WorldWideScience

Sample records for based design parameters

  1. GA BASED GLOBAL OPTIMAL DESIGN PARAMETERS FOR ...

    African Journals Online (AJOL)

    This article uses Genetic Algorithm (GA) for the global design optimization of consecutive reactions taking place in continuous stirred tank reactors (CSTRs) connected in series. GA based optimal design determines the optimum number of CSTRs in series to achieve the maximum conversion, fractional yield and selectivity ...

  2. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  3. Designing the CRT-based safety parameter display system

    International Nuclear Information System (INIS)

    Frankel, C.L.; Schack, K.A.

    1983-01-01

    The conceptual development and design of Safety Parameter Display System (SPDS) CRT displays and graphics is discussed in this paper. Some of the topics addressed include fulfilling the requirements of NUREG 0696, operator input to the design process, and successful display configurations. A methodology is presented to guide the engineer/operator team through the development of displays

  4. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    Science.gov (United States)

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  5. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  6. Design Parameters Analysis of Point Absorber WEC via an evolutionary-algorithm-based Dimensioning Tool

    Directory of Open Access Journals (Sweden)

    Marcos Blanco

    2015-10-01

    Full Text Available Wave energy conversion has an essential difference from other renewable energies since the dependence between the devices design and the energy resource is stronger. Dimensioning is therefore considered a key stage when a design project of Wave Energy Converters (WEC is undertaken. Location, WEC concept, Power Take-Off (PTO type, control strategy and hydrodynamic resonance considerations are some of the critical aspects to take into account to achieve a good performance. The paper proposes an automatic dimensioning methodology to be accomplished at the initial design project stages and the following elements are described to carry out the study: an optimization design algorithm, its objective functions and restrictions, a PTO model, as well as a procedure to evaluate the WEC energy production. After that, a parametric analysis is included considering different combinations of the key parameters previously introduced. A variety of study cases are analysed from the point of view of energy production for different design-parameters and all of them are compared with a reference case. Finally, a discussion is presented based on the results obtained, and some recommendations to face the WEC design stage are given.

  7. Residue-based Coordinated Selection and Parameter Design of Multiple Power System Stabilizers (PSSs)

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Fang, Jiakun

    2013-01-01

    Residue method is a commonly used approach to design the parameters of a power system stabilizer (PSS). In this paper, a residue identification method is adopted to obtain the system residues for different input-output pairs, using the system identification toolbox in MATLAB with the measurement...... as the test system is built in DIgSIELNT PowerFactory 14.0, in which the proposed coordination method is validated by time domain simulations and modal analysis....... data from time domain simulations. Then a coordinated approach for multiple PSS selection and parameter design based on residue method is proposed and realized in MATLAB m-files. Particle swarm optimization (PSO) is adopted in the coordination process. The IEEE 39-bus New England system model...

  8. PARAMETER DESIGN PROPELLER KAPAL

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2012-04-01

    Full Text Available   Designer propeller kapal harus mempertimbangkan berbagai parameter untuk menghasilkan bentuk, type dan ukuran propeller yang memiliki nilai  efektifitas dan effisiensi propulsi tinggi. Propulsi kapal merupakan faktor yang mendominasi  operasional kapal, karena pemakaian bahan bakar untuk operasional propulsi kapal merupakan 42% dari total cost operasional kapal dan merupakan added value yang akan diperoleh oleh perusahaan pelayaran. Pertimbangan parameter desain propeller argonomis dapat mendukung tujuan di atas sehingga dapat menurunkan pemakaian bahan bakar hingga 20 % saat kapal dioperaionalkan.

  9. Design parameter based method of partial discharge detection and location in power transformers

    Directory of Open Access Journals (Sweden)

    Kumar Santosh Annadurai

    2009-01-01

    Full Text Available Insulation defect detection in time ensures higher operational reliability of power system assets. Power transformers are the most critical unit of power systems both from economical and operational front. Hence it becomes necessary to have knowledge of the actual insulation condition of transformer to increase dependability of the system. The performance and ageing of the transformer insulation is mainly affected by Partial discharges (PD. Proper diagnosis in terms of amplitude and location of partial discharge in a power transformer enables us to predict well in advance, with much confidence, the defect in insulation system, which avoids large catastrophic failures. In this work a 20kVA, 230/50kV single phase core type transformer is used for evaluation of the transfer function-based partial discharge detection and location using modeling of the winding, using design data. The simulation of capturing on-line PD pulses across the bushing tap capacitor is done for various tap positions. Standard PD source model is used to inject PD pulse signal at 10 tap locations in the winding and corresponding response signatures are captured at the bushing tap end (across 1000pF. The equivalent high frequency model of the winding is derived from the design parameters using analytical calculations and simulations in packages such as MAGNET and ANSOFT. The test conditions are simulated using ORCAD-9 and the results are evaluated for location accuracy using design parameter based PD monitoring method. .

  10. A new LPV modeling approach using PCA-based parameter set mapping to design a PSS

    Directory of Open Access Journals (Sweden)

    Mohammad B. Abolhasani Jabali

    2017-01-01

    Full Text Available This paper presents a new methodology for the modeling and control of power systems based on an uncertain polytopic linear parameter-varying (LPV approach using parameter set mapping with principle component analysis (PCA. An LPV representation of the power system dynamics is generated by linearization of its differential-algebraic equations about the transient operating points for some given specific faults containing the system nonlinear properties. The time response of the output signal in the transient state plays the role of the scheduling signal that is used to construct the LPV model. A set of sample points of the dynamic response is formed to generate an initial LPV model. PCA-based parameter set mapping is used to reduce the number of models and generate a reduced LPV model. This model is used to design a robust pole placement controller to assign the poles of the power system in a linear matrix inequality (LMI region, such that the response of the power system has a proper damping ratio for all of the different oscillation modes. The proposed scheme is applied to controller synthesis of a power system stabilizer, and its performance is compared with a tuned standard conventional PSS using nonlinear simulation of a multi-machine power network. The results under various conditions show the robust performance of the proposed controller.

  11. A new LPV modeling approach using PCA-based parameter set mapping to design a PSS.

    Science.gov (United States)

    Jabali, Mohammad B Abolhasani; Kazemi, Mohammad H

    2017-01-01

    This paper presents a new methodology for the modeling and control of power systems based on an uncertain polytopic linear parameter-varying (LPV) approach using parameter set mapping with principle component analysis (PCA). An LPV representation of the power system dynamics is generated by linearization of its differential-algebraic equations about the transient operating points for some given specific faults containing the system nonlinear properties. The time response of the output signal in the transient state plays the role of the scheduling signal that is used to construct the LPV model. A set of sample points of the dynamic response is formed to generate an initial LPV model. PCA-based parameter set mapping is used to reduce the number of models and generate a reduced LPV model. This model is used to design a robust pole placement controller to assign the poles of the power system in a linear matrix inequality (LMI) region, such that the response of the power system has a proper damping ratio for all of the different oscillation modes. The proposed scheme is applied to controller synthesis of a power system stabilizer, and its performance is compared with a tuned standard conventional PSS using nonlinear simulation of a multi-machine power network. The results under various conditions show the robust performance of the proposed controller.

  12. Design and Simulation of PID parameters self-tuning based on DC speed regulating system

    Directory of Open Access Journals (Sweden)

    Feng Wei Jie

    2016-01-01

    Full Text Available The DC speed regulating system has many difficult issues such as system parameters and PID control parameters are difficult to determine. On the basis of model for a single closed-loop DC speed regulating system, this paper puts forward a method of PID parameters self-tuning based on the step response detection and reduced order equivalent. First, detect system step response and get response parameters. Then equal it to a second order system model, and achieve optimal PID control parameters based on optimal second order system to realize of PID parameters self-tuning. The PID parameters self-tuning process of DC speed regulating system is simulated with the help of MATLAB/Simulink. The simulation results show that the method is simple and effective. The system can obtain good dynamic and static performance when the PID parameters are applied to DC speed regulating system.

  13. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    Science.gov (United States)

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Design of Tropical Flowers Environmental Parameters Wireless Monitoring System Based on MSP430

    Directory of Open Access Journals (Sweden)

    Huang Jian-Qing

    2016-01-01

    Full Text Available Considering the importance of real-time monitoring tropical flower environment parameters, the paper designs a wireless monitoring system based on MSP430F149 for tropical flower growing parameters. The proposed system uses sensor nodes to obtain data of temperature, humidity and light intensity, sink node to collect data from sensor nodes through wireless sensor network, and monitoring center to process data downloaded from the sink node through RS232 serial port. The node hardware platform is composed of a MSP430F149 processor, AM2306 and NHZD10AI sensors used to adopt temperature, humidity and light intensity data, and an nRF905 RF chip used to receive and send data. The node software, operated in IAR Embedded Workbench, adopts C Language to do node data collection and process, wireless transmission and serial port communication. The software of monitoring center develops in VB6.0, which can provide vivid and explicit real-time monitoring platform for flower farmers.

  15. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    Directory of Open Access Journals (Sweden)

    Andrew White

    2016-12-01

    Full Text Available We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  16. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Science.gov (United States)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  17. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com [College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha (China); Yan, Guozheng; Zhu, Bingquan [820 Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  18. The effect of additional design parameters on the LQR based design of a control/structural system

    Science.gov (United States)

    Bainum, Peter M.; Xu, Jianke

    1990-01-01

    A multiobjective cost function that includes a form of the standard LQR regulator cost and its partial variation with respect to the additional design parameters is presented in connection with the design of an orbiting control/structural system. Simple models of uniform solid and tubular beams are demonstrated with two typical additional payload masses, i.e., symmetrically distributed and asymmetrically distributed, with respect to the center of the beam. By regarding the transient response of pitch angle and free-free beam deformations in the orbital plane, the optimal outer diameter of the beam and all feedback control can be determined by numerical analysis with this multicriterial approach. It is concluded that the multicriteria design approach should give better results from both the structural designer's and the control designer's standpoints.

  19. ARM Processor Based Multisensor System Design for the Measurement of Environmental Parameters

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2012-01-01

    Full Text Available This paper presents the design and development of an embedded system for the measurement of environmental parameters such as temperature, relative humidity, atmospheric pressure and the gas pollutants like CO, CO2, NH3, SO2, and NO2 present in air. The system is developed around an advanced ARM processor (LPC2378 by interfacing the relevant sensors. The data sensed by the sensors is displayed on a 2 ´ 16 LCD and also sent to a PC by using a wireless module. A graphical user interface is developed using the Visual basic software for the analysis of data. The results are discussed in detail.

  20. Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.

  1. Design Parameter Optimization of a Silicon-Based Grating Waveguide for Performance Improvement in Biochemical Sensor Application.

    Science.gov (United States)

    Hong, Yoo-Seung; Cho, Chun-Hyung; Sung, Hyuk-Kee

    2018-03-05

    We performed numerical analysis and design parameter optimization of a silicon-based grating waveguide refractive index (RI) sensor. The performance of the grating waveguide RI sensor was determined by the full-width at half-maximum (FWHM) and the shift in the resonance wavelength in the transmission spectrum. The transmission extinction, a major figure-of-merit of an RI sensor that reflects both FWHM and resonance shift performance, could be significantly improved by the proper determination of three major grating waveguide parameters: duty ratio, grating period, and etching depth. We analyzed the transmission characteristics of the grating waveguide under various design parameter conditions using a finite-difference time domain method. We achieved a transmission extinction improvement of >26 dB under a given bioenvironmental target change by the proper choice of the design procedure and parameters. This design procedure and choice of appropriate parameters would enable the widespread application of silicon-based grating waveguide in high-performance RI biochemical sensor.

  2. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  3. Design and construction the identification of nitriding plasma process parameters using personal computer based on serial communication

    International Nuclear Information System (INIS)

    Frida Iswinning Diah; Slamet Santosa

    2012-01-01

    Design and construction the identification of process parameters using personal computer based on serial communication PLC M-series has been done. The function of this device is to identify the process parameters of a system (plan), to which then be analyzed and conducted a follow-up given to the plan by the user. The main component of this device is the M-Series T100MD1616 PLC and personal computer (PC). In this device the data plan parameters obtained from the corresponding sensor outputs in the form of voltage or current. While the analog parameter data is adjusted to the ADC analog input of the PLC using a signal conditioning system. Then, as the parameter is processed by the PLC then sent to a PC via RS232 to be displayed in the form of graphs or tables and stored in the database. Software to program the database is created using Visual Basic Programming V-6. The device operation test is performed for the measurement of temperature parameter and vacuum level on the plasma nitriding machine. The results indicate that the device has functioning as an identification device parameters process of plasma nitriding machine. (author)

  4. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    Science.gov (United States)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  5. Striping Policy as a Design Parameter for MEMS-based Storage Systems

    NARCIS (Netherlands)

    Khatib, M.G.; van der Zwaag, B.J.; van Viegen, F.C.; Smit, Gerardus Johannes Maria

    2006-01-01

    Storage devices based on MEMS (Micro-Electro-Mechanical Systems) are suitable as secondary storage for future (mobile) computer systems. They are non-volatile and execute a high level of parallelism. In a MEMS-based storage system, many (i.e., 100s or 1000s) read/write heads or probes operate

  6. Feasibility of and Design Parameters for a Computer-Based Attitudinal Research Information System

    Science.gov (United States)

    1975-08-01

    Operational Problem ♦ Research Design ♦ Sampling Methodology I Collection of Primary Data I Primary Raw Data Analysis of Primary Ana - Primary...visual aids Lod Blackboard Lof Flannelgraph Log Prints, drawings Loj Pictures, posters Lol Photographs Lom Slides Lop Film, cinema Lor Radio and...appropriate public bodies. UNIVERSITY OF NORTH CAROLINA Institute for Research in Social Science Social Science Data Library (SSDL) Chapel Hill

  7. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  8. Pullout performance comparison of pedicle screws based on cement application and design parameters.

    Science.gov (United States)

    Tolunay, Tolga; Başgül, Cemile; Demir, Teyfik; Yaman, Mesut E; Arslan, Arslan K

    2015-11-01

    Pedicle screws are the main fixation devices for certain surgeries. Pedicle screw loosening is a common problem especially for osteoporotic incidents. Cannulated screws with cement augmentation are widely used for that kind of cases. Dual lead dual cored pedicle screw has already given promising pullout values without augmentation. This study concentrates on the usage of dual lead dual core with cement augmentation as an alternative to cannulated and standard pedicle screws with cement augmentation. Five groups (dual lead dual core, normal pedicle screw and cannulated pedicle screw with augmentation, normal pedicle screw, dual lead dual cored pedicle screw) were designed for this study. Healthy bovine vertebrae and synthetic polyurethane foams (grade 20) were used as embedding test medium. Test samples were prepared in accordance with surgical guidelines and ASTM F543 standard testing protocols. Pullout tests were conducted with Instron 3300 testing frame. Load versus displacement values were recorded and maximum pullout loads were stated. The dual lead dual cored pedicle screw with poly-methyl methacrylate augmentation exhibited the highest pullout values, while dual lead dual cored pedicle screw demonstrated similar pullout strength as cannulated pedicle screw and normal pedicle screw with poly-methyl methacrylate augmentation. The dual lead dual cored pedicle screw with poly-methyl methacrylate augmentation can be used for osteoporotic and/or severe osteoporotic patients according to its promising results on animal cadaver and synthetic foams. © IMechE 2015.

  9. Model parameters conditioning on regional hydrologic signatures for process-based design flood estimation in ungauged basins.

    Science.gov (United States)

    Biondi, Daniela; De Luca, Davide Luciano

    2015-04-01

    The use of rainfall-runoff models represents an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation, and constitutes an answer to the increasing need for synthetic design hydrographs (SDHs) associated to a specific return period. However, the lack of streamflow observations and the consequent high uncertainty associated with parameter estimation, usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents the application of a Bayesian procedure that, for a predefined rainfall-runoff model, allows for the assessment of posterior parameters distribution, using the limited and uncertain information available for the response of an ungauged catchment (Bulygina et al. 2009; 2011). The use of regional estimates of river flow statistics, interpreted as hydrological signatures that measure theoretically relevant system process behaviours (Gupta et al. 2008), within this framework represents a valuable option and has shown significant developments in recent literature to constrain the plausible model response and to reduce the uncertainty in ungauged basins. In this study we rely on the first three L-moments of annual streamflow maxima, for which regressions are available from previous studies (Biondi et al. 2012; Laio et al. 2011). The methodology was carried out for a catchment located in southern Italy, and used within a Monte Carlo scheme (MCs) considering both event-based and continuous simulation approaches for design flood estimation. The applied procedure offers promising perspectives to perform model calibration and uncertainty analysis in ungauged basins; moreover, in the context of design flood estimation, process-based methods coupled with MCs approach have the advantage of providing simulated floods uncertainty analysis that represents an asset in risk-based decision

  10. Online Parameter Design Method of Adaptive PSS Based on Low-order Linear Model in Multi-area Power System

    Science.gov (United States)

    Sugihara, Toshio; Yokoyama, Akihiko; Izena, Atsushi

    In this study, adaptive PSS using measurable state variables at generator buses is developed. The PSS parameters are tuned based on eigenvalue analysis for a low-order simple linear model of each generator obtained by identification. The low-order model consists of block diagram of PSS and relationship from output of PSS to input of PSS with limited variables which are identified by least squares method using ΔPe and Δω measured at each generator bus. The identification for the PSS parameter tuning is repeated. The PSS parameters are tuned every second to keep power system stable. Digital simulations for transient stability analysis are carried out for IEEJ WEST 10-machine system model. It is made clear that the stability is improved only when dominant oscillation is identified at generator bus.

  11. Uncertainty quantification and design-of-experiment in absorption-based aqueous film parameter measurements using Bayesian inference.

    Science.gov (United States)

    Pan, R; Daun, K J; Dreier, T; Schulz, C

    2017-04-10

    Diode laser-based multi-wavelength near-infrared (NIR) absorption in aqueous films is a promising diagnostic for making temporally resolved, simultaneous measurements of film thickness, temperature, and concentration of a solute. Our previous work in aqueous urea solutions aimed at determining simultaneously two of these system parameters, while the third one must be fixed or specified by additional measurements. The current work presents a simultaneous NIR absorption-based multi-parameter measurement of thickness, temperature, and solute concentration coupled with the Bayesian methodology that is used to infer probability densities for the obtained data. The Bayesian analysis is based on a temperature- and concentration-dependent spectral database generated with a Fourier transform infrared spectrometer in the range 5500-8000  cm-1 for water with variable temperature and urea concentration. The concept was first validated with measurements using a calibration cell. Probability densities in the measured parameters were quantified using a Markov chain Monte Carlo algorithm, which were used to derive credibility intervals. As a practical demonstration, the temporal variation of film thickness, urea concentration, and liquid temperature were recorded during evaporation of a liquid film deposited on a transparent heated quartz plate.

  12. An impact study of the design of exergaming parameters on body intensity from objective and gameplay-based player experience perspectives, based on balance training exergame.

    Science.gov (United States)

    Sun, Tien-Lung; Lee, Chia-Hsuan

    2013-01-01

    Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience.

  13. X-parameter Based GaN Device Modeling and its Application to a High-efficiency PA Design

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Jensen, Ole Kiel

    2014-01-01

    X-parameters are supersets of S-parameters and applicable to both linear and nonlinear system modeling. In this paper, a packaged 6 W Gallium Nitride (GaN) RF power transistor is modeled using load-dependent X-parameters by simulations. During the device characterization the load impedance is tuned...

  14. Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches

    International Nuclear Information System (INIS)

    Naemi, Sanaz; Saffar-Avval, Majid; Behboodi Kalhori, Sahand; Mansoori, Zohreh

    2013-01-01

    The thermodynamic and thermoeconomic analyses are investigated to achieve the optimum operating parameters of a dual pressure heat recovery steam generator (HRSG), coupled with a heavy duty gas turbine. In this regard, the thermodynamic objective function including the exergy waste and the exergy destruction, is defined in such a way to find the optimum pinch point, and consequently to minimize the objective function by using non-dimensional operating parameters. The results indicated that, the optimum pinch point from thermodynamic viewpoint is 2.5 °C and 2.1 °C for HRSGs with live steam at 75 bar and 90 bar respectively. Since thermodynamic analysis is not able to consider economic factors, another objective function including annualized installation cost and annual cost of irreversibilities is proposed. To find the irreversibility cost, electricity price and also fuel price are considered independently. The optimum pinch point from thermoeconomic viewpoint on basis of electricity price is 20.6 °C (75 bar) and 19.2 °C (90 bar), whereas according to the fuel price it is 25.4 °C and 23.7 °C. Finally, an extensive sensitivity analysis is performed to compare optimum pinch point for different electricity and fuel prices. -- Highlights: ► Presenting thermodynamic and thermoeconomic optimization of a heat recovery steam generator. ► Defining an objective function consists of exergy waste and exergy destruction. ► Defining an objective function including capital cost and cost of irreversibilities. ► Obtaining the optimized operating parameters of a dual pressure heat recovery boiler. ► Computing the optimum pinch point using non-dimensional operating parameters

  15. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  16. Optimization of process parameters by Taguchi robust design method for the development of nano-crystals of sirolimus using sonication based crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P.J.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat, Gujarat (India); Pati, R.K. [Quantitative Methods and Operations Management, Indian Institute of Management, Kozhikode, Kerala (India)

    2012-01-15

    Taguchi method is widely used by the engineers and researchers across the globe for optimization of process parameters in view of cost, economy and time. Ultrasound based sonication process was used for deriving the nano-crystals of sirolimus in a narrow range. Seven critical process parameters with three levels were optimized with L{sub 18} array design. Crystal size analysis with its zeta potential measured and found that the crystals derived are stable in nature. Also SEM analysis carried out to know size and shape of the crystals and found that the crystals obtained are spherical in nature. Purity of the crystals derived checked with the help of melting point, TLC and HPLC procedures. Characterization of nano-crystals made with Fourier transform infrared spectroscopy and X-ray diffraction analysis. Correlation between the zeta potential and crystal size has been established with the help of scientific and statistical methods. Detailed statistical analysis such as t -test, regression and descriptive statistics of the results has been carried out to explore further information and interactions of process parameters. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Optimal Design of Shock Tube Experiments for Parameter Inference

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.

  18. The Translation between Functional Requirements and Design Parameters for Robust Design

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Husung, Stephan; Howard, Thomas J.

    2016-01-01

    The specification of and justification for design parameter (DP) tolerances are primarily based on the acceptable variation of the functions’ performance and the functions’ sensitivity to the design parameters. However, why certain tolerances are needed is often not transparent, especially in com...... and traceability of tolerances by analyzing the translation between the DPs and their influence on the final function....

  19. 100 km CEPC parameters and lattice design

    Science.gov (United States)

    Wang, Dou; Gao, Jie; Yu, Chenghui; Zhang, Yuan; Wang, Yiwei; Su, Feng; Zhai, Jiyuan; Bai, Sha; Geng, Huiping; Bian, Tianjian; Wang, Na; Cui, Xiaohao; Zhang, Chuang

    2017-12-01

    In this paper, a consistent calculation method for the CEPC parameter choice with a crab waist scheme is reported. A crosscheck of luminosity with beam-beam simulations has been done. With this new scheme, a higher Higgs luminosity (+170%) can be reached while keeping Pre-CDR beam power or the beam power (19 MW) can be reduced while keeping the same Pre-CDR luminosity. CEPC is compatible with W and Z experiment. The luminosity for Z is at the level of 1035cm‑2s‑1. Requirement for energy acceptance of Higgs has been reduced to 1.5% by enlarging the ring to 100 km. The arc optics and the Final Focus System (FFS) with crab sextupoles have been designed, and also some primary Dynamic Aperture (DA) results were introduced.

  20. Nuclear reactors design study and parameters calculation

    International Nuclear Information System (INIS)

    Morcos, H.N.

    2002-01-01

    the nuclear design a reactor core needs to determine a set of system parameters which will lead to safe, reliable and economical reactor operation at the rated power level over the desired core lifetime. the principal tools used in this task consist of a number of models of neutron behavior in the reactor that are implemented by a multiplicity of computer programs or codes used to simulate the nuclear behavior of the reactor core. the study of the interaction of the core power distributions with the time-dependent production or depletion of nuclei in the core is known as depletion or burn up analysis the main objective of the present thesis is to study the fuel depletion analysis under different reactor operating regimes and their influence on the build up of actinides and fission products (F P). therefore, one can estimate the optimum reactor-operating regime at which the accumulation of certain actinide isotope can reach maximum

  1. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  2. Sampling designs dependent on sample parameters of auxiliary variables

    CERN Document Server

    Wywiał, Janusz L

    2015-01-01

    The book offers a valuable resource for students and statisticians whose work involves survey sampling. An estimation of the population parameters in finite and fixed populations assisted by auxiliary variables is considered. New sampling designs dependent on moments or quantiles of auxiliary variables are presented on the background of the classical methods. Accuracies of the estimators based on original sampling design are compared with classical estimation procedures. Specific conditional sampling designs are applied to problems of small area estimation as well as to estimation of quantiles of variables under study. .

  3. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    Science.gov (United States)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

  4. Structural design parameters of current WSDOT mixtures.

    Science.gov (United States)

    2013-06-01

    The AASHTO LRFD, as well as other design manuals, has specifications that estimate the structural performance of a concrete mixture with regard to compressive strength, tensile strength, and deformation-related properties such as the modulus of elast...

  5. Participatory design based research

    DEFF Research Database (Denmark)

    Dau, Susanne; Falk, Lars; Jensen, Louise Bach

    This poster reveal how participatory design based research by the use of a CoED inspired creative process can be used for designing solutions to problems regarding students study activities outside campus.......This poster reveal how participatory design based research by the use of a CoED inspired creative process can be used for designing solutions to problems regarding students study activities outside campus....

  6. Procedures for establishing geotechnical design parameters from two data sources.

    Science.gov (United States)

    2013-07-01

    The Missouri Department of Transportation (MoDOT) recently adopted new provisions for geotechnical design that require that : the mean value and the coefficient of variation (COV) for the mean value of design parameters be established in order to : d...

  7. Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source

    International Nuclear Information System (INIS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Kasesaz, Yaser

    2012-01-01

    Highlights: ► The possibility of using natural uranium as a neutron multiplier for D–T neutron generator is examined. ► To optimize output neutron beam, a moderator/filter/reflector arrangement was designed. ► The MCNP4C code has been used for BSA optimization and other simulations. ► The results show that using this system the BNCT in-air recommended parameters are met. - Abstract: Extensive research has recently been carried out for the development of high-energy D–T neutron generators as neutron sources for BNCT. The energy of these high-energy neutrons must be reduced by designing a Beam Shaping Assembly (BSA) to make them usable for BNCT. However, the neutron flux decreases drastically as neutrons pass through different materials of BSA. Therefore, it is very important to find ways to treat the neutrons economically. In this paper the possibility of using natural uranium as a neutron multiplier is investigated in order to increase the number of neutrons emitted from D–T neutron generator. According to the simulations and performed calculations, a sphere containing natural uranium as neutron multiplier was used to increase the number of neutrons generated by the D–T neutron generator. The energy of fast neutrons that are generated by D–T fusion reaction and amplified by neutron multiplier system is decreased using proper materials as moderators and fast neutron filters in BSA. The gamma rays which are generated as a result of neutron interaction with moderators are removed from neutron spectrum using bismuth as the gamma filter. Also, a thermal neutron absorber omits undesired low-energy neutrons which lead to a high radiation dose for the skin and soft tissues. The results show that passing neutrons through such a BSA causes the establishment of free beam parameters yet the reduction of the output beam intensity is unavoidable. The neutron spectrum related to our BSA has a proper epithermal flux and the fast and thermal neutron fluxes are

  8. Neural Extensions to Robust Parameter Design

    Science.gov (United States)

    2010-09-01

    different ANNs to classify a winner in an NBA basketball game based simply on box score data. The results obtained from these authors showed remarkable...27-29, 2009. Loeffelholz, B.J., Bednar, E., & Bauer, K.W. (2009). “Predicting NBA games using neural networks,” Journal of Quantitative Analysis

  9. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  10. Calculation of electromagnetic parameter based on interpolation algorithm

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan

    2015-01-01

    Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment

  11. The Analysis of Design Parameters of Thread Milling Cutters

    Directory of Open Access Journals (Sweden)

    O. V. Malkov

    2015-01-01

    Full Text Available Now the mechanical engineering industry produces a great variety of part mix having a male and female thread. In this regard a relevant task is to choose the most effective way of threading. Introduction of multi-coordinate CNC machines considerably extended the use of thread mills, instead of taps, roll burnishers, dies and thread turning tools.The article reviews manufacturer’s production programs of thread mills (Carmex, Emuge, Jel, Sandvik, Vargus to show that, presently, there is a significant diversity of thread mill designs for processing. The analysis allowed to reveal the main nomenclature and standard sizes of thread mills, including combined tools on their base, as well as to reveal classification signs and to develop classification of thread mills. Classification comprises also combined tools based on design of thread mill, which allow us to reduce the nomenclature of the tools used in threading.The paper considers working schemes of the main types of thread mills and areas of their rational application.To analyse design data of thread mills two types of tools have been selected, namely the integral trailer edge thread mills with the spiral chip flutes and drill thread mills made from hard alloy. The analysis of design data was made in the closed "system of the tool", i.e. in advance assuming that there is a connection between diameter of the tapping part of the tool and diameter of the cut thread. The parameter analysis of the chosen designs allowed us to develop the sketches of tools with the specified parameters to be calculated.The paper presents graphic dependences of the total length, length of a working part, diameter of a tail part and number of tool teeth on the diameter of the working part of the tool. Approximation of the specified parameters is carried out and mathematical dependences, which can be further used to calculate and choose the starting values of design data in designing the abovementioned constructions of

  12. Multiobjective insensitive design of airplane control systems with uncertain parameters

    Science.gov (United States)

    Schy, A. A.; Giesy, D. P.

    1981-01-01

    A multiobjective computer-aided design algorithm has been developed which minimizes the sensitivity of the design objectives to uncertainties in system parameters. The more important uncertain parameters are described by a gaussian random vector with known covariance matrix, and a vector sensitivity objective function is defined as the probabilities that the design objectives will violate specified requirements constraints. Control system parameters are found which minimize the sensitivity vector in a Pareto-optimal sense, using constrained minimization algorithms. Example results are shown for lateral stability augmentation system (SAS) design for three Shuttle flight conditions.

  13. Evaluation of design parameters of eight dental implant designs: A ...

    African Journals Online (AJOL)

    Aim: Implants could be considered predictable tools for replacing missing teeth or teeth that are irrational to treat. Implant macrodesign includes thread, body shape and thread design. Implant threads should be designed to maximize the delivery of optimal favorable stresses. The aim of this finite element model study was to ...

  14. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    Science.gov (United States)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  15. An Application of Taguchi Parameter Design in Predicting and Optimizing the Machining Parameters for Face Milling Operation

    Directory of Open Access Journals (Sweden)

    Krushnaraj Bodana

    2016-08-01

    Full Text Available The quality of surface finish is always an application based and higher the surface finish higher is the manufacturing cost. This paper exhibits an application of the Taguchi parameter design approach in selecting the major influencing factors on the study of face milling operation of an automobile chassis component and optimization of the same parameters for achieving required surface finish and cycle time in a CNC face milling operation. The Taguchi’s parameter design approach is an efficient trial strategy by which different parameters that are effecting the process were analyzed. An orthogonal L9 array was utilized and experiments were carried out to optimize machining parameters based on the signal to noise ratio. At last, validation tests was also conducted to verify process capability.

  16. Design-Based Research

    DEFF Research Database (Denmark)

    Gynther, Karsten; Christensen, Ove; Petersen, Trine Brun

    2012-01-01

    I denne artikel introduceres Design Based Research for første gang på dansk i et videnskabeligt tidsskrift. Artiklen præsenterer de grundlæggende antagelser, som ligger til grund for Design Based Research-traditionen, og artiklen diskuterer de principper, som ligger til grund for gennemførelse af...... et DBR-forskningsprojekt. Med udgangspunkt i forsknings- og udviklingsprojektet ELYK: E-læring, Yderområder og Klyngedannelse, præsenteres den innovationsmodel, som projektet har udviklet med udgangspunkt i Design Based Research traditionen. ELYKs DBR innovationsmodel har vist sig effektiv i forhold...

  17. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  18. Knitted strain sensors: impact of design parameters on sensing properties.

    Science.gov (United States)

    Atalay, Ozgur; Kennon, William Richard

    2014-03-07

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs.

  19. Permanently split capacitor motor-study of the design parameters

    Science.gov (United States)

    Sarac, Vasilija; Stefanov, Goce

    2017-09-01

    Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.

  20. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2014-03-01

    Full Text Available This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs.

  1. Intelligent design of mechanical parameters of the joint in vehicle body concept design model

    Science.gov (United States)

    Hou, Wen-bin; Zhang, Hong-zhe; Hou, Da-jun; Hu, Ping

    2013-05-01

    In order to estimate the mechanical properties of the overall structure of the body accurately and quickly in conceptual design phase of the body, the beam and shell mixing elements was used to build simplified finite element model of the body. Through the BP neural network algorithm, the parameters of the mechanical property of joints element which had more affection on calculation accuracy were calculated and the joint finite element model based on the parameters was also constructed. The case shown that the method can improve the accuracy of the vehicle simulation results, while not too many design details were needed, which was fit to the demand in the vehicle body conceptual design phase.

  2. On the symmetric block design with parameters (153, 57, 21)

    OpenAIRE

    Rexhep Gjergji

    2009-01-01

    In this paper it is proved that:A) Up to isomorphism and duality there are exactly two possible orbital structures for a putative symmetric block design with parameters (153, 57, 21) constructed using the Frobenius group F_{17·16}B) Up to isomorphism and duality there are exactly 16 possible orbital structures for a putative symmetric block design with parameters (153, 57, 21) constructed using the collineation group G.

  3. On the symmetric block design with parameters (153, 57, 21

    Directory of Open Access Journals (Sweden)

    Rexhep Gjergji

    2009-05-01

    Full Text Available In this paper it is proved that:A Up to isomorphism and duality there are exactly two possible orbital structures for a putative symmetric block design with parameters (153, 57, 21 constructed using the Frobenius group F_{17·16}B Up to isomorphism and duality there are exactly 16 possible orbital structures for a putative symmetric block design with parameters (153, 57, 21 constructed using the collineation group G.

  4. Evaluation of design parameters in soil-structure systems through artificial intelligence

    International Nuclear Information System (INIS)

    Cremonini, M.G.; Vardanega, C.; Parvis, E.

    1989-01-01

    This study refers to development of an artificial intelligence tool to evaluate design parameters for a soil-structure system as the foundations of Class 1 buildings of a nuclear power plant (NPP). This is based on an expert analysis of a large amount of information, collected during a comprehensive program of site investigations and laboratory tests and stored on a computer data-bank. The methodology comprises the following steps: organization of the available information on the site characteristics in a data-base; implementation and extensive use of a specific knowledge based expert system (KBES) devoted to both the analysis, interpretation and check of the information in the data-base, and to the evaluation of the design parameters; determination of effective access criteria to the data-base, for purposes of reordering the information and extracting design properties from a large number of experimental data; development of design profiles for both index properties and strength/strain parameters; and final evaluation of the design parameters. Results are obtained in the form of: local and general site stratigraphy; summarized soil index properties, detailing the site setting; static and dynamic stress-strain parameters, G/G max behavior and damping factors; condolidation parameters and OCR ratio; spatial distribution of parameters on site area; identification of specific local conditions; and cross correlation of parameters, thus covering the whole range of design parameters for NPP soil-structure systems

  5. Liaison based assembly design

    Energy Technology Data Exchange (ETDEWEB)

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  6. Design bases - Concrete structures

    International Nuclear Information System (INIS)

    Diaz-Llanos Ros, M.

    1993-01-01

    The most suitable title for Section 2 is 'Design Bases', which covers not only calculation but also the following areas: - Structural design concepts. - Project criteria. - Material specifications. These concepts are developed in more detail in the following sections. The numbering in this document is neither complete nor hierarchical since, for easier cross referencing, it corresponds to the paragraphs of Eurocode 2 Part 1 (hereinafter 'EUR-2') which are commented on. (author)

  7. Problem Based Game Design

    DEFF Research Database (Denmark)

    Reng, Lars; Schoenau-Fog, Henrik

    2011-01-01

    At Aalborg University’s department of Medialogy, we are utilizing the Problem Based Learning method to encourage students to solve game design problems by pushing the boundaries and designing innovative games. This paper is concerned with describing this method, how students employ it in various...... projects and how they learn to analyse, design, and develop for innovation by using it. We will present various cases to exemplify the approach and focus on how the method engages students and aspires for innovation in digital entertainment and games....

  8. Cold-Crucible Design Parameters for Next Generation HLW Melters

    International Nuclear Information System (INIS)

    Gombert, D.; Richardson, J.; Aloy, A.; Day, D.

    2002-01-01

    The cold-crucible induction melter (CCIM) design eliminates many materials and operating constraints inherent in joule-heated melter (JHM) technology, which is the standard for vitrification of high-activity wastes worldwide. The cold-crucible design is smaller, less expensive, and generates much less waste for ultimate disposal. It should also allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the DOE reprocessing sites are to be vitrified. A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddycurrents that produce heat and mixing. A critical difference is that inductance coupling transfers energy through a nonconductive solid layer of slag coating the metal container inside the coil, whereas the jouleheated design relies on passing current through conductive molten glass in direct contact with the metal electrodes and ceramic refractories. The frozen slag in the CCIM design protects the containment and eliminates the need for refractory, while the corrosive molten glass can be the limiting factor in the JH melter design. The CCIM design also eliminates the need for electrodes that typically limit operating temperature to below 1200 degrees C. While significant marketing claims have been made by French and Russian technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the US to support testing. A currently funded project at the Idaho National Engineering

  9. Parameters and variables appearing in repository design models

    International Nuclear Information System (INIS)

    Curtis, R.H.; Wart, R.J.

    1983-12-01

    This report defines the parameters and variables appearing in repository design models and presents typical values and ranges of values of each. Areas covered by this report include thermal, geomechanical, and coupled stress and flow analyses in rock. Particular emphasis is given to conductivity, radiation, and convection parameters for thermal analysis and elastic constants, failure criteria, creep laws, and joint properties for geomechanical analysis. The data in this report were compiled to help guide the selection of values of parameters and variables to be used in code benchmarking. 102 references, 33 figures, 51 tables

  10. A Framework to Determine New System Requirements Under Design Parameter and Demand Uncertainties

    Science.gov (United States)

    2015-04-30

    capacity for kth trip of aircraft p from base i to base j = Parasite drag coefficient D , = demand from base i to base j in number of pallets...Montgomery, 2008). The four uncertain design parameters chosen for this study are empty weight (WE), specific fuel consumption (SFC), parasite drag

  11. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  12. Optimization Design of Multi-Parameters in Rail Launcher System

    Directory of Open Access Journals (Sweden)

    Yujiao Zhang

    2014-05-01

    Full Text Available Today the energy storage systems are still encumbering, therefore it is useful to think about the optimization of a railgun system in order to achieve the best performance with the lowest energy input. In this paper, an optimal design method considering 5 parameters is proposed to improve the energy conversion efficiency of a simple railgun. In order to avoid costly trials, the field- circuit method is employed to analyze the operations of different structural railguns with different parameters respectively. And the orthogonal test approach is used to guide the simulation for choosing the better parameter combinations, as well reduce the calculation cost. The research shows that the proposed method gives a better result in the energy efficiency of the system. To improve the energy conversion efficiency of electromagnetic rail launchers, the selection of more parameters must be considered in the design stage, such as the width, height and length of rail, the distance between rail pair, and pulse forming inductance. However, the relationship between these parameters and energy conversion efficiency cannot be directly described by one mathematical expression. So optimization methods must be applied to conduct design. In this paper, a rail launcher with five parameters was optimized by using orthogonal test method. According to the arrangement of orthogonal table, the better parameters’ combination can be obtained through less calculation. Under the condition of different parameters’ value, field and circuit simulation analysis were made. The results show that the energy conversion efficiency of the system is increased by 71.9 % after parameters optimization.

  13. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    Science.gov (United States)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  14. Safety parameter display system (SPDS) for Russian-designed NPPs

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  15. Finite element analysis on badminton racket design parameters

    CERN Document Server

    Nasruddin, Fakhrizal Azmy; Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Omar, Abdul Hafidz; Öchsner, Andreas

    2016-01-01

    This work identifies the characteristics of racket design parameters that influence racket performance.  It presents the finite element analysis of several designs of badminton rackets and compares them to experimental results for validation. Designing a racket requires a comprehensive understanding of racket performance characteristics. Essentially, racket performance is related to the sweet spot, which is the spot on the racket head that produces the most power and control when it strikes a shuttlecock. Determining a coefficient of restitution can help to identify the sweet spot on a racket. By analyzing several head shape designs, it becomes apparent that isometric head shape rackets produce better coefficients of restitution compared to oval and round ones. It is recommended that the racket design consist of low string tension, stiffer racket shafts and bigger head size in order to produce higher shuttlecock speed.

  16. Design parameters for a robust superhydrophobic electrospun nonwoven mat.

    Science.gov (United States)

    Rawal, Amit

    2012-02-14

    Electrospun nonwoven mats exhibiting extreme hydrophobicity have recently attracted much attention for their use in a wide range of applications. These materials are highly heterogeneous and irregular in structure, and accordingly, the design parameters of such materials need to be carefully chosen for obtaining higher apparent contact angles along with the robust composite solid-liquid-vapor interface. Here, we present two dimensionless design parameters, namely, the spacing ratio and pressure difference across the liquid-vapor interface, for enhancing the stability of the Cassie regime. These design parameters are essentially dependent upon the structural characteristics of the electrospun mat and equilibrium contact angle of the liquid. Interestingly, the stability of the composite interface is a trade-off between these dimensionless parameters. Moreover, the pressure difference across the interface can significantly increase by reducing the fiber diameter to nanoscale. The stability of the Cassie state in an electrospun nonwoven mat consisting of lower fiber volume fractions at the nanostructural scale can restore superhydrophobicity even after the impact of a rainfall.

  17. PC based 8-parameter data acquisition system

    International Nuclear Information System (INIS)

    Gupta, J.D.; Naik, K.V.; Jain, S.K.; Pathak, R.V.; Suman, B.

    1989-01-01

    Multiparameter data acquisition (MPA) systems which analyse nuclear events with respect to more than one property of the event are essential tools for the study of some complex nuclear phenomena requiring analysis of time coincident spectra. For better throughput and accuracy each parameter is digitized by its own ADC. A stand alone low cost IBM PC based 8-parameter data acquisition system developed by the authors makes use of Address Recording technique for acquiring data from eight 12 bit ADC's in the PC Memory. Two memory buffers in the PC memory are used in ping-pong fashion so that data acquisition in one bank and dumping of data onto PC disk from the other bank can proceed simultaneously. Data is acquired in the PC memory through DMA mode for realising high throughput and hardware interrupt is used for switching banks for data acquisition. A comprehensive software package developed in Turbo-Pascal offers a set of menu-driven interactive commands to the user for setting-up system parameters and control of the system. The system is to be used with pelletron accelerator. (author). 5 figs

  18. PACS Data Base Design

    Science.gov (United States)

    Zeleznik, Michael P.; Maguire, G. Q.; Baxter, B.

    1983-05-01

    A PACS database must manage three different types of data; structured data in the form of patient/exam identification information, and unstructured data in the form of text and images. Queries based on the content of text documents as well as the content of images must be suported, in addition to those based on standard, well structured keys such as name, age and sex. We model the PACS database as three logically distinct databases, each supporting one of these data types, with mapping structures relating all three. Several design issues which have a bearing, both on these models and on physical implemtations, are discussed. Because image database systems are the least understood at this time, most of the paper focusses on the them. We briefly discuss current trends in structured and text databases, without discussing commercial systems, and then present some current methods of implementing image database systems.

  19. Defining New Parameters for Green Engineering Design of Treatment Reactors

    Directory of Open Access Journals (Sweden)

    Susana Boeykens

    2016-06-01

    Full Text Available This study proposes a green way to design Plug Flow Reactors (PFR that use biodegradable polymer solutions, capable of contaminant retaining, for industrial wastewater treatment. Usually, to the design of a PFR, the reaction rate is determined by tests on a Continuous Stirred-Tank Reactor (CSTR, these generate toxic effluents and also increase the cost of the design. In this work, empirical expressions (called “slip functions”, in terms of the average concentration of the contaminant, were developed through the study of the transport behaviour of CrVI into solutions of xanthan gum. “In situ” XRµF was selected as a no-invasive micro-technique to determine local concentrations. Slip functions were used with laboratory PFR experiments planned in similar conditions, to obtain useful dimensionless parameters for the industrial design

  20. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  1. Robust parameter design for automatically controlled systems and nanostructure synthesis

    Science.gov (United States)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor

  2. Basic design parameters for the new PRR-1 stack

    International Nuclear Information System (INIS)

    Leopando, L.S.

    1994-01-01

    This report presents the results of work done to establish the basic design parameters of the new stack of the Philippine Research Reactor-1 (PRR-1). The work was undertaken to assure that the radioactive air emissions of the PRR-1, under both accident and normal operating conditions, will comply with modern safety practices. The work was done during June and July 1994. (author). 6 refs., 13 figs., 13 tabs

  3. Unraveling the parameters of the value created by design: Toward a 'value added by design' framework

    OpenAIRE

    Vijfeyken, Elena; Cools, Martine; Nauwelaerts, Ysabel

    2011-01-01

    This paper studies the parameters that capture the value added by design. Starting from an extensive review of the existing literature, we carried out multi-case research, in order to develop an overall model for unraveling the added value of design in an organizational context. Current literature mainly focuses on financial value and is thereby unclear about other quantitative as well as qualitative aspects of value to which design contributes. We find that added value of design is mainly vi...

  4. Interface-Based Design

    National Research Council Canada - National Science Library

    de Alfaro, Luca; Henzinger, Thomas A

    2004-01-01

    .... Interface automata support incremental design and independent implementability. Incremental design means that the compatibility checking of interfaces can proceed for partial system descriptions, without knowing the interfaces of all components...

  5. Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models.

    Science.gov (United States)

    Duffull, Stephen B; Hooker, Andrew C

    2017-12-01

    Optimal designs for nonlinear models are dependent on the choice of parameter values. Various methods have been proposed to provide designs that are robust to uncertainty in the prior choice of parameter values. These methods are generally based on estimating the expectation of the determinant (or a transformation of the determinant) of the information matrix over the prior distribution of the parameter values. For high dimensional models this can be computationally challenging. For nonlinear mixed-effects models the question arises as to the importance of accounting for uncertainty in the prior value of the variances of the random effects parameters. In this work we explore the influence of the variance of the random effects parameters on the optimal design. We find that the method for approximating the expectation and variance of the likelihood is of potential importance for considering the influence of random effects. The most common approximation to the likelihood, based on a first-order Taylor series approximation, yields designs that are relatively insensitive to the prior value of the variance of the random effects parameters and under these conditions it appears to be sufficient to consider uncertainty on the fixed-effects parameters only.

  6. Design based entrepreneurship

    DEFF Research Database (Denmark)

    Nielsen, Louise Møller; Wikström, Anders; Tollestrup, Christian

    2013-01-01

    studies on design entrepreneurs, and those who has been made, focus on design entrepreneurs’ lack business competences in administration, marketing and operation, as well as their lack of skills and priority, when it comes to the development of their businesses. This study will nuance this picture...... and doing’. We review three cases with novice design entrepreneurs, where we have been able to identify examples of the novice design entrepreneurs using ‘effectual logic’. The examples are described and analysed using Sarasvathys 5 principles, showing that 3 of 5 principles are found in the cases....

  7. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  8. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2013-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  9. Effects of Microneedle Design Parameters on Hydraulic Resistance.

    Science.gov (United States)

    Hood, R Lyle; Kosoglu, Mehmet A; Parker, Matthew; Rylander, Christopher G

    2011-09-01

    Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 microns in diameter. This manuscript focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69-621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (~150 micron bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille's Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1-2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was >30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery.

  10. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    Science.gov (United States)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  11. Evidence-based playground design

    DEFF Research Database (Denmark)

    Refshauge, Anne Dahl; Stigsdotter, Ulrika K.; Lamm, Bettina

    2015-01-01

    opportunities for play, nature exploration and sensory stimulation. As it is increasingly expected that designers base their decisions on research evidence, there is a need to develop approaches to facilitate this, which also applies to playground design. The design of PlayLab Cph was based on relevant evidence...

  12. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... the catalytic surface through the annulus between the tubes, and the gas is sampled close to the surface by the capillary. The influence of various design parameters on the lateral resolution and sensitivity of the measurements is investigated. It is found that the cuter diameter of the annulus sets the upper......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved....

  13. Ditching Investigations of Dynamic Models and Effects of Design Parameters on Ditching Characteristics

    Science.gov (United States)

    Fisher, Lloyd J; Hoffman, Edward L

    1958-01-01

    Data from ditching investigations conducted at the Langley Aeronautical Laboratory with dynamic scale models of various airplanes are presented in the form of tables. The effects of design parameters on the ditching characteristics of airplanes, based on scale-model investigations and on reports of full-scale ditchings, are discussed. Various ditching aids are also discussed as a means of improving ditching behavior.

  14. Activity-based design

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh

    2006-01-01

      In many types of activities communicative and material activities are so intertwined that the one cannot be understood without taking the other into account. This is true of maritime and hospital work that are used as examples in the paper. The spatial context of the activity is also important:...... and automatic machinery can replace one another in an activity. It also gives an example of how to use the framework for design....

  15. Maximum likelihood estimation of the broken power law spectral parameters with detector design applications

    International Nuclear Information System (INIS)

    Howell, L.W.

    2002-01-01

    The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets

  16. Maximum Likelihood Estimation of the Broken Power Law Spectral Parameters with Detector Design Applications

    Science.gov (United States)

    Howell, Leonard W.

    2002-01-01

    The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets.

  17. Invariant-Based Inverse Engineering of Crane Control Parameters

    Science.gov (United States)

    González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.

    2017-11-01

    By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.

  18. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  19. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    synergistically enhanced thermoelectric properties. This occurs through a significant reduction of thermal conductivity, without the deterioration of thermopower and electrical conductivity. In addition, we introduce the concept of spin entropy in wide band gap semiconductor nanocrystals, which acts to fully disentangle the otherwise interconnected quantities for synergistically optimized thermoelectric performance. Finally, we discuss a new concept we developed that is based on an ultrathin-nanosheet composite that we fabricated from ultrathin nanosheets of atomic thickness. These retain the original strong two-dimensional electron gas (2DEG) and allow for decoupled optimization of the three thermoelectric parameters, which improves thermoelectric performance.

  20. Design of Structural Parameters for Centrifugal Elevator Overspeed Governors

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-01-01

    Full Text Available As an important part of overspeed and fail-safe protection for elevators, the centrifugal elevator overspeed governor is a device for limiting overspeed of elevator cars. This paper researches on the vibration of the centrifugal block, which plays a key role in the performance of this overspeed governor. By performing dynamics analysis on the centrifugal block, the differential equation on the vibration of the centrifugal block is established. Based on this, the paper performs simulation analysis on the influence of systematic parameters such as the speed of the overspeed governor sheave, the mass of centrifugal block, the turning radius of the centrifugal block, the position where the spring acts, and the stiffness of the centrifugal block spring, on the vibration of the centrifugal block, and finds out their specific influence relationship.

  1. Web Based Customized Design

    OpenAIRE

    Moi, Morten Benestad

    2013-01-01

    This thesis studies the methods needed to create a web based application to remotely customize a CAD model. This includes customizing a CAD model by using a graphical user interface to be able to remotely control the inputs to- and outputs from the model in NX, and to get the result sent back to the user. Using CAD systems such as NX requires intensive training, is often a slow process and gives a lot of room for errors. An intuitive, simple user interface will eliminate the need for CAD trai...

  2. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  3. Image Retrieval Based on Fractal Dictionary Parameters

    Directory of Open Access Journals (Sweden)

    Yuanyuan Sun

    2013-01-01

    Full Text Available Content-based image retrieval is a branch of computer vision. It is important for efficient management of a visual database. In most cases, image retrieval is based on image compression. In this paper, we use a fractal dictionary to encode images. Based on this technique, we propose a set of statistical indices for efficient image retrieval. Experimental results on a database of 416 texture images indicate that the proposed method provides a competitive retrieval rate, compared to the existing methods.

  4. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  5. 10 CFR 63.132 - Confirmation of geotechnical and design parameters.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Confirmation of geotechnical and design parameters. 63.132... Confirmation of geotechnical and design parameters. (a) During repository construction and operation, a... that geotechnical and design parameters are confirmed and to ensure that appropriate action is taken to...

  6. Optimization-Based Layout Design

    OpenAIRE

    Abdel-Malek, K.; Mi, Z.; Yang, J.; Nebel, K.

    2005-01-01

    The layout problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, designers concerned with the placement of levers, knobs, controls, etc. in the reachable workspace of a human, and also to users of digital human modeling code, where digital prototyping has become a valuable tool. This paper proposes a hybrid optimization method (gradient-based optimization and simulated annealing) to obtain the layout design. We implemented the...

  7. Specification of indoor climate design parameters at the assessment of moisture protective properties of enclosing structures

    Directory of Open Access Journals (Sweden)

    Kornienko Sergey Valer’evich

    2016-11-01

    Full Text Available Due to wide implementation of enveloping structures with increased heat-insulation properties in modern construction here appeared a necessity to assess their moisture conditions. Assessment of moisture conditions of enveloping structures is carried out according to maximum allowable moisture state basing on determining the surface of maximum damping. In relation to it the necessity of additional vapour barrier is checked using moisture balance equation. Though the change of indoor climate parameters in premises is not taken into account in moisture balance equations defined for different seasons. The author improves the method of calculating moisture protective parameters of enclosing structures according to the maximum allowable damping state for a year and a period of moisture accumulation. It is shown in this article that accounting of temperature and relative humidity change of inside air allows specifying calculated parameters of indoor climate in residential and office rooms in assessment of moisture protective properties of enclosing structures for the case of an effective enclosing structure with a façade heat-insulation composite system. Coordinates of the maximum moistened surface of the envelope depends on indoor climate design parameters. It is concluded that the increase of requirements for moisture protection of enclosing structures when using design values of temperature and relative humidity of internal air according to the Russian regulation (SP 50.13330.2012 is not always reasonable. Accounting of changes of indoor climate parameters allows more precise assessment of moisture protective properties of enclosing structures during their design.

  8. Contribution to the design of flexible manufacturing systems: Modeling, simulation, and evaluation of parameters

    Science.gov (United States)

    Deloule, Francoise

    A machine shop design based on the Merise method is derived. The parameters of the physical system are identified and evaluated. Modeling and simulation are used as complementary methods to solve the problems created by the simultaneous variation of a large number of parameters. The specifications of machines and other elements implementing the flexible shop are obtained. A structured process to optimize the utilization of modeling and simulation is presented. It is shown that for given criteria the solution is close to the optimum.

  9. Parametric estimation of R&M parameters during the conceptual design of space vehicles

    Science.gov (United States)

    Ebeling, Charles E.

    1992-01-01

    Reliability and maintainability parameters of proposed space vehicles are estimated based on a comparability analysis of similar aircraft subsystems. Using multiple regression techniques, parametric equations are developed for each subsystem to predict mean flying hours between failure as a function of vehicle design and performance specifications. These estimates are then adjusted to account for reliability growth, environmental differences, and new technologies. Overall vehicle mission reliability may then be computed from subsystem reliability estimates.

  10. Design of gob-side packing parameters for gateways maintained along the goaf

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Sun, H. [China University of Mining and Technology (China). Beijing Graduate School

    1997-04-01

    Based on analysis of roof collapsing characteristics in gateways maintained along the goaf, the concept and method for designing gateway side packing parameters is described. Examples of maintaining along the goaf a gateway by packing with quick-setting materials with high water content are given. It is proved that the technical and economic benefits of this method are remarkable. The method is of important significance to the practice. 2 refs., 2 figs., 2 tabs.

  11. Radiometer Design Analysis Based Upon Measurement Uncertainty

    Science.gov (United States)

    Racette, Paul E.; Lang, Roger H.

    2004-01-01

    This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

  12. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    Science.gov (United States)

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  13. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Baofeng Lu

    2015-06-01

    Full Text Available Two different coarse alignment algorithms for Fiber Optic Gyro (FOG Inertial Navigation System (INS based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  14. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  15. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  16. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N.; Godshall, N.A.

    1987-01-01

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.

  17. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    Science.gov (United States)

    Doddapaneni, N.; Godshall, N. A.

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.

  18. Parameters required to maximize a thermoset hydro-generator stator winding life; Part 1: Design, manufacture, installation

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, J.F.; Goodeve, T.E.; Sedding, H.

    1994-09-01

    This paper and companion paper, Part 2 describe the parameters required for a thermoset hydro-generator stator winding to achieve a service life of 50 years. Such parameters covering design, manufacture, installation, on-line monitoring and maintenance functions have been found to be relevant based on 36 years of design and operation experience. The database includes North American, European and Far Eastern hydro generators up to 20.5 kV-500 MVA. Parameters covered can be simply stated as Design, Manufacture and Installation: the DIM rule. A companion paper, Part 2 covers Monitoring and Maintenance: which leads to the DIM rule.

  19. Optimization-Based Layout Design

    Directory of Open Access Journals (Sweden)

    K. Abdel-Malek

    2005-01-01

    Full Text Available The layout problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, designers concerned with the placement of levers, knobs, controls, etc. in the reachable workspace of a human, and also to users of digital human modeling code, where digital prototyping has become a valuable tool. This paper proposes a hybrid optimization method (gradient-based optimization and simulated annealing to obtain the layout design. We implemented the proposed algorithm for a project at Oral-B Laboratories, where a manufacturing cell involves an operator who handles three objects, some with the left hand, others with the right hand.

  20. Experimental and numerical analysis for optimal design parameters ...

    Indian Academy of Sciences (India)

    In this context, response surface methodology is employed by aid of design of experiment approach. Later, the response surface curves are studied using ANOVA. Finally, the relations established are confirmed experimentally to validate the models. The relations thus established are beneficent in furtherance of designing ...

  1. Optimal Design of Material and Process Parameters in Powder Injection Molding

    Science.gov (United States)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  2. Design parameters for a small storage ring optimized as an x-ray lithography source

    International Nuclear Information System (INIS)

    Grobman, W.D.

    1983-01-01

    This paper examines the design parameters for a ''compact storage ring'' which is matched well to x-ray lithographic requirements, but is as small as possible. This calculation uses a model of a lithographic system which obtains its input parameters from a technology of mask, resist and beam line based on the IBM program at the Brookhaven National Laboratory vacuum ultraviolet electron storage ring. Based on this lithographic system, we model exposure throughput as a function of storage ring parameters to understand which storage ring designs provide adequate but not excessive soft x-ray flux in the lithographically important region. Our scan of storage ring sources will cover a wide range of energies and magnetic fields, to permit consideration of superconducting as well as more standard strong- or weak-focusing designs. Furthermore, we will show that the results of the calculations presented here can be scaled in a simple way to cover a wide range of x-ray lithography system assumptions

  3. Experience in the review of utility control room design review and safety parameter display system programs

    International Nuclear Information System (INIS)

    Moore, V.A.

    1985-01-01

    The Detailed Control Room Design Review (DCRDR) and the Safety Parameter Display System (SPDS) had their origins in the studies and investigations conducted as the result of the TMI-2 accident. The President's Commission (Kemeny Commission) critized NRC for not examining the man-machine interface, over-emphasizing equipment, ignoring human beings, and tolerating outdated technology in control rooms. The Commission's Special Inquiry Group (Rogovin Report) recommended greater application of human factors engineering including better instrumentation displays and improved control room design. The NRC Lessons Learned Task Force concluded that licensees should review and improve control rooms using NRC Human engineering guidelines, and install safety parameter display systems (then called the safety staff vector). The TMI Action Plan Item I.D.1 and I.D.2 were based on these recommendations

  4. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  5. Reusing Design Knowledge Based on Design Cases and Knowledge Map

    Science.gov (United States)

    Yang, Cheng; Liu, Zheng; Wang, Haobai; Shen, Jiaoqi

    2013-01-01

    Design knowledge was reused for innovative design work to support designers with product design knowledge and help designers who lack rich experiences to improve their design capacity and efficiency. First, based on the ontological model of product design knowledge constructed by taxonomy, implicit and explicit knowledge was extracted from some…

  6. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  7. Contact Stress Design Parameters for Titanium Bearings, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Air-Lock's Phase I effort tested the effects of ball induced contact stresses on Titanium bearing races. The contact stress design limit that would achieve a...

  8. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    Science.gov (United States)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  9. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  10. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  11. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    HOFMAYER,C.H.

    1999-03-29

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  12. Displacement Based Seismic Design Criteria

    International Nuclear Information System (INIS)

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  13. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  14. An internet-based telemonitoring system of multiphysiological parameters.

    Science.gov (United States)

    Shuicai, Wu; Haomin, Li; Fangfang, Du; Yanping, Bai; Song, Zhang

    2007-08-01

    The purpose of this research was to design and realize a real-time tele-monitoring system with multiphysiological parameters using the Internet. Both the Client/Server (C/S) mode and Peer-to-Peer (P2P) mode were used in the system's network communication. The C/S mode is used to upload, retrieve, and download physiological data. The P2P mode provides realtime tele-monitoring and video chatting between doctors and patients. Experiment results show that P2P technology could efficiently improve the transmission speed of the physiological parameters. This study demonstrates an effective method of remote monitoring of physiological parameters in real time.

  15. Design Engineering of Safety Parameter Display for Kartini Reactor

    International Nuclear Information System (INIS)

    Yoyok Dwi Setyo Pambudi; Suharyo Widagdo; Aliq Zuhdi; Darlis

    2003-01-01

    Modification information parameter of Reactor Kartini has been conducted. This program use compiler LabView 5.0 that compatible and relevant with National Instrument card. These card mostly use in reactor instrumentation and industry. The information that been display is control rod position, fuel temperature, and water pH. The development in this research is control rod figure that can move up and down as the output from reactor power. Beside this is a module-module security figure that can light if there is a warning signal. Maximum high of control rod is 100 cm. (author)

  16. Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear

    Directory of Open Access Journals (Sweden)

    Zhiheng Feng

    2017-01-01

    Full Text Available Considering the geometry design parameters, a quasi-static mesh model of spiral bevel gears was established and the mesh characteristics were computed. Considering the time-varying effects of mesh points, mesh force, line-of-action vector, mesh stiffness, transmission error, friction force direction, and friction coefficient, a nonlinear lumped parameter dynamic model was developed for the spiral bevel gear pair. Based on the mesh model and the nonlinear dynamic model, the effects of main geometry parameters on the contact and bending strength were analyzed. Also, the effects on the dynamic mesh force and dynamic transmission error were investigated. Results show that higher value for the pressure angle, root fillet radius, and the ratio of tooth thickness tend to improve the contact and bending strength and to reduce the risk of tooth fracture. Improved gears have a better vibration performance in the targeted frequency range. Finally, bench tests for both types of spiral bevel gears were performed. Results show that the main failure mode is the tooth fracture and the life was increased a lot for the spiral bevel gears with improved geometry parameters compared to the original design.

  17. Critical parameters in the design of urban soakaway systems in ...

    African Journals Online (AJOL)

    The influence of the hydraulic characteristics of subsurface soils in the performance of septicsoakaway systems is studied to achieve a very realistic design. In-situ infiltration tests were conducted on three marked horizons between 0 and 400 cm below the ground surface. Soil samples taken from the same locations were ...

  18. Review: Design parameters of rating scales for Web sites

    NARCIS (Netherlands)

    van den Broek, Egon

    2007-01-01

    With the increasing popularity of the Internet, more and more online questionnaires are being conducted. However, little research is being done on their construction, in particular on their design. The authors of this paper have conducted such a study, within the scope of rating scales for Web

  19. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  20. (AJST) DETERMINATION OF THE PARAMETERS FOR DESIGN OF ...

    African Journals Online (AJOL)

    The Need for Flexible and Potable Water Storage. Vessels. Slums, refugee camps present a special challenge to ... In refugee, emergency and disaster camps, the most popular mode of water supply is by trucking, but the ... migration has been a major problem. A design of the flexible plastic storage in the model of the age ...

  1. Parameters and design optimization of the ring piezoelectric ceramic transformer

    Directory of Open Access Journals (Sweden)

    Jiří Erhart

    2015-09-01

    Full Text Available Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer. The input part is poled in the thickness direction and output part in the radial direction. Two transformer geometries are studied — the input part is at inner ring segment, or it is at the outer ring segment. The optimum electrode size aspect ratios have been found experimentally as d1∕D≈0.60−0.65 for the ring with aspect ratio d∕D=0.2. The fundamental as well as higher overtone resonances were studied for the transformation ratio, the optimum resistive load, efficiency and no-load transformation ratio. Higher overtones have better transformation parameters compared to the fundamental resonance. The new type ring transformer exhibits very high transformation ratios up to 200 under no-load and up to 13.4 under a high efficiency of 97% at the optimum load conditions of 10 kΩ. Strong electric field gradient at the output circuit is applicable for the electrical discharge generation.

  2. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  3. Immobilized laccase-based biosensor for the detection of disubstituted methyl and methoxy phenols - application of Box-Behnken design with response surface methodology for modeling and optimization of performance parameters.

    Science.gov (United States)

    Sarika, C; Rekha, K; Narasimha Murthy, B

    2016-11-01

    An amperometric principle-based biosensor, employing immobilized laccase enzyme from Trametes versicolor, was developed for the detection of disubstituted methyl and methoxy phenols. Three immobilization methods such as entrapment, cross-linking, and co-cross-linking, with bovine serum albumin (BSA) on nylon membrane have been compared. Among tested methods of immobilization, co-cross-linking method with BSA was superior to the other methods in terms of; sensitivity, limit of detection, response time, and operating stability. The increased sensitivity of the probe optimization of concentrations of laccase, BSA and glutaraldehyde can be achieved by, employing the Box-Behnken design of experiment.

  4. Parameters optimization for enzymatic assays using experimental design

    Directory of Open Access Journals (Sweden)

    J. F. M. Burkert

    2006-06-01

    Full Text Available The conditions for maximization enzymatic activity were determined using experimental design and inulinase from Kluyveromyces marxianus ATCC 16045. The effects of substrate concentration (sucrose and inulin, pH and temperature on inulinase activity were verified using four factorial design and surface response analysis. Using sucrose as substrate. It has bean shown that the effects sucrose on enzymatic activity is not statistically significant and the best condition for the highest activity (110 U/mL was achieved with temperature between 60°C and 68°C and pH between 4.5 and 5.0. Using inulin as substrate it was verified that temperature is the only variable statistically significant and the maximum activity was 7.3 U/mL at temperature between 50°C and 51°C.

  5. Analysis of the parameters involved in the design of slope stabilizing dowels

    International Nuclear Information System (INIS)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-01-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  6. Design Parameters for Evaluating Light Settings and Light Atmosphere in Hospital Wards

    DEFF Research Database (Denmark)

    Stidsen, Lone; Kirkegaard, Poul Henning; Fisker, Anna Marie

    2010-01-01

    of staff and guests in the future hospital. This paper is based on Böhmes G. concept of atmosphere dealing with the effect of light in experiencing atmosphere, and the importance having a holistic approach when designing a pleasurable light atmosphere. It shows important design parameters for pleasurable......When constructing and designing Danish hospitals for the future, patients, staff and guests are in focus. It is found important to have a starting point in healing architecture and create an environment with knowledge of users sensory and functionally needs and looks at how hospital wards can...... light atmosphere in hospital wards and specific present a proposal for evaluating light atmosphere in the dynamic light settings for hospital wards....

  7. Multi-parameter optimization of electrostatic micro-generators using design optimization algorithms

    International Nuclear Information System (INIS)

    Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2010-01-01

    In this paper, the design of an electrostatic micro-generator with an in-plane area-overlap architecture is optimized in a six-dimensional parameter space using multi-parameter optimization algorithms. A parametric model is presented including four geometric and two electrical parameters. The constraints of the design parameters are discussed. The design optimization is carried out in modeFRONTIER using a genetic algorithm. The results show that the displacement limit and the number of electrode elements are essential parameters, which require optimization in the design process. The other parameters take values at the upper or lower bound of their design space. The results also demonstrate that a maximized power output will not be achieved by maximizing the capacitance change per unit displacement

  8. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... of non-linear wave induced load effects and the corresponding long-term formulations. Methods to combine linear and non-linear components of wave induced load effects have been developed and checked by alternative methods.These improved models were used for the reliability assessment of the primary hull...

  9. Understanding facilities design parameters for a remanufacturing system

    Science.gov (United States)

    Topcu, Aysegul; Cullinane, Thomas

    2005-11-01

    Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.

  10. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    Science.gov (United States)

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Design optimization of structural parameters for highly sensitive photonic crystal label-free biosensors.

    Science.gov (United States)

    Ju, Jonghyun; Han, Yun-ah; Kim, Seok-min

    2013-03-07

    The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC) label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV), full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1) the PWV can be measured by the reflection peak measurement instruments, (2) the grating pitch and duty can be manufactured using conventional lithography systems, and (3) the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU-1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.

  12. Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

    Directory of Open Access Journals (Sweden)

    Yun-ah Han

    2013-03-01

    Full Text Available The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV, full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1 the PWV can be measured by the reflection peak measurement instruments, (2 the grating pitch and duty can be manufactured using conventional lithography systems, and (3 the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU−1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.

  13. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  14. Optimization of design parameters of low-energy buildings

    Science.gov (United States)

    Vala, Jiří; Jarošová, Petra

    2017-07-01

    Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).

  15. Specification of PWR UO2 pellet design parameters with the fuel performance code FRAPCON-1

    International Nuclear Information System (INIS)

    Silva, A.T.; Marra Neto, A.

    1988-08-01

    UO 2 pellet design parameters are analysed to verify their influence in the fuel basic properties and in its performance under irradiation in pressurized water reactors. Three groups of parameters are discussed: 1) content of fissionable and impurity materials; 2) stoichiometry; 3) density pore morpholoy, and microstructure. A methodology is applied with the fuel performance program FRAPCON-1 to specify these parameters. (author [pt

  16. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    OpenAIRE

    Atalay, Ozgur; Kennon, William Richard

    2014-01-01

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The compon...

  17. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Science.gov (United States)

    Hocko, Marián; Klimko, Marek

    2016-03-01

    This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines) to effect the change of thermodynamic parameters of the engine.

  18. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Directory of Open Access Journals (Sweden)

    Hocko Marián

    2016-01-01

    Full Text Available This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines to effect the change of thermodynamic parameters of the engine.

  19. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B. [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Dennis, John Ojur [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Riaz, Kashif; Iqbal, Abid [Faculty of Electronics Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhaw (Pakistan); Bazaz, Shafaat A. [Department of Computer Science, Center for Advance Studies in Engineering, Islamabad (Pakistan)

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  20. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Science.gov (United States)

    Mian, Muhammad Umer; Dennis, John Ojur; Khir, M. H. Md.; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.; Tang, T. B.

    2015-07-01

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  1. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  2. Flight test design for CH-47 parameter identification

    Science.gov (United States)

    Hall, W. E., Jr.; Vincent, J.

    1978-01-01

    The VTOL Approach and Landing Technology (VALT) program is a significant experimental research program aimed at establishing a data base for rotorcraft operation in a terminal area environment. Work was undertaken to determine helicopter math models suitable for analyzing maneuvers along a VTOL trajectory and to apply these math models to determine the flight test procedures of greatest effectiveness in establishing helicopter dynamic characteristics in this mode of operation. As the principal result of this investigation, a flight test specification is presented for the CH-47 VALT aircraft operating along the specified VTOL trajectory of the VALT program.

  3. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  4. Review of research in feature based design

    NARCIS (Netherlands)

    Salomons, O.W.; van Houten, Frederikus J.A.M.; Kals, H.J.J.

    1993-01-01

    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems

  5. Design Galleries: A general approach to setting parameters for computer graphics and animation

    OpenAIRE

    Gibson, Sarah; Beardsley, Paul; Ruml, Wheeler; Kang, Thomas; Mirtich, Brian; Seims, Joshua; Freeman, William; Hodgins, Jessica; Pfister, Hanspeter; Marks, Joe; Andalman, Brad; Shieber, Stuart

    1997-01-01

    Image rendering maps scene parameters to output pixel values; animation maps motion-control parameters to trajectory values. Because these mapping functions are usually multidimensional, nonlinear, and discontinuous, finding input parameters that yield desirable output values is often a painful process of manual tweaking. Interactive evolution and inverse design are two general methodologies for computer-assisted parameter setting in which the computer plays a prominent role. In this paper we...

  6. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  7. Performance based parameters as generators in digital architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2009-01-01

    because of the high energy use buildings have. It calls for a rethinking of our approach to architecture and for an implementation architectural and technical demands from the beginning of the design process. The term generating in relation to this article is focused on algorithms and parametric......This paper revolves around the discussion about sustainable architecture; the parameters related to it and how these parameters can be used in relation to generate architecture where the energy consumption during operation is in focus. A topic which is of interest in today's architectural world...

  8. Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

    International Nuclear Information System (INIS)

    Wang, Guodong; He, Zhen; Xue, Li; Cui, Qingan; Lv, Shanshan; Zhou, Panpan

    2017-01-01

    Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. - Highlights: • Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. • A bootstrap-based methodology is proposed to identify important factors which affect 100pth lifetime percentile significantly. • Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). • The important factors identified by different bootstrap methods are different. • The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.

  9. Relation of fuel rod service parameters and design requirements to produced fuel rod and their components

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.

    1999-01-01

    Based on the presented material it is possible to state that there is a very close link between the fuel operational parameters and the requirements for its design and production process. The required performance and life-time of a fuel rod can be only assured by the correctly selected design and process solutions. The economical aspect of this problem is significantly depend on the commercial feasibility of a particular selected solution with the provision of an automated and comparative by inexpensive production of a fuel rod and its components. The operational conditions are also important for the life time of the fuel rods. If there are no special measures for the mitigation of the certain operation conditions the leakage of fuel elements can take place before the planned time. (authors)

  10. Dynamic Mode Decomposition based on Kalman Filter for Parameter Estimation

    Science.gov (United States)

    Shibata, Hisaichi; Nonomura, Taku; Takaki, Ryoji

    2017-11-01

    With the development of computational fluid dynamics, large-scale data can now be obtained. In order to model physical phenomena from such data, it is required to extract features of flow field. Dynamic mode decomposition (DMD) is a method which meets the request. DMD can compute dominant eigenmodes of flow field by approximating system matrix. From this point of view, DMD can be considered as parameter estimation of system matrix. To estimate such parameters, we propose a novel method based on Kalman filter. Our numerical experiments indicated that the proposed method can estimate the parameters more accurately if it is compared with standard DMD methods. With this method, it is also possible to improve the parameter estimation accuracy if characteristics of noise acting on the system is given.

  11. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    Science.gov (United States)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed

  12. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    International Nuclear Information System (INIS)

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  13. The observer-based synchronization and parameter estimation of a ...

    Indian Academy of Sciences (India)

    Haipeng Su

    2017-10-31

    Oct 31, 2017 ... Chaotic system; observer-based synchronization; parameter estimation; single output. PACS No. 05.45.Gg. 1. Introduction. Chaos is a widespread phenomenon occurring in many nonlinear systems, such as communication system, meteorological system etc. Since Pecora and Carroll. [1] developed a ...

  14. Hand-Geometry Recognition Based on Contour Parameters

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Booij, W.D.T.; Hendrikse, A.J.; Jain, A.K.; Ratha, N.K.

    This paper demonstrates the feasibility of a new method of hand-geometry recognition based on parameters derived from the contour of the hand. The contour is completely determined by the black-and-white image of the hand and can be derived from it by means of simple image-processing techniques. It

  15. An adaptive image denoising method based on local parameters ...

    Indian Academy of Sciences (India)

    An adaptive image denoising method based on local parameters optimization. 881 the computations and the directional decomposition is done using the directional filter banks. (DFB). Then, the Donoho and Johnstone's threshold is used to modify the coefficients, which in turn provide the noise-free image on applying the ...

  16. Automatic determination of recrystallization parameters based on EBSD mapping

    DEFF Research Database (Denmark)

    Wu, Guilin; Juul Jensen, Dorte

    2008-01-01

    A new automatic algorithm for determining the recrystallization parameters V-V, S-V and based on EBSD mapping is presented in this paper. The algorithm is validated on aluminium deformed to high strains. The algorithm is also compared with other methods using the exact same sets of samples...

  17. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    Delineation of seismic source zones based on seismicity parameters and probabilistic evaluation of seismic hazard using logic tree approach. K S Vipin1,∗ and T G Sitharam2. 1Previously, Post Doctoral Fellow, Indian Institute of Science, Bangalore 560 012, India. 2Department of Civil Engineering, Indian Institute of ...

  18. Nonlinear genetic-based simulation of soil shear strength parameters

    Indian Academy of Sciences (India)

    such as textural properties, stress history of soil, initial state, and permeability characteristics of soil. (Murthy 2008). Figure 1 shows the Mohr circles and failure envelopes in terms of the total stresses. Keywords. Soil shear strength parameters; soil physical properties; linear-based genetic programming; prediction. J. Earth ...

  19. parameter extraction and estimation based on the pv panel outdoor

    African Journals Online (AJOL)

    userpc

    PV panel under varying weather conditions to estimate the PV parameters. Outdoor performance of the PV module (AP-PM-15) was carried out for several times. The .... Performance. Analysis of Different Photovoltaic. Technologies Based on MATLAB. Simulation. In Northwest University. Science, Faculty of Science Annual.

  20. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize th...... parameters based on steady CFD results, in order to take detailed geometry information into account. The response of the lumped parameter model is compared to a computational expensive transient CFD model for an example geometry....

  1. Parameter Identification and Synchronization of Uncertain Chaotic Systems Based on Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Li-lian Huang

    2013-01-01

    Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.

  2. Efficient classification of complete parameter regions based on semidefinite programming

    Directory of Open Access Journals (Sweden)

    Parrilo Pablo A

    2007-01-01

    Full Text Available Abstract Background Current approaches to parameter estimation are often inappropriate or inconvenient for the modelling of complex biological systems. For systems described by nonlinear equations, the conventional approach is to first numerically integrate the model, and then, in a second a posteriori step, check for consistency with experimental constraints. Hence, only single parameter sets can be considered at a time. Consequently, it is impossible to conclude that the "best" solution was identified or that no good solution exists, because parameter spaces typically cannot be explored in a reasonable amount of time. Results We introduce a novel approach based on semidefinite programming to directly identify consistent steady state concentrations for systems consisting of mass action kinetics, i.e., polynomial equations and inequality constraints. The duality properties of semidefinite programming allow to rigorously certify infeasibility for whole regions of parameter space, thus enabling the simultaneous multi-dimensional analysis of entire parameter sets. Conclusion Our algorithm reduces the computational effort of parameter estimation by several orders of magnitude, as illustrated through conceptual sample problems. Of particular relevance for systems biology, the approach can discriminate between structurally different candidate models by proving inconsistency with the available data.

  3. A frequency-based parameter for rapid estimation of magnitude

    Science.gov (United States)

    Atefi, Sanam; Heidari, Reza; Mirzaei, Noorbakhsh; Siahkoohi, Hamid Reza

    2017-12-01

    This study introduce a new frequency parameter called τ_{fcwt}, which can be used to estimate earthquake magnitude on the basis of the first few seconds of P-waves, using the waveforms of earthquakes occurring in Japan. This new parameter is introduced using continuous wavelet transform as a tool for extracting the frequency contents carried by the first few seconds of P-wave. The empirical relationship between the logarithm of τ_{fcwt} within the initial 4 s of a waveform and magnitude was obtained. To evaluate the precision of τ_{fcwt}, we also calculated parameters τp^{ max } and τc. The average absolute values of observed and estimated magnitude differences (|M_{est} - M_{obs} |) were 0.43, 0.49, and 0.66 units of magnitude, as determined using τp^{ max }, τc, and τ_{fcwt}, respectively. For earthquakes with magnitudes greater than 6, these values were 0.34, 0.56, and 0.44 units of magnitude, as derived using τp^{ max }, τc, and τ_{fcwt}, respectively. The τ_{fcwt} parameter exhibited more precision in determining the magnitude of moderate- and small-scale earthquakes than did the τc-based approach. For a general range of magnitudes, however, the τp^{ max }-based method showed more acceptable precision than did the other two parameters.

  4. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    Directory of Open Access Journals (Sweden)

    Kechagias John

    2017-01-01

    Full Text Available Plasma Arc Cutting (PAC is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min, torch standoff distance (mm, and arc voltage (volts. Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For each one of the three process parameters, three parameter levels were used. Analysis of means (ANOM and analysis of variances (ANOVA were performed in order for the effect of each parameter on the leaner dimensional accuracy to be assessed.

  5. Response-Based Estimation of Sea State Parameters

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    Reliable estimation of the on-site sea state parameters is essential to decision support systems for safe navigation of ships. The sea state parameters can be estimated by Bayesian Modelling which uses complex-valued frequency response functions (FRF) to estimate the wave spectrum on the basis...... of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence...

  6. Correlation study of structural parameters of bioadhesive polymers in designing a tunable drug delivery system.

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2014-07-22

    Keeping in view the importance of network structure in designing tunable drug delivery devices, in the present work, correlation between structural parameters and drug release profile has been determined for polysaccharide gum based polymers. These polymers have been characterized by SEMs, FTIR, (13)C NMR, XRD, TGA/DTA/DTG, DSC, and swelling studies. The mechanical, biocompatible, and mucoadhesive properties of polymers have also been determined. The polymer network parameters such as polymer volume fraction in the swollen state, Flory-Huggins interaction parameter, molecular weight of the polymer chain between two cross-links, cross-link density, and mesh size have been evaluated. Different kinetic models have been applied for the drug release profile of the antifungal drug fluconazole. The swelling and drug release occurred through a non-Fickian diffusion mechanism and a release profile best fitted in the Higuchi square root model. The polymers have been observed as non-thrombogenic, hemo-compatible, and mucoadhesive in nature and may be used in slow drug delivery applications to oral mucosa.

  7. Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition

    Directory of Open Access Journals (Sweden)

    Yuxing Mao

    2014-06-01

    Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.

  8. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  9. Design and formulation of nano-sized spray dried efavirenz. Part I: Influence of formulation parameters

    CSIR Research Space (South Africa)

    Katata, L

    2012-10-01

    Full Text Available statistical design with an L8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen...

  10. Optimal Design of the Transverse Flux Machine Using a Fitted Genetic Algorithm with Real Parameters

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2012-01-01

    This paper applies a fitted genetic algorithm (GA) to the optimal design of transverse flux machine (TFM). The main goal is to provide a tool for the optimal design of TFM that is an easy to use. The GA optimizes the analytic basic design of two TFM topologies: the C-core and the U-core. First......, the GA was designed with real parameters. A further, objective of the fitted GA is minimization of the computation time, related to the number of individuals, the number of generations and the types of operators and their specific parameters....

  11. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  12. Paris law parameter identification based on the Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Melgar M.

    2016-01-01

    Full Text Available Aircraft structures are commonly subjected to repeated loading cycles leading to fatigue damage. Fatigue data can be extrapolated by fatigue models which are adopted to describe the fatigue damage behaviour. Such models depend on their parameters for accurate prediction of the fatigue life. Therefore, several methods have been developed for estimating the model parameters for both linear and nonlinear systems. It is useful for a broad class of parameter identification problems when the dynamic model is not known. In this paper, the Paris law is used as fatigue-crack-length growth model on a metallic component under loading cycles. The Extended Kalman Filter (EKF is proposed as estimation method. Simulated crack length data is used to validate the estimation method. Based on experimental data obtained from fatigue experiment, the crack length and model parameters are estimated. Accurate model parameters allow a more realistic prediction of the fatigue life, consequently, the remaining useful life (RUL of component can be accurately computed. In this sense, maintenance performance could be improved.

  13. Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters

    Science.gov (United States)

    Franco, V. R.; Varoto, P. S.

    2017-09-01

    A crucial issue in piezoelectric energy harvesting is the efficiency of the mechanical to electrical conversion process. Several techniques have been investigated in order to obtain a set of optimum design parameters that will lead to the best performance of the harvester in terms of electrical power generation. Once an optimum design is reached it is also important to consider uncertainties in the selected parameters that in turn can lead to loss of performance in the energy conversion process. The main goal of this paper is to perform a comprehensive discussion of the effects of multi-parameter aleatory uncertainties on the performance and design optimization of a given energy harvesting system. For that, a typical energy harvester consisting of a cantilever beam carrying a tip mass and partially covered by piezoelectric layers on top and bottom surfaces is considered. A distributed parameter electromechanical modal of the harvesting system is formulated and validated through experimental tests. First, the SQP (Sequential Quadratic Planning) optimization is employed to obtain an optimum set of parameters that will lead to best performance of the harvester. Second, once the optimum harvester configuration is found random perturbations are introduced in the key parameters and Monte Carlo simulations are performed to investigate how these uncertainties propagate and affect the performance of the device studied. Numerically simulated results indicate that small variations in some design parameters can cause a significant variation in the output electrical power, what strongly suggests that uncertainties must be accounted for in the design of beam energy harvesting systems.

  14. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  15. Agreement in cardiovascular risk rating based on anthropometric parameters

    International Nuclear Information System (INIS)

    Dantas, Endilly Maria da Silva; Pinto, Cristiane Jordânia; Freitas, Rodrigo Pegado de Abreu; Medeiros, Anna Cecília Queiroz de

    2015-01-01

    To investigate the agreement in evaluation of risk of developing cardiovascular diseases based on anthropometric parameters in young adults. The study included 406 students, measuring weight, height, and waist and neck circumferences. Waist-to-height ratio and the conicity index. The kappa coefficient was used to assess agreement in risk classification for cardiovascular diseases. The positive and negative specific agreement values were calculated as well. The Pearson chi-square (χ 2 ) test was used to assess associations between categorical variables (p<0.05). The majority of the parameters assessed (44%) showed slight (k=0.21 to 0.40) and/or poor agreement (k<0.20), with low values of negative specific agreement. The best agreement was observed between waist circumference and waist-to-height ratio both for the general population (k=0.88) and between sexes (k=0.93 to 0.86). There was a significant association (p<0.001) between the risk of cardiovascular diseases and females when using waist circumference and conicity index, and with males when using neck circumference. This resulted in a wide variation in the prevalence of cardiovascular disease risk (5.5%-36.5%), depending on the parameter and the sex that was assessed. The results indicate variability in agreement in assessing risk for cardiovascular diseases, based on anthropometric parameters, and which also seems to be influenced by sex. Further studies in the Brazilian population are required to better understand this issue

  16. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  17. Team Based Engineering Design Thinking

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  18. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties

    Directory of Open Access Journals (Sweden)

    William Richard Kennon

    2013-08-01

    Full Text Available The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties.

  19. Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.

    Science.gov (United States)

    Weller, Daniel S; Ramani, Sathish; Nielsen, Jon-Fredrik; Fessler, Jeffrey A

    2014-05-01

    Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques. We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted Stein's unbiased risk estimate. We describe a Monte Carlo approximation of the weighted Stein's unbiased risk estimate that uses two evaluations of the reconstruction method per candidate parameter value. We reconstruct images using the denoising sparse images from GRAPPA using the nullspace method (DESIGN) and L1 iterative self-consistent parallel imaging (L1 -SPIRiT). We validate Monte Carlo Stein's unbiased risk estimate against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters. Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1 -SPIRiT over a range of noise levels and undersampling factors. The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods. Copyright © 2013 Wiley Periodicals, Inc.

  20. Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations

    Directory of Open Access Journals (Sweden)

    Oualid Doukhi

    2017-01-01

    Full Text Available The paper presents the mathematical model of a quadrotor unmanned aerial vehicle (UAV and the design of robust Self-Tuning PID controller based on fuzzy logic, which offers several advantages over certain types of conventional control methods, specifically in dealing with highly nonlinear systems and parameter uncertainty. The proposed controller is applied to the inner and outer loop for heading and position trajectory tracking control to handle the external disturbances caused by the variation in the payload weight during the flight period. The results of the numerical simulation using gazebo physics engine simulator and real-time experiment using AR drone 2.0 test bed demonstrate the effectiveness of this intelligent control strategy which can improve the robustness of the whole system and achieve accurate trajectory tracking control, comparing it with the conventional proportional integral derivative (PID.

  1. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design

    International Nuclear Information System (INIS)

    Kumar, Arvind; Prasad, B.; Mishra, I.M.

    2008-01-01

    In the present work, acrylonitrile removal from wastewater was investigated using an agri-based adsorbent-sugarcane bagasse fly ash (BFA). The effect of such parameters as adsorbent dose (w), temperature (T) and time of contact (t) on the sorption of acrylonitrile by BFA was investigated using response surface methodology (RSM) based on Box-Behnken surface statistical design at an initial acrylonitrile concentration, C 0 = 100 mg/l as a fixed input parameter. The results of RSM indicate that the proposed models predict the responses adequately within the limits of input parameters being used. The isotherm shows a two-step adsorption, well represented by a two-step Langmuir isotherm equation. Thermodynamic parameters indicate the sorption process to be spontaneous and exothermic

  2. Parameter estimation and uncertainty quantification in a biogeochemical model using optimal experimental design methods

    Science.gov (United States)

    Reimer, Joscha; Piwonski, Jaroslaw; Slawig, Thomas

    2016-04-01

    The statistical significance of any model-data comparison strongly depends on the quality of the used data and the criterion used to measure the model-to-data misfit. The statistical properties (such as mean values, variances and covariances) of the data should be taken into account by choosing a criterion as, e.g., ordinary, weighted or generalized least squares. Moreover, the criterion can be restricted onto regions or model quantities which are of special interest. This choice influences the quality of the model output (also for not measured quantities) and the results of a parameter estimation or optimization process. We have estimated the parameters of a three-dimensional and time-dependent marine biogeochemical model describing the phosphorus cycle in the ocean. For this purpose, we have developed a statistical model for measurements of phosphate and dissolved organic phosphorus. This statistical model includes variances and correlations varying with time and location of the measurements. We compared the obtained estimations of model output and parameters for different criteria. Another question is if (and which) further measurements would increase the model's quality at all. Using experimental design criteria, the information content of measurements can be quantified. This may refer to the uncertainty in unknown model parameters as well as the uncertainty regarding which model is closer to reality. By (another) optimization, optimal measurement properties such as locations, time instants and quantities to be measured can be identified. We have optimized such properties for additional measurement for the parameter estimation of the marine biogeochemical model. For this purpose, we have quantified the uncertainty in the optimal model parameters and the model output itself regarding the uncertainty in the measurement data using the (Fisher) information matrix. Furthermore, we have calculated the uncertainty reduction by additional measurements depending on time

  3. THE USE OF A FACTORIAL DESIGN TO EVALUATE THE PHYSICAL STABILITY OF TABLETS PREPARED BY DIRECT COMPRESSION .1. A NEW APPROACH BASED ON THE RELATIVE CHANGE IN TABLET PARAMETERS

    NARCIS (Netherlands)

    Bos, C. E.; BOLHUIS, G. K.; LERK, C. F.; de Boer, J. H.; DUINEVELD, C. A. A.; Smilde, A. K.; Doornbos, D. A.

    1991-01-01

    A factorial design has been used to study the influence of disintegrant concentration and compression force as well as storage temperature and relative humidity on the physical stability during storage of alpha-lactose monohydrate/rice starch tablets prepared by direct compression. The tablet

  4. Optimization of machining parameters of turning operations based on multi performance criteria

    Directory of Open Access Journals (Sweden)

    N.K.Mandal

    2013-01-01

    Full Text Available The selection of optimum machining parameters plays a significant role to ensure quality of product, to reduce the manufacturing cost and to increase productivity in computer controlled manufacturing process. For many years, multi-objective optimization of turning based on inherent complexity of process is a competitive engineering issue. This study investigates multi-response optimization of turning process for an optimal parametric combination to yield the minimum power consumption, surface roughness and frequency of tool vibration using a combination of a Grey relational analysis (GRA. Confirmation test is conducted for the optimal machining parameters to validate the test result. Various turning parameters, such as spindle speed, feed and depth of cut are considered. Experiments are designed and conducted based on full factorial design of experiment.

  5. Designing solar thermal experiments based on simulation

    International Nuclear Information System (INIS)

    Huleihil, Mahmoud; Mazor, Gedalya

    2013-01-01

    In this study three different models to describe the temperature distribution inside a cylindrical solid body subjected to high solar irradiation were examined, beginning with the simpler approach, which is the single dimension lump system (time), progressing through the two-dimensional distributed system approach (time and vertical direction), and ending with the three-dimensional distributed system approach with azimuthally symmetry (time, vertical direction, and radial direction). The three models were introduced and solved analytically and numerically. The importance of the models and their solution was addressed. The simulations based on them might be considered as a powerful tool in designing experiments, as they make it possible to estimate the different effects of the parameters involved in these models

  6. 10 CFR 60.141 - Confirmation of geotechnical and design parameters.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Confirmation of geotechnical and design parameters. 60.141... IN GEOLOGIC REPOSITORIES Performance Confirmation Program § 60.141 Confirmation of geotechnical and..., measurement, testing, and geologic mapping shall be conducted to ensure that geotechnical and design...

  7. Parameter Tuning for Local-Search-Based Matheuristic Methods

    Directory of Open Access Journals (Sweden)

    Guillermo Cabrera-Guerrero

    2017-01-01

    Full Text Available Algorithms that aim to solve optimisation problems by combining heuristics and mathematical programming have attracted researchers’ attention. These methods, also known as matheuristics, have been shown to perform especially well for large, complex optimisation problems that include both integer and continuous decision variables. One common strategy used by matheuristic methods to solve such optimisation problems is to divide the main optimisation problem into several subproblems. While heuristics are used to seek for promising subproblems, exact methods are used to solve them to optimality. In general, we say that both mixed integer (nonlinear programming problems and combinatorial optimisation problems can be addressed using this strategy. Beside the number of parameters researchers need to adjust when using heuristic methods, additional parameters arise when using matheuristic methods. In this paper we focus on one particular parameter, which determines the size of the subproblem. We show how matheuristic performance varies as this parameter is modified. We considered a well-known NP-hard combinatorial optimisation problem, namely, the capacitated facility location problem for our experiments. Based on the obtained results, we discuss the effects of adjusting the size of subproblems that are generated when using matheuristics methods such as the one considered in this paper.

  8. Modeling Chinese ionospheric layer parameters based on EOF analysis

    Science.gov (United States)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  9. Conceptual Design of Compliant Mechanism Based on Port Ontology

    Directory of Open Access Journals (Sweden)

    Zhanwei Li

    2013-01-01

    Full Text Available It is an effective method for port-based ontology (PBO to be used to represent and organize product design information and, support product conceptualization. As port is used to map and link components together, it plays an important role in capturing component information. This paper establishes a design method of compliant mechanism based on port ontology. Firstly, the coding rules are constituted based on PBO, and knowledge base of compliant mechanism is constructed, which includes stiffness base and inherent frequency base of flexible cells. Secondly, incidence matrix is established to denote the relationship of components, and based on incidence matrix design, schemes are generated by adopting the genetic algorithm. Thirdly, by selecting suitable parameters, scheme populations are generated towards training neural network (NN, and the trained NN model is employed for choosing preferential schemes to be satisfied with users' demands. At last, an application case is given to demonstrate the conceptual design of compliant mechanism based on port ontology.

  10. Queue-based modelling and detection of parameters involved in stroke outcome

    DEFF Research Database (Denmark)

    Vilic, Adnan; Petersen, John Asger; Wienecke, Troels

    2017-01-01

    We designed a queue-based model, and investigated which parameters are of importance when predicting stroke outcome. Medical record forms have been collected for 57 ischemic stroke patients, including medical history and vital sign measurement along with neurological scores for the first twenty-f......, where outcome for patients were 36.75 ± 10.99. The queue-based model integrating multiple linear regression shows promising results for automatic selection of significant medically relevant parameters.......-four hours of admission. The importance of each parameter is identified using multiple regression combined with a circular queue to iteratively fit outcome. Out of 39 parameters, the model isolated 14 which combined could estimate outcome with a root mean square error of 1.69 on the Scandinavian Stroke Scale...

  11. Automated scheme to determine design parameters for a recoverable reentry vehicle

    International Nuclear Information System (INIS)

    Williamson, W.E.

    1976-01-01

    The NRV (Nosetip Recovery Vehicle) program at Sandia Laboratories is designed to recover the nose section from a sphere cone reentry vehicle after it has flown a near ICBM reentry trajectory. Both mass jettison and parachutes are used to reduce the velocity of the RV near the end of the trajectory to a sufficiently low level that the vehicle may land intact. The design problem of determining mass jettison time and parachute deployment time in order to ensure that the vehicle does land intact is considered. The problem is formulated as a min-max optimization problem where the design parameters are to be selected to minimize the maximum possible deviation in the design criteria due to uncertainties in the system. The results of the study indicate that the optimal choice of the design parameters ensures that the maximum deviation in the design criteria is within acceptable bounds. This analytically ensures the feasibility of recovery for NRV

  12. Analysis of the impact of sustainability related design parameters in the architectural design process: A case study research

    OpenAIRE

    WEYTJENS, Lieve; VERBEECK, Griet

    2009-01-01

    Literature review shows that early decisions in the architectural design process have the largest impact on the sustainability of the final design. However, in practice, many early decisions on sustainability are solely based on the experience and intuition of the designer. Especially in small projects, which lack engineering support due to limited budgets, designers often only use their own experience to incorporate sustainability in their design. Therefore, a research project has been estab...

  13. Experimental evaluation of a modal parameter based system identification procedure

    Science.gov (United States)

    Yu, Minli; Feng, Ningsheng; Hahn, Eric J.

    2016-02-01

    Correct modelling of the foundation of a rotor bearing foundation system (RBFS) is an invaluable asset for the balancing and efficient running of turbomachinery. Numerical experiments have shown that a modal parameter based identification approach could be feasible for this purpose but there is a lack of experimental verification of the suitability of such a modal approach for even the simplest systems. In this paper the approach is tested on a simple experimental rig comprising a clamped horizontal bar with lumped masses. It is shown that apart from damping, the proposed approach can identify reasonably accurately the relevant modal parameters of the rig; and that the resulting equivalent system can predict reasonably well the frequency response of the rig. Hence, the proposed approach shows promise but further testing is required, since application to identifying the foundation of an RBFS involves the additional problem of accurately obtaining the force excitation from motion measurements.

  14. One-Sign Order Parameter in Iron Based Superconductor

    Directory of Open Access Journals (Sweden)

    Bernd Büchner

    2012-03-01

    Full Text Available The onset of superconductivity at the transition temperature is marked by the onset of order, which is characterized by an energy gap. Most models of the iron-based superconductors find a sign-changing (s± order parameter [1–6], with the physical implication that pairing is driven by spin fluctuations. Recent work, however, has indicated that LiFeAs has a simple isotropic order parameter [7–9] and spin fluctuations are not necessary [7,10], contrary to the models [1–6]. The strength of the spin fluctuations has been controversial [11,12], meaning that the mechanism of superconductivity cannot as yet be determined. We report the momentum dependence of the superconducting energy gap, where we find an anisotropy that rules out coupling through spin fluctuations and the sign change. The results instead suggest that orbital fluctuations assisted by phonons [13,14] are the best explanation for superconductivity.

  15. Analyzing the shape parameter effects on the performance of the mixed-flow fan using CFD and Factorial design

    International Nuclear Information System (INIS)

    Jung, Uk Hee; Kim, Joon Hyung; Kim, Sung; Kim, Jin Hyuk; Choi, Young Seok

    2016-01-01

    Fans are representative turbo-machinery widely used for ventilation throughout the industrial world. Recently, as the importance of energy saving has been magnified with the fans, the demand for the fans with high efficiency and performance has been increasing. The representative method for enhancing the performance includes design optimization; in practice, fan performance can be improved by changing the shape parameters such as those of meridional plane, impeller, and diffuser. Before optimizing the efficient design, a process of screening to select important design parameters is essential. The present study aimed to analyze the effects of mixed-flow fans' shape parameters on fan performance (static pressure and fan static efficiency) and derive optimum models based on the results. In this study, the shape parameters considered in the impeller domain are as follows: tip clearance, number of blades, beta angle of Leading edge (LE) in the blade, and beta angle of Trailing edge (TE) in the blade. The shape parameters considered in the diffuser domain are as follows: meridional length of the Guide vane (GV), number of GV, beta angle of LE in the GV and beta angle of TE in the GV. The effects of individual shape parameters were analyzed using the CFD (Computational fluid dynamic) and DOE (Design of experiments) methods. The reliability of CFD was verified through the comparison between preliminary fan model's experiment results and CFD results, and screening processes were implemented through 24-1 fractional factorial design. From the analysis of DOE results, it could be seen that the tip clearance and the number of blades in the impeller domain greatly affected the fan performance, and the beta angle of TE at the GV in the diffuser domain greatly affected the fan performance. Finally, the optimum models with improved fan performance were created using linear regression equations derived from 24-1 fractional factorial design.

  16. Research on variant design based on topological entity compression algorithm

    Directory of Open Access Journals (Sweden)

    Shuai Yulin

    2017-01-01

    Full Text Available In order to improve the efficiency of product design and shorten the design cycle of product, the research progress in recent years is introduced. The basics of variant design such as the entities of topology, the equation’s structure and the compression/decompression are analyzed. An algorithm, which can compress redundant parts, based on the conditions of algebraic equations completely is put forward. A variant design system of volumetric heat exchanger is designed by using VB and SolidWorks API (Application Programing Interface. The results show that the variant design system based on algebraic equations can be quickly and accurately modeled according to different process parameters, which can improve the efficiency of product design and shorten the design period.

  17. A Design of Functional Layer with Robust Constitutive Parameters for Multilayer Metamaterials

    Directory of Open Access Journals (Sweden)

    Zhijie Gong

    2017-01-01

    Full Text Available We propose a functional layer design with robust effective parameters for multilayer metamaterial. The functional layer is consisting of two identical dielectric material layers and one layer of metallic structures sandwiched in between. The symmetric design ensures that, following standard retrieval technique, effective parameters retrieved for a single functional layer in vacuum can be used to characterize its electromagnetic contribution when stacked in a multilayer system. When applied to the fishnet structures, effective parameters of the symmetric functional layer system show great robustness against the varying of the number of layers. The symmetric functional layer design is also investigated on multilayer metamaterials consisting of several layers of different kinds of metallic structures. Transmission and reflection spectra are obtained for real structures and their effective models by finite-differential-time-domain simulation and transfer matrix method calculation, respectively. It turns out that the effective model shows great equivalency to the real structures, and the effective parameters of symmetric functional layer design are robust at both normal and oblique incident cases. Our work provides a practical approach to design and characterize multilayer metamaterials with the well-known effective parameters retrieval technique.

  18. Design of Si-photonic structures to evaluate their radiation hardness dependence on design parameters

    International Nuclear Information System (INIS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Pezzullo, G.; El Nasr-Storey, S. Seif; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-01-01

    Particle detectors for future experiments at the HL-LHC will require new optical data transmitters that can provide high data rates and be resistant against high levels of radiation. Furthermore, new design paths for future optical readout systems for HL-LHC could be opened if there was a possibility to integrate the optical components with their driving electronics and possibly also the silicon particle sensors themselves. All these functionalities could potentially be combined in the silicon photonics technology which currently receives a lot of attention for conventional optical link systems. Silicon photonic test chips were designed in order to assess the suitability of this technology for deployment in high-energy physics experiments. The chips contain custom-designed Mach-Zehnder modulators, pre-designed ''building-block'' modulators, photodiodes and various other passive test structures. The simulation and design flow of the custom designed Mach-Zehnder modulators and some first measurement results of the chips are presented

  19. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    Science.gov (United States)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  20. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  1. Ethanol Production from Kitchen Garbage Using Zymomonas mobilis: Optimization of Parameters through Statistical Experimental Designs

    OpenAIRE

    Ma, H.; Wang, Q.; Gong, L.; Wang, X.; Yin, W.

    2008-01-01

    Plackett-Burman design was employed to screen 8 parameters for ethanol production from kitchen garbage by Zymomonas mobilis in simultaneous saccharification and fermentation. The parameters were divided into two parts, four kinds of enzymes and supplementation nutrients. The result indicated that the nutrient inside kitchen garbage could meet the requirement of ethanol production without supplementation, only protease and glucoamylase were needed to accelerate the ethanol production. The opti...

  2. Estimation of the Randomized Complete Block Design Parameters with Fuzzy Goal Programming

    OpenAIRE

    Kula, Kamile; Apaydin, Ayşen

    2011-01-01

    Since goal programming was introduced by Charnes, Cooper and Ferguson (1955), goal programming has been widely studied and applied in various areas. Parameter estimation is quite important in many areas. Recently, many researches have been studied in fuzzy estimation. In this study, fuzzy goal programming was proposed by Hannan (1981) adapted to estimation of randomized complete block design parameters. Suggested fuzzy goal programming is used for estimation of randomized complete block desig...

  3. A game-theoretic parameter configuration technique for aquifer restoration design

    Science.gov (United States)

    Eheart, J. Wayland; Rahman, M. Rezaur; Keith, Stevan M.; Valocchi, Albert J.

    1990-10-01

    The problem of designing an active hydraulic system for remediation of a polluted aquifer is addressed for the case when parameters are not known with certainty. The design problem is cast as a game in which the protagonist-designer is pitted against an antagonist which alters the values of the uncertain parameters, within prescribed limits, so as to render the engineered system most ineffective. A solution method for the antagonist's problem, referred to as the parameter configuration technique (PCT), is developed and discussed in this paper. This technique selects spatially dependent values of the distributed parameter, transmissivity, such that the pattern of variation represents a pessimistic (but realistic) set of design conditions. The task of finding the "worst" set of parameter values is cast as a constrained optimization problem whose objective function is to thwart the remedial action design to the greatest degree possible. A rudimentary objective function is arbitrarily specified by the researchers. Several types of feasibility constraints restrict the distribution of parameter values to those combinations that are "realistic." One type limits the variogram, another type, the mean, and a third type, the trend, of the log transmissivity. The resulting optimization problem is ill-behaved; difficulty was encountered obtaining a mathematically optimal solution. However, it may not always be necessary to find such a mathematically optimal solution in order to derive practical utility from the results. Two special heuristic techniques for obtaining a near-optimal solution are discussed. The technique is applied to a hypothetical contaminated aquifer with a simple single-extraction well flushing system. The solution is compared to a Monte Carlo approach applied to the same aquifer. The required pumping rate for a pessimistic parameter set generated by the new technique is about the same as the second largest of 100 Monte Carlo realizations.

  4. A System for Extracting Study Design Parameters from Nutritional Genomics Abstracts

    Directory of Open Access Journals (Sweden)

    Kelly Cassidy

    2013-06-01

    Full Text Available The extraction of study design parameters from biomedical journal articles is an important problem in natural language processing (NLP. Such parameters define the characteristics of a study, such as the duration, the number of subjects, and their profile. Here we present a system for extracting study design parameters from sentences in article abstracts. This system will be used as a component of a larger system for creating nutrigenomics networks from articles in the nutritional genomics domain. The algorithms presented consist of manually designed rules expressed either as regular expressions or in terms of sentence parse structure. A number of filters and NLP tools are also utilized within a pipelined algorithmic framework. Using this novel approach, our system performs extraction at a finer level of granularity than comparable systems, while generating results that surpass the current state of the art.

  5. A System for Extracting Study Design Parameters from Nutritional Genomics Abstracts.

    Science.gov (United States)

    Kelly, Cassidy; Yang, Hui

    2013-06-01

    The extraction of study design parameters from biomedical journal articles is an important problem in natural language processing (NLP). Such parameters define the characteristics of a study, such as the duration, the number of subjects, and their profile. Here we present a system for extracting study design parameters from sentences in article abstracts. This system will be used as a component of a larger system for creating nutrigenomics networks from articles in the nutritional genomics domain. The algorithms presented consist of manually designed rules expressed either as regular expressions or in terms of sentence parse structure. A number of filters and NLP tools are also utilized within a pipelined algorithmic framework. Using this novel approach, our system performs extraction at a finer level of granularity than comparable systems, while generating results that surpass the current state of the art.

  6. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody.

    Science.gov (United States)

    Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K

    2015-06-01

    Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Selection of the Climate Parameters for a Building Envelopes and Indoor Climate Systems Design

    Directory of Open Access Journals (Sweden)

    Oleg Samarin

    2017-09-01

    Full Text Available The current research considers the principles of selection of the climate information needed for the building envelope and indoor climate design and adopted in Russia and some European countries. Special reference has been made to the shortcoming of methodologies that include the notion of a typical year, and the advantages of climate data sets generated via software-based designs, using pseudo-random number generators. The results of the average temperature of the coldest five-day period with various supplies were calculated using the numerical Monte-Carlo simulations, as well as the current climate data. It has been shown that there is a fundamental overlap between the statistical distribution of temperatures of both instances and the possibility of implementation a probabilistic-statistical method principle in the development of certain climate data, relative to envelopes and thermal conditions of a building. The calculated values were combined with the analytic expression of the normal law of random distribution and the correlations needed for the main parameter selection.

  8. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  9. Multiphase flow parameter estimation based on laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  10. Muscle fatigue based evaluation of bicycle design.

    Science.gov (United States)

    Balasubramanian, V; Jagannath, M; Adalarasu, K

    2014-03-01

    Bicycling posture leads to considerable discomfort and a variety of chronic injuries. This necessitates a proper bicycle design to avoid injuries and thereby enhance rider comfort. The objective of this study was to investigate the muscle activity during cycling on three different bicycle designs, i.e., rigid frame (RF), suspension (SU) and sports (SP) using surface electromyography (sEMG). Twelve male volunteers participated in this study. sEMG signals were acquired bilaterally from extensor carpi radialis (ECR), trapezius medial (TM), latissimus dorsi medial (LDM) and erector spinae (ES), during 30 min of cycling on each bicycle and after cycling. Time domain (RMS) and frequency domain (MPF) parameters were extracted from acquired sEMG signals. From the sEMG study, it was found that the fatigue in right LDM and ES were significantly (p bicycle. This was corroborated by a psychophysical assessment based on RBG pain scale. The study also showed that there was a significantly lesser fatigue with the SU bicycle than the RF and SP bicycles. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Science.gov (United States)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  12. Mixture design procedure for flexible base.

    Science.gov (United States)

    2013-04-01

    This document provides information on mixture design requirements for a flexible base course. Sections : design requirements, job mix formula, contractor's responsibility, and engineer's responsibility. Tables : material requirements; requirements fo...

  13. Fractional Factorial Design for Parameter Sweep Experiments Using Nimrod/E

    Directory of Open Access Journals (Sweden)

    T.C. Peachey

    2008-01-01

    Full Text Available The techniques of formal experimental design and analysis are powerful tools for scientists and engineers. However, these techniques are currently underused for experiments conducted with computer models. This has motivated the incorporation of experimental design functionality into the Nimrod tool chain. Nimrod has been extensively used for exploration of the response of models to their input parameters; the addition of experimental design tools will combine the efficiency of carefully designed experiments with the power of distributed execution. This paper describes the incorporation of one type of design, the fractional factorial design, and associated analysis tools, into the Nimrod framework. The result provides a convenient environment that automates the design of an experiment, the execution of the jobs on a computational grid and the return of results, and which assists in the interpretation of those results. Several case studies are included which demonstrate various aspects of this approach.

  14. Estimation of Compaction Parameters Based on Soil Classification

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  15. Coffee Bean Grade Determination Based on Image Parameter

    Directory of Open Access Journals (Sweden)

    F. Ferdiansjah

    2011-12-01

    Full Text Available Quality standard for coffee as an agriculture commodity in Indonesia uses defect system which is regulated in Standar Nasional Indonesia (SNI for coffee bean, No: 01-2907-1999. In the Defect System standard, coffee bean is classified into six grades, from grade I to grade VI depending on the number of defect found in the coffee bean. Accuracy of this method heavily depends on the experience and the expertise of the human operators. The objective of the research is to develop a system to determine the coffee bean grading based on SNI No: 01-2907-1999. A visual sensor, a webcam connected to a computer, was used for image acquisition of coffee bean image samples, which were placed under uniform illumination of 414.5+2.9 lux. The computer performs feature extraction from parameters of coffee bean image samples in the term of texture (energy, entropy, contrast, homogeneity and color (R mean, G mean, and B mean and determines the grade of coffee bean based on the image parameters by implementing neural network algorithm. The accuracy of system testing for the coffee beans of grade I, II, III, IVA, IVB, V, and VI have the value of 100, 80, 60, 40, 100, 40, and 100%, respectively.

  16. Model based process-product design and analysis

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper gives a perspective on modelling and the important role it has within product-process design and analysis. Different modelling issues related to development and application of systematic model-based solution approaches for product-process design is discussed and the need for a hybrid......, forms and complexity, together with their associated parameters. An example of a model-based system for design of chemicals based formulated products is also given....... model-based framework is highlighted. This framework should be able to manage knowledge-data, models, and associated methods and tools integrated with design work-flows and data-flows for specific product-process design problems. In particular, the framework needs to manage models of different types...

  17. Methodology to determine the design and construction parameters of design of biogas installations for little farms

    International Nuclear Information System (INIS)

    1/2 Reparto Abel Santamaria, Boyeros telf (53-7) 45-3608, 45-1731, 451353, Fax: (53-7) 45-3608 , La Habana (Cuba))" data-affiliation=" (Instituto de Investigaciones de Ingeniería Agrícola, IAgric, Carretera Fontanar-Wajay, km 21/2 Reparto Abel Santamaria, Boyeros telf (53-7) 45-3608, 45-1731, 451353, Fax: (53-7) 45-3608 , La Habana (Cuba))" >Campos Cuní, Bernardo

    2011-01-01

    In Cuba the biogas installations are an important alternative for the processing of organic wastes in agricultural farms, and so reducing the contaminants and improving its quality as fertilizer, obtaining a renewable energy, the biogas. This combustible gas can be used for food cooking, water heating, the generation of electricity and domestic lighting. In the implementation of the strategy for facing climatic change drew up by the Ministry of Agriculture of Cuba it is considered a measure for the reduction of carbon emission consisting in “Reduce the consumption of combustibles of fossil origin using renewable sources of energy”. The paper shows a methodology for make easy the analysis and calculation of the parameters for the construction of fixed dome biodigesters. (author)

  18. Uncertainty Reduction Via Parameter Design of A Fast Digital Integrator for Magnetic Field Measurement

    CERN Document Server

    Arpaia, P; Lucariello, G; Spiezia, G

    2007-01-01

    At European Centre of Nuclear Research (CERN), within the new Large Hadron Collider (LHC) project, measurements of magnetic flux with uncertainty of 10 ppm at a few of decades of Hz for several minutes are required. With this aim, a new Fast Digital Integrator (FDI) has been developed in cooperation with University of Sannio, Italy [1]. This paper deals with the final design tuning for achieving target uncertainty by means of experimental statistical parameter design.

  19. Attractor states, control parameters, and co-adaptation in instructed L2 inferential comprehension: a design-based research study of a critical reading intervention Estados atratores, parâmetros de controle, e co-adaptação no ensino da compreensão inferencial em L2: uma pesquisa design-based de intervenção de leitura crítica

    Directory of Open Access Journals (Sweden)

    Moisés Damián Perales Escudero

    2013-01-01

    Full Text Available Previous L1 and L2 research on inferential comprehension has tended to follow a quantitative orientation. By contrast, L2 research on critical reading is qualitative and tends to ignore inferences. This paper presents a qualitative, design-based study of a critical reading intervention focused on promoting generative rhetorical inferences and investigating co-adaptation and emergence of new meaning-making capacities. Complexity theory (CT constructs were used to research processes of co-adaptation between the participants' comprehension and the teacher-researcher's understanding of learning and instructional needs. Identification of attractor states and control parameters in classroom discourse were used to explore unpredicted factors influencing the participants' inferential comprehension and further refine the intervention. The results indicate that rhetorical genre knowledge acted as a control parameter driving the students' comprehension to attractor states characterized by implausible inferences, and that this knowledge explains the emergence of pragmatic meaning (rhetorical inferences from semantic meaning. The paper illustrates the usefulness of CT constructs in doing design-based research qualitatively in a manner that informs both theory and practice.As pesquisas anteriores em L1 e L2 sobre compreensão inferencial tendem a uma orientação quantitativa. Por outro lado, a pesquisa sobre leitura crítica em L2 é qualitativa e tende a ignorar as inferências. Este artigo apresenta um estudo qualitativo (design-based research sobre uma intervenção de leitura crítica com foco na promoção de geração de inferências retóricas, investigando a co-adaptação e a emergência de capacidades de produção de novos significados. Os construtos da teoria da complexidade foram usados ??para investigar processos de co-adaptação entre a compreensão de aprendizagem e necessidades instrucionais dos participantes e do professor pesquisador. A

  20. Indoor environmental input parameters for the design and assessment of energy performance of buildings

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2015-01-01

    The first international standard that dealtwith all indoor environmental parameters (thermal comfort, air quality, lightingand acoustic) was published in 2007 asEN15251. This standard prescribed inputparameters for design and assessment ofenergy performance of buildings and was apart of the set...

  1. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion of so...

  2. Parameters Design for a Parallel Hybrid Electric Bus Using Regenerative Brake Model

    Directory of Open Access Journals (Sweden)

    Zilin Ma

    2014-01-01

    Full Text Available A design methodology which uses the regenerative brake model is introduced to determine the major system parameters of a parallel electric hybrid bus drive train. Hybrid system parameters mainly include the power rating of internal combustion engine (ICE, gear ratios of transmission, power rating, and maximal torque of motor, power, and capacity of battery. The regenerative model is built in the vehicle model to estimate the regenerative energy in the real road conditions. The design target is to ensure that the vehicle meets the specified vehicle performance, such as speed and acceleration, and at the same time, operates the ICE within an expected speed range. Several pairs of parameters are selected from the result analysis, and the fuel saving result in the road test shows that a 25% reduction is achieved in fuel consumption.

  3. THE BASING OF STABILIZATION PARAMETERS OF A FORTIFIED RAILWAY BED

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-12-01

    Full Text Available Purpose. The article is devoted to stabilization parameters determination of reinforced railway bed. At the present time, the railway plays the leading role in transport system to ensure the needs of freight and passenger traffic. In modern conditions railway operation concentrates on ensuring the necessary level of track reliability, including the roadbed, this is one of the main elements of road structures. The purpose of this article is the determination of basic parameters of stress-strain state to stabilize the soil subgrade embankment by reinforced materials. Methodology. To achieve this goal the following tasks of researches were solved: the effect of reinforcing layer of geomaterial on deformation properties of soil subgrade in various design of strengthening was investigated, the distributions of stresses in the subgrade were determined, reinforced of geomaterials under state load. Experimental studies to explore the nature of the deformation model subgrade at various degrees of stress were carried out. Findings. The analysis of the results of performed experimental and theoretical studies permitted to do the following conclusions. In conducting researches determined the distribution of stresses in the subgrade reinforced geomaterials under static load. The complex of experimental studies allows exploring the nature of the deformation model subgrade at various degrees of stress. Originality. On the basis of the theoretical studies have been regarded the problem of determining the stress-strain state of subgrade reinforced geomaterials by measuring stresses in its application for step loads. Practical value. The practical value was presented by the results of evaluating the effect of reinforcing way for changing the stress-strain state of subgrade.

  4. Screening key parameters related to passive system performance based on Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Ma, Guohang; Yu, Yu; Huang, Xiong; Peng, Yuan; Ma, Nan; Shan, Zuhua; Niu, Fenglei; Wang, Shengfei

    2015-01-01

    Highlights: • An improved AHP method is presented for screening key parameters used in passive system reliability analysis. • We take the special bottom parameters as criterion for calculation and the abrupt change of the results are verified. • Combination weights are also affected by uncertainty of input parameters. - Abstract: Passive safety system is widely used in the new generation nuclear power plant (NPP) designs such as AP1000 to improve the reactor safety benefitting from its simple construction and less request for human intervene. However, the functional failure induced by uncertainty in the system thermal–hydraulic (T–H) performance becomes one of the main contributors to system operational failure since the system operates based on natural circulation, which should be considered in the system reliability evaluation. In order to improve the calculation efficiency the key parameters which significantly affect the system T–H characteristics can be screened and then be analyzed in detail. The Analytical Hierarchy Process (AHP) is one of the efficient methods to analyze the influence of the parameters on a passive system based on the experts’ experience. The passive containment cooling system (PCCS) in AP1000 is one of the typical passive safety systems, nevertheless too many parameters need to be analyzed and the T–H model itself is more complicated, so the traditional AHP method should be mended to use for screening key parameters efficiently. In this paper, we adapt the improved method in hierarchy construction and experts’ opinions integration, some parameters at the bottom justly in the traditional hierarchy are studied as criterion layer in improved AHP, the rationality of the method and the effect of abrupt change with the data are verified. The passive containment cooling system (PCCS) in AP1000 is evaluated as an example, and four key parameters are selected from 49 inputs

  5. Influence of a new bicycle crank design on aerobic parameters of non-cyclists.

    Science.gov (United States)

    Buscemi, S; Canino, B; Dagnese, F; Carpes, F P; Calandrino, V; Buscemi, C; Mattina, A; Verga, S

    2012-02-01

    A well known problem in conventional cycling crank systems is the pedalling dead spot when the crank arms are in vertical position. The pedalling dead spot mitigates the power output during the propulsion phase of pedalling. The aim of this study was to verify the effects of a new design of crank system on aerobic parameters of performance in healthy non-cyclists. The mechanical concept of the new system is based on the theory that crank arms should never be perpendicularly aligned to the ground at dead spot. The maximal aerobic capacity (VO2 max) and different parameters of cycling efficiency were measured in 14 (mean±SD of age: 26±5) non-obese (body mass index: 26.0±3.0 kg/m2) healthy men in two different occasions at intervals of 2 days using alternately and in randomized order both the traditional crank system and the system without dead spot respectively. The workload performed was significantly higher with the new crank system as suggested by the higher exercise duration (12.89 ±2.36 vs. 13.33±2.30 min; P=0.032). The favourable results obtained in this study using the new chainring may be in consequence of a more efficient biomechanics of pedalling that does not reflect changes in O2 consumption and CO2 produced. However, it is not possible to exclude that involuntary motivational factors may have induced the difference in the time test since it was not possible to blind subjects about the two crank systems. Further investigations are necessary to confirm the results of this exploratory study and give a more exhaustive explanation about the mechanisms that allow the possible better performance with this new chainring system.

  6. Challenges to Designing Game-Based Business

    DEFF Research Database (Denmark)

    Henriksen, Thomas Duus

    2014-01-01

    The four categories labelled game-design, didactic design, organisational design and business design each constitute a set of challenges, each requiring a particular set of competencies. The key conclusion of the paper is that even though the learning game design constitutes the core of establish......The four categories labelled game-design, didactic design, organisational design and business design each constitute a set of challenges, each requiring a particular set of competencies. The key conclusion of the paper is that even though the learning game design constitutes the core...... of establishing game based business (GBB), the subsequent stages of development call for other kinds of competencies in order to become a viable GBB....

  7. Model-Based Design for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2009-01-01

    Model-based design allows teams to start the design process from a high-level model that is gradually refined through abstraction levels to ultimately yield a prototype. This book describes the main facets of heterogeneous system design. It focuses on multi-core methodological issues, real-time analysis, and modeling and validation

  8. Reflections on Design-Based Research

    DEFF Research Database (Denmark)

    Ørngreen, Rikke

    2015-01-01

    Design-Based Research is an intervention method that researches educational design (products or processes) in real-life settings with the dual purpose of generating theories about the domain and develop the design iteratively. This paper is an integrative review with a personal ethnographic narra...

  9. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the loa...

  10. ERGONOMIC DESIGN RECOMMENDATIONS BASED ON AN ACTUAL CHAINSAW DESIGN

    Directory of Open Access Journals (Sweden)

    J. Kaljun

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: To develop high quality products, a designer has to consider various influential factors, one of which is ergonomics. And to fashion a specific product for the user, a designer needs expert knowledge of the user’s requirements. However, expert knowledge can also be accessed through an intelligent advisory system for ergonomic design support. The effectiveness of such an expert system depends mainly on the quality of the knowledge base and on the appropriateness of the system's inference engine. Data for the system’s knowledge base can be collected in different ways. One approach is to study relevant projects to collect appropriate ergonomic solutions; another is to recognise bottlenecks in ergonomic design. This paper presents a case study of the design of an actual chainsaw – with emphasis on ergonomic design solutions – that can be transformed into ergonomic design recommendations. At the end of the paper, an application of one of the derived recommendations within the knowledge base of the intelligent advisory system is presented.

    AFRIKAANSE OPSOMMING: By die ontwerp van gehaltegoedere moet aandag gegee word aan verskeie faktore soos die Ergonomie. Die produkontwerper moet deeglike kennis dra van die verbruikersbehoeftes. Daarbenewens moet hy liefs ook gebruik maak van ’n intelligente sisteem vir ontwerphulp. Die navorsing is toegespits op datasteun vir ’n kettingsaagontwerp en toon hoe die intelligente sisteem betekenisvolle ondersteuning verleen.

  11. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  12. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  13. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  14. A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-11-01

    Full Text Available The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model. In this article, a new method is proposed which consider the random errors of design matrix. The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation. Then, this problem could be solved under the framework of normal least square by equivalence transformation of observation equation. The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method.

  15. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    Science.gov (United States)

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  16. Design values of resilient modulus of stabilized and non-stabilized base.

    Science.gov (United States)

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  17. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    Science.gov (United States)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  18. Multi performance option in direct displacement based design

    Directory of Open Access Journals (Sweden)

    Muljati Ima

    2017-01-01

    Full Text Available Compare to traditional method, direct displacement based design (DDBD offers the more rational design choice due to its compatibility with performance based design which is controlled by the targeted displacement in design. The objectives of this study are: 1 to explore the performance of DDBD for design Level-1, -2 and -3; 2 to determine the most appropriate design level based on material efficiency and damage risk; and 3 to verify the chosen design in order to check its performance under small-, moderate- and severe earthquake. As case study, it uses regular concrete frame structures consists of fourand eight-story with typical plan, located in low- and high-risk seismicity area. The study shows that design Level-2 (repairable damage is the most appropriate choice. Nonlinear time history analysis is run for each case study in order to verify their performance based on parameter: story drift, damage indices, and plastic mechanism. It can be concluded that DDBD performed very well in predicting seismic demand of the observed structures. Design Level-2 can be chosen as the most appropriate design level. Structures are in safe plastic mechanism under all level of seismicity although some plastic hinges formed at some unexpected locations.

  19. Irradiation experiment conceptual design parameters for MURR LEU U-Mo fuel conversion

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.; Wilson, E.

    2013-03-01

    This report contains the results of reactor design and performance calculations for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the nominal steady-state irradiation conditions of a key set of plates containing peak irradiation parameters found in MURR cores fueled with the LEU monolithic U-Mo alloy fuel with 10 wt% Mo.

  20. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  1. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia (Sandia National Laboratories, Livermore, CA); Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Eddy, John P.

    2011-12-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  2. Probabilistic Design of Wind Turbine Structures: Design Studies and Sensitivities to Model Parameters

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried

    Several societies have envisaged renewables as sources of energy for ecological and geo-strategical considerations. Amongst others, wind energy has gained considerable interest in the past decades due to its high potential to fulfil the aspirations of the societies that opted for it. However......, harnessing offshore wind energy poses challenges such as cost of energy reduction, handling of very large structures, randomness pertaining to the metocean environment, and need for better understanding of the mechanical behavior of the structures. Three means are employed in this thesis for cost reduction...... of braces based on the application of magneto-rheological dampers. Modelling methods and effectiveness are presented together with installation steps. The third employs an aero-elastically tailored rotor to alleviate fatigue loads on the support structure. Whereas the rotor optimization process was not done...

  3. Parameter tuning for the NFFT based fast Ewald summation

    Directory of Open Access Journals (Sweden)

    Franziska Nestler

    2016-07-01

    Full Text Available The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditionsis possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT. In this paper we consider the particle-particle NFFT (P$^2$NFFT approach, which is based on the fast Fourier transform for nonequispaced data (NFFT and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P$^3$M algorithm. The publicly available P$^2$NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.

  4. Parameter tuning for the NFFT based fast Ewald summation

    Science.gov (United States)

    Nestler, Franziska

    2016-07-01

    The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT). In this paper we consider the particle-particle NFFT (P^2NFFT) approach, which is based on the fast Fourier transform for nonequispaced data (NFFT) and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P^3M) algorithm. The publicly available P^2NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.

  5. Equivalent Viscous Damping Models in Displacement Based Seismic Design

    Directory of Open Access Journals (Sweden)

    Raul Zaharia

    2005-01-01

    Full Text Available The paper reviews some equivalent viscous damping models used in the displacement based seismic design considering the equivalent linearization. The limits of application of the models are highlighted, based on comparison existing in the literature. The study is part of research developed by author, aimed to determine the equivalent linear parameters in order to predict the maximum displacement response for earthquakes compatible with given response spectra.

  6. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm.

    Science.gov (United States)

    Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J

    2014-12-01

    Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important

  7. [Artificial neural network parameters optimization software and its application in the design of sustained release tablets].

    Science.gov (United States)

    Zhang, Xing-Yi; Chen, Da-Wei; Jin, Jie; Lu, Wei

    2009-10-01

    Artificial neural network (ANN) is a multi-objective optimization method that needs mathematic and statistic knowledge which restricts its application in the pharmaceutical research area. An artificial neural network parameters optimization software (ANNPOS) programmed by the Visual Basic language was developed to overcome this shortcoming. In the design of a sustained release formulation, the suitable parameters of ANN were estimated by the ANNPOS. And then the Matlab 5.0 Neural Network Toolbox was used to determine the optimal formulation. It showed that the ANNPOS reduced the complexity and difficulty in the ANN's application.

  8. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    Science.gov (United States)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  9. Importance of helical pitch parameter in LHD-type heliotron reactor designs

    International Nuclear Information System (INIS)

    Goto, T.; Suzuki, Y.; Yanagi, N.; Watanabe, K.Y.; Imagawa, S.; Sagara, A.

    2010-11-01

    In the design studies of the LHD-type heliotron reactors, one of the key issues is to secure sufficient blanket spaces. In this respect, helical pitch parameter γ is quite important because it significantly affects both the coil and plasma shapes. In order to understand the effect of helical pitch parameter on the design window quantitatively, a system design code for the LHD-type heliotron reactors has been developed and parametric scans were carried out with 3 cases of γ=1.15, 1.20 and 1.25. It becomes clear that the possible design window of heliotron reactors strongly depends on the engineering constraints: stored magnetic energy of coil system, blanket space, and neutron wall load. γ=1.20 is optimum from the viewpoint of moderating the physics requirements, but γ=1.15 has a robustness to the change in the physics and engineering conditions. Since the design windows are quite sensitive to the engineering constraints and physics conditions, the further detailed study on design feasibility of advanced engineering components and the effect of γ on the physics conditions is expected to optimize the value of γ. (author)

  10. Using experimental design to optimize the process parameters in fluidized bed granulation.

    Science.gov (United States)

    Rambali, B; Baert, L; Thoné, D; Massart, D L

    2001-01-01

    In this study many parameters were screened for a small-scale granulation process for their effect on the yield of granules between 75 and 500 microns and the geometrical granule mean size (d50). First a Plackett-Burman design was applied to screen the inlet air temperature, the inlet flow rate, the spray rate, the nozzle air pressure, the nozzle spray diameter, and the nozzle position. The Plackett-Burman design showed that the key process parameters were the inlet flow rate and the spray rate and probably also the inlet air temperature. Afterward a fractional factorial design (2(5-2)) was applied to screen the remaining parameters plus the nozzle aircap position and the spraying time interval. The fractional factorial design showed that the nozzle air pressure was also important. As the target values for the granule yield (between 75 and 500 microns) and the geometric mean granule size (between 300 and 500 microns) were reached during the screening experiments, further optimization was not considered necessary.

  11. Model-based verification method for solving the parameter uncertainty in the train control system

    International Nuclear Information System (INIS)

    Cheng, Ruijun; Zhou, Jin; Chen, Dewang; Song, Yongduan

    2016-01-01

    This paper presents a parameter analysis method to solve the parameter uncertainty problem for hybrid system and explore the correlation of key parameters for distributed control system. For improving the reusability of control model, the proposed approach provides the support for obtaining the constraint sets of all uncertain parameters in the abstract linear hybrid automata (LHA) model when satisfying the safety requirements of the train control system. Then, in order to solve the state space explosion problem, the online verification method is proposed to monitor the operating status of high-speed trains online because of the real-time property of the train control system. Furthermore, we construct the LHA formal models of train tracking model and movement authority (MA) generation process as cases to illustrate the effectiveness and efficiency of the proposed method. In the first case, we obtain the constraint sets of uncertain parameters to avoid collision between trains. In the second case, the correlation of position report cycle and MA generation cycle is analyzed under both the normal and the abnormal condition influenced by packet-loss factor. Finally, considering stochastic characterization of time distributions and real-time feature of moving block control system, the transient probabilities of wireless communication process are obtained by stochastic time petri nets. - Highlights: • We solve the parameters uncertainty problem by using model-based method. • We acquire the parameter constraint sets by verifying linear hybrid automata models. • Online verification algorithms are designed to monitor the high-speed trains. • We analyze the correlation of key parameters and uncritical parameters. • The transient probabilities are obtained by using reliability analysis.

  12. Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method

    Science.gov (United States)

    Gamal, M. Mahmoud; Emad, E. Mahmoud; Ayman, A. Arafa

    2013-06-01

    The aim of this paper is to study the control of hyperchaotic complex nonlinear systems with unknown parameters using passive control theory. An approach is stated to design the passive controller and estimate the unknown parameters based on the property of the passive system. The feasibility and effectiveness of the proposed approach is demonstrated through its application to the hyperchaotic complex Lü system, as an example. The estimated values of the unknown parameters are calculated. The analytical form of the complex controller is derived and used in the numerical simulation to control the hyperchaotic attractors of this example. Block diagrams of this example using Matlab/Simulink are constructed after and before the control to ensure the validity of the analytical results. Other examples of hyperchaotic complex nonlinear systems can be similarly treated.

  13. Effect of design variations on AMTEC cell efficiency, and of operating parameters on performance OSC cell design

    International Nuclear Information System (INIS)

    Schock, A.; Noravian, H.; Kumar, V.; Or, C.

    1997-01-01

    A companion paper presented here described an OSC-derived methodology for the coupled thermal, fluid flow, and electrical analyses of AMTEC cells with multiple Beta Alumina Solid Electrolyte (BASE) tubes, and illustrated its application to a specific cell design. The present paper describes parametric results obtained by applying the same procedure to 39 variations of that cell design to determine the effect of 24 individual design variables on cell performance. For each of the 24 design variables, OSC performed detailed analyses of two designs that were identical except for that variable. This served to isolate the effect of that variable on the cell's power, efficiency, and critical temperatures. The paper presents the results of those analyses, and explains the reasons for the design decisions made by OSC. Subsequently, it describes the results of parametric analyses to determine the effect of temperature margin, input thermal power, and output voltage on the cell's critical temperatures and performance

  14. A New Design Method based on Cooperative Data Mining from Multi-Objective Design Space

    Science.gov (United States)

    Sugimura, Kazuyuki; Obayashi, Shigeru; Jeong, Shinkyu

    We propose a new multi-objective parameter design method that uses the combination of the following data mining techniques: analysis of variance, self-organizing map, decision tree analysis, rough set theory, and association rule. This method first aims to improve multiple objective functions simultaneously using as much predominant main effects of different design variables as possible. Then it resolves the remaining conflictions between the objective functions using predominant interaction effects of design variables. The key to realizing this method is the obtaining of various design rules that quantitatively relate levels of design variables to levels of objective functions. Based on comparative studies of data mining techniques, the systematic processes for obtaining these design rules have been clarified, and the points of combining data mining techniques have also been summarized. This method has been applied to a multi-objective robust optimization problem of an industrial fan, and the results show its superior capabilities for controlling parameters to traditional single-objective parameter design methods like the Taguchi method.

  15. Improvement of properties of aluminosilicate pastes based on optimization of curing parameters

    Science.gov (United States)

    Kočí, Václav; Rovnaníková, Pavla; Černý, Robert

    2017-07-01

    Alkali-activated binders represent a low-energy alternative to traditional binders based on lime or cement. In this paper, a new binder of this type is designed and the influence of curing parameters on its mechanical properties, namely 7-days compressive strength, is investigated. The curing parameters include the curing temperature and the period of exposure. To maximize the compressive strength of the binder, simplex optimization procedure is applied in order to demonstrate its applicability for this research. The preliminary results indicate that the procedure is able to reach positive results as the compressive strength is found to increase by ˜11 %. As this improvement is achieved already after the first optimization step, it can be concluded that this approach has a potential to be more effective than traditional empirical design which is common in building materials engineering.

  16. Improvement of plant parameters of the ROBO gamma irradiation facility due to design modification

    International Nuclear Information System (INIS)

    Moussa, A.; Othman, I.; Chu, R.

    1999-01-01

    Two industrial scale, ROBO type Co 60 gamma irradiation facilities have recently been put into operation in Syria and Peru, and the dosimetry commissioning of both plants have been carried out to determine dose distribution with products and to calculate plant parameters such as efficiency, dose uniformity ratio and throughput. There are some design modifications between the two plants in connection with the location of the carriers with respect to the source plaque and also to each other. The effect of these construction modifications on the plant parameters is discussed in the analysis of the dose distribution data measured in the carriers with depth and height among the four irradiation rows on both sides of the source plaque. The plant parameters were also calculated and measured results were compared to each other. (author)

  17. Improvement of plant parameters of the robo gamma irradiation facility due to design modification

    International Nuclear Information System (INIS)

    Kovacs, A.; Moussa, A.; Othman, I.; Del Valle Odar, C.; Seminario, A.; Linares, M.; Huamanlazo, P.; Aymar, J.; Chu, R.

    1998-01-01

    Two industrial scale, 'ROBO' type 60 Co gamma irradiation facilities have recently been put into operation in Syria and Peru, and the dosimetry commissioning of both plants have been carried out to determine dose distribution within products and to calculate plant parameters such as efficiency, dose uniformity ratio and throughput. There are some design modifications between the two plants in connection with the location of the carriers with respect to the source plaque and also to each other. The effect of these construction modifications on the plant parameters is discussed in the analysis of the dose distribution data measured in the carriers with depth and height among the four irradiation rows on both sides of the source plaque. The plant parameters were also calculated for different product densities using the technical data of the facilities, and the calculated and measured results were compared to each other

  18. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  19. Inrush Current Simulation of Two Windings Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure

    Science.gov (United States)

    Tokunaga, Yoshitaka; Kubota, Kunihiro

    This paper presents estimation techniques of machine parameters for two windings power transformer using design procedure of winding structure. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by design procedure of winding structure and simulation results were reproduced measured waveforms.

  20. Dependence of the time-constant of a fuel rod on different design and operational parameters

    International Nuclear Information System (INIS)

    Elenkov, D.; Lassmann, K.; Schubert, A.; Laar, J. van de

    2001-01-01

    The temperature response during a reactor shutdown has been measured for many years in the OECD-Halden Project. It has been shown that the complicated shutdown processes can be characterized by a time constant τ which depends on different fuel design and operational parameters, such as fuel geometry, gap size, fill gas pressure and composition, burnup and linear heat rate. In the paper the concept of a time constant is analyzed and the dependence of the time constant on various parameters is investigated analytically. Measured time constants for different designs and conditions are compared with those derived from calculations of the TRANSURANUS code. Employing standard models results in a systematic underprediction of the time constant, i.e. the heat transfer during shutdown is overestimated. (author)

  1. Rationale for reduced tornado design bases

    International Nuclear Information System (INIS)

    Rutherford, P.D.; Ho, H.W.; Hartung, J.A.; Kastenberg, W.E.

    1985-01-01

    This paper provides a rationale for relaxing the present NRC tornado design requirements, which are based on a design basis tornado (DBT) whose frequency of exceedance is 10 -7 per year. It is proposed that a reduced DBT frequency of 10 -5 to 10 -6 per year is acceptable. This change in the tornado design bases for LMFBRs (and possibly all types of nuclear plants) is justified based on (1) existing NRC regulations and guidelines, (2) probabilistic arguments, (3) consistency with NRC trial safety goals, and (4) cost-benefit analysis

  2. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldred, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jakeman, John Davis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stephens, John Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vigil, Dena M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wildey, Timothy Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bohnhoff, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hu, Kenneth T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dalbey, Keith R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauman, Lara E [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hough, Patricia Diane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  3. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  4. Model-Based Material Parameter Estimation for Terahertz Reflection Spectroscopy

    Science.gov (United States)

    Kniffin, Gabriel Paul

    Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures imply great promise for spectral detection and classification using THz radiation. While such spectral features are most easily observed in transmission, real-life imaging systems will need to identify materials of interest from reflection measurements, often in non-ideal geometries. One important, yet commonly overlooked source of signal corruption is the etalon effect -- interference phenomena caused by multiple reflections from dielectric layers of packaging and clothing likely to be concealing materials of interest in real-life scenarios. This thesis focuses on the development and implementation of a model-based material parameter estimation technique, primarily for use in reflection spectroscopy, that takes the influence of the etalon effect into account. The technique is adapted from techniques developed for transmission spectroscopy of thin samples and is demonstrated using measured data taken at the Northwest Electromagnetic Research Laboratory (NEAR-Lab) at Portland State University. Further tests are conducted, demonstrating the technique's robustness against measurement noise and common sources of error.

  5. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal

    2017-05-13

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  6. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa

    OpenAIRE

    Sackey, S. M.; Bester, A.; Adams, D.

    2017-01-01

    To manage the impact of Industry 4.0 on industrial engineering (IE) education curriculum requirements, realistic teaching and learning infrastructure such as a learning factory are required. This paper scans the literature to determine Industry 4.0’s principles and interactions with IE and a learning factory, surveys relevant universities by questionnaire to determine its current status and practices, and formulates didactic design parameters for an Industry 4.0 learning factory to support IE...

  7. Norm based design of fault detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Hans Henrik

    1999-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered in this paper from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well...

  8. Charges collection induced in APS by heavy particles: influence of design parameters

    International Nuclear Information System (INIS)

    Belredon, Xavier

    2003-01-01

    We have studied the design parameters influence on heavy ions-induced charge collection physics in APS. The goal is to determine the key parameters for an optimised space environment 'particle detector' APS design. It appears that diffusion is the dominant charge collection mechanism in all the studied technology types, with a smaller magnitude in case of epitaxial technologies. Following proton irradiation, a delayed charge collection and loss of collected charges have been observed. These phenomena are explained by the combination of carriers diffusion and action of the traps generated in the device. Even if they cannot be avoid in space applications, these effects are reduced in case of epitaxial technologies. This work led to the design parameters definition of an optimized APS 'particle detector' and to its fabrication. The results obtained on this APS confirm the previous conclusions and let us define the detection range of such detectors from 0.03 to 50 MeV.cm 2 .mg -1 . (author) [fr

  9. Hellinger Distance-Based Parameter Tuning for ɛ-Filter

    Science.gov (United States)

    Suetake, Noriaki; Tanaka, Go; Hashii, Hayato; Uchino, Eiji

    In this letter, we propose a new tuning method of ɛ value, which is a parameter in the ɛ-filter, using a metric between signal distributions, i.e., Hellinger distance. The difference between the input and output signals is evaluated using Hellinger distance and used for the parameter tuning in the proposed method.

  10. Parameters Identification of Photovoltaic Cells Based on Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Liao Hui

    2016-01-01

    Full Text Available For the complex nonlinear model of photovoltaic cells, traditional evolution strategy is easy to fall into the local optimal and its identification time is too long when taking parameters identification, then the difference algorithm is proposed in this study, which is to solve the problems of parameter identification in photovoltaic cell model, where it is very difficult to achieve with other identification algorithms. In this method, the random data is selected as the initial generation; the successful evolution to the next generation is done through a certain strategy of difference algorithm, which can achieve the effective identification of control parameters. It is proved that the method has a good global optimization and the fast convergence ability, and the simulation results are shown that the differential evolution has high identification ability and it is an effective method to identify the parameters of photovoltaic cells, where the photovoltaic cells can be widely used in other places with these parameters.

  11. Processing parameters optimisation of nonwoven kenaf reinforced acrylic based polyester composites

    Science.gov (United States)

    Salim, M. S.; Rasyid, M. F. Ahmad; Taib, R. Mat; Ishak, Z. A. Mohd

    2017-12-01

    The present work studies the dependence of mechanical properties of kenaf fibre (KF) reinforced acrylic based polyester composites on the processing parameters. Prior to moulding, non-woven kenaf fibre (NWKF) with areal density of 1200 g/m2 was impregnated by acrylic based polyester resin using an impregnation line followed by a post-drying step. The flexural properties of the composites were investigated with respect to changes in impregnation and moulding conditions based on Design of Experiment (DOE) of Response Surface Methodology (RSM). RSM through Central Composite Design (CCD) was applied to develop a model of flexural properties with respect to the combination of processing variables. The mathematical regression models of the flexural properties were derived from the analysis of variance (ANOVA) to determine the model significance. All processing variables in linear terms exhibit significant effect on the flexural strength of the composites. Optimisation of the independent variables to maximise the flexural properties was estimated and verified.

  12. Designers' Cognitive Thinking Based on Evolutionary Algorithms

    OpenAIRE

    Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang

    2013-01-01

    The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...

  13. Design for game based learning platforms

    DEFF Research Database (Denmark)

    Sørensen, Birgitte Holm; Meyer, Bente

    2010-01-01

    This paper focuses on the challenges related to the design of game based learning platforms for formal learning contexts that are inspired by the pupil's leisure time related use of web 2.0. The paper is based on the project Serious Games on a Global Market Place (2007-2011) founded by the Danish...... Council for Strategic Research, in which an online game-based platform for English as a foreign language in primary school is studied. The paper presents a model for designing for game based learning platforms. This design is based on cultural and ethnographic based research on children's leisure time use...... of web 2.0 and integrates theories of learning, didactics, games, play, communication, multimodality and different pedagogical approaches. In relation to the introduced model the teacher role is discussed....

  14. Design and implementation of atmospheric multi-parameter sensor for UAVs

    Science.gov (United States)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. With low cost and

  15. Aggregation Operator Based Fuzzy Pattern Classifier Design

    DEFF Research Database (Denmark)

    Mönks, Uwe; Larsen, Henrik Legind; Lohweg, Volker

    2009-01-01

    This paper presents a novel modular fuzzy pattern classifier design framework for intelligent automation systems, developed on the base of the established Modified Fuzzy Pattern Classifier (MFPC) and allows designing novel classifier models which are hardware-efficiently implementable. The perfor...

  16. Design Criteria Based on Aesthetic Considerations

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl

    2009-01-01

    Aesthetic criteria for designs are often debated in a very subjective manner which makes it difficult to reach consensus. In order to have a more rational and transparent process, in particular in industrial design, we propose a procedure based on Baumgarten's aesthetic considerations and Thommesen......'s dividing of a form into form elements. The procedure has been tested in student projects....

  17. Knowledge-based optical system design

    Science.gov (United States)

    Nouri, Taoufik

    1992-03-01

    This work is a new approach for the design of start optical systems and represents a new contribution of artificial intelligence techniques in the optical design field. A knowledge-based optical-systems design (KBOSD), based on artificial intelligence algorithms, first order logic, knowledge representation, rules, and heuristics on lens design, is realized. This KBOSD is equipped with optical knowledge in the domain of centered dioptrical optical systems used at low aperture and small field angles. It generates centered dioptrical, on-axis and low-aperture optical systems, which are used as start systems for the subsequent optimization by existing lens design programs. This KBOSD produces monochromatic or polychromatic optical systems, such as singlet lens, doublet lens, triplet lens, reversed singlet lens, reversed doublet lens, reversed triplet lens, and telescopes. In the design of optical systems, the KBOSD takes into account many user constraints such as cost, resistance of the optical material (glass) to chemical, thermal, and mechanical effects, as well as the optical quality such as minimal aberrations and chromatic aberrations corrections. This KBOSD is developed in the programming language Prolog and has knowledge on optical design principles and optical properties. It is composed of more than 3000 clauses. Inference engine and interconnections in the cognitive world of optical systems are described. The system uses neither a lens library nor a lens data base; it is completely based on optical design knowledge.

  18. Performance-based Pareto optimal design

    NARCIS (Netherlands)

    Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.

    2008-01-01

    A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are

  19. Multimedia-Based Chip Design Education.

    Science.gov (United States)

    Catalkaya, Tamer; Golze, Ulrich

    This paper focuses on multimedia computer-based training programs on chip design. Their development must be fast and economical, in order to be affordable by technical university institutions. The self-produced teaching program Illusion, which demonstrates a monitor controller as an example of a small but complete chip design, was implemented to…

  20. Web-Based Learning Design Tool

    Science.gov (United States)

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  1. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    Science.gov (United States)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations

  2. Research on the Effects of Hydropneumatic Parameters on Tracked Vehicle Ride Safety Based on Cosimulation

    Directory of Open Access Journals (Sweden)

    Shousong Han

    2017-01-01

    Full Text Available Ride safety of a tracked vehicle is the key focus of this research. The factors that affect the ride safety of a vehicle are analyzed and evaluation parameters with their criteria are proposed. A multibody cosimulation approach is used to investigate the effects of hydropneumatic parameters on the ride safety and aid with design optimization and tuning of the suspension system. Based on the cosimulation environment, the vehicle multibody dynamics (MBD model and the road model are developed using RecurDyn, which is linked to the hydropneumatic suspension model developed in Lab AMESim. Test verification of a single suspension unit is accomplished and the suspension parameters are implemented within the hydropneumatic model. Virtual tests on a G class road at different speeds are conducted. Effects of the accumulator charge pressure, damping diameter, and the track tensioning pressure on the ride safety are analyzed and quantified. This research shows that low accumulator charge pressure, improper damping diameter, and insufficient track tensioning pressure will deteriorate the ride safety. The results provide useful references for the optimal design and control of the parameters of a hydropneumatic suspension.

  3. Selection of the battery pack parameters for an electric vehicle based on performance requirements

    Science.gov (United States)

    Koniak, M.; Czerepicki, A.

    2017-06-01

    Each type of vehicle has specific power requirements. Some require a rapid charging, other make long distances between charges, but a common feature is the longest battery life time. Additionally, the battery is influenced by factors such as temperature, depth of discharge and the operation current. The article contain the parameters of chemical cells that should be taken into account during the design of the battery for a specific application. This is particularly important because the batteries are not properly matched and can wear prematurely and cause an additional costs. The method of selecting the correct cell type should take previously discussed features and operating characteristics of the vehicle into account. The authors present methods of obtaining such characteristics along with their assessment and examples. Also there has been described an example of the battery parameters selection based on design assumptions of the vehicle and the expected performance characteristics. Selecting proper battery operating parameters is important due to its impact on the economic result of investments in electric vehicles. For example, for some Li-Ion technologies, the earlier worn out of batteries in a fleet of cruise boats or buses having estimated lifetime of 10 years is not acceptable, because this will cause substantial financial losses for the owner of the rolling stock. The presented method of choosing the right cell technology in the selected application, can be the basis for making the decision on future battery technical parameters.

  4. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  5. Using CFD to Establish a Correlation between Design Parameters and Performance Characteristics for Seat valves

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Sørensen, H. L.

    2003-01-01

    This paper describes experimental and Computational Fluid Dynamics (CFD) analyses of the flow and flow force characteristics in hydraulic seat valves. The flow force compensation method were investigated based on balancing the axial fluid momentum by designing a rim on the rear edge of the poppet....... There are many results of steady state characteristics of these valve designs, but mostly based on analyses of the flow force behaviour in order to optimise the performance of a certain design in a specific operating range. Here the aim is to establish a correlation between the overall flow field...

  6. Dasy Based Tool for The Design of Ice Mechanisms

    Directory of Open Access Journals (Sweden)

    Tichánek Radek

    2015-12-01

    Full Text Available This article presents a tool for designing new mechanisms of internal combustion engines based on the DASY knowledge database. An OHC valve train has been chosen for developing and testing the presented tool. The tool includes both a kinematic and dynamic model connected to a crank train. Values of unknown parameters have been obtained using detailed calibration and consequent validation of three dynamic models with measured data. The values remain stored in DASY and many of them can be used directly to design new mechanisms, even in cases where the geometries of some parts are different. The paper presents three methods which have been used not only for the calibration, but also for the identification of the influence of unknown parameters on valve acceleration and its vibration. The tool has been used to design the cam shapes for a prototype of the new mechanism.

  7. Design tool for TOF and SL based 3D cameras.

    Science.gov (United States)

    Bouquet, Gregory; Thorstensen, Jostein; Bakke, Kari Anne Hestnes; Risholm, Petter

    2017-10-30

    Active illumination 3D imaging systems based on Time-of-flight (TOF) and Structured Light (SL) projection are in rapid development, and are constantly finding new areas of application. In this paper, we present a theoretical design tool that allows prediction of 3D imaging precision. Theoretical expressions are developed for both TOF and SL imaging systems. The expressions contain only physically measurable parameters and no fitting parameters. We perform 3D measurements with both TOF and SL imaging systems, showing excellent agreement between theoretical and measured distance precision. The theoretical framework can be a powerful 3D imaging design tool, as it allows for prediction of 3D measurement precision already in the design phase.

  8. Design of flexible skin based on a mixed cruciform honeycomb

    Science.gov (United States)

    Rong, Jiaxin; Zhou, Li

    2017-04-01

    As the covering of morphing wings, flexible skin is required to provide adequate cooperation deformation, keep the smoothness of the aerodynamic configuration and bear the air load. The non-deformation direction of flexible skin is required to be restrained to keep the smoothness during morphing. This paper studies the deformation mechanisms of a cruciform honeycomb under zero Poisson's ratio constraint. The morphing capacity and in-plane modulus of the cruciform honeycomb are improved by optimizing the shape parameters of honeycomb unit. To improve the out-of-plane bending capacity, a zero Poisson's ratio mixed cruciform honeycomb is proposed by adding ribs into cruciform honeycomb, which can be used as filling material of flexible skin. The mechanical properties of the mixed honeycomb are studied by theoretical analysis and simulation. The local deformation of flexible skin under air load is also analyzed. Targeting the situation of non-uniform air load, a gradient density design scheme is referred. According to the design requirements of the variable camber trailing edge wing flexible skin, the specific design parameters and performance parameters of the skin based on the mixed honeycomb are given. The results show that the zero Poisson's ratio mixed cruciform honeycomb has a large bending rigidity itself and can have a better deformation capacity in-plane and a larger bending rigidity out-of-plane by optimizing the shape parameters. Besides, the designed skin also has advantages in driving force, deformation capacity and quality compared with conventional skin.

  9. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  10. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages

    Directory of Open Access Journals (Sweden)

    Kevin Holder

    2017-10-01

    Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system

  11. Parameter identification for structural dynamics based on interval analysis algorithm

    Science.gov (United States)

    Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke

    2018-04-01

    A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.

  12. Robust control design for active driver assistance systems a linear-parameter-varying approach

    CERN Document Server

    Gáspár, Péter; Bokor, József; Nemeth, Balazs

    2017-01-01

    This monograph focuses on control methods that influence vehicle dynamics to assist the driver in enhancing passenger comfort, road holding, efficiency and safety of transport, etc., while maintaining the driver’s ability to override that assistance. On individual-vehicle-component level the control problem is formulated and solved by a unified modelling and design method provided by the linear parameter varying (LPV) framework. The global behaviour desired is achieved by a judicious interplay between the individual components, guaranteed by an integrated control mechanism. The integrated control problem is also formalized and solved in the LPV framework. Most important among the ideas expounded in the book are: application of the LPV paradigm in the modelling and control design methodology; application of the robust LPV design as a unified framework for setting control tasks related to active driver assistance; formulation and solution proposals for the integrated vehicle control problem; proposal for a re...

  13. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    appears to have the largest impact on thermal flexibility. The importance of window design, namely the size, U-value and orientation, is underlined due to its critical influence on solar gains and heat losses. It is eventually observed that thermal mass has a secondary influence on the evaluated......This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal...... flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heating power peak creation. Under the conditions of this study, the thermal transmittance of the envelope...

  14. Mathematical modeling and design parameters of crushing machines with variable-pitch helix of the screw

    Directory of Open Access Journals (Sweden)

    Pelenko V. V.

    2017-11-01

    Full Text Available From the point of view of the effectiveness of the top cutting unit, the helix angle in the end portion of the screw is the most important and characteristic parameter, as it determines the pressure of the meat material in the zone of interaction of a knife and grate. The importance of solving the problem of mathematical modeling of geometry is due to the need to address the problem of minimizing the reverse flow of the food material when injecting into the cutting zone, as the specified effect of "locking" significantly reduces the performance of the transfer process, increases energy consumption of the equipment and entails the deterioration of the quality of the raw materials output. The problem of determining the length of the helix variable pitch for screw chopper food materials has been formulated and solved by methods of differential geometry. The task of correct description of the law of changing the angle of helix inclination along its length has been defined in this case as a key to provide the required dependence of this angle tangent on the angle of the radius-vector of the circle. It has been taken into account that the reduction in the pitch of the screw in the direction of the product delivery should occur at a decreasing rate. The parametric equation of the helix has been written in the form of three functional dependencies of the corresponding cylindrical coordinates. Based on the wide range analysis and significant number of models of tops from different manufacturers the boundaries of possible changes in the angles of inclination of the helical line of the first and last turns of the screw have been identified. The auger screw length is determined mathematically in the form of an analytical relationship and both as a function of the variable angle of its rise, and as a function of the rotation angle of the radius-vector of the circle generatrix, which makes it possible to expand the design possibilities of this node. Along

  15. Bodystorming for Movement-Based Interaction Design

    Directory of Open Access Journals (Sweden)

    Elena Márquez Segura

    2016-11-01

    Full Text Available After a decade of movement-based interaction in human–computer interaction, designing for the moving body still remains a challenge. Research in this field requires methods to help access, articulate, and harness embodied experiences in ways that can inform the design process. To address this challenge, this article appropriates bodystorming, an embodied ideation method for movement-based interaction design. The proposed method allows for early consideration of the physical, collocated, and social aspects of a designed activity as illustrated with two explorative workshops in different application domains: interactive body games and interactive performances. Using a qualitative methods approach, we used video material from the workshops, feedback from participants, and our own experience as participants and facilitators to outline important characteristics of the bodystorming method in the domain of movement-based interaction. The proposed method is compared with previous ones and application implications are discussed.

  16. Competency Based Assessment in Fashion Design

    Science.gov (United States)

    Russanti, Irma; Nurlaela, Lutfiyah; Basuki, Ismet; Munoto

    2018-04-01

    Professional certification is a form of stipulation on certain competency standards provided by one professional organization to the performance of a person through assessment. For that an assessment needs to be standardized so that there exists a general standardized scale to measure competence. In the professional certification of fashion design department, an instrument of competency based assessment is essential to be developed. The purpose of this review is to know the application of competency based assessment in the field of fashion design. The literature reviews were found by journal searching with keywords competency based assessment and fashion design in Google scholar, of which was gotten over 20 journals from 2006 to 2016. Afterwards, the search of the free-downloaded e-books in libgen was conducted under competency based assessment and fashion design, which is then found some related references. The obtained literatures were used to review the definition, approach, and implementation of competency based assessment in the field of fashion design. Results show that it is important to develop an assessment sheet in the field of fashion design covering garment, apparel and embroidery sectors by patterning the criteria of performers along with the qualifications.

  17. Electrodialytic desalination of brackish water: determination of optimal experimental parameters using full factorial design

    Science.gov (United States)

    Gmar, Soumaya; Helali, Nawel; Boubakri, Ali; Sayadi, Ilhem Ben Salah; Tlili, Mohamed; Amor, Mohamed Ben

    2017-12-01

    The aim of this work is to study the desalination of brackish water by electrodialysis (ED). A two level-three factor (23) full factorial design methodology was used to investigate the influence of different physicochemical parameters on the demineralization rate (DR) and the specific power consumption (SPC). Statistical design determines factors which have the important effects on ED performance and studies all interactions between the considered parameters. Three significant factors were used including applied potential, salt concentration and flow rate. The experimental results and statistical analysis show that applied potential and salt concentration are the main effect for DR as well as for SPC. The effect of interaction between applied potential and salt concentration was observed for SPC. A maximum value of 82.24% was obtained for DR under optimum conditions and the best value of SPC obtained was 5.64 Wh L-1. Empirical regression models were also obtained and used to predict the DR and the SPC profiles with satisfactory results. The process was applied for the treatment of real brackish water using the optimal parameters.

  18. Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs.

    Science.gov (United States)

    Longin, Carl Friedrich Horst; Gowda, Manje; Mühleisen, Jonathan; Ebmeyer, Erhard; Kazman, Ebrahim; Schachschneider, Ralf; Schacht, Johannes; Kirchhoff, Martin; Zhao, Yusheng; Reif, Jochen Christoph

    2013-11-01

    Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction. Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (-7.2 %), leaf rust (-8.4 %) and septoria tritici blotch (-9.3 %). Moreover, 69 hybrids significantly (P hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.

  19. A Copula-Based Method for Estimating Shear Strength Parameters of Rock Mass

    Directory of Open Access Journals (Sweden)

    Da Huang

    2014-01-01

    Full Text Available The shear strength parameters (i.e., the internal friction coefficient f and cohesion c are very important in rock engineering, especially for the stability analysis and reinforcement design of slopes and underground caverns. In this paper, a probabilistic method, Copula-based method, is proposed for estimating the shear strength parameters of rock mass. The optimal Copula functions between rock mass quality Q and f, Q and c for the marbles are established based on the correlation analyses of the results of 12 sets of in situ tests in the exploration adits of Jinping I-Stage Hydropower Station. Although the Copula functions are derived from the in situ tests for the marbles, they can be extended to be applied to other types of rock mass with similar geological and mechanical properties. For another 9 sets of in situ tests as an extensional application, by comparison with the results from Hoek-Brown criterion, the estimated values of f and c from the Copula-based method achieve better accuracy. Therefore, the proposed Copula-based method is an effective tool in estimating rock strength parameters.

  20. Research-based design & design-based research: Affordances, limitations and synergies

    NARCIS (Netherlands)

    McKenney, Susan

    2015-01-01

    Research-based design is an orientation to educational development that is explicitly informed by existing research as well as formative evaluation. Design-based research is a genre of inquiry in which the design of innovative solutions to problems in educational practice provides the context for

  1. Reliability Based Geometric Design of Horizontal Circular Curves

    Science.gov (United States)

    Rajbongshi, Pabitra; Kalita, Kuldeep

    2018-03-01

    Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.

  2. Design of sustainable industrial scale biocatalysis based flax retting process

    OpenAIRE

    Agrawal, P. (Pramod); Gooijer, H. (Henk); Naik, N. (Nirali)

    2014-01-01

    The aim of this applied research is to design a sustainable industrial scale enzyme based flax retting process. A systematic approach has been adopted. The screening and selection of enzymes for flax retting has been carried out. Alkaline pectinase has been identified as the most appropriate enzyme for the flax retting purpose. Optimisation of process parameters has been carried out using alkaline pectinase, non-ionic surfactants and chelating agents in terms of concentration of enzyme and ot...

  3. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  4. Feasibility design study. Land-based OTEC plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, J. H.; Minor, J.; Jacobs, R.

    1979-01-01

    The purpose of this study has been to determine the feasibility of installing 10 MWe (MegaWatt-electric) and 40 MWe land-based OTEC demonstration power plants at two specific sites: Keahole Point on the western shore of the island of Hawaii; and Punta Tuna, on the southeast coast of the main island of Puerto Rico. In addition, the study has included development of design parameters, schedules and budgets for the design, construction and operation of these plants. Seawater systems (intake and discharge pipes) were to be sized so that flow losses were equivalent to those expected with a platform-based OTEC power plant. The power module (components and general arrangement was established based on the TRW design. Results are presented in detail. (WHK)

  5. Influential parameters for designing and power consumption calculating of cumin mower

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, E.; Jafari, A. [Tehran Univ., Karaj (Iran, Islamic Republic of). Dept. of Agricultural Machinery Engineering

    2010-07-01

    This paper reported on a study in which the consuming power and design of cumin mowers was calculated. The parameters required for calculating power consumption and designing of cumin mowers were measured along with some engineering properties of cumin stems. These included shearing and bending tests on cumin stem and specifying the coefficient of friction between mower knives and cumin stem. The relationships between static and dynamic friction forces being exerted on mower runners by soil with normal load were determined along with the factor affecting soil moisture. Some of the other parameters that are important for calculating the power consumption and design of an optimized mower include harvest moisture content; maximum and average of cumin stem diameter; maximum bio-yield point of force and maximum ultimate point of force in the cutting; average energy required to cut a stem; maximum elasticity module; maximum bending rupture force; average energy required for bending a stem; friction coefficient between the stem and knife edge; relation between bio-yield force, failure force, elasticity and diameter in the cutting; relation between rupture forces and diameter in the bending; and mower weight.

  6. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  7. Implementing a Generative Urban Design Model : Grammar-based design patterns for urban design

    NARCIS (Netherlands)

    Beirao, J.N.; Mendes, G.; Duarte, J.; Stouffs, R.M.F.

    2010-01-01

    This paper shows the first results of a prototype implementation of a generative urban design tool. This implementation will form part of a design support tool for a GIS based platform defined to formulate, generate and evaluate urban designs. These three goals, formulation, generation and

  8. Optimal correction and design parameter search by modern methods of rigorous global optimization

    International Nuclear Information System (INIS)

    Makino, K.; Berz, M.

    2011-01-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle

  9. Protein structure--based drug design.

    Science.gov (United States)

    Whittle, P J; Blundell, T L

    1994-01-01

    Design cycles will undoubtedly play an increasingly important role in drug discovery in the coming years, as the amount of structural information on protein targets continues to rise. However, the traditional method of drug discovery, based upon random screening and systematic modification of leads by medicinal chemistry techniques, will probably not be abandoned completely because it has a potentially important advantage over more structure-based methods--namely, leads identified in this way are unlikely to show a close resemblance to the natural ligand or substrate. They may, therefore, have advantages in terms of patent novelty, selectivity, or pharmacokinetic profile. However, such leads could then serve as the basis for structure-based, rational modification programs, in which their interactions with target receptors are defined (as we have described) and improved molecules are designed. A final important point to be made about structure-based design in drug discovery is that, while it can be of great use in the initial process of identifying ligands with improved affinity and selectivity in vitro, it can usually say very little about other essential aspects of the drug discovery process, e.g. the need to achieve an adequate pharmacokinetic profile and low toxicity in vivo. This observation reminds us that drug design is a multidisciplinary process, involving molecular biologists, biochemists, pharmacologists, organic chemists, crystallographers, and others. In order to be effective, therefore, structure-based design must be properly integrated into the overall discovery effort.

  10. Development of multiple performance indices and system parameter study for the design of a MEMS accelerometer

    International Nuclear Information System (INIS)

    Kim, Yong Il; Choi, Chan Kyu; Yoo, Hong Hee

    2012-01-01

    For the design of a MEMS accelerometer, proper performance indices should be defined and employed. Performance indices are obtained using either an experimental method or a numerical method. In the present study, a vibration analysis model of a MEMS accelerometer is introduced to calculate three performance indices: sensitivity, measurable acceleration range, and measurable frequency range. The accuracy of the vibration analysis model is first validated by comparing its modal and transient results with those of a commercial finite element code. Measurable acceleration and frequency ranges versus allowable errors for electrical and mechanical sensitivities are obtained and the effects of system parameter variations on the three performance indices are investigated

  11. A normalized wave number variation parameter for acoustic black hole design.

    Science.gov (United States)

    Feurtado, Philip A; Conlon, Stephen C; Semperlotti, Fabio

    2014-08-01

    In recent years, the concept of the Acoustic Black Hole has been developed as an efficient passive, lightweight absorber of bending waves in plates and beams. Theory predicts greater absorption for a higher thickness taper power. However, a higher taper power also increases the violation of an underlying theory smoothness assumption. This paper explores the effects of high taper power on the reflection coefficient and spatial change in wave number and discusses the normalized wave number variation as a spatial design parameter for performance, assessment, and optimization.

  12. Controller reconfiguration based on LTR design

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    2003-01-01

    Design of controller reconfiguration (CR) for systems with sensor faults are considered in this paper. One way to accommodate a failing sensor, is by replacing it by an observer based on the remaining outputs. A similar approach can be applied for a faulty actuator by duality. By including...... observers in the loop to replace faulty components, the nominal feedback controller does not need to be redesigned. The CR observer design problem for the faulty sensors or actuators can be rewritten into a standard loop transfer recovery (LTR) design problem, to which standard LTR design methods can...... be applied. Finally, it is shown that this CR architecture, where an CR observer is included in the feedback loop in between the system and the nominal controller, can be transformed into a more general fault tolerant controller (FTC) architecture based on the Youla parameterization....

  13. Facilitating Transition to Team Based Design Education

    DEFF Research Database (Denmark)

    Tollestrup, Christian

    2014-01-01

    When students enroll in Problem Based Learning (PBL) and Project-oriented universities at Industrial Design programs, what are their expectations and prerequisites for starting to learn about design and work in teams with design? The short answer is: not as much as they think, studies shows...... that even if they had previous experience with project work in teams, they still encounter problems during their first semesters. The PBL based and project oriented Industrial Design Engineering program used in this investigation is very process focused with the objective of opening the process...... experiment was carried out in 2011 and 2012 in form of a “Survival Kit”. This paper investigates the long-term effect of the “Survival Kit” regarding the students’ development in understanding the expectations towards them and the pitfalls in studying and working projects in teams through questionnaires...

  14. Some improved classification-based ridge parameter of Hoerl and ...

    African Journals Online (AJOL)

    In a linear regression model, it is often assumed that the explanatory variables are independent. This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which many ...

  15. Some Improved Classification-Based Ridge Parameter Of Hoerl And ...

    African Journals Online (AJOL)

    In a linear regression model, it is often assumed that the explanatory variables are independent. This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which many ...

  16. Accelerometry based assessment of gait parameters in children

    NARCIS (Netherlands)

    Faber, Herre; Hoeven, H. vd; Ipenburg, S. van; Lummel, Robert C. van R.C. van Rob C. Van R.C. van; Blockhuis, Nancy; Nienhuis, B.; Heikens, Sander S.C.; Brandes, Mirko; Zijlstra, Wiebren; Rosenbaum, Dieter; Terwee, C.B. Caroline B.; Slikke, R.M.A. van der Rienk M.A. vam der; Benink, Rob J. R.J.; Meijers, Wil G.H W.G.H.; de Vet, H.C.W. Henrica C W; Pitta, Fabio; Troosters, Thierry; Spruit, Martijn A.; Decramer, Marc; Gosselink, Rik; Thoumie, P.; Forward, M.J.; Plasschaert, F.S.; Burdorf, Lex; Windhorst, Judith; Beek, Allard J. van der; Molen, Henk F. van der; Swuste, Paul H.J.J.; Janssen, Maurice M.J.A.; Pas, Rianne; Aarts, Jos; Janssen-Potten, Yvonne; Vles, Johan; Pinxteren, S.A.T.v. Sjors van; Stokroos, R.J. Robert; Kingma, Herman; Pas, A.J.; Aarts, A.F.J.; Nabuurs, C.I.H.C.; Janssen, Y.; Mokkink, Lidwine B.; van der Slikke, Rienk M.A.; van Lummel, Rob C R.C.; Bouter, L.M. Lex M; de Vet, H.C.W. Henrica C W; de Witte, S.J.; Wetzels, L.; Probst, Vanessa S.; Peijl, I.D. van der; Vliet Vlieland, T.P.M.; Versteegh, M.I.M.; Lok, J.J.; Munneke, M.; Dion, R.A.E.; Bulthuis, Y.; Vollenbroek-Hutten, M.; Hermens, H.J.; Vendrig, L.; Roozenburg, B.; Wal, M. van der; Lisowski, A.E.; Murray, D.W.; Lisowski, L.A.; Creusen, H.; Witvrouw, E.; Victor, J.; Bellemans, J.; Rock, B.; Verdonk, R.; Spenkelink, C.D.; Hutten, M.M.R.; Greitemann, B.O.L.; Schillemans, P.F.; Meijer, O.G.; Dikkenberg, N. van den; Dieën, Jaap H van J.H. van; Pijls, B.; Wuisman, P.I.J.M.; Uiterwaal, M.; Dam, M.S. van; Kok, G.J.; Vogelaar, F.J.; Taminiau, A.H.M.; Derycke, P.; Vilella, P.; Loonbeek, S.; Schuffelers, K.; Jong, Z. de; Zwinderman, A.H.; Tijhuis, G.J.; Hazes, J.M.W.; Glerum, E.B.C.; Busser, H.J. J.; Ott, J.; Blank, R.; de Korte, W.G.; Veltink, Peter H. P.H.; Bussmann, Hans B.J.; de Vries, W.; Martens, W.I.J. Wim L.J.; Kerkhof, G. A.; Koelma, Frank; Franken, Henry M.; Kim, Tea-Woo; Kim, Yong-Wook; Abrahin, O.; Rodrigues, R. P.; Nascimento, V.C.; Silva-Grigoletto, M.E. Da; Sousa, E.C.; Marçal, A.C.; Van Remoortel, Hans; Raste, Yogini; Louvaris, Zafeiris; Giavedoni, Santiago; Burtin, Chris; Langer, Daniel; Wilson, Frederick; Rabinovich, Roberto; Vogiatzis, Ioannis; Hopkinson, Nicholas S; Schooten, Kimberley S.; Rispens, Sietse M; Elders, Petra J M; Lips, Paul; Pijnappels, Mirjam; Andersson, M.; Janson, C.; Emtner, M.; Sena, R.; Holt, Nicole E.; Percac-Lima, Sanja; Kurlinski, Laura A.; Thomas Julia, C.; Landry, Paige M.; Campbell, Braidie; Latham, Nancy; Ni, Pengsheng; Jette, Alan; Leveille, Suzanne G.; Bean, Johnathan F.; Bisi, Maria Cristina; Riva, Federico; Stagni, Rita; Altuğ, Filiz; Acar, Feridun; Acar, Göksemin; Cavlak, Uğur; Choi, Ho-Chun; Son, Ki Young; Cho, Belong; Park, Sang Min; Cho, Sung-Il

    2006-01-01

    The objective of this study was to examine if spatio-temporal gait parameters in healthy children can be determined from accelerations measured at the lower trunk as has been demonstrated in adults, previously. Twenty children aged 3-16 years, participated in a protocol that involved repeated walks

  17. Nonlinear genetic-based simulation of soil shear strength parameters

    Indian Academy of Sciences (India)

    New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept () and angle of shearing resistance () were formulated in terms of the basic soil physical properties. The best models were selected after developing and ...

  18. Parameter extraction and estimation based on the PV panel outdoor ...

    African Journals Online (AJOL)

    This work presents a novel approach to predict the voltage-current (V-I) characteristics of a PV panel under varying weather conditions to estimate the PV parameters. Outdoor performance of the PV module (AP-PM-15) was carried out for several times. The experimental data obtained are validated and compared with the ...

  19. Adaptive designs for learning based on MOOCs

    DEFF Research Database (Denmark)

    Gynther, Karsten

    2016-01-01

    Informed by research in MOOCs and adaptive learning systems the project has developed a design framework which can guide the development of SPOCs (Small Private Online Courses), adapted to experienced school teachers' different learning needs. In 2020 it will be a requirement that, Danish school...... teachers have a bachelor degree in the subjects they teach. More than 10,000 teachers need professional development and municipalities ask for an adaptive teacher development program with personalized learning. The project's research question is the study and development of design principles that can guide...... the development of adaptive designs for learning on the basis of MOOCs as an overall design framework. The project is methodologically inspired by Design Based Research....

  20. Investigation of the effects of melt electrospinning parameters on the direct-writing fiber size using orthogonal design

    Science.gov (United States)

    He, Feng-Li; He, Jin; Deng, Xudong; Li, Da-Wei; Ahmad, Fiaz; Liu, Yang-Yang; Liu, Ya-Li; Ye, Ya-Jing; Zhang, Chen-Yan; Yin, Da-Chuan

    2017-10-01

    Melt electrospinning is a complex process, and many of the processing parameters can impact the result of fiber formation. In this paper, we conducted a systematic investigation on the impacts of the melt electrospinning parameters (including temperature, needle gauge, flow rate and collector speed) on the fiber diameter via an orthogonal design experiment. The straight single fibers were fabricated using melt electrospinning in a direct-writing way with a diameter varied from 9.68  ±  0.93 µm to 48.55  ±  3.72 µm. The results showed that the fiber diameter changed differently against different parameters: when the temperature or needle gauge increased, the fiber diameter increased first and then decreased; when the flow rate increased, the fiber diameter decreased first and then increased; when the collector speed increased, the fiber diameter decreased monotonously. We also found that the collector speed was the most influential factor while the needle gauge was least important in determining the diameter of the fiber. Moreover, the feasibility of melt electrospinning in a direct-writing way as a novel 3D printing technology had been demonstrated by fabricating both uniform and controllable structures with high accuracy, based on the optimal parameters from the orthogonal experiments. The promising results indicated that melt electrospinning can be developed as a powerful technique for fabricating miniatured parts with high resolution and controllable structures for versatile potential applications.

  1. Investigation of the effects of melt electrospinning parameters on the direct-writing fiber size using orthogonal design

    International Nuclear Information System (INIS)

    He, Feng-Li; He, Jin; Deng, Xudong; Li, Da-Wei; Ahmad, Fiaz; Liu, Yang-Yang; Liu, Ya-Li; Ye, Ya-Jing; Zhang, Chen-Yan; Yin, Da-Chuan

    2017-01-01

    Melt electrospinning is a complex process, and many of the processing parameters can impact the result of fiber formation. In this paper, we conducted a systematic investigation on the impacts of the melt electrospinning parameters (including temperature, needle gauge, flow rate and collector speed) on the fiber diameter via an orthogonal design experiment. The straight single fibers were fabricated using melt electrospinning in a direct-writing way with a diameter varied from 9.68  ±  0.93 µ m to 48.55  ±  3.72 µ m. The results showed that the fiber diameter changed differently against different parameters: when the temperature or needle gauge increased, the fiber diameter increased first and then decreased; when the flow rate increased, the fiber diameter decreased first and then increased; when the collector speed increased, the fiber diameter decreased monotonously. We also found that the collector speed was the most influential factor while the needle gauge was least important in determining the diameter of the fiber. Moreover, the feasibility of melt electrospinning in a direct-writing way as a novel 3D printing technology had been demonstrated by fabricating both uniform and controllable structures with high accuracy, based on the optimal parameters from the orthogonal experiments. The promising results indicated that melt electrospinning can be developed as a powerful technique for fabricating miniatured parts with high resolution and controllable structures for versatile potential applications. (paper)

  2. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  3. Study of an effective structural system with rational parameters based on main energy principles

    Directory of Open Access Journals (Sweden)

    Toporkova Katerina

    2017-01-01

    Full Text Available The effective architectural and construction system with rational parameters based on main energy principles applied to construction of buildings and constructions with a small-step and large-step frames, representing the metal frame of full factory production collected in spatial system on high-strength bolts and previously strained combined prestressed concrete slabs which formed without timbering is proposed in this paper. The main constructive and technological features of the proposed frame, which allows reducing construction period, increasing working efficiency, and reducing labor intensity by using factory-made materials, quick erection of all process elements through the use of highstrength bolts is considered. The advantages of this constructive system in comparison with alternative systems are shown. The basic concepts of "rational decisions" to the design, namely, the objective of the optimal management of the structure parameters, which can not only improve its basic performance indicators, but also, and most importantly, improve operational reliability, is presented.

  4. Inrush Current Simulation of Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure and Genetic Algorithm

    Science.gov (United States)

    Tokunaga, Yoshitaka

    This paper presents estimation techniques of machine parameters for power transformer using design procedure of transformer and genetic algorithm with real coding. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by techniques developed in this study and simulation results were reproduced measured waveforms.

  5. Design parameters of transmission curved crystal spectrometer for hard X-ray diagnoses

    International Nuclear Information System (INIS)

    Qian Feng; Cao Leifeng; Zhou Weimin; Zhao Zongqing; Gu Yuqiu; Yan Yonghong; Wei Lai; Xiao Shali

    2013-01-01

    The high resolving measurement of hard X-ray spectra generated in laser-produced plasma is usually performed using a cylindrically curved crystal spectrometer. In this paper, theoretical analysis and numerical simulation are performed to investigate the dependence of the energy range and resolving power on various design parameters, including crystal bending radius, source to crystal standoff distance, source size, location of the detector, etc. The investigation provides a means to design and develop cylindrically transmission curved crystal spectrometer which is used in hard X-ray diagnostics. The results show that crystal bending radius has a great influence on energy range of spectra and resolving power, and the separation between the spectral lines increases with the distance behind the focal circle faster than the line width, resulting in increased resolving power with distance. (authors)

  6. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... Abaqus cae software. The study is limited to evaluate lowest fundamental modal frequencies and mode shapes of proposed wind turbine....

  7. Driving Force Based Design of Cyclic Distillation

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Fjordbak; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2017-01-01

    Driving force based design is adopted from conventional continuous distillation to cyclic distillation. This leads to a definition of the operating line representation for the cyclic distillation process. A possible realization of the driving force design is presented, which implies operation...... with mixed phase feeds. A range of binary test cases, benzene toluene, methanol water, and ethanol water, are evaluated. The advantage of the design approach in cyclic distillation is shown to be analogous to the advantages obtained in conventional continuous distillation, including a minimal utility...

  8. Computer vision based room interior design

    Science.gov (United States)

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  9. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  10. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    Science.gov (United States)

    Tong, Q. B.; Ding, Z. L.; Chen, J. C.; Ai, L. L.; Yuan, F.

    2006-10-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter.

  11. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  12. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  13. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    Science.gov (United States)

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  14. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  15. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  16. Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-11-01

    Full Text Available The dynamic characteristics of power batteries directly affect the performance of electric vehicles, and the mathematical model is the basis for the design of a battery management system (BMS.Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference method. By analyzing the characteristics of the model and the type of parameters, the solid state diffusion kinetics are separated, and then the cascade parameter identifications are implemented with Particle Swarm Optimization. Eventually, the validity of the electrochemical model and the accuracy of model parameters are verified through 0.2–2 C multi-rates battery discharge tests of cell and road simulation tests of a micro pure electric vehicle under New European Driving Cycle (NEDC conditions. The results show that the estimated parameters can guarantee the output accuracy. In the test of cell, the voltage deviation of discharge is generally less than 0.1 V except the end; in road simulation test, the output is close to the actual value at low speed with the error around ±0.03 V, and at high speed around ±0.08 V.

  17. The observer-based synchronization and parameter estimation of a ...

    Indian Academy of Sciences (India)

    Haipeng Su

    2017-10-31

    Oct 31, 2017 ... For exam- ple, the adaptive-impulsive synchronization and estima- tion of parameters of chaotic systems only by using discontinuous drive signals are .... c > 0,. (3) then system (2) will synchronize system (1) in the sense of limt→∞ e1 = limt→∞ e2 = limt→∞ e3 = 0, where e1 = ˆx1 − x1,e2 = ˆx2 − x2,e3 ...

  18. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins

    International Nuclear Information System (INIS)

    Sahin, Bayram; Demir, Alparslan

    2008-01-01

    This paper reports the heat transfer enhancement and corresponding pressure drop over a flat surface equipped with circular cross section perforated pin fins in a rectangular channel. The channel had a cross section area of 100-250 mm 2 . The experiments covered the following ranges: Reynolds number 13500-42,000, clearance ratio (C/H) 0, 0.33 and 1 and interfin spacing ratio (S y /D) 1.208, 1.524, 1.944 and 3.417. Correlation equations were developed for the heat transfer, friction factor and enhancement efficiency. The experimental results showed that the use of circular cross section pin fins may lead to heat transfer enhancement. Enhancement efficiencies varied between 1.4 and 2.6 depending on clearance ratio and interfin spacing ratio. Using a Taguchi experimental design method, optimum design parameters and their levels were investigated. Nusselt number and friction factor were considered as performance parameters. An L 9 (3 3 ) orthogonal array was selected as an experimental plan. First of all, each goal was optimized separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be Reynolds number of 42,000, fin height of 50 mm and streamwise distance between fins of 51 mm

  19. Development of engineering parameters for the design of metal biosorption waste treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.S.

    1991-12-03

    Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption or metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.

  20. Center of pressure based segment inertial parameters validation.

    Directory of Open Access Journals (Sweden)

    Clint Hansen

    Full Text Available By proposing efficient methods for estimating Body Segment Inertial Parameters' (BSIP estimation and validating them with a force plate, it is possible to improve the inverse dynamic computations that are necessary in multiple research areas. Until today a variety of studies have been conducted to improve BSIP estimation but to our knowledge a real validation has never been completely successful. In this paper, we propose a validation method using both kinematic and kinetic parameters (contact forces gathered from optical motion capture system and a force plate respectively. To compare BSIPs, we used the measured contact forces (Force plate as the ground truth, and reconstructed the displacements of the Center of Pressure (COP using inverse dynamics from two different estimation techniques. Only minor differences were seen when comparing the estimated segment masses. Their influence on the COP computation however is large and the results show very distinguishable patterns of the COP movements. Improving BSIP techniques is crucial and deviation from the estimations can actually result in large errors. This method could be used as a tool to validate BSIP estimation techniques. An advantage of this approach is that it facilitates the comparison between BSIP estimation methods and more specifically it shows the accuracy of those parameters.

  1. Sensitivity of Key Parameters in Aerodynamic Wind Turbine Rotor Design on Power and Energy Performance

    International Nuclear Information System (INIS)

    Bak, Christian

    2007-01-01

    In this paper the influence of different key parameters in aerodynamic wind turbine rotor design on the power efficiency, C p , and energy production has been investigated. The work was divided into an analysis of 2D airfoils/blade sections and of entire rotors. In the analysis of the 2D airfoils it was seen that there was a maximum of the local C p for airfoils with finite maximum C l /C d values. The local speed ratio should be between 2.4 and 3.8 for airfoils with maximum c l /c d between 50 and 200, respectively, to obtain maximum local C p . Also, the investigation showed that Re had a significant impact on CP and especially for Re p for rotors was made with three blades and showed that with the assumption of constant maximum c l /c d along the entire blade, the design tip speed ratio changed from X=6 to X=12 for c l /cd=50 and c l /c d =200, respectively, with corresponding values of maximum c p of 0.46 and 0.525. An analysis of existing rotors re-designed with new airfoils but maintaining the absolute thickness distribution to maintain the stiffness showed that big rotors are more aerodynamic efficient than small rotors caused by higher Re. It also showed that the design tip speed ratio was very dependent on the rotor size and on the assumptions of the airfoil flow being fully turbulent (contaminated airfoil) or free transitional (clean airfoil). The investigations showed that rotors with diameter D=1.75m, should be designed for X around 5.5, whereas rotors with diameter D=126m, should be designed for Xbetween 6.5 and 8.5, depending on the airfoil performance

  2. Resonance Damping and Parameter Design Method for LCL-LC Filter Interfaced Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Li, Zipeng; Jiang, Aiting; Shen, Pan

    2016-01-01

    -frequency harmonics attenuation ability, but the resonant problem affects the system stability remarkably. In this paper, active damping based on the capacitor voltage feedback is proposed using the concept of the equivalent virtual impedance in parallel with the capacitor. With the consideration of system delay......, this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient...... to optimize the system performance according to the predefined satisfactory region. Finally, the simulation results are presented to validate the proposed design method and control scheme....

  3. Designing robust control-based HIV-treatment

    Directory of Open Access Journals (Sweden)

    Fredy Andrés Olarte Dussán

    2008-05-01

    Full Text Available Designing a robust control-based treatment for human immunodeficiency virus (HIV-infected patients was studied. The dynamics of the immune system’s response to infection was modelled using a 5th order nonlinear model with separate efficacy coefficients for protease inhibitor (PIs and reverse transcriptase inhibitors (RTIs. The immune res-ponse has been represented as an uncertain system due to errors in parameter estimation and the existence of un-modelled dynamics. A polytopic system was constructed incorporating all possible system parameter values. A con-trol system was designed using robust pole location techniques stabilising the polytopic system around an equilibrium point having a low viral load. Numerical simulation results (including the organism’s pharmacokinetical response to anti-retroviral drugs showed that the control law could lead to long-term stable conditions, even in extreme cases.

  4. Structural parameter study on polymer-based ultrasonic motor

    Science.gov (United States)

    Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro

    2017-11-01

    Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.

  5. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Ajinath Eknath Shirsat

    2015-01-01

    Full Text Available The purpose of present study was to optimize rizatriptan (RZT chitosan (CS nanoparticles using ionic gelation method by application of quality by design (QbD approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs; particle size and entrapment efficiency. Central composite design (CCD was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM. Based on QbD approach, design space (DS was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70-3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3-4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.

  6. The optimal parameter design for a welding unit of manufacturing industry by Taguchi method and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zahraee, S.M.; Chegeni, A.; Toghtamish, A.

    2016-07-01

    Manufacturing systems include a complicated combination of resources, such as materials, labors, and machines. Hence, when the manufacturing systems are faced with a problem related to the availability of resources it is difficult to identify the root of the problem accurately and effectively. Managers and engineers in companies are trying to achieve a robust production line based on the maximum productivity. The main goal of this paper is to design a robust production line, taking productivity into account in the selected manufacturing industry. This paper presents the application of Taguchi method along with computer simulation for finding an optimum factor setting for three controllable factors, which are a number of welding machines, hydraulic machines, and cutting machines by analyzing the effect of noise factors in a selected manufacturing industry. Based on the final results, the optimal design parameter of welding unit of in the selected manufacturing industry will be obtained when factor A is located at level 2 and B and C are located at level 1. Therefore, maximum productive desirability is achieved when the number of welding machines, hydraulic machines, and cutting machines is equal to 17, 2, and 1, respectively. This paper has a significant role in designing a robust production line by considering the lowest cost and timely manner based on the Taguchi method. (Author)

  7. Reflections on Design-Based Research

    DEFF Research Database (Denmark)

    Ørngreen, Rikke

    2015-01-01

    The paper is an extended and edited version of the HWID conference paper with the same titel. The paper discusses Design-Based Research (DBR), which is an approach that have a dual purpose: to develop domain theories and to develop the design, iteratively. The paper is an integrative review...... that identify and discuss critical elements in DBR, with a focus on online educational projects, where the learning process expands from a traditional classroom to everyday work and life practices, as in competence development projects. DBR is discussed up against two older, more mature, intervention approaches......, namely: Interaction Design and Action Research. The issues discussed are users’ needs, resistance, organizational relations, and alternative design solutions. Also, this type of online and competence development processes needs new empirical methods, and an argument for rigour in the DBR analysis...

  8. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    Science.gov (United States)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  9. Helicopter TEM parameters analysis and system optimization based on time constant

    Science.gov (United States)

    Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou

    2018-03-01

    Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.

  10. Case Based Reasoning in Engineering Design

    Science.gov (United States)

    1993-06-30

    Physics Based on Confluences. Artificial Intelligence 24:7-83, 1984. [7] Didier Dubois and Henri Prade . Possibility Theory: An Approach to...in Design. PhD thesis, Massachusetts Institute of Technology, 1982. [53] Rosenauer, N. and A.H. Willis . Kinematics of Mechanisms. Associated General

  11. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... be used in interactive optimization....

  12. Ship crashworthiness in risk based design

    NARCIS (Netherlands)

    Vredeveldt, A.W.

    2011-01-01

    The concept of goal based design is gradually gaining a foothold in the IMO regulatory process. This paper demonstrates how this concept can be implemented in a practical way. The demonstrator case is transport of dangerous cargo on Europe's inland water ways. © 2011 Taylor & Francis Group, London.

  13. Parameters optimization in a fission-fusion system with a mirror machine based neutron source

    Science.gov (United States)

    Yurov, D. V.; Anikeev, A. V.; Bagryansky, P. A.; Brednikhin, S. A.; Frolov, S. A.; Lezhnin, S. I.; Prikhodko, V. V.

    2012-06-01

    Long-lived fission products utilization is a problem of high importance for the modern nuclear reactor technology. BINP jointly with NSI RAS develops a conceptual design of a hybrid sub-critical minor actinides burner with a neutron source based on the gas dynamic mirror machine (GDT) to resolve the stated task. A number of modelling tools was created to calculate the main parameters of the device. First of the codes, GENESYS, is a zero-dimensional code, designed for plasma dynamics numerical investigation in a GDT-based neutron source. The code contains a Monte-Carlo module for the determination of linear neutron emission intensity along the machine axis. Fuel blanket characteristics calculation was implemented by means of a static Monte-Carlo code NMC. Subcritical core, which has been previously analyzed by OECD-NEA, was used as a template for the fuel blanket of the modelled device. This article represents the codes used and recent results of the described system parameters optimization. Particularly, optimum emission zone length of the source and core multiplicity dependence on buffer zone thickness were defined.

  14. Evaluation of parameter sensitivities for flux-switching permanent magnet machines based on simplified equivalent magnetic circuit

    Directory of Open Access Journals (Sweden)

    Gan Zhang

    2017-05-01

    Full Text Available Most of the published papers regarding the design of flux-switching permanent magnet machines are focused on the analysis and optimization of electromagnetic or mechanical behaviors, however, the evaluate of the parameter sensitivities have not been covered, which contrarily, is the main contribution of this paper. Based on the finite element analysis (FEA and simplified equivalent magnetic circuit, the method proposed in this paper enables the influences of parameters on the electromagnetic performances, i.e. the parameter sensitivities, to be given by equations. The FEA results are also validated by experimental measurements.

  15. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    Annali De Geofisica 42(6) 1154–1164. BIS-1893 2002 Indian Standard Criteria for Earthquake. Resistant Design of Structures, Part 1 – General Provisions and Buildings; Bureau of Indian Standards, New Delhi. Bommer J, Scherbaum F, Bungum H, Cotton F, Sabetta F and Abrahamson N A 2005 On the use of logic trees.

  16. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  17. Fault Diagnosis of Train Axle Box Bearing Based on Multifeature Parameters

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-01-01

    Full Text Available Failure of the train axle box bearing will cause great loss. Now, condition-based maintenance of train axle box bearing has been a research hotspot around the world. Vibration signals generated by train axle box bearing have nonlinear and nonstationary characteristics. The methods used in traditional bearing fault diagnosis do not work well with the train axle box. To solve this problem, an effective method of axle box bearing fault diagnosis based on multifeature parameters is presented in this paper. This method can be divided into three parts, namely, weak fault signal extraction, feature extraction, and fault recognition. In the first part, a db4 wavelet is employed for denoising the original signals from the vibration sensors. In the second part, five time-domain parameters, five IMF energy-torque features, and two amplitude-ratio features are extracted. The latter seven frequency domain features are calculated based on the empirical mode decomposition and envelope spectrum analysis. In the third part, a fault classifier based on BP neural network is designed for automatic fault pattern recognition. A series of tests are carried out to verify the proposed method, which show that the accuracy is above 90%.

  18. Parameters Studies on Surface Initiated Rolling Contact Fatigue of Turnout Rails by Three-Level Unreplicated Saturated Factorial Design

    Directory of Open Access Journals (Sweden)

    Xiaochuan Ma

    2018-03-01

    Full Text Available Surface initiated rolling contact fatigue (RCF, mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface initiated RCF of turnouts is caused by a long-term accumulation, the size and distribution of which are related to the dynamic parameters of the complicated vehicle-turnout system. In order to simulate the accumulation of rail damage, some random samples of dynamic parameters significantly influencing it should be input. Based on the three-level unreplicated saturated factorial design, according to the evaluation methods of H, P and B statistic values, six dynamic parameters that influence the rail surface initiated RCF in turnouts, namely running speed of vehicle, axle load, wheel-rail profiles, integral vertical track stiffness and wheel-rail friction coefficient, are obtained by selecting 13 dynamic parameters significantly influencing the dynamic vehicle-turnout interaction as the analysis factors, considering four dynamic response results, i.e., the normal wheel-rail contact force, longitudinal creep force, lateral creep force and wheel-rail contact patch area as the observed parameters. In addition, the rail surface initiated RCF behavior in turnouts under different wheel-rail creep conditions is analyzed, considering the relative motion of stock/switch rails. The results show that the rail surface initiated RCF is mainly caused by the tangential stress being high under small creep conditions, the normal and tangential stresses being high under large creep conditions, and the normal stress being high under pure spin creep conditions.

  19. Design Concepts for Muon-Based Accelerators

    International Nuclear Information System (INIS)

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. P.

    2015-01-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  20. Geoscience parameter data base handbook: granites and basalts

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous United States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.

  1. Geoscience parameter data base handbook: granites and basalts

    International Nuclear Information System (INIS)

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous United States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report

  2. Parameter subset selection based damage detection of aluminium frame structure

    International Nuclear Information System (INIS)

    Titurus, B; Friswell, M I

    2011-01-01

    A three storey aluminium frame structure was tested in multiple damage cases. All damage scenarios, simulated by the localized stiffness changes, were associated with joint areas of the structure. Further, between damage tests the structure was returned to its healthy reference conditions and was again measured. In this paper, a parameter subset selection methodology is applied to an updated finite element model of the structure, together with a previously demonstrated approach employing concepts of model sensitivity subspace angles, first order model representation and mixed response residuals for damage detection. The objective of this paper is the evaluation of these methods on a real experimental structure with significant complexity, represented by an imprecise reference mathematical model and in the environment with uncertain reference structural state. The questions of symmetry, mixed response residuals and semi-localized parameterization are also addressed in this work.

  3. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  4. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  5. Response-Based Estimation of Sea State Parameters

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence...... calculated by a 3-D time domain code and by closed-form (analytical) expressions, respectively. Based on comparisons with wave radar measurements and satellite measurements it is seen that the wave estimations based on closedform expressions exhibit a reasonable energy content, but the distribution of energy...

  6. Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa

    Directory of Open Access Journals (Sweden)

    Sackey, S. M.

    2017-05-01

    Full Text Available To manage the impact of Industry 4.0 on industrial engineering (IE education curriculum requirements, realistic teaching and learning infrastructure such as a learning factory are required. This paper scans the literature to determine Industry 4.0’s principles and interactions with IE and a learning factory, surveys relevant universities by questionnaire to determine its current status and practices, and formulates didactic design parameters for an Industry 4.0 learning factory to support IE education in South Africa, making use of existing models of cyber-physical systems and learning factory morphology. In other results, the technical universities are discovered to be more positively disposed, in general terms, to developing an Industry 4.0 learning factory than are the traditional programmes which, with one exception, prefer computational facilities. Of ten universities that offer IE, only one — a traditional programme — has made significant progress towards creating an Industry 4.0 learning factory.

  7. Using sensitivity derivatives for design and parameter estimation in an atmospheric plasma discharge simulation

    International Nuclear Information System (INIS)

    Lange, Kyle J.; Anderson, W. Kyle

    2010-01-01

    The problem of applying sensitivity analysis to a one-dimensional atmospheric radio frequency plasma discharge simulation is considered. A fluid simulation is used to model an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity. Sensitivity derivatives are computed for the peak electron density with respect to physical inputs to the simulation. These derivatives are verified using several different methods to compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be used within a design cycle to change these physical inputs so as to increase the peak electron density. It is also shown how sensitivity analysis can be used in conjunction with experimental data to obtain better estimates for rate and transport parameters. Finally, it is described how sensitivity analysis could be used to compute an upper bound on the uncertainty for results from a simulation.

  8. Vibration Analysis and Parameter Design of Two Degree of Freedom System Using Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeongmin; Lee, Jongsoo [Yonsei Univ., Seoul (Korea, Republic of)

    2017-08-15

    Today, we are using computer simulations in various engineering disciplines to reduce the time and cost of product development. The scope of simulations is increasingly complex and diverse for different fields such as mechanical, electrical, thermal, and fluid. Thus, it is necessary to use integrated simulations. In order to overcome these problems, a language has been developed to effectively describe and implement simulations is Modelica. To model and simulate a system, physical models can be broadly divided into causal and acausal models. The most important feature of Modelica is acausal programming. In this study, we will introduce simple concepts and explain about the usage of Modelica. Furthermore, we will explain the vibration analysis of a two degree-of-freedom system and the design of appropriate parameters by using Modelica.

  9. The influence of design parameters on the performance of FBAR in 10–14 GHz

    Directory of Open Access Journals (Sweden)

    Nor N.I.M.

    2017-01-01

    Full Text Available This research presents the analysis of the influence of design parameters on the performance of film bilk acoustic wave resonator (FBAR working from 10 GHz to 14 GHz. The analysis is done by implementing one-dimensional (1-D modellings, which are 1-D Mason model and Butterworth Van Dyke (BVD model. The physical parameters such as piezoelectric materials and its thickness, and size of area affecting the characteristics of the FBAR are analyzed in detail. Zinc oxide (ZnO and aluminum nitride (AlN are chosen as the piezoelectric materials. The resonance area is varied at 25μm×25μm to 35μm×35μm. From the analysis, it is found that as the frequency increases, the thickness of the piezoelectric material decreases. Meanwhile, the static capacitance increases as the frequency increases. It is also found that as the area increases, the electrical impedance and static capacitance also increases.

  10. Calculation of Design Parameters for an Equilibrium LEU Core in the NBSR

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2011-09-30

    A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Previously, the design of the LEU fuel had been determined in order to provide the users of the NBSR with the same cycle length as exists for the current HEU fueled reactor. The fuel composition at different points within an equilibrium fuel cycle had also been determined. In the present study, neutronics parameters have been calculated for these times in the fuel cycle for both the existing HEU and the proposed LEU equilibrium cores. The results showed differences between the HEU and LEU cores that would not lead to any significant changes in the safety analysis for the converted core. In general the changes were reasonable except that the figure-of-merit for neutrons that can be used by experimentalists shows there will be a 10% reduction in performance. The calculations included kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions.

  11. Quantitative drug design studies. II. Development and application of new electronic substituent parameters.

    Science.gov (United States)

    Esaki, T

    1980-11-01

    New electronic substituent parameters for quantitative drug design were developed from the standpoint of the frontier orbital theory using the extended Hückel method. Each substituent was characterized by three constants (E, Re, I), which were derived from the SOMO (solely occupied molecular orbital) energy and the coefficient of the SOMO hybrid orbital responsible for bonding to the parent moiety. These correspond to the SOMO-SOMO energy difference (E), the resistivity of the path (Re), and the flow intensity (I) respectively, when the frontier electron flow occurs between the standard parent and the substituent. They can be regarded as major factors governing the electronic inductive-field effect of the substituent. As the result of analyses of various kinds of biological data, they were found to be excellent and widely applicable parameters to the structure-activity problems. In this paper, the new frontier substituent constant values for 150 kinds of substituents and 58 kinds of equations to which the new constants were successfully applied are presented.

  12. Advanced calculational methods for power reactors and LWR core design parameters

    International Nuclear Information System (INIS)

    1992-12-01

    The purpose of the Specialists Meeting on Advanced Calculational Methods for Power Reactors, held in Cadarache, France, 10-14 September 1990, was to provide a forum for reviewing and discussing selected core physics of water cooled reactors (including high convertors). New methods of advanced calculation for advanced fuels and complex geometries of next generation reactors with a high level of accuracy were discussed and the importance of supercomputing and on-line monitoring was also acknowledged. The meeting was attended by about 60 participants from 20 countries who presented 30 papers. The Technical Committee Meeting on LWR Core Design Parameters, held in Rez, former Czechoslovakia, 7-11 October 1991, provided an opportunity for participants to exchange their experience on reactor physics aspects of benchmark calculations of various lattices, methods for core parameter calculations, core monitoring and in-core fuel management. At the Workshop there were further discussions related to the benchmark problems, homogenization techniques and cross-section representations. Thirty-five papers were presented by about 43 participants from 19 countries. A separate abstract was prepared for each of the mentioned papers. Refs, figs and tabs

  13. Effects of process parameters on ozone washing for denim using 3/sup 3/ factorial design

    International Nuclear Information System (INIS)

    Asim, F.; Mahmood, M.

    2017-01-01

    Denim garment is getting popular day by day. It is highly demandable because of its versatility, comfort and durability. Different techniques of denim washing increase this demand drastically. Denim washing is the process to enhance the appearance of a garment. This enhanced appearance may be the aged look, faded look, greyer cast, or any other shade setting or resin application. The two most advanced washing techniques are; ozone wash and laser wash. The effects of ozone on environment as well as on the garment are significant and cannot be neglected because number of benefits achieved such as time saving, less energy consumption, chemical, labour cost reduction, less discharge of water and chemicals. Therefore, effects of process parameters on ozone washing for denim fabric have been investigated in this research work using three level factorial design. 33 factorial design has been designed and conducted to investigate the effect of gas concentration, time and speed on the response variables namely; Shrinkage, Tensile and Tear strength of ozone washing. The influence of individual factors and their interactions has been critically examined using software Design Expert 8.0. Prior to the analysis of variance model accuracy has been examined through various residuals plots. The study of residuals plots shown that the residuals are normally distributed and significant evidence of possible outliers was not found. So the model can be used to predicted results with 95% confidence interval. The results from the experiment suggest that two out of three factors were significant, which are speed and time that influences mainly on the tear strength of the denim garment. (author)

  14. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  15. Optimization of Process Parameters by Statistical Experimental Designs for the Production of Naringinase Enzyme by Marine Fungi

    Directory of Open Access Journals (Sweden)

    Abeer Nasr Shehata

    2014-01-01

    Full Text Available Naringinase has attracted a great deal of attention in recent years due to its hydrolytic activities which include the production of rhamnose and prunin and debittering of citrus fruit juices. Screening of fifteen marine-derived fungi, locally isolated from Ismalia, Egypt, for naringinase enzyme production, indicated that Aspergillus niger was the most promising. In solid state fermentation (SSF of the agroindustrial waste, orange rind was used as a substrate containing naringin. Sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of the debittering naringinase enzyme. Effects of 19 variables were examined for their significance on naringinase production using Plackett-Burman factorial design. Significant parameters were further investigated using Taguchi’s (L16 45 orthogonal array design. Based on statistical analysis (ANOVA, the optimal combinations of the major constituents of media for maximal naringinase production were evaluated as follows: 15 g orange rind waste, 30 mL moisture content, 1% grape fruit, 1% NaNO3, 0.5% KH2PO4, 5 mM MgSO4, 5 mM FeSO4, and the initial pH 7.5. The activity obtained was more than 3.14-fold the basal production medium.

  16. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  17. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  18. A theoretical signal processing framework for linear diffusion MRI: Implications for parameter estimation and experiment design.

    Science.gov (United States)

    Varadarajan, Divya; Haldar, Justin P

    2017-11-01

    The data measured in diffusion MRI can be modeled as the Fourier transform of the Ensemble Average Propagator (EAP), a probability distribution that summarizes the molecular diffusion behavior of the spins within each voxel. This Fourier relationship is potentially advantageous because of the extensive theory that has been developed to characterize the sampling requirements, accuracy, and stability of linear Fourier reconstruction methods. However, existing diffusion MRI data sampling and signal estimation methods have largely been developed and tuned without the benefit of such theory, instead relying on approximations, intuition, and extensive empirical evaluation. This paper aims to address this discrepancy by introducing a novel theoretical signal processing framework for diffusion MRI. The new framework can be used to characterize arbitrary linear diffusion estimation methods with arbitrary q-space sampling, and can be used to theoretically evaluate and compare the accuracy, resolution, and noise-resilience of different data acquisition and parameter estimation techniques. The framework is based on the EAP, and makes very limited modeling assumptions. As a result, the approach can even provide new insight into the behavior of model-based linear diffusion estimation methods in contexts where the modeling assumptions are inaccurate. The practical usefulness of the proposed framework is illustrated using both simulated and real diffusion MRI data in applications such as choosing between different parameter estimation methods and choosing between different q-space sampling schemes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method

    Directory of Open Access Journals (Sweden)

    Shui-Ting Zhou

    2017-01-01

    Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.

  20. Regression Discontinuity Designs Based on Population Thresholds

    DEFF Research Database (Denmark)

    Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica

    ) to measure the effects of these threshold-based policies on political and economic outcomes. Using evidence from France, Germany, and Italy, we highlight two common pitfalls that arise in exploiting population-based policies (confounded treatment and sorting) and we provide guidance for detecting......In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...... and addressing these pitfalls. Even when these problems are present, population-threshold RDD may be the best available research design for studying the effects of certain policies and political institutions....

  1. Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve

    Directory of Open Access Journals (Sweden)

    M. Margetin

    2016-07-01

    Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.

  2. A Westinghouse designed distributed mircroprocessor based protection and control system

    International Nuclear Information System (INIS)

    Bruno, J.; Reid, J.B.

    1980-01-01

    For approximately five years, Westinghouse has been involved in the design and licensing of a distributed microprocessor based system for the protection and control of a pressurized water reactor nuclear steam supply system. A 'top-down' design methodology was used, in which the system global performance objectives were specified, followed by increasingly more detailed design specifications which ultimately decomposed the system into its basic hardware and software elements. The design process and design decisions were influenced by the recognition that the final product would have to be verified to ensure its capability to perform the safety-related functions of a class 1E protection system. The verification process mirrored the design process except that it was 'bottom-up' and thus started with the basic elements and worked upwards through the system in increasingly complex blocks. A number of areas which are of interest in a distributed system are disucssed, with emphasis on two systems. The first, the Integrated Protection System is primarily responsible for processing signals from field mounted sensors to provide for reactor trips and the initiation of the Engineered Safety Features. The Integrated Control System, which is organized in a parallel manner, processes other sensor signals and generates the necessary analog and on-off signals to maintain the plant parameters within specified limits. Points covered include system structure, systems partitioning strategies, communications techniques, software design concepts, reliability and maintainability, commercial component availability, interference susceptibility, licensing issues, and applicability. (LL)

  3. Nonlinear genetic-based simulation of soil shear strength parameters

    Indian Academy of Sciences (India)

    4Young Researchers Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran. ∗. Corresponding .... aiming to apply LGP to civil engineering problems ... The proposed models were developed based on several unconsolidated-undrained triaxial tests conducted in this study. The paper is organized as follows:.

  4. Retrieval of Landuse and Hydrology-based Parameters from ...

    African Journals Online (AJOL)

    Landuse and hydrology-based information on the Volta Lake Basin have been retrieved from Satellite remote sensing data. The results obtained could be applied in Hydro-Geographical Information System models, such as the TOPMODEL, for water balance studies. Eight Synthetic Aperture Radar Precision Images of the ...

  5. Design parameters of high rate algal ponds using filamentous algae matrix for treating rural stream water.

    Science.gov (United States)

    Kim, T E; Chung, W M; Lim, B S

    2002-01-01

    High rate algal ponds (HRAP) with a filamentous algae matrix (FAM) as the predominant species, were operated to evaluate the characteristics of FAM and the basic design parameters for treating polluted rural stream water. The porous and gelatinous FAM was formed like a sponge, which functions to prevent excessive loss of the algae in the effluent and can easily be retrieved from the ponds. The organic fraction of harvested FAM was about 88%, which is suitable for use as fertilizer. The HRAP system using FAM was found to be an effective nutrient removal process not requiring any artificial carbon sources for nitrification. At HRT 4 days, the T-N and T-P removal efficiencies were 85.9% and 65.8%, respectively. When the pH and water temperature were maintained above 9 and 15 degrees C, HRT required for achieving a 70% T-N removal efficiency could be reduced by about 3 days. The oxygen production rate by FAM was calculated as 1.45 mgO2/L/m2. The design surface area of HRAP needed per rural inhabitant was about 2.72 m2.

  6. An introduction to data base design

    CERN Document Server

    Salzberg, Betty Joan

    1986-01-01

    An Introduction to Data Base Design provides an understanding of how data base management systems (DBMS) work to be able to use any available commercial DBMS intelligently. This book presents the principle of independence of physical and local organization.Organized into seven chapters, this book begins with an overview of normal form theory. This text then describes the three types of DBMS. Other chapters consider the difficulties in processing queries where the names of the files are not mentioned. This book discusses as well how to group data hierarchically, how to use a preorder tree trave

  7. Memory Driven Feature-Based Design

    Science.gov (United States)

    1993-01-01

    memory , measures of similarity, and the question of how to manage remembering and recollecting on the basis of similarity [18]. There is a large body...is also influenced by the Dynamic Memory ideas of Schank [20], by the episodic memory ideas of Kolodner [21], and by the Case-based planning approach...AD-A264 697 WL-TR-93-4021 MEMORY DRIVEN FEATURE-BASED DESIGN DTIC Y.H. PAO AY 11993 F.L. MERAT G.M. RADACK CASE WESTERN RESERVE UNIVERSITY ELECTRICAL

  8. Parameter optimization toward optimal microneedle-based dermal vaccination.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Practical Stabilization of Uncertain Nonholonomic Mobile Robots Based on Visual Servoing Model with Uncalibrated Camera Parameters

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2013-01-01

    Full Text Available The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance which appeared in some literatures such as Morin et al. (1998, Hespanha et al. (1999, Jiang (2000, and Hong et al. (2005. Finally, the simulation results show the effectiveness of the proposed controller design approach.

  10. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  11. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    Science.gov (United States)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    requirement and the displacement restriction during launch are satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed tested both statically and dynamically.

  12. PLD based design with VHDL RTL design, synthesis and implementation

    CERN Document Server

    Taraate, Vaibbhav

    2017-01-01

    This book covers basic fundamentals of logic design and advanced RTL design concepts using VHDL. The book is organized to describe both simple and complex RTL design scenarios using VHDL. It gives practical information on the issues in ASIC prototyping using FPGAs, design challenges and how to overcome practical issues and concerns. It describes how to write an efficient RTL code using VHDL and how to improve the design performance. The design guidelines by using VHDL are also explained with the practical examples in this book. The book also covers the ALTERA and XILINX FPGA architecture and the design flow for the PLDs. The contents of this book will be useful to students, researchers, and professionals working in hardware design and optimization. The book can also be used as a text for graduate and professional development courses.

  13. A theoretical study for RTE-based parameter identification problems

    International Nuclear Information System (INIS)

    Tang, Jinping; Han, Bo; Han, Weimin

    2013-01-01

    This paper provides a theoretical study of reconstructing absorption and scattering coefficients based on the radiative transport equation (RTE) by using the total variation regularization method. The function space for solutions of the RTE is a natural one from the form of the boundary value problem of the RTE. We analyze the continuity and differentiability of the forward operator. We then show that the total variation regularization method can be applied for a stable solution. Convergence of the total variation-minimizing solution in the sense of the Bregman distance is also obtained. (paper)

  14. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...

  15. Study of design parameters for squeeze film air journal bearing – excitation frequency and amplitude

    Directory of Open Access Journals (Sweden)

    C. Wang

    2011-07-01

    Full Text Available The paper presents a design of squeeze film air journal bearing based on the design rules derived from CFX and FEA simulation study of an air film in between two flat plates, one of which was driven in a sinusoidal manner. The rules are that the oscillation frequency should be at least 15 kHz and that the oscillation amplitude be as large as possible to ensure a greater film thickness and to allow the bearing to reach its stable equilibrium quickly. The proposed journal bearing is made from AL2024-T3, of 20.02 mm outer diameter, 600 mm length and 2 mm thickness. Three 20-mm long fins are on the outer surface of the bearing tube and are spaced 120° apart; three longitudinal flats are milled equi-spaced between the fins and two piezoelectric actuators are mounted lengthwise on each flat. Such a design produces a modal shape on the bearing tube which resembles a triangle. When excited in this mode at the frequency of 16.37 kHz, and a voltage of 75 V AC with 75 V DC offset acting on the piezoelectric actuators, the air gap underneath of the bearing tube behaves as a squeeze air film with a response amplitude of 3.22 μm. The three design rules were validated by experiments.

  16. Marker-based estimation of genetic parameters in genomics.

    Directory of Open Access Journals (Sweden)

    Zhiqiu Hu

    Full Text Available Linear mixed model (LMM analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing 'big' genomic data sets.

  17. Corneal Shape, Volume, and Interocular Symmetry: Parameters to Optimize the Design of Biosynthetic Corneal Substitutes.

    Science.gov (United States)

    Durr, Georges M; Auvinet, Edouard; Ong, Jeb; Meunier, Jean; Brunette, Isabelle

    2015-07-01

    To characterize the three-dimensional (3D) shape, volume distribution, and mirror symmetry of the right and left corneas at the scale of a large population, based on the integrated analysis of 3D corneal shape average maps and topography parameters. A total of 7670 Orbscan II corneal topographies from 3835 consenting subjects with no history of ocular disease were studied. Average topography maps were created using the right and left corneal topographies of all subjects. To quantify symmetry, left eye topographies were flipped horizontally into "right eye" topographies and statistics maps were generated, including difference and intraclass correlation coefficient (ICC) maps. The standard deviation of the anterior and posterior average elevation maps in the 3-mm radius central zone of the right and left corneas ranged within ± 8 μm and ± 44 μm, respectively. The ICC maps showed almost perfect interocular agreement for anterior elevation, posterior elevation, and pachymetry (all ICCs > 0.96). All studied shape parameters also showed excellent agreement (ICCs ≥ 0.80). Mirror symmetry was not affected by age, sex, or spherical equivalent. We also showed that this horizontal reflection (flip) of the right and left corneal shapes could not be replaced by a simple rotation. These results indicate that in normal eyes, the anterior elevation, posterior elevation, and pachymetry of the right and left corneas show remarkable symmetry. This comprehensive analysis was achieved with the purpose of guiding the development of future biosynthetic corneal substitutes.

  18. Development of a Quadrotor Test Bed — Modelling, Parameter Identification, Controller Design and Trajectory Generation

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2015-02-01

    Full Text Available In this paper, a quadrotor test bed is developed. The technical approach for this test bed is firstly proposed by utilizing a commercial quadrotor, a Vicon motion capture system and a ground station. Then, the mathematical model of the quadrotor is formulated considering aerodynamic effects, and the parameter identification approaches for this model are provided accordingly. Based on the developed model and identified parameters, a simulation environment that is consistent with the real system is developed. Subsequently, a flight control strategy and a trajectory generation method, both of which are conceptually and computationally lightweight, are developed and tested in the simulation environment. The developed algorithms are then directly transplanted to the real system, and the experimental results show that their responses in the real-time flights match well with those from the simulations. This indicates that the control algorithms developed for the quadrotor can be preliminarily verified and refined though simulations, and then directly implemented to the real system, which could significantly reduce the experimental risks and costs. Meanwhile, real-time experiments show that the developed flight controller can efficiently stabilize the quadrotor when external disturbances exist, and the trajectory generation approach can provide safe guidance for the quadrotor to fly smoothly through cluttered environments with obstacle rings. All of these features are valuable for real applications, thus demonstrating the feasibility of further development.

  19. Advanced microgrid design and analysis for forward operating bases

    Science.gov (United States)

    Reasoner, Jonathan

    This thesis takes a holistic approach in creating an improved electric power generation system for a forward operating base (FOB) in the future through the design of an isolated microgrid. After an extensive literature search, this thesis found a need for drastic improvement of the FOB power system. A thorough design process analyzed FOB demand, researched demand side management improvements, evaluated various generation sources and energy storage options, and performed a HOMERRTM discrete optimization to determine the best microgrid design. Further sensitivity analysis was performed to see how changing parameters would affect the outcome. Lastly, this research also looks at some of the challenges which are associated with incorporating a design which relies heavily on inverter-based generation sources, and gives possible solutions to help make a renewable energy powered microgrid a reality. While this thesis uses a FOB as the case study, the process and discussion can be adapted to aide in the design of an off-grid small-scale power grid which utilizes high-penetration levels of renewable energy.

  20. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  1. Exergetic optimization of a key design parameter in heat pump systems with economizer coupled with scroll compressor

    International Nuclear Information System (INIS)

    Ma, Guoyuan; Li, Xianguo

    2007-01-01

    The heat pump system with economizer coupled with scroll compressor can extend effectively its operating ranges and provide a technological method to enable the heat pump to run steadily and efficiently in severe weather conditions. The intermediate pressure, namely the working pressure of the refrigerant in the economizer, is an essential design parameter and affects crucially the performances of the heat pump system. According to the exergetic model setup for the heat pump system based on the second law of thermodynamics, the influences of the intermediate pressure on the performances are comprehensively analyzed using experimental data of the heat pump prototype. It is found that the optimal relative intermediate pressure (RIP) is between 1.1 and 1.3

  2. Performance-based parameter tuning method of model-driven PID control systems.

    Science.gov (United States)

    Zhao, Y M; Xie, W F; Tu, X W

    2012-05-01

    In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Data-based model and parameter evaluation in dynamic transcriptional regulatory networks.

    Science.gov (United States)

    Cavelier, German; Anastassiou, Dimitris

    2004-05-01

    Finding the causality and strength of connectivity in transcriptional regulatory networks from time-series data will provide a powerful tool for the analysis of cellular states. Presented here is the design of tools for the evaluation of the network's model structure and parameters. The most effective tools are found to be based on evolution strategies. We evaluate models of increasing complexity, from lumped, algebraic phenomenological models to Hill functions and thermodynamically derived functions. These last functions provide the free energies of binding of transcription factors to their operators, as well as cooperativity energies. Optimization results based on published experimental data from a synthetic network in Escherichia coli are presented. The free energies of binding and cooperativity found by our tools are in the same physiological ranges as those experimentally derived in the bacteriophage lambda system. We also use time-series data from high-density oligonucleotide microarrays of yeast meiotic expression patterns. The algorithm appropriately finds the parameters of pairs of regulated regulatory yeast genes, showing that for related genes an overall reasonable computation effort is sufficient to find the strength and causality of the connectivity of large numbers of them. Copyright 2004 Wiley-Liss, Inc.

  4. Design of MPPT Controller Monitoring Software Based on QT Framework

    Science.gov (United States)

    Meng, X. Z.; Lu, P. G.

    2017-10-01

    The MPPT controller was a hardware device for tracking the maximum power point of solar photovoltaic array. Multiple controllers could be working as networking mode by specific communicating protocol. In this article, based on C++ GUI programming with Qt frame, we designed one sort of desktop application for monitoring and analyzing operational parameter of MPPT controller. The type of communicating protocol for building network was Modbus protocol which using Remote Terminal Unit mode and The desktop application of host computer was connected with all the controllers in the network through RS485 communication or ZigBee wireless communication. Using this application, user could monitor the parameter of controller wherever they were by internet.

  5. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  6. ℋ− adaptive observer design and parameter identification for a class of nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima

    2014-12-01

    In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown parameters are also adapted to their values. Sufficient conditions for the stability of the adaptive observer error dynamics are derived in terms of linear matrix inequalities. Simulation results for chaotic Lorenz systems with unknown parameters in the presence of external perturbations are given to illustrate the effectiveness of our proposed approach. © 2014 IEEE.

  7. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  8. Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    General framework and various criteria for experimental design optimisation are presented. The methodology is applied to estimation of receptor-ligand reaction model parameters with dynamic positron emission tomography data. The possibility of improving parameter estimation using a new experimental design combining an injection of the β + -labelled ligand and an injection of the cold ligand is investigated. Numerical simulations predict remarkable improvement in the accuracy of parameter estimates with this new experimental design and particularly the possibility of separate estimations of the association constant (k +1 ) and of receptor density (B' max ) in a single experiment. Simulation predictions are validated using experimental PET data in which parameter uncertainties are reduced by factors ranging from 17 to 1000. (author)

  9. Knowledge-based optical coatings design and manufacturing

    Science.gov (United States)

    Guenther, Karl H.; Gonzalez, Avelino J.; Yoo, Hoi J.

    1990-12-01

    The theory of thin film optics is well developed for the spectral analysis of a given optical coating. The inverse synthesis - designing an optical coating for a certain spectral performance - is more complicated. Usually a multitude of theoretical designs is feasible because most design problems are over-determined with the number of layers possible with three variables each (n, k, t). The expertise of a good thin film designer comes in at this point with a mostly intuitive selection of certain designs based on previous experience and current manufacturing capabilities. Manufacturing a designed coating poses yet another subset of multiple solutions, as thin if in deposition technology has evolved over the years with a vast variety of different processes. The abundance of published literature may often be more confusing than helpful to the practicing thin film engineer, even if he has time and opportunity to read it. The choice of the right process is also severely limited by the given manufacturing hardware and cost considerations which may not easily allow for the adaption of a new manufacturing approach, even if it promises to be better technically (it ought to be also cheaper). On the user end of the thin film coating business, the typical optical designer or engineer who needs an optical coating may have limited or no knowledge at all about the theoretical and manufacturing criteria for the optimum selection of what he needs. This can be sensed frequently by overly tight tolerances and requirements for optical performance which sometimes stretch the limits of mother nature. We introduce here a know1edge-based system (KBS) intended to assist expert designers and manufacturers in their task of maximizing results and minimizing errors, trial runs, and unproductive time. It will help the experts to manipulate parameters which are largely determined through heuristic reasoning by employing artificial intelligence techniques. In a later state, the KBS will include a

  10. Animal based parameters are no panacea for on-farm monitoring of animal welfare

    NARCIS (Netherlands)

    Bracke, M.B.M.

    2007-01-01

    On-farm monitoring of animal welfare is an important, present-day objective in animal welfare science. Scientists tend to focus exclusively on animal-based parameters, possibly because using environment-based parameters could be begging the question why welfare has been affected and because

  11. Designing Dexter-based cooperative hypermedia systems

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Madsen, Ole Lehrmann; Sloth, Lennard

    1993-01-01

    concepts. To deal with such aspects we have extended our implementation of the Dexter concepts with support for long-term transactions, locking and event notification as called for by Halasz [Hala88]. The result is a platform independent architecture for developing cooperative hypermedia systems......This paper discusses issues for the design of a Dexter-based cooperative hypermedia architecture and a specific system, DeVise Hypermedia (DHM), developed from this architecture. The Dexter Hypertext Reference Model [Hala90] was used as basis for designing the architecture. The Dexter model....... The architecture consists of a portable kernel that constitutes an object oriented framework for developing Dexter compliant hypermedia systems. It is a client/server architecture including an object oriented database (OODB) to store the objects implementing the Dexter Storage Layer. We use a general OODB being co...

  12. Visualizing Practices in Project-based Design

    DEFF Research Database (Denmark)

    Whyte, Jennifer; Tryggestad, Kjell; Comi, Alice

    2016-01-01

    that follows cascades of visual representations, and this is illustrated through two empirical studies. In the first case, Heathrow Terminal 5, analysis starts from paper- and model-work used to develop design, tracing connections forward to an assembly manual that forms a ‘consolidated cascade’ of visual...... representations. In the second, the Turning Torso, Malmö, analysis starts from a planning document, tracing connections backward to the paper- and model-work done to produce this consolidated cascade. This work makes a twofold contribution: first, it offers a methodological approach that supplements ethnographies...... representations enabled participants in project-based design to develop and share understanding. The complexity of projects and their distributed and mediated nature makes this approach timely and important in addressing new research questions and practical challenges....

  13. Study of relevant parameters of GEM-based detectors

    CERN Document Server

    Croci, Gabriele; Sauli, Fabio; Ragazzi, S

    2007-01-01

    The Gas Electron Multiplier consist of a thin Kapton insulating (50 $\\mu$m) foil copper-clad on both sides and perforated by a high density, regular matrix of holes (around 100 per square millimeter). Typically the distance between holes (pitch) is 140 $\\mu$m and diameters of about 70 $\\mu$m. The mesh is realised by conventional photolitographic methods as used for the fabrication of multi-layer board. Upon application of a potential difference between the GEM electrodes, a high dipole field develops in the holes focusing the field lines between the drift electrode and the readout element. Electron drift along the channel and the charge is amplified by a factor that depends on the field density and the length of the channel. Owing to their excellent position resolution and rate capability GEM-based detector are very suitable to be used in different applications: from the high energy physics to the medical field. The GEM temporal and rate gain stability was studied and it was discovered that the gain variation...

  14. Interior Design Based on Forough Farrokhzad Poetry

    Directory of Open Access Journals (Sweden)

    Mahsa Sanami

    2018-03-01

    Full Text Available The main purpose of this study is to correlate between art, literature, architect and visualization to translate the emotions and aspirations embodied in a well-known poet such as Forough Farrokhzad. Forough Farrokhzad widely regarded as a famous Iranian poet and an advocate for women’s liberation and independence. She wrote during a time when Iranian women were facing extensive discrimination and prejudice. Many of her works are rich in feminist related aspects of Iranian women. By visualization of Forough’s inner feelings, one can see a great revaluation in society towards women feelings and emotions. Like any other human, poets and artist both have thoughts and dreams rich in colors and words capsulizing their imaginary world in possible dreams which are all related to each person’s personality, culture, environment and etc. One of the ways to understand a poet is to understand the depth of his/her thoughts through his/her poems. Thus the main purpose of this research is to review interior design based on in depth analysis of related poems. Psychoanalysis of symbols, themes and colors used in poems, can be used to supplement words in extracting symptoms and energy depicting the poet inner feelings and imaginations when designing. The results of the discussing symbols and colors used by Forough in most of her poems, indicate her interest in life, death, love, society, intellectuality and philosophy. Finally the researchers through usage of visual effects and pictures used in her designs tries to assist the viewers to understand and feel the poet’s emotions and passions for life at the time of creating the poems. Thus, it can be assumed that the interior design is based on poetry rich in motion and dynamism.

  15. Analysis of Kinetic and Operational Parameters in a Structured Model for Acrylic Acid Production through Experimental Design

    Science.gov (United States)

    Lunelli, B. H.; Rivera, E. C.; Vasco de Toledo, E. C.; Maciel, M. R. Wolf; Filho, R. Maciel

    In biotechnological processes, a great number of factors can influence the income productivity and conversion. Normally, it is not evident which of these factors are the most important and how they interact. In this work, multivariate analysis techniques are used as experimental design coupled to a detailed deterministic model to identify the parameters with the most significant impact on the model to represent well the acrylic acid production process. It is proposed as an alternative process, having sugarcane as feedstock, to the petrochemical-based ones that have significant environmental impacts for their production. To increase the competitiveness of renewable acrylic-acid-based process, it is necessary to find out working conditions near the optimal region, which is not an easy task, as the process is multivariable and non-linear. The mapping of the dynamics of the developed process is made using techniques of factorial design together with the methodology of Plackett-Burman. It is shown that it is possible to increase the process performance by choosing optimized conditions for the reactor operation.

  16. A domain decomposition approach for full-field measurements based identification of local elastic parameters

    KAUST Repository

    Lubineau, Gilles

    2015-03-01

    We propose a domain decomposition formalism specifically designed for the identification of local elastic parameters based on full-field measurements. This technique is made possible by a multi-scale implementation of the constitutive compatibility method. Contrary to classical approaches, the constitutive compatibility method resolves first some eigenmodes of the stress field over the structure rather than directly trying to recover the material properties. A two steps micro/macro reconstruction of the stress field is performed: a Dirichlet identification problem is solved first over every subdomain, the macroscopic equilibrium is then ensured between the subdomains in a second step. We apply the method to large linear elastic 2D identification problems to efficiently produce estimates of the material properties at a much lower computational cost than classical approaches.

  17. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    Science.gov (United States)

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  18. Compact optical multipass matrix system design based on slicer mirrors.

    Science.gov (United States)

    Guo, Yin; Sun, Liqun

    2018-02-10

    High path-to-volume ratio (PVR) and low-aberration-output beams are the two main criteria to assess the performance of multipass absorption cells. However, no substantial progress has been reported for large-numerical-aperture-coupled multipass cells, which is due to the accumulated aberrations caused by a large number of off-axis reflections. Based on Chernin's design, in this study, we modified Chernin's four-objective multipass matrix cell by using slicer mirrors to eliminate alignment difficulty and decrease the system volume. A generalized design routine based on user requirements is also proposed. Based on the automatic modeling tool package (Pyzdde) connected with Zemax and boundary conditions of the parameters selection proposed, a low-aberration-output beam and a high PVR are easily obtained compared with other multipass cells schemes. In one demo design, 108 passes (5×7 matrix spots) in a base length of 300 mm are presented. The PVR and peak-to-valley value wavefront errors are 67.5 m/L and 0.92 μm, respectively. Finally, a tolerance analysis of this optical multipass system is also presented. This work may provide better broadband optical absorption cells in terms of response time and a better detection sensitivity in versatile applications.

  19. A Study of the Usability of Ergonomic Camera Vest Based on Spirometry Parameters

    Directory of Open Access Journals (Sweden)

    Shirazeh Arghami

    2017-12-01

    Full Text Available Background: Being a cameraman is one of those occupations that expose people to musculoskeletal disorders (MSDs. Therefore, control measures should be taken to protect cameramen’s health. To solve the given problem, a vest was designed for cameramen to prevent MSDs by reducing the pressure and contact stress while carrying the camera on their shoulder. However, the usability of vest had to be considered. The aim of this study was to determine the usability of the proposed vest using the spirometry parameters indicator. Methods: In this experimental study, 120 spirometry experiments were conducted with 40 male volunteer subjects with and without designed vest. Data were analyzed using SPSS- 16 with dependent t-test, at 0.05 significance level. Results: Based on the spirometry results, there is a significant difference between Forced Vital Capacity (FVC, Forced Expiratory Volume (FEV1 and heart rate in activity with and without vest (p<0.001. Conclusion: The results suggest that the promising impact of this invention on the health of cameramen makes this domestically designed camera vest a good option for mass production.

  20. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    Science.gov (United States)

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Selection of maximum design earthquake parameters for a dam safety project in British Columbia

    International Nuclear Information System (INIS)

    Smith, H.R.; Wightman, A.; Naumann, C.M.

    1991-01-01

    A study was carried out for the Greater Vancouver Water District to determine maximum design earthquake (MDE) parameters for dam safety projects. Three types of maximum credible earthquake (MCE) were investigated: a mega thrust earthquake (interplate event) of magnitude 9 on the Richter scale under the west coast of Vancouver Island; a magnitude 7.5 earthquake (intraplate event) under Georgia Straight at a depth of ca 60 km; and a local magnitude 6.5 shallow earthquake near the study site, on the north shore mountains near Vancouver. Conclusions of the study include the following. Strong motion records are recorded on three component accelerograms, and considering the individual components rather than the maximum ground motion can result in underestimation of seismic loading. It is recommended that the peak ground motions be defined by the envelope of the larger component, which would include peak ground acceleration, peak velocity and response spectra. The peak ground acceleration of the most critical earthquake, of magnitude 6.5 at 10 km, was estimated at 0.5 gravities. A variety of check methodologies yielded peak horizontal ground acceleration (PGA) ranging from 0.44 to 0.55 gravities. PGA values chosen for seismic analysis must consider duration and direction of peak as well as type of analysis, failure mode and material types. 9 refs., 10 figs., 2 tabs

  2. Determining the Parameters of Importance of a Graphene Synthesis Process Using Design-of-Experiments Method

    Directory of Open Access Journals (Sweden)

    Udit Narula

    2016-07-01

    Full Text Available A systematic method to identify key factors that control the synthesis of Physical Vapor Deposition (PVD-based graphene on copper is necessary for engineering graphene growth. The statistical design-of-experiments method is employed and demonstrated in this work in order to fulfill the necessity. Full-factorial design-of-experiments are performed to examine the significance of the main effects and the extent of the interactions of the controlling factors, which are responsible for the number of layers and the quality of the grown graphene. We found that a thinner amorphous carbon layer and a higher annealing temperature are suitable for the growth of mono-layer/few-layer graphene with low defects, while the effect of annealing time has a trade-off and needs to be optimized further. On the other hand, the same treatment, but with larger annealing times will result in multi-layer graphene and low defects. The results obtained from the analysis of the design-of-experiments are verified experimentally with Raman characterization.

  3. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    Science.gov (United States)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  4. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells

    International Nuclear Information System (INIS)

    Niu, Qun; Zhang, Letian; Li, Kang

    2014-01-01

    Highlights: • Solar cell and PEM fuel cell parameter estimations are investigated in the paper. • A new biogeography-based method (BBO-M) is proposed for cell parameter estimations. • In BBO-M, two mutation operators are designed to enhance optimization performance. • BBO-M provides a competitive alternative in cell parameter estimation problems. - Abstract: Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells

  5. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  6. Mechatronic Design for an Extrusion-Based Additive Manufacturing Machine

    Directory of Open Access Journals (Sweden)

    Hermes Giberti

    2017-11-01

    Full Text Available 3D printers, especially in the implementation of innovative extrusion processes which do not have a long history of development, are often built by adapting mechanical designs, drives and controls previously developed for generic machine tools. This is done through a process of choice and integration which is based principally on empirical criteria and taking into account separately the different aspects and parameters. Hereafter, we present an integrated mechatronic approach which has been adopted to design from the scratch a machine to implement the innovative metal injection moulding (MIM technology. Its extrusion rate involves the adaptation of the generated trajectories and consequently requires “ad hoc” designs, drives and numerical controls (NC to enable non standard acceleration (and hence torque setpoint curves. Overall, the project resulted in an acceptable workspace volume (depending on the number of degrees of freedom of the platform and allows one to combine the extruder flow rate, the given accuracy and the required working speed (1 m/s. The system is currently used as a test bench for exploring and optimizing the parameter space of a new MIM process.

  7. Task-Based Method for Designing Underactuated Mechanisms

    Directory of Open Access Journals (Sweden)

    Shoichiro Kamada

    2012-03-01

    Full Text Available In this paper we introduce a task-based method for designing underactuated multi-joint prosthetic hands for specific grasping tasks. The designed robotic hands or prosthetic hands contain fewer independent actuators than joints. We chose a few specific grasping tasks that are frequently repeated in everyday life and analysed joint motions of the hand during the completion of each task and the level of participation of each joint. The information was used for the synthesis of dedicated underactuated mechanisms that can operate in a low dimensional task coordinate space. We propose two methods for reducing the actuators' number. The kinematic parameters of the synthesized mechanism are determined by using a numerical approach. In this study the joint angles of the synthesized hand are considered as linearly dependent on the displacements of the actuators. We introduced a special error index that allowed us to compare the original trajectory and the trajectory performed by the synthesized mechanism, and to select the kinematic parameters of the new kinematic structure as a way to reduce the error. The approach allows the design of simple gripper mechanisms with good accuracy for the preliminary defined tasks.

  8. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  9. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  10. Designing and testing a laser-based vibratory sensor

    Science.gov (United States)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  11. Adaptive Neuro-Fuzzy Inference System based DVR Controller Design

    Directory of Open Access Journals (Sweden)

    Brahim FERDI

    2011-06-01

    Full Text Available PI controller is very common in the control of DVRs. However, one disadvantage of this conventional controller is its inability to still working well under a wider range of operating conditions. So, as a solution fuzzy controller is proposed in literature. But, the main problem with the conventional fuzzy controllers is that the parameters associated with the membership functions and the rules depend broadly on the intuition of the experts. To overcome this problem, Adaptive Neuro-Fuzzy Inference System (ANFIS based controller design is proposed. The resulted controller is composed of Sugeno fuzzy controller with two inputs and one output. According to the error and error rate of the control system and the output data, ANFIS generates the appropriate fuzzy controller. The simulation results have proved that the proposed design method gives reliable powerful fuzzy controller with a minimum number of membership functions.

  12. Application of Teaching Learning Based Optimization in antenna designing

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2015-07-01

    Full Text Available Numerous optimization techniques are studied and applied on antenna designs to optimize various performance parameters. Authors used many Multiple Attributes Decision Making (MADM methods, which include, Weighted Sum Method (WSM, Weighted Product Method (WPM, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS, Analytic Hierarchy Process (AHP, ELECTRE, etc. Of these many MADM methods, TOPSIS and AHP are more widely used decision making methods. Both TOPSIS and AHP are logical decision making approaches and deal with the problem of choosing an alternative from a set of alternatives which are characterized in terms of some attributes. Analytic Hierarchy Process (AHP is explained in detail and compared with WSM and WPM. Authors fi- nally used Teaching-Learning-Based Optimization (TLBO technique; which is a novel method for constrained antenna design optimization problems.

  13. Comparing linkage designs based on land facets to linkage designs based on focal species.

    Science.gov (United States)

    Brost, Brian M; Beier, Paul

    2012-01-01

    Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these designs depend on today's land covers, which will be altered by climate change. We recently proposed an alternative approach based on land facets (recurring landscape units of relatively uniform topography and soils). The rationale is that corridors with high continuity of individual land facets will facilitate movement of species associated with each facet today and in the future. Conservation practitioners might like to know whether a linkage design based on land facets is likely to provide continuity of modeled breeding habitat for species needing connectivity today, and whether a linkage for focal species provides continuity and interspersion of land facets. To address these questions, we compared linkages designed for focal species and land facets in three landscapes in Arizona, USA. We used two variables to measure linkage utility, namely distances between patches of modeled breeding habitat for 5-16 focal species in each linkage, and resistance profiles for focal species and land facets between patches connected by the linkage. Compared to focal species designs, linkage designs based on land facets provided as much or more modeled habitat connectivity for 25 of 28 species-landscape combinations, failing only for the three species with the most narrowly distributed habitat. Compared to land facets designs, focal species linkages provided lower connectivity for about half the land facets in two landscapes. In areas where a focal species approach to linkage design is not possible, our results suggest that conservation practitioners may be able to implement a land facets approach with some confidence that the linkage design would serve most potential focal species. In areas where focal species designs are possible, we recommend using the land facet approach to complement, rather than replace, focal species approaches.

  14. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  15. Robust Motion Control of Industrial Robot Based on Robot Parameter Identification and Feedforward Control Considering Resonant Frequency

    Science.gov (United States)

    Tungpataratanawong, Somsawas; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    In control application of industrial robot manipulator, a two-inertia resonant system is normally represented as the basic plant model for various control schemes. Various control techniques with partially feedback linearization have been proposed to achieve high performance motion control. The design of such controllers basically relies on system mechanical parameters. The proper parameters of the model cannot be obtained by the parameter identification based on only manipulator force and motion measurements. In this paper, the open-loop resonant frequency characteristic of the flexible joint is employed to identify the proper mechanical parameters of the two-inertia model. The nominal link inertia and spring constant of gear drive can be readily measured by this novel identification method. The identified parameters are used in independent-joint controller design for conventional PD control scheme and robust control scheme to verify the effectiveness of the proposed identification method. Moreover, the accuracy improvement of the proposed robust control scheme based on feedforward inverse dynamic compensation and D-PD position control gives support the validity of the proposed identification method.

  16. Finite-Element Model-Based Design Synthesis of Axial Flux PMBLDC Motors

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2016-01-01

    This paper discusses design synthesis of a permanent magnet brushless DC (PMBLDC) machine using a finite element (FE) model. This work differentiates itself from the past studies by following a synthesis approach, in which many designs that satisfy performance criteria are considered instead...... of a unique solution. The designer can later select a design, based on comparing parameters of the designs, which are critical to the application that the motor will be used. The presented approach makes it easier to define constraints for a design synthesis problem. A detailed description of the setting up...... is demonstrated by designing a segmented axial torus PMBLDC motor for an electric two-wheeler....

  17. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  18. Parameter optimization method for the water quality dynamic model based on data-driven theory.

    Science.gov (United States)

    Liang, Shuxiu; Han, Songlin; Sun, Zhaochen

    2015-09-15

    Parameter optimization is important for developing a water quality dynamic model. In this study, we applied data-driven method to select and optimize parameters for a complex three-dimensional water quality model. First, a data-driven model was developed to train the response relationship between phytoplankton and environmental factors based on the measured data. Second, an eight-variable water quality dynamic model was established and coupled to a physical model. Parameter sensitivity analysis was investigated by changing parameter values individually in an assigned range. The above results served as guidelines for the control parameter selection and the simulated result verification. Finally, using the data-driven model to approximate the computational water quality model, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the control parameters. The optimization routines and results were analyzed and discussed based on the establishment of the water quality model in Xiangshan Bay (XSB). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  20. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale.

    Science.gov (United States)

    Rambali, B; Baert, L; Massart, D L

    2001-06-04

    A face-centered central composite design was applied in order to optimize the granulation process on a semi-full scale (30-kg batch) for the geometric mean granule size. The granulation process variables investigated were: inlet air temperature, inlet airflow rate, spray rate and inlet air humidity. Based on the process variables, the theoretical powder bed moisture content after the spraying process and a measure for the droplet size were determined. Multiple regression modeling was used to develop two models for the granule size: an empirical model, based on the four process parameters, and a fundamental model, based on the balance between the granule growth affected by the theoretical powder bed moisture content and the droplet size and the breakage effect of the airflow rate. These regression models were used to optimize the granulation process to obtain a granule size between 300 and 500 microm. Additional experiments confirmed that these models were valid. Other granule properties, namely the geometric standard deviation, the Hausner index, the angle of repose and the moisture content, were evaluated at the optimal operation conditions.

  1. Predictive microbiology for cosmetics based on physicals, chemicals and concentration parameters.

    Science.gov (United States)

    Ghalleb, S; De Vaugelade, S; Sella, O; Lavarde, M; Mielcarek, C; Pense-Lheritier, A-M; Pirnay, S

    2015-02-01

    Challenge test (CT) is essential to assure the efficiency of the preservative system in products. A previous study realized by our staff in 2012, carried out to evaluate the influence of three parameters (ethanol, pH and water) on the microbiological cosmetics products conservation. Following this work, a correlation between aw (based on the glycerine concentration) and the selected parameter has been demonstrated. In the present study, smaller limits of ethanol, pH and glycerine were applied to determinate CT necessity. Sixteen stables O/W cosmetics creams with different concentration of ethanol (1-19%), glycerine (3-16%) and different pH (6-11) were formulated. To evaluate the efficiency of the different formulations, CTs were performed according to the International Standard ISO 11930:2012. To determine the influence of the parameters, a D-optimal plan generated by Design Expert(®) was applied. Design of Experiments software offers to plan, estimate and control the statistics and models for factorial and no-factorial designs. Challenge tests results show that 10 formula passed criteria A, two passed criteria B and four are not conform. Mostly, an ethanol concentration higher than 16% exempts products of CT. It has been shown that an ethanol concentration between 10.5% and 16%, and an glycerine concentration >10%; or if the ethanol concentration is between 5% and 10.5%, glycerine is >6% and pH is ≥10, the CT is not required. Ethanol has a significant impact on conservation and especially when it is correlated with glycerine and pH. Finally, a glycerine concentration higher than 16% exempts products of CT. Following the analysis of the different concentration, a correlation between glycerine and ethanol that directly influence microbiological protection of cosmetics products has been established. Indeed, by controlling ethanol, pH and glycerine, many products may be exempted from the CT. © 2014 Society of Cosmetic Scientists and the Société Française de

  2. Improving metabolic parameters of antipsychotic child treatment (IMPACT) study: rationale, design, and methods.

    Science.gov (United States)

    Reeves, Gloria M; Keeton, Courtney; Correll, Christoph U; Johnson, Jacqueline L; Hamer, Robert M; Sikich, Linmarie; Hazzard, Lindsey; Alderman, Cheryl; Scheer, Abigail; Mabe, Micah; Kapoor, Sandeep; Sheridan, Eva; Borner, Irmgard; Bussell, Kristin; Pirmohamed, Sara; Bethea, Terrence C; Chekuri, Raja; Gottfried, Rhoda; Reinblatt, Shauna P; Santana, Erin; Riddle, Mark A

    2013-08-15

    Youth with serious mental illness may experience improved psychiatric stability with second generation antipsychotic (SGA) medication treatment, but unfortunately may also experience unhealthy weight gain adverse events. Research on weight loss strategies for youth who require ongoing antipsychotic treatment is quite limited. The purpose of this paper is to present the design, methods, and rationale of the Improving Metabolic Parameters in Antipsychotic Child Treatment (IMPACT) study, a federally funded, randomized trial comparing two pharmacologic strategies against a control condition to manage SGA-related weight gain. The design and methodology considerations of the IMPACT trial are described and embedded in a description of health risks associated with antipsychotic-related weight gain and the limitations of currently available research. The IMPACT study is a 4-site, six month, randomized, open-label, clinical trial of overweight/obese youth ages 8-19 years with pediatric schizophrenia-spectrum and bipolar-spectrum disorders, psychotic or non-psychotic major depressive disorder, or irritability associated with autistic disorder. Youth who have experienced clinically significant weight gain during antipsychotic treatment in the past 3 years are randomized to either (1) switch antipsychotic plus healthy lifestyle education (HLE); (2) add metformin plus HLE; or (3) HLE with no medication change. The primary aim is to compare weight change (body mass index z-scores) for each pharmacologic intervention with the control condition. Key secondary assessments include percentage body fat, insulin resistance, lipid profile, psychiatric symptom stability (monitored independently by the pharmacotherapist and a blinded evaluator), and all-cause and specific cause discontinuation. This study is ongoing, and the targeted sample size is 132 youth. Antipsychotic-related weight gain is an important public health issue for youth requiring ongoing antipsychotic treatment to

  3. Significance Test of Reliability Evaluation with Three-parameter Weibull Distribution Based on Grey Relational Analysis

    OpenAIRE

    Xintao Xia; Yantao Shang; Yinping Jin; Long Chen

    2013-01-01

    With the aid of the grey system theory, the grey relational analysis of the reliability with the three-parameter Weibull distribution is made for the Weibull parameter evaluation and its significance test. Via the theoretical value set and the experimental value set of the reliability relied on the lifetime data of a product, the model of the constrained optimization of the Weibull parameter evaluation based on the maximum grey relational grade. The grey significance of the reliability functi...

  4. Environment Parameters Control Based on Wireless Sensor Network in Livestock Buildings

    OpenAIRE

    Zhang, Yu; Chen, Qiyu; Liu, Guanting; Shen, Weizheng; Wang, Guanlin

    2016-01-01

    The products quality and welfare of animals are closely related to the environment parameters in livestock buildings. A monitoring and control method of environment parameters in livestock buildings based on wireless sensor network is proposed in this paper. Temperature, humidity, light, carbon dioxide concentration, ammonia concentration, and hydrogen sulfide concentration can be monitored in real time by this method. The above six parameters will be adjusted and controlled through WLS algor...

  5. Adaptive Backstepping Based MTPA Sensorless Control of PM-Assisted SynRM with Fully Uncertain Parameters

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2018-01-01

    Full Text Available A nonlinear and robust adaptive backstepping based maximum torque per ampere speed sensorless control scheme with fully uncertain parameters is proposed for a permanent magnet-assisted synchronous reluctance motor. In the design of the controller, the relation to d-q-axis currents constrained by maximum torque per ampere control is firstly derived. Then, a fully adaptive backstepping control method is employed to design control scenario and the stability of the proposed control scenario is proven through a proper Lyapunov function candidate. The derived controller guarantees tracking the reference signals of change asymptotically and has good robustness against the uncertainties of motor parameters and the perturbation of load torque. Moreover, in allusion to the strong nonlinearity of permanent magnet-assisted synchronous reluctance motor, an active flux based improved reduced-order Luenberger speed observer is presented to estimate the speed. Digital simulations testify the feasibility and applicability of the presented control scheme.

  6. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    Science.gov (United States)

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Constructivism Based Learning: Design and Practice

    Directory of Open Access Journals (Sweden)

    Lia Kurniawati

    2016-06-01

    Full Text Available Abstract One of many problems in the madrasahs is that learning processes less-involve students actively (teacher-centered, thus, it affects to the improvement of learning outcomes and quality of the graduates. The purposes of this study are , firstly, to analyze what type of constructivism learning models, which can be developed to overcome madrasahs’ problems. Secondly, how to design and implement a learning plan based on the developed constructivism models. This research was conducted at Private Islamic Elementary School  (Madrasah Ad-Diyanah Ciputat, South Tangerang. Research method used in this study is descriptive-qualitative research. The results showed that the active learning models based on constructivism are suitable to be developed in the Madarasah, which were the models of Problem Based Learning (PBM, Realistic Learning, Inquiry Learning and Thematic Learning and also how the development of the learning processes from the lesson plans to the learning implementation showed a paradigm shifting from teacher-centered to student-centered. Abstrak Salah satu permasalahan di madrasah-madrasah adalah proses pembelajaran yang kurang melibatkan siswa secara aktif (berpusat pada guru, sehingga hal ini mengakibatkan pada peningkatan hasil belajar dan kualitas lulusan. Tujuan dari penelitian ini adalah, pertama, untuk menganalisis jenis model pembelajaran konstruktivisme apa yang dapat dikembangkan untuk mengatasi permasalahan di madrasah. Ke dua, bagaimana merancang dan melaksanakan rencana pembelajaran berdasarkan model konstruktivisme yang dikembangkan. Penelitian ini dilaksanakan di Sekolah Dasar Swasta (madrasah Ad-Diayanah Ciputat, Tangerang Selatan. Metode penelitian yang digunakan adalah metode deskriptif-kualitatif. Hasil penelitian menunjukkan bahwa model pembelajaran aktif yang berbasis konstruktivisme sesuai untuk dikembangkan di madrasah, yakni model pembelajaran Problem Based Learning (PBL, Pembelajaran Realistis, Pembelajaran

  8. Designing a Constraint Based Parser for Sanskrit

    Science.gov (United States)

    Kulkarni, Amba; Pokar, Sheetal; Shukl, Devanand

    Verbal understanding (śā bdabodha) of any utterance requires the knowledge of how words in that utterance are related to each other. Such knowledge is usually available in the form of cognition of grammatical relations. Generative grammars describe how a language codes these relations. Thus the knowledge of what information various grammatical relations convey is available from the generation point of view and not the analysis point of view. In order to develop a parser based on any grammar one should then know precisely the semantic content of the grammatical relations expressed in a language string, the clues for extracting these relations and finally whether these relations are expressed explicitly or implicitly. Based on the design principles that emerge from this knowledge, we model the parser as finding a directed Tree, given a graph with nodes representing the words and edges representing the possible relations between them. Further, we also use the Mīmā ṃsā constraint of ākā ṅkṣā (expectancy) to rule out non-solutions and sannidhi (proximity) to prioritize the solutions. We have implemented a parser based on these principles and its performance was found to be satisfactory giving us a confidence to extend its functionality to handle the complex sentences.

  9. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  10. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2010-04-01

    Full Text Available Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA.

  11. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  12. Modulating Function-Based Method for Parameter and Source Estimation of Partial Differential Equations

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-08

    Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown and are estimated from available measurements. Despite its importance, solving the estimation problem is mathematically and numerically challenging and especially when the measurements are corrupted by noise, which is often the case. Various methods have been proposed to solve estimation problems in PDEs which can be classified into optimization methods and recursive methods. The optimization methods are usually heavy computationally, especially when the number of unknowns is large. In addition, they are sensitive to the initial guess and stop condition, and they suffer from the lack of robustness to noise. Recursive methods, such as observer-based approaches, are limited by their dependence on some structural properties such as observability and identifiability which might be lost when approximating the PDE numerically. Moreover, most of these methods provide asymptotic estimates which might not be useful for control applications for example. An alternative non-asymptotic approach with less computational burden has been proposed in engineering fields based on the so-called modulating functions. In this dissertation, we propose to mathematically and numerically analyze the modulating functions based approaches. We also propose to extend these approaches to different situations. The contributions of this thesis are as follows. (i) Provide a mathematical analysis of the modulating function-based method (MFBM) which includes: its well-posedness, statistical properties, and estimation errors. (ii) Provide a numerical analysis of the MFBM through some estimation problems, and study the sensitivity of the method to the modulating functions\\' parameters. (iii) Propose an effective algorithm for selecting the method\\'s design parameters

  13. Analysis and design of photobioreactors for microalgae production I: method and parameters for radiation field simulation.

    Science.gov (United States)

    Heinrich, Josué Miguel; Niizawa, Ignacio; Botta, Fausto Adrián; Trombert, Alejandro Raúl; Irazoqui, Horacio Antonio

    2012-01-01

    Having capabilities for the simulation of the radiation field in suspensions of microalgae constitutes a great asset for the analysis, optimization and scaling-up of photobioreactors. In this study, a combined experimental and computational procedure is presented, specifically devised for the assessment of the coefficients of absorption and scattering, needed for the simulation of such fields. The experimental procedure consists in measuring the radiant energy transmitted through samples of suspensions of microalgae of different biomass concentrations, as well as the forward and backward scattered light. At a microscopic level, suspensions of microalgae are complex heterogeneous media and due to this complexity, in this study they are modeled as a pseudocontinuum, with centers of absorption and scattering randomly distributed throughout its volume. This model was tested on suspensions of two algal species of dissimilar cell shapes: Chlorella sp. and Scenedesmus quadricauda. The Monte Carlo simulation algorithm developed in this study, when used as a supporting subroutine of a main optimization program based on a genetic algorithm, permits the assessment of the physical parameters of the radiation field model. The Monte Carlo algorithm simulates the experiments, reproducing the events that photons can undergo while they propagate through culture samples or at its physical boundaries. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  14. A quantitative analysis of secondary RNA structure using domination based parameters on trees

    Directory of Open Access Journals (Sweden)

    Zou Yue

    2006-03-01

    Full Text Available Abstract Background It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure. Results The statistical analysis shows that the domination based parameters correctly distinguish between the trees that represent native structures and those that are not likely candidates to represent RNA. Some of the trees previously identified as candidate structures are found to be "very" RNA like, while others are not, thereby refining the space of structures likely to be found as representing secondary RNA structure. Conclusion Search algorithms are available that mine nucleotide sequence databases. However, the number of motifs identified can be quite large, making a further search for similar motif computationally difficult. Much of the work in the bioinformatics arena is toward the development of better algorithms to address the computational problem. This work, on the other hand, uses mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the corresponding search space. These

  15. Improved Hybrid Fireworks Algorithm-Based Parameter Optimization in High-Order Sliding Mode Control of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaomeng Yin

    2018-01-01

    Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.

  16. Reliability Based Optimal Design of Vertical Breakwaters Modelled as a Series System Failure

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1996-01-01

    Reliability based design of monolithic vertical breakwaters is considered. Probabilistic models of important failure modes such as sliding and rupture failure in the rubble mound and the subsoil are described. Characterisation of the relevant stochastic parameters are presented, and relevant design...... variables are identified and an optimal system reliability formulation is presented. An illustrative example is given....

  17. Design of an adaptive neural network based power system stabilizer.

    Science.gov (United States)

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness.

  18. A Fundamental Parameter-Based Calibration Model for an Intrinsic Germanium X-Ray Fluorescence Spectrometer

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Pind, Niels

    1982-01-01

    A matrix-independent fundamental parameter-based calibration model for an energy-dispersive X-ray fluorescence spectrometer has been developed. This model, which is part of a fundamental parameter approach quantification method, accounts for both the excitation and detection probability. For each...

  19. Knowledge base rule partitioning design for CLIPS

    Science.gov (United States)

    Mainardi, Joseph D.; Szatkowski, G. P.

    1990-01-01

    This describes a knowledge base (KB) partitioning approach to solve the problem of real-time performance using the CLIPS AI shell when containing large numbers of rules and facts. This work is funded under the joint USAF/NASA Advanced Launch System (ALS) Program as applied research in expert systems to perform vehicle checkout for real-time controller and diagnostic monitoring tasks. The Expert System advanced development project (ADP-2302) main objective is to provide robust systems responding to new data frames of 0.1 to 1.0 second intervals. The intelligent system control must be performed within the specified real-time window, in order to meet the demands of the given application. Partitioning the KB reduces the complexity of the inferencing Rete net at any given time. This reduced complexity improves performance but without undo impacts during load and unload cycles. The second objective is to produce highly reliable intelligent systems. This requires simple and automated approaches to the KB verification & validation task. Partitioning the KB reduces rule interaction complexity overall. Reduced interaction simplifies the V&V testing necessary by focusing attention only on individual areas of interest. Many systems require a robustness that involves a large number of rules, most of which are mutually exclusive under different phases or conditions. The ideal solution is to control the knowledge base by loading rules that directly apply for that condition, while stripping out all rules and facts that are not used during that cycle. The practical approach is to cluster rules and facts into associated 'blocks'. A simple approach has been designed to control the addition and deletion of 'blocks' of rules and facts, while allowing real-time operations to run freely. Timing tests for real-time performance for specific machines under R/T operating systems have not been completed but are planned as part of the analysis process to validate the design.

  20. Novel field test design for acquisition of DC and AC parameters during service

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Schou, Jørgen

    2016-01-01

    degradation mechanisms, and fitting parameters extracted from the field test will be correlated with irradiance and compared to similar parameters of virgin modules of same kind, and conventional laboratory measurements on the same modules. The proposed method will provide data for exploration of early...... degradation signs using impedance measurements....

  1. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  2. Design of Photoreactor and Study of Modeling Parameters for Removal of Pesticides in Water: a Case Study of Malathion

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2011-02-01

    Full Text Available The design of photoreactor and its modeling parameters for removal of environmental pollutants in water are described. The work will provide the instructions to design of photoreactor with modeling parameters, and to allow these parameters to communicate degradation efficiency of the analyte in water samples. The modeling parameters are outlined by which the photoreactor can use UV source to degrade the composition of pollutant. The operation of degradation through photoreactor is applied to the study of degradation rate of pollutant i.e. malathion and the produced informative data at various time intervals also correlated with UV-vis spectrophotometry for the validation of results. The purpose of designed photoreactor is to know the best percentage degradability of pollutants at micro to nano gram levels using nanosemiconductor sensitizer like TiO2. Such designs promises the high impact at very low levels, less time consuming process, low consumable solvents and suit for field application purposes which focuses the merits of the designed photoreactor.

  3. Model-based parameter estimation using cardiovascular response to orthostatic stress

    Science.gov (United States)

    Heldt, T.; Shim, E. B.; Kamm, R. D.; Mark, R. G.

    2001-01-01

    This paper presents a cardiovascular model that is capable of simulating the short-term (response to gravitational stress and a gradient-based optimization method that allows for the automated estimation of model parameters from simulated or experimental data. We perform a sensitivity analysis of the transient heart rate response to determine which parameters of the model impact the heart rate dynamics significantly. We subsequently include only those parameters in the estimation routine that impact the transient heart rate dynamics substantially. We apply the estimation algorithm to both simulated and real data and showed that restriction to the 20 most important parameters does not impair our ability to match the data.

  4. The Design and Its Application in Secure Communication and Image Encryption of a New Lorenz-Like System with Varying Parameter

    Directory of Open Access Journals (Sweden)

    Lilian Huang

    2016-01-01

    Full Text Available A new Lorenz-like chaotic system with varying parameter is proposed by adding a state feedback function. The structure of the new designed system is simple and has more complex dynamic behaviors. The chaos behavior of the new system is studied by theoretical analysis and numerical simulation. And the bifurcation diagram shows a chaos-cycle-chaos evolution when the new parameter changes. Then a new synchronization scheme by a single state variable drive is given based on the new system and a chaotic parameter modulation digital secure communication system is also constructed. The results of simulation demonstrate that the new proposed system could be well applied in secure communication. Otherwise, based on the new system, the encryption and decryption of image could be achieved also.

  5. Minimal-Learning-Parameter Technique Based Adaptive Neural Sliding Mode Control of MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2017-01-01

    Full Text Available This paper investigates an adaptive neural sliding mode controller for MEMS gyroscopes with minimal-learning-parameter technique. Considering the system uncertainty in dynamics, neural network is employed for approximation. Minimal-learning-parameter technique is constructed to decrease the number of update parameters, and in this way the computation burden is greatly reduced. Sliding mode control is designed to cancel the effect of time-varying disturbance. The closed-loop stability analysis is established via Lyapunov approach. Simulation results are presented to demonstrate the effectiveness of the method.

  6. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  7. Analytical investigation of the possibility of parameter invariant TCP-based radiation therapy plan ranking.

    Science.gov (United States)

    Stavreva, Nadejda; Nahum, Alan; Markov, Krassimir; Ruggieri, Ruggero; Stavrev, Pavel

    2010-11-01

    To analytically investigate the possibility of a parameter invariant ranking of radiotherapy (RT) plans based on comparing the tumor control probabilities (TCPs) produced by the competing plans for different values of the radiobiological model parameters determining the radiation response. Individual TCP models based on the Single hit model of cell kill and on the linear-quadratic (LQ) model of cell damage, with and without repopulation, are considered. The tumor dose distributions in case of heterogeneous dose irradiation are described by a Gaussian distribution function on the basis of which a TCP expression is derived depending only on the mean dose to the tumor and its standard deviation and the TCP model parameters. It is shown that in case of homogeneous dose to the tumor the plan ranking in terms of TCP is parameter invariant. In case of heterogeneous dose to the tumor there are cases when the plan ranking is parameter invariant and cases when the parameter invariance is violated. An interesting dependence of the extent of the parameter invariance violation on the model of cell kill as well as on the size and repopulation rate of the tumor is noted. We conclude that in many cases RT plan ranking in terms of TCP is parameter invariant. However, since there exist cases where the parameter invariance is lost an investigation of the specific plans to be ranked should be performed applying the proposed approach.

  8. Design of extensible meteorological data acquisition system based on FPGA

    Science.gov (United States)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  9. Evaluation of selected parameters on exposure rates in Westinghouse designed nuclear power plants

    International Nuclear Information System (INIS)

    Bergmann, C.A.

    1989-01-01

    During the past ten years, Westinghouse under EPRI contract and independently, has performed research and evaluation of plant data to define the trends of ex-core component exposure rates and the effects of various parameters on the exposure rates. The effects of the parameters were evaluated using comparative analyses or empirical techniques. This paper updates the information presented at the Fourth Bournemouth Conference and the conclusions obtained from the effects of selected parameters namely, coolant chemistry, physical changes, use of enriched boric acid, and cobalt input on plant exposure rates. The trends of exposure rates and relationship to doses is also presented. (author)

  10. Study of human walking patterns based on the parameter optimization of a passive dynamic walking robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Xinyu; Zhu, Yanhe; Zhao, Jie

    2016-04-29

    The study of human walking patterns mainly focuses on how control affects walking because control schemes are considered to be dominant in human walking. This study proposes that not only fine control schemes but also optimized body segment parameters are responsible for humans' low-energy walking. A passive dynamic walker provides the possibility of analyzing the effect of parameters on walking efficiency because of its ability to walk without any control. Thus, a passive dynamic walking model with a relatively human-like structure was built, and a parameter optimization process based on the gait sensitivity norm was implemented to determine the optimal mechanical parameters by numerical simulation. The results were close to human body parameters, thus indicating that humans can walk under a passive pattern based on their body segment parameters. A quasi-passive walking prototype was built on the basis of the optimization results. Experiments showed that a passive robot with optimized parameters could walk on level ground with only a simple hip actuation. This result implies that humans can walk under a passive pattern based on their body segment parameters with only simple control strategy implying that humans can opt to walk instinctively under a passive pattern.

  11. The application of parameters for comprehensive smile esthetics by digital smile design programs: A review of literature

    Directory of Open Access Journals (Sweden)

    Doya Omar

    2018-01-01

    Full Text Available Cosmetic dentistry is increasingly becoming an issue of concern to patients who hope to improve their smile. A systematic and comprehensive dentofacial analysis must be performed before commencing esthetic treatment. Several computer software programs have been developed for digital smile design (DSD to assist clinicians in this process. This article compares DSD programs commonly used in cosmetic dentistry and their ability to assess esthetic parameters. A literature review was performed of current dentofacial aesthetic parameters and clinical applications of computer technology to assess facial, dentogingival and dental esthetics. Eight DSD programs (Photoshop CS6, Keynote, Planmeca Romexis Smile Design, Cerec SW 4.2, Aesthetic Digital Smile Design, Smile Designer Pro, DSD App and VisagiSMile were compared. Photoshop, Keynote and Aesthetic Digital Smile Design included the largest number of esthetic analysis parameters. Other studied DSD programs presented deficiencies in their ability to analyze facial esthetic parameters but included comprehensive dentogingival and dental esthetic functions. The DSD App, Planmeca Romexis Smile Design, and Cerec SW 4.2 were able to perform 3D analysis; furthermore, Cerec SW 4.2 and PRSD could be used jointly with CAD/CAM. The DSD App and Smile Designer Pro are available as mobile phone applications. It can be concluded that despite the fact that they were not specifically designed for dental diagnosis, Photoshop CS6 and Keynote provide a more comprehensive smile analysis than most specialized DSD programs. However, other program functions should also be considered when deciding which DSD program is applicable to individual clinical setups.

  12. An Improved Tabu Search Algorithm Based on Grid Search Used in the Antenna Parameters Optimization

    OpenAIRE

    He, Di; Hong, Yunlv

    2015-01-01

    In the mobile system covering big areas, many small cells are often used. And the base antenna’s azimuth angle, vertical down angle, and transmit power are the most important parameters to affect the coverage of an antenna. This paper makes mathematical model and analyzes different algorithm’s performance in model. Finally we propose an improved Tabu search algorithm based on grid search, to get the best parameters of antennas, which can maximize the coverage area and minimize the interferenc...

  13. Analytical method for determining breakdown slip of an induction motor based on of five parameters

    Directory of Open Access Journals (Sweden)

    Petrović Nenad

    2014-01-01

    Full Text Available The paper proposes an explicite formula for determining the critical slip value of an induction squirel cage motor based upon five parameters. Three of these parameters - rated slip, rated and breakdown torque are known by catalogue data. Two missing parameters are the arbitrary slip between the rated and critical slip value and the corresponding torque value. These two parameters are to be experimentaly obtained. The breakdown torque value given by catalogue data is usually less accurate than the rated torque value. The proposed formula gives the possibility of analysing the error distribution of the critical slip value obtained from catalogue and measured data in comparison with the values obtained from the mechanical characteristic based on the physical parameters of an induction motor.

  14. The use of damage as a design parameter for postbuckling composite aerospace structures

    OpenAIRE

    Orifici, Adrian; Thomson, Rodney; Degenhardt, Richard

    2008-01-01

    Advanced fibre-reinforced polymer composites have seen a rapid increase in use in aircraft structures in recent years due their high specific strength and stiffness, amongst other properties. The use of postbuckling design, where lightweight structures are designed to operate safely at loads in excess of buckling loads, has been applied to metals for decades to design highly efficient structures. However, to date, the application of postbuckling design in composite structures has been limited...

  15. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  16. The influence of operational and design parameters on vertical redox profiles in sub-surface flow constructed wetlands: surveying the optimal scenario for microbial fuel cell implementation

    OpenAIRE

    Garfi, Marianna; Corbella Vidal, Clara; Puigagut Juárez, Jaume

    2013-01-01

    The objective of the present work was to determine the optimal redox gradient that can be obtained in sub-surface flow constructed wetlands (SSF CWs) to maximize the energy production with microbial fuel cells (MFCs). To this aim, a pilot plant based on SSF CW was evaluated for vertical redox profiles. Key operational and design parameters surveyed that influences redox conditions in SSF CW were the presence of plants (Phragmites australis) and the flow regime (continuous and discontinuous fl...

  17. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...

  18. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  19. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  20. Machine-Learning Approach for Design of Nanomagnetic-Based Antennas

    Science.gov (United States)

    Gianfagna, Carmine; Yu, Huan; Swaminathan, Madhavan; Pulugurtha, Raj; Tummala, Rao; Antonini, Giulio

    2017-08-01

    We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.