M J

    2014-01-01

    A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production

  10. Comparison of the Abbott m2000 RealTime CT Assay and the Cepheid GeneXpert CT/NG Assay to the Roche Amplicor CT Assay for Detection of Chlamydia trachomatis in Ocular Samples from Tanzania

    OpenAIRE

    Dize, Laura; West, Sheila; Williams, James A; Van Der Pol, Barbara; Quinn, Thomas C.; Gaydos, Charlotte A.

    2013-01-01

    The GeneXpert CT/NG assay (GeneXpert) and the Abbott m2000 RealTime CT (m2000) assay were compared to Amplicor for detecting ocular Chlamydia trachomatis. Discordant specimens were tested by the Aptima CT assay. The m2000 assay sensitivity was 100% (95% confidence interval [CI], 90% to 100%), and specificity was 98.46% (95% CI, 95.2% to 99.2%); GeneXpert sensitivity was 100% (95% CI, 90% to 100%), and specificity was 100% (95% CI, 98.1% to 100%). The m2000 and GeneXpert assays appear to perfo...

  11. Use of sensitive, broad-spectrum molecular assays and human airway epithelium cultures for detection of respiratory pathogens.

    Directory of Open Access Journals (Sweden)

    Krzysztof Pyrc

    Full Text Available Rapid and accurate detection and identification of viruses causing respiratory tract infections is important for patient care and disease control. Despite the fact that several assays are available, identification of an etiological agent is not possible in ~30% of patients suffering from respiratory tract diseases. Therefore, the aim of the current study was to develop a diagnostic set for the detection of respiratory viruses with sensitivity as low as 1-10 copies per reaction. Evaluation of the assay using a training clinical sample set showed that viral nucleic acids were identified in ~76% of cases. To improve assay performance and facilitate the identification of novel species or emerging strains, cultures of fully differentiated human airway epithelium were used to pre-amplify infectious viruses. This additional step resulted in the detection of pathogens in all samples tested. Based on these results it can be hypothesized that the lack of an etiological agent in some clinical samples, both reported previously and observed in the present study, may result not only from the presence of unknown viral species, but also from imperfections in the detection methods used.

  12. Development of a quantitative real-time PCR assay for detection of Vibrio tubiashii targeting the metalloprotease gene.

    Science.gov (United States)

    Gharaibeh, Dima N; Hasegawa, Hiroaki; Häse, Claudia C

    2009-03-01

    Vibrio tubiashii has recently re-emerged as a pathogen of bivalve larvae, causing a marked increase in the mortality of these species within shellfish rearing facilities. This has resulted in substantial losses of seed production and thus created the need for specific as well as sensitive detection methods for this pathogen. In this project, quantitative PCR (qPCR) primers were developed and optimized based upon analysis of the V. tubiashii vtpA gene sequence, encoding a metalloprotease known to cause larval mortality. Standard curves were developed utilizing dilutions of known quantities of V. tubiashii cells that were compared to colony forming unit (CFU) plate counts. The assay was optimized for detection of vtpA with both lab-grown V. tubiashii samples and filter-captured environmental seawater samples seeded with V. tubiashii. In addition, the primers were confirmed to specifically detect only V. tubiashii when tested against a variety of non-target Vibrio species. Validation of the assay was completed by analyzing samples obtained from a shellfish hatchery. The development of this rapid and sensitive assay for quantitative detection of V. tubiashii will accurately determine levels of this bacterium in a variety of seawater samples, providing a useful tool for oyster hatcheries and a method to assess the presence of this bacterium in the current turbulent ocean environment.

  13. Simple and Rapid Lateral-Flow Assay for the Detection of Foot-and-Mouth Disease Virus▿

    OpenAIRE

    Oem, Jae Ku; Ferris, Nigel P.; Lee, Kwang-Nyeong; Joo, Yi-Seok; Hyun, Bang-Hun; Park, Jong-Hyeon

    2009-01-01

    A simple lateral-flow assay (LFA) based on a monoclonal antibody (MAb 70-17) was developed for the detection of foot-and-mouth disease virus (FMDV) under nonlaboratory conditions. The LFA was evaluated with epithelial suspensions (n = 704) prepared from current and historical field samples which had been submitted to the Pirbright Laboratory (United Kingdom) and from negative samples (n = 100) collected from naïve animals in Korea. Four FMDV serotypes (type O, A, Asia 1, and C) were detected ...

  14. A TaqMan Real-Time PCR Assay for Detection and Quantification of Sporisorium scitamineum in Sugarcane

    OpenAIRE

    Yachun Su; Shanshan Wang; Jinlong Guo; Bantong Xue; Liping Xu; Youxiong Que

    2013-01-01

    Sporisorium scitamineum is a fungal smut pathogen epidemic in sugarcane producing areas. Early detection and proper identification of the smut are an essential requirement in its management practice. In this study, we developed a TaqMan real-time PCR assay using specific primers (bEQ-F/bEQ-R) and a TaqMan probe (bEQ-P) which were designed based on the bE (b East mating type) gene (Genbank Accession no. U61290.1). This method was more sensitive (a detection limit of 10 ag pbE DNA and 0.8 ng su...

  15. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase–polymerase chain reaction assay

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Handberg, Kurt; Jørgensen, Poul Henrik;

    2011-01-01

    chain reaction (RT-PCR) without RNA extraction because of effective removal of RT-PCR inhibitors. The developed bead-based assay showed a similar detection limit comparable to the RNA extraction and the classic virus isolation method. Using ready-to-use antibody-conjugated bead, the method requires less....... In this study, magnetic beads were applied for immunoseparation and purification of AIV from spiked chicken fecal sample. The beads were conjugated with monoclonal antibodies against the AIV nucleoprotein, which is conserved in all the AIV. The bead-captured virus was detected by reverse transcriptase–polymerase...